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Résumé : Nous obtenons la politique optimale pour l’ordonnancementdans une file d’attente multi-
classe avec un serveur unique. Nous appliquons les résultats de Gittins [Git89], où il avait trouvé la
politique optimale qui minimise le temps moyen de sejour dans le système dans la file d’attente
M/G/1 avec un serveur unique parmi toutes les politiques non-anticipatoires. Nous montrons que
l’extension des résultats de Gittins permet de caractériser la politique d’ordonnancement optimale
dans la file d’attenteM/G/1 multi-classe. Nous appliquons le résultat général dans plusieurs cas,
lorsque la distribution de temps de service a un taux de hasard décroissant, comme Pareto et hyper-
exponentielle. Nous montrons que dans le cas de plusieurs classes, la politique optimale est la poli-
tique prioritaire, dans laquelle les tâches de classes différentes sont classifiés sur plusieurs niveaux
de priorité en fonction de leur service obtenu. Nous obtenons pour chaque classe l’expression du
temps moyen conditionnel de séjour en utilisant une approche de tâche marquées. Avec ça, nous
comparons numériquement le temps moyen de séjour dans le système entre les politiques de Gittins
et les politiques populaires comme PS, FCFS et LAS. Comme dans Internet, la distribution de la
taille des fichiers est “heavy-tailed” et possède la propriété de DHR, la politique optimale de Gittins
peut être appliquée dans les routeurs d’Internet, où les paquets générés par des applications diffé-
rentes doivent être servis. Typiquement, le routeur n’a pasd’accès au temps exact de séjour requis
(en paquets) de la connexion TCP, mais il peut avoir l’accès au service atteint de chaque connexion.
Ainsi, nous implémentons l’algorithme optimal de Gittins en NS-2 et nous faisons des simulations
numériques pour évaluer le gain de performance possible.

Mots-clés : M/G/1, file d’attente multi-classe, la politique de Gittins, NS-2

∗ INRIA Sophia Antipolis
† CNRS LAAS
‡ INRIA Sophia Antipolis



Optimal policy for multi-class scheduling in a single server queue

Abstract: In this chapter we apply the Gittins optimality result to characterize the optimal schedul-
ing discipline in a multi-classM/G/1 queue. We apply the general result to several cases of practical
interest where the service time distributions belong to theset of DHR distributions, like Pareto or
hyper-exponential. When there is only one class it is known that in this case the LAS policy is opti-
mal. We show that in the multi-class case the optimal policy is a priority discipline, where jobs of the
various classes depending on their attained service are classified into several priority levels. Using a
tagged-job approach we obtain, for every class, the mean conditional sojourn time. This allows us to
compare numerically the mean sojourn time in the system between the Gittins optimal and popular
policies like PS, FCFS and LAS.

Our results may be applicable for instance in an Internet router, where packets generated by
different applications must be served or service is non-preemptive. Typically a router does not have
access to the exact required service time (in packets) of theTCP connections, but it may have access
to the attained service of each connection. Thus we implement the Gittins optimal algorithm in NS-2
and perform experiments to evaluate the achievable performance gain. We find that in the particular
example with two classes and Pareto-type service time distribution the Gittins policy outperform
LAS by nearly10% under moderate load.

Key-words: M/G/1, multi-class queue, optimal scheduling, Gittins policy, NS-2 simulator



Optimal policy for multi-class scheduling in a single server queue 3

1 Introduction

We are interested to schedule jobs in theM/G/1 queue with the aim to minimize the mean
sojourn time in the system as well as the mean number of jobs inthe system. In our study we restrict
ourselves to the non-anticipating scheduling policies. Let us recall that the policy is non-anticipating
if it does not use information about the size of the arriving jobs. In [Git89], Gittins considered an
M/G/1 queue and proved that the so-called Gittins index rule minimizes the mean delay. At every
moment of time the Gittins rule calculates, depending on theattained service times of jobs, which
job should be served. Gittins derived this result as a byproduct of his groundbreaking results on
the multi-armed bandit problem. The literature on multi-armed bandit related papers that build on
Gittins’ result is huge (see for example [VWB, Whi88, Web92,Tsi93, DGNM96, FW99, BNM00]).
However, the optimality result of the Gittins index in the context of anM/G/1 queue has not been
fully exploited, and it has not received the attention it deserves.

