R. E. Kalman, A new approach to linear filtering and prediction problems . Transactions of the ASME -Journal of Basic Engineering, pp.82-117, 1960.

R. E. Kalman and R. S. Bucy, New Results in Linear Filtering and Prediction Theory, Journal of Basic Engineering, vol.83, issue.1, pp.95-107, 1961.
DOI : 10.1115/1.3658902

M. Fliess and H. Sira-ramirez, An algebraic framework for linear identification, ESAIM: Control, Optimisation and Calculus of Variations, vol.9, pp.151-168, 2003.
DOI : 10.1051/cocv:2003008

M. Fliess and H. Sira-ramirez, Closed-loop Parametric Identification for Continuous-time Linear Systems via New Algebraic Techniques, Continuous-Time Model Identification from Sampled Data, 2008.
DOI : 10.1007/978-1-84800-161-9_13

URL : https://hal.archives-ouvertes.fr/inria-00114958

M. Fliess and S. Diop, Nonlinear observability, identifiability and persistent trajectories, Proc. 36th IEEE Conference on Decision Control, 1991.

J. P. Barbot, M. Fliess, and T. Floquet, An algebraic framework for the design of nonlinear observers with unknown inputs, 2007 46th IEEE Conference on Decision and Control, 2007.
DOI : 10.1109/CDC.2007.4434695

URL : https://hal.archives-ouvertes.fr/inria-00172366

Y. Tian, T. Floquet, and W. , PERRUQUETTI : Fast state estimation in linear time-invariant systems : an algebraic approach, 16th Mediterranean Conference on Control and Automation, 2008.