Skip to Main content Skip to Navigation
Conference papers

Why one must use reweighting in Estimation Of Distribution Algorithms

Fabien Teytaud 1, 2 Olivier Teytaud 3, 4, 5
3 TANC - Algorithmic number theory for cryptology
Inria Saclay - Ile de France, LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau]
5 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : We study the update of the distribution in Estimation of Distribution Algorithms, and show that a simple modification leads to unbiased estimates of the optimum. The simple modification (based on a proper reweighting of estimates) leads to a strongly improved behavior in front of premature convergence.
Document type :
Conference papers
Complete list of metadata

Cited literature [22 references]  Display  Hide  Download
Contributor : Olivier Teytaud Connect in order to contact the contributor
Submitted on : Saturday, March 21, 2009 - 8:51:33 AM
Last modification on : Thursday, July 8, 2021 - 3:48:44 AM
Long-term archiving on: : Thursday, June 10, 2010 - 5:57:17 PM


Files produced by the author(s)


  • HAL Id : inria-00369780, version 1


Fabien Teytaud, Olivier Teytaud. Why one must use reweighting in Estimation Of Distribution Algorithms. GECCO, 2009, Montréal, Canada. ⟨inria-00369780⟩



Record views


Files downloads