Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Conference papers

On the parallel speed-up of Estimation of Multivariate Normal Algorithm and Evolution Strategies

Fabien Teytaud 1, 2 Olivier Teytaud 3, 4, 5 
3 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France
5 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Motivated by parallel optimization, we experiment EDA-like adaptation-rules in the case of $\lambda$ large. The rule we use, essentially based on estimation of multivariate normal algorithm, is (i) compliant with all families of distributions for which a density estimation algorithm exists (ii) simple (iii) parameter-free (iv) better than current rules in this framework of $\lambda$ large. The speed-up as a function of $\lambda$ is consistent with theoretical bounds.
Document type :
Conference papers
Complete list of metadata

Cited literature [20 references]  Display  Hide  Download
Contributor : Olivier Teytaud Connect in order to contact the contributor
Submitted on : Saturday, March 21, 2009 - 9:00:41 AM
Last modification on : Sunday, June 26, 2022 - 11:49:33 AM
Long-term archiving on: : Thursday, June 10, 2010 - 5:57:48 PM


Files produced by the author(s)


  • HAL Id : inria-00369781, version 1



Fabien Teytaud, Olivier Teytaud. On the parallel speed-up of Estimation of Multivariate Normal Algorithm and Evolution Strategies. EvoNum (evostar workshop), 2009, Tuebingen, Germany. ⟨inria-00369781⟩



Record views


Files downloads