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Abstract. The progress of Automatic Differentiation
(AD) and its impact on perturbation methods is the ob-
ject of this paper. AD studies show an important activity
for developing methods addressing the management of
modern CFD kernels, taking into account the language
evolution, and intensive parallel computing. The evalua-
tion of a posteriori error analysis and of resulting correc-
tors will be addressed. Recents works in the AD-based
contruction of second-derivatives for building reduced-
order models based on a Taylor formula will be presented
on the test case of a steady compressible flow around an
aircraft.

1 Introduction

While high fidelity models are mainly used for deter-
ministic design, which assumes a perfect knowledge of
the environmental and operational parameters, uncer-
tainty can arise in many aspects of the entire design-
production-operational process: from the assumptions
done in the mathematical model describing the under-
lying physical process, to the manufacturing tolerances,
and to the operational parameters and conditions that
could be affected by unpredictable factors (e.g. atmo-
spheric conditions). Exact and approximate techniques
for propagating these uncertainties require additional
computational effort but are progressively well estab-
lished. The proposed study takes place in NODESIM-
CFD FP6 project [10, I5]. The AD tool TAPENADE
[13] has been developed for a large range of applications
where the code to code direct and reverse differentiation
is needed. Direct and reverse Automatic Differentiation
are used for addressing numerical error reduction since
they help building correctors. This discussed in Section
3. Uncertainty propagation is addressed by a perturba-
tion technique using the first terms of Taylor series of the
high-fidelity model (Method of Moments). This is built
as an application of Automatic Differentiation (AD). Ef-
ficient first and second derivatives softwares are produced
by TAPENADE, thanks to recent improvements that we
shortly present in first section. Then the development of
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a Method of Moments using second derivatives obtained
with TAPENADE is presented in Section 2.

2 Automated Differentiation im-
provements

Our AD tool TAPENADE has been extended to deal
with Fortran95 and with ANSI C ([1,4]). Figure[l]shows
the architecture of TAPENADE. It is implemented mostly
in JAVA (115 000 lines) except for the separate front-ends
which can be written in their own languages. Front- and

Differentiation Engine

( )

Imperative Language Analyzer

Fortran77 parser
Fortran95 par ser /

(IL)
" Fortran77 printer
, Fortran95 printer

Figure 1: Overall Architecture of TAPENADE

back-ends communicate with the kernel via an intermedi-
ate abstract language (“IL”) that makes the union of the
constructs of individual imperative languages. Notice
also the clear separation between the general-purpose
program analysis and the differentiation engine itself.
Thanks to the language-independent internal represen-
tation of programs, this still makes a single and only tool,
and every development benefits to differentiation of each
input language. One of these developments concerned
the pointer analysis. The reverse mode now accepts most
uses of pointers and allocation. Another development
concerned declarations. The differentiated program re-
spects the order of declarations, uses the include files and
keeps the comments from the original program. Gen-
erated codes are more readable and often smaller. We
also investigated extensions to TAPENADE to succes-
sive differentiations, in particular to efficiently handle
tangent differentiation of the stack primitives present in
the reverse differentiated codes. We implemented user
directives for the reverse differentiation of a frequent
class of parallel loops (directive II-LOOP) and for opti-



mal checkpointing in reverse differentiation ([5],[6],[7]).
TAPENADE lets the user specify finely which proce-
dure calls must be checkpointed or not with the directive
NOCHECKPOINT.

3 Numerical errors reduction

3.1 Error estimates and corectors

Let us recall first how linearised -direct or adjoint- states
can be useful for improving numerical accuracy issues.

Numerical error involves the deviation between the so-
lution W = W (z, vy, z) of mathematical model i.e. of the
nonlinear PDE symbolized by:

T(W)=0. (1)

and the output data produced by the computations, i.e.
the more or less perfect numerical solution of the discrete
system:

U,(W,)=0 ¢ RV (2)

The discrete unknown Wy, is the N-dimensional array of
degrees of freedom:

W, € RY | W, = [(Wy)] .

The output data produced by the computation do not
involve a function W}, but, instead the array W, which
needs to be transformed via an interpolation: Let
V € L?(Q) a space of rather smooth function. In prac-
tice, V.. C C°Q). Let Rj be a linear interpolation
operator transforming an array of N degrees of freedom
into a continuous function:

Ry:RY — V v, — Rpvp. (3)

Let:
Wh(‘ra Y, Z) = (RhWh)(lE, Y, Z)

Similarly, we need an operator from continuous functions
to arrays. Let T} be an operator transforming a contin-
uous function into an array of N degrees of freedom:

Th:V — RY v — T (4)

It is useful to take the adjoint of Ry:
T, = R;,. (5)

The deviation between the PDE solution and the numer-
ical one can be defined as W — W),. It consists mainly of
approximation errors, of algorithmic errors, arising typ-
ically because iterative algorithmes are not iterated in-
finitely, and of round-off errors due to the fact that the
programm is run in floating point arithmetics. We dis-
cuss here mainly of approximation errors, although the
other ones may be also addressed in part by the method
studied here.
Another way to postprocess a computation is to use it
for evaluating a scalar functional:

Let j a smooth linear functional applying W into the
scalar number:

j(u) = (9, W)r2(0)

where g is a given L?(f2) function. This allows to define:

gn =Thg
gn = Rpgn = RpThy (6)
The continuous adjoint writes:

ov .
(%)p—y

The discrete adjoint equation is then defined by:

T
(G2 " pp = Thy - (7)
And we can then consider:

Ph = RnPh -

A fundamental assumption of the present analysis is that
this discrete adjoint is a good enough approximation of
continuous adjoint p for allowing to replace p by py the
calculations which follow. In order to evaluate the ap-
proximation error, two kinds of estimates can be applied:

A posteriori estimate:
(W) = O(Wy) = =0 (W) (8)

where U(W},) is the continuous residual applied to dis-
crete solution. Then:

W — Wy ~ —[2%] 7 0 (W,,). (9)

A priori estimate:
U, (T,W) — O, (Wy) = =0, (T, V) (10)

where U, (T, W) is the discrete residual applied to dis-
cretised continuous solution.Then:

TW — Wy, ~ — [ 3807 0, (T, W), (11)

We observe that these estimates involve unavailable
continuous functions. In the a posteriori estimate, the
solution of the continuous linearised system can be ap-
proximated thanks to the discrete Jacobian. For the a
priori estimate, we can also solve this issue in some par-
ticular case see [14], by replacing ¥, (7, W) by an expres-
sion T;,©,,(W},) depending only of W},. Corresponding to
these estimates, we have the following field correctors:

Wy = —Rp,[ 28] 7 1, W (W) (12)
IRyW}, = —Ry, [3’%@] 71Th@h(Wh) (13)

and the following direct-linearized goal-oriented
correctors:

hj == (o BalGR] " TwOv) L ()
b2j = — (g, Ry[2%]'T3,0, (W, 15
2] g, h[awh] hOR(Wh) L) (15)

Also follows the adjoint-based goal-oriented correc-
tors:

61j=—n , ThY(Wha))r2(q) (16)



62§ = = (pn » ThOL(Wh)) 120y - (17)

We recognize in ([?]) the superconvergent corrector of
[?]. We observe that, thanks to the choice of T}, as the
adjoint operator of Ry, the linearised-based and adjoint-
based formulation are perfectly equivalent. At the con-
trary, the effort to compute them are very different, par-
ticularly in the case of unsteady PDE, since the adjoint
system has to be solved reverse in time, while using the
state solution at all time levels. This remark leads to the
following recommendations:

- use the direct linearised formulation in any case you
only need a corrector for the field as well as a corrector
for one or several output functionals.

- the adjoint formulation is compulsory when you wish
to derive an goal-oriented optimal mesh.

The second recommendation is motivated by the fact
that an optimal mesh will be derived from minimisation
of the error term in which we need to put in evidence
the dependance of error with respect to mesh. Since
the adjoint is an approximation of a continuous func-
tion, it does not much depend of mesh. At the contrary,
the continuous residual T}, ¥ (W},) or the truncation error
T,0,(W},) are proportional to a power of the mesh size.
In [14], the truncation error is expressed in terms of sec-
ond derivatives of solution field and allows the derivation
of an optimal mesh.

3.2 An example

To end this discussion, we give an numerical example of
corrector evaluation built on a finite-element approxima-
tion. we can write Euler equations under the form:

WeV=H\(Q)? VeV,
/]-' Wod— [ sFW

o0

yndl = 0.  (18)

where F(W) accounts for the different boundary condi-
tions. Let us introduce a discretization of the previous
EDP. Let 73, a tetrahedrization of Q with N vertices. It
will rely on a discrete space of functions:

Vi, = {¢n € H(Q)?, VT € 1,,¢1|T € P'}
the canonical basis of which is denoted:

Vi = span[N;], N;(x;) = 6;;Vi, j, vertices of 7y,
and on the interpolation operator:

My : VYV — Vi, Opoé(z;) = é(x;), Vi, vertex of 7.

Comparing with the previous abstract theory, we get:

R,: RN -V,
Th : V- R5N,

fh [d Rhfh = Ez[fh]zN
¢ — Tno = [p(w:)] -

The discretization is set into the discrete space, but also
it differs from the continuous statement in two features,
a discrete flux Fj, instead of F:

Fn: V-V

and an extra term of artificial diffusion Dj,:

Wy € Vh, V¢h S Vh,

(Ui(Wh), én)vixv =0,
with

(Un(Wh), dn)vixv =

/ OnV . Fr(Wy) dQ2 — / (ﬁhfh(Wh).n dl’
Q N

(19)

+/ oOn Dp(Wp)dQY.
Q
The discrete fluxes are chosen as follows:
Frn(W) = Fr,(IT,W) = I, F(I,W).
Fn(W) = Frp(Iy W) = I, FA1,W). (20)

After some calculations and simplifications, the main er-
ror term appears as follows:

<%5Wh,¢h>

/ Von(F

+ / ¢h(»7:—OUt(W) — I, F (W)).ndl
T

— I, F(W))dQ

with F(W).n = F(W).n—F(W).n. A Gauss quadrature
is applied for the evaluation of the right hand side. We
have applied this to a steady subsonic flow and give some
preliminary results. Figure 2 compares the entropy gen-
eration in the flow computed directly and the same flow
corrected by formula . Entropy level is one order of
magnitude smaller.

Figure 2: Entropy spurious generation for a direct com-
putation of a steady flow and for a corrected one.

4 Uncertainty propagation tech-
niques

In optimization problems, uncertainty propagation anal-
ysis may concern the study of the cost functional

jiy =) =J0, W) eR (22)
where all varying parameters are represented by the un-
certain (i.e. not-deterministic) control variables v € R™,
and where the state variables W = W (y) € RY are so-
lution of the (nonlinear) state equation

(v, W) = 0. (23)



It is important to note that the state equation con-
tains the governing PDE of the mathematical model of
the physical system of interest (for example the station-
ary part of the Euler or Navier-Stokes equations) and it
can be viewed as an equality constraint for the functional
(22). The basic probabilistic approaches for analyzing the
propagation of uncertainties are Monte-Carlo methods.
A full nonlinear Monte-Carlo method gives us a complete
and exact information about uncertainty propagation in
the form of its PDF, but with a prohibitively expen-
sive cost in terms of CPU time. In NODESIM-CFD,
several other probabilistic approaches for analyzing the
propagation of uncertainties are considered such as La-
tine Hypercubes and Polynomial Chaos. We contribute
on perturbative methods based on the Taylor expansion.

4.1 Perturbation methods

To reduce the computational cost, we may think to use
only some (derivate) quantities characterizing the distri-
bution of the input variables instead of an entire sample
drawn from a population with a given PDF. Therefore,
the idea behind the Method of Moments is based on the
Taylor series expansion of the original nonlinear func-
tional around the mean value of the input control
(y = E[v]), and then computing some statistical mo-
ments of the output (usually mean and variance). In
this way, we are assuming that the input control v can
be decomposed as sum of a fully deterministic quantity
1~ with a stochastic perturbation -, with the property
E[d7,] = 0. With these definitions, the Taylor series ex-
pansion of the functional j(v) around the mean value .,
is:

J() = J(py + 0vu) = 5 (py) + GOy +
1 *
+507H o + O(1|07l )

(24)
0j . . .
where G = — is the gradient of the functional re-
8711, Hey
. . Pj .
spect to the uncertain variables and H = ——5| is the
Yu” Ty

Hessian matrix, both evaluated at the mean of the input
variables fi..

By considering various orders of the Taylor expansion
and taking the first and the second statistical mo-
ment, we can approximate the mean p; and the variance
o7 of the functional j(v) in terms of its derivatives eval-
uated at p, and in terms of statistical moments of the
control ~

First order moment methods:

i = J(ny) +0( [0va )

032. = E[(Gévu) ] + O( [573]) (%)

Second order moment methods:

1
pj = jpy) + §E[5WZH5%]

+O (E [Mi])

E[(Gov)?| + B[(Gov) (07:Hov)]

—EE[M;H(S%]Q fE{(MZH(S%)Q}
+O (E [Mﬁ])

With this method it is clear that we are using only
some partial informations about the input uncertainties,
in fact we are using only some statistical moments of
the control variable instead of full information available
with its PDF, and we will not have anymore the PDF
of the propagated uncertainty, but only its approximate
mean and variance. Another important point is that
the Method of Moments is applicable only for small un-
certainties, due to the local nature of Taylor expansion
approximation.

Two things should be noted here: the first one is that for
the Method of Moments we need the derivatives of the
functional respect to the control variables affected by
uncertainties: in particular we need the gradient for the
first order method, and gradient and Hessian for the sec-
ond order method. Due to the fact that j(v) = J(y, W),
where W = W (7) is solution of the state equation
we have for the derivative:

9j _ 8J
OYu ~— Ova

0J oW

OW Oy

Since we know the solution W (v) by its numerical val-
ues as result of a program (implementing an appropriate
method, e.g. fixed point method), it is intersting to use
of Automatic Differentiation tools (like TAPENADE) in
order to obtain the needed derivatives. The same re-
marks apply to the computation of the Hessian matrix.
In particular we note that the derivatives are computed
at the mean value of the control p., so they are fully
deterministic and can be picked out from the expecta-
tions in the equations or . In other words we
can write

B[(Gov)*| =

Y GGLE[05P] =Y GiGrCu
i,k ik
E[CS’YZHCS%] =

ZHkE oL (5% = ZHikCik
i,k i,k

E[(Gé’yu) (5 *Hé'yu)] =
> GHwE 575757 ]

i,k,l

[(57 H&yu) } =

i, k,l,m

(26)

are the elements of the gradient,

94
where G; = %
0V,



0?5

A oy
trix and C;, = E[(Sfyq(f)ém(bk)] = cov(%(f),m(f)) are the ele-
ments of the covariance matriz. Every expectaction term
E[...] in the equations (4.1)), is defined by the statistical
model of the uncertainties and could be computed in a
preprocessing phase.

For example, for the important case where the uncer-
tainties are random and normally distribuited, we have:

are the elements of the Hessian ma-
Hy

H, =

E[5757P o] =0
E[5y{ oy oy Dor(m] =
CixCim + CyiCrm + Cin Cra

and if these (normal) uncertainties are idependents, then
holds the relation Cj, = 01-2517‘ where 02 = E [57&2)677@]
and the equations (4.1)) become

B|(Gom)?| =Y cio?

E[ov;Hov,] = Z Hjo?

E[(Gévu) (6’)/;H(5'yu)} =0

E[(&yZH(S»YU)Q} _ Z(H“Hkk + 2Hi2k)0220,%
ik

(27)

Since we have the term E[((W;H(S%)Q]/Zl, the error
is still of the order of E[é’yﬁ]. Computing the other
terms of same order require the knowledge of order of
derivatives higher than the second. From the previous
discussion, it is clear that in order to apply the Method
of Moments we need to solve only one (expensive) non-
linear system with derivatives (at the mean ) and then
apply the (inexpensive) equations or where, for
the fully nonlinear Monte-Carlo approach of the previous
section, we need to solve N > 1 nonlinear systems .

4.2 First and second-order derivatives of
a functional

We are interested by obtaining the first and second
derivatives of a functional j depending of v € R"™, and
expressed in terms of a state W € RV as follows:

(28)

Our problem can be viewed from two different point of
view: the first one is consider the solution algorithm for
state equation as part of j itself, i.e. considering j as a
function of the control variables v only. The second one
is consider the system made by two different routines:
one of them is the routine that solves the nonlinear sys-
tem U(y,W(y)) = 0 (and contains the evaluation the
residual W(~v,W)), and the other is the routine J(vy, W)
that computes the value of the functional from the state
variables W and (eventually) the control variables ~.
The first approach lead to a straightforward algorithm
for first order derivatives, in fact we just need to differ-
entiate the entire routine j with tangent or reverse mode
In this context, the routine j contains the iterative

solver method for the state equation, and the differenti-
ated routines will also contains this loop in differentiated
form. If we need njier loop iterations in order to obtain
the nonlinear solution, and we assume for each iteration
an unitary cost, we can analyze the cost for the gradient
of the functional.

Using tangent mode, the cost for the entire gradient
will be n(niterr) where n is the number of components
of the gradient and 1 < ar < 4 is the overhead associated
with the differentiated code respect to the original one.
For this stategy, the memory requirements will be of the
same order of the undifferentiated code.

With reverse mode we are able to obtain the entire
gradient with a single evaluation of the differentiated
routine, but the total cost (in terms of CPU time and
memory) will depends on the strategy used by the AD
tool to solve the problem of inverse order differentiation
for the original routine. For the case of a Store-All (SA)
strategy, the CPU cost will be (nierar) with 1 < ag <,
i.e. ag times the undifferentiated code, but the required
memory will be n times greater. For a Recompute-
All (RA) strategy the CPU cost will be (nZ,.ag), ie.
(niterar) the nonlinear solution, but the memory will be
the same of the undifferentiated routine. For real large
programs, neither SA or RA strategy can work, so we
need a special storage/recomputation trade-off in order
to be efficient using checkpoints. Obviously, with check-
pointing the CPU cost will be greater than the cost of
SA strategy and can be shown that the cost for the dif-
ferentiated code will be of the order of {/njter (Where s
is the number of snapshots available).

It is clear that for gradient computation with n > 1,
the reverse mode is faster than tangent mode, but
for a program containing an iterative algorithm, the
reverse mode is not always applicable. The problem
relies on the fact that the Reverse mode computation
is performed in the opposite way of the original code
(backward sweep) after a forward sweep needed to store
the variable needed in the successive phases.

For the previous arguments, we prefer differentiate
not the entire program (solution of the state equation
+ functional evaluation), but the two main component
in a separate way, using the fact that at the solution,
the residuals will be zero (i.e. we don’t differentiate
the routine containing the main loop, but only the
quantities involved after the last iteration). For this
second approach, we have to analyse the influence of
state equation and the functional evaluation in more
details. This is the purpose of the next sections.

First derivative

Using the chain rule, the gradient of the functional
J(v) = J(v, W(7)) is given by

4 0J

07, 07 w
dy Oy

oW dy
where the derivatives of the state variables W(c) are ob-
tained solving the linear system

dp O

dy 0y

ovaw _
oW dy



Therefore, two strategies can be applied:
Direct differentiation :

It consists in computing the Gateaux-derivatives
with respect to each component direction (e; =

(0,...0,1,0,...,0)7, where 1 is at the i-esim compo-
nent):
dj dj oJ  0J dw
=2 = = 22 29
b o W (29
with:
ov dW ov

oW dy; Oy

This has to be applied to each component of ~, i.e.
n times and the cost is n linearised N-dimensional
systems to solve. If we choose to solve the single system
(B0) with an iterative matrix-free method, and the
solution is obtained after nj., step, the total cost will
be of the order of arniterr, i.€. nNiter,r evaluation of
the matrix-by-vector operation ( g‘%’,)x, where each
evaluation costs a7 times the evaluation of the state
residual ¥(y, W) (and the cost of the state residual is
taken as reference equal to 1). Therfore, the cost of the
full gradient will be narniter, 7.

Inverse differentiation (Reverse mode)

The complete gradient is given by the equation

() - () -(5)m o

where Il is the solution of the linear system

* *

(&) - (&) ®

ow ow

This computation needs only one extra linearised N-
dimensional system, the adjoint system (some methods
for calculation of the adjoint solutions are described
in ). If we choose to solve the adjoint system
with an iterative matrix-free method, we can apply the
same estimate done as in the case of the Tangent mode
differentiation, but this time the overhead associated
with the evaluation of the matrix-by-vector operation
(OB—V‘I[’,)*:U respect to the state residual evaluation will
be agr (and usually ap > a7, and the number of
iteration mnjter,r for the convercence of the solution
could be different from mnjter,r7 of the previous case
(but the asymptotical rate of convergence will be the
same of the original linear system (g—v‘l[’,)ac = b, see ).
Therefore the cost for the gradient will be arniter,r,
and the Reverse mode differentiation for the gradient
computation is cheaper than the Tangent mode if n > 1.

Second derivative
For second derivatives we have different possibilities:
Direct-direct option

This methods was initially investigated by along with
various other algorithms, but the publication does not

go into the implementation details for a generic fluid dy-
namic code. Here we present the mathematical back-
ground behind the idea and the efficient AD implemen-
tation of Ghate and Giles but with a different analysis
of the computational cost.

Starting from the derivative , we perform another
differentiation respect to the variable 7, obtaining

%) ) o d*W

_p2, gy 9l e
dy;dryg ik +8W dy;dryg,

(33)

where

o [0J
2 7 _ )
Di,kJ = e (8’yez> e+

0 (91 AW 0 (9] \dW
OWN\oy ") dy, oW\ 0oy 4§ dry;

0 (07 awydw
OW \OW d~y; ) dy

Differentiating the equation we get

ov  d&PW
D2y 4+ ———— = 4

NCA L
oW\ oy ") dy
o [0V aw
+3VV(57%) d;i *
o (0V dW\ dw
3W(3W d%’)d’Yk

where

Substituting the second derivatives of the state respect to

47 i cation () o
dy.dy; 0 equation (133) from equa.

the control variables

tion (34) we get
d2j oJ (ov\ !
=D Jg- (= D2,
dyidye T oW (aw> ik (35)

= D}, J — ;D7 U

where Il is the solution of the adjoint system
evaluated at the point (v, W (7)) solution of the state

should

equation U(vy,W) = 0. The n derivatives 7
Vi

be computed (and stored) using tangent mode dif-
ferentiation of the nonlinear solver algorithm, and
each derivatives costs njerr. If we need the full
Hessian matrix we have to evaluate the quantity
n(n + 1)/2 times, i.e. we have to evaluate the terms
DZkW and Df,kJ fori =1,...,nand j = 4,...,n due
to the simmetry of the Hessian, and each evaluation of
(D7, ¥ costs af. (the evaluation of D?;.J) is negligible
respect to (Dl2 :¥V). Therfore the full Hessian costs
nar [Niger,r + (1 + 1)ar/2]. With similar arguments, if
we want only the diagonal part of the Hessian, the cost
is nar [Niger,r + ar].

Inverse-direct



This consists in the direct derivation in any direction
ei,t = 1,n of the (non-scalar) function:

(%) ewen = (%) @we
_@f)*n(c,wf(c))

where W(c) and II(¢, W(c)) are solutions of the above
two state systems. With some algebra we obtain

0 (95N _ (9%, _ 9 (TN
de; \dc ) — \ocz )" e\ de !
a [(dJ\" 0 LA
*aw(&) b ac[(ac> “0]

0 LA LA
‘aw[(aw) “0}‘)1‘ - (ac) A

The derivation needs the solution of the adjoint systems

ov\" oJ\"
— ) Iy = | == 36
() 1= () 0
and 2n perturbed N-dimensional linear systems (for the

full Hessian):
ov ov

— €

ow T dc
QYN 9[0T,
ow ) M ac\ow ) ©
o (0J\" 0 o\~
*w(wJ&&KwJ“+i
0 ov "
wmeJm%
where all the functions in the equations 7

are evalued at the final state (in order to verify
U(c,W(c)) =0).

Inverse-inverse

If we are interested in a (scalar!) functional depending
on the gradient, then it can be interesting to apply a
second inverse differentiation. We do not focus on this
direction at the moment.

5 Numerical experiments

The testcase considered here corresponds to the opti-
mization of the wing shape of a business aircraft (cour-
tesy of Piaggio Aero Ind.), for a transonic regime (see the
shape and the mesh in Fig. [3). The nominal operational
conditions are defined by the free-stream Mach number
M, = 0.83 and the incidence o = 2°. We suppose that
only these two quantities are subject to random fluctu-
ations. For simplicity, we assume that their PDF are
Gaussian with given mean and variance. The mean val-
ues correspond to the nominal values. The section of the
initial wing shape corresponds to the NACA 0012 airfoil.

For the present work, due to the fact that we consider
only two uncertain variables, we used a ToT approach
for the Hessian evaluation. A comparision of the result-
ing approximate drag coeflicient with respect to the real

value is given in Fig. We want to point out the fact
that the second-order approximation requires to solve
only one nonlinear state equation ¥ = 0 plus 4 linear sys-
tems using ToT. The real values of the functional plotted
in Fig [ require 21 x 21 nonlinear simulations.

A

.

7 \\

e

———v

=<

e

=r

——

=

Figure 3: Wing shape and mesh in the symmetry plane.

Nonlinear simulations
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Figure 4: Drag coefficient vs. Mach number and angle
of attack (first-order spatial accuracy) for the transonic
wing: nonlinear simulations (first image); percentage rel-
ative difference between the nonlinear simulations and
the second-order Taylor approximation (second image).
For the top plot we have solved 21x21 nonlinear systems
¥ =0.
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Taylor 1st order (0=2.0, M=0.83)
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Figure 5: First-order (first image) and second-order (sec-

ond

image) Taylor approximation around o = 2° and

M = 0.83; For the 1st and 2nd-order Taylor approxima-

tion,

we have solved only one nonlinear system.
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