In the present work we generalize the Gittins index approachto the scheduling in the multi-
classM/G/1 queue. We emphasize that Gittins’ optimality in a multi-class queue holds under much
more general conditions than the condition required for theoptimality of the well-knowncµ-rule. We
recall that thecµ-rule is the discipline that gives strict priority in descending order ofckµk, whereck

andµk refer to a cost and the inverse of the mean service requirement, respectively, of classk. Indeed
it is known (see for example [BVW85, SY92, NT94]) that thecµ-rule minimizes the weighted mean
number of customers in the queue in two main settings : (i) generally distributed service requirements
among all non-preemptive disciplines and (ii) exponentially distributed service requirements among
all preemptive non-anticipating disciplines. In the preemptive case thecµ-rule is only optimal if the
service times are exponentially distributed. On the other hand, by applying Gittins’ framework to
the multi-class queue one can characterize the optimal policy for arbitrary service time distributions.
We believe that our results open an interesting avenue for further research. For instance well-known
optimality results in a single-class queue like the optimality of the LAS discipline when the service
times are of type decreasing hazard rate or the optimality ofFCFS when the service time distribution
is of type New-Better-than-Used-in-Expectation can all bederived as corollaries of Gittins’ result.
The optimality of thecµ-rule can also easily be derived from the Gittins’ result.

In order to get insights into the structure of the optimal policy in the multi-class case we consider
several relevant cases where the service time distributions are Pareto or hyper-exponential. We have
used these distributions due to the evidence that the file size distributions in the Internet are well
presented by the heavy-tailed distributions such as Paretodistributions with the infinite second mo-
ment. Also it was shown that job sizes in the Internet are wellmodelled with the distributions with
the decreasing hazard rate. We refer to [NMM98, CB97, Wil01]for more details on this area, see
also Subsection??. In particular, we study the optimal multi-class scheduling in the following cases
of the service time distributions : two Pareto distributions, several Pareto distributions, one hyper-
exponential and one exponential distributions. Using a tagged-job approach and the collective marks
method we obtain, for every class, the mean conditional sojourn time. This allows us to compare nu-
merically the mean sojourn time in the system between the Gittins optimal and popular policies like
PS, FCFS and LAS. We find that in a particular example with two classes and Pareto-type service
time distribution the Gittins policy outperforms LAS by nearly 25% under moderate load.
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4 Natalia Osipova

From an application point of view, our findings could be applied in Internet routers. Imagine that
incoming packets are classified based on the application or the source that generated them. Then it
is reasonable to expect that the service time distributionsof the various classes may differ from each
other. A router in the Internet does not typically have access to the exact required service time (in
packets) of the TCP connections, but it may have access to theattained service of each connection.
Thus we can apply our theoretical findings in order to obtain the optimal (from the connection-level
performance point of view) scheduler at the packet level. Weimplement the Gittins scheduling policy
in the NS-2 simulator and perform experiments to evaluate the achievable performance gain.

The structure of the chapter is as follows : In Section 2 we review the Gittins index policy for
the single-classM/G/1 queue and then provide a general framework of the Gittins index policy
for the multi-classM/G/1 queue. In Section 3, we study the Gittins index policy for thecase of
two Pareto distributed classes. In particular, we derive analytic expressions for the mean conditional
sojourn times, study various properties of the optimal policy, provide numerical examples and NS-2
simulations. At the end of Section 3 we generalize the results to multiple Pareto classes. In Section 4
we study the case of two distributions : one distribution being exponential and the other distribution
being hyper-exponential with two phases. For the case of exponential and hyper-exponential distri-
butions, we also obtain analytical results and provide numerical examples. Section 5 concludes the
chapter. Some additional profs are given in the Appendix.

2 Gittins policy in multi-class M/G/1 queue

Let us first recall the basic results related to the Gittins index policy in the context of a single-
classM/G/1 queue.

Let Π denote the set of non-anticipating scheduling policies. Popular disciplines such as PS,
FCFS and LAS, also called FB, belong toΠ. Important disciplines that do not belong toΠ are SRPT
and Shortest Processing Time (SPT).

We consider a single-classM/G/1 queue. LetX denote the service time with distribution
P (X ≤ x) = F (x). The density is denoted byf(x), the complementary distribution byF (x) =
1 − F (x) and the hazard rate function byh(x) = f(x)/F (x). Let T

π
(x), π ∈ Π denote the mean

conditional sojourn time for the job of sizex in the system under the scheduling policyπ, andT
π
,

π ∈ Π denote the mean sojourn time in the system under the scheduling policyπ.
Let us give some definitions.

Definition 1. For anya, ∆ ≥ 0, let

J(a, ∆) =

∫ ∆

0 f(a + t)dt
∫∆

0 F (a + t)dt
=

F (a) − F (a + ∆)
∫∆

0 F (a + t)dt
. (1)

For a job that has attained servicea and is assigned∆ units of service, equation (1) can be
interpreted as the ratio between (i) the probability that the job will complete with a quota of∆
(interpreted as payoff) and (ii) the expected processor time that a job with attained servicea and

INRIA



Optimal policy for multi-class scheduling in a single server queue 5

service quota∆ will require from the server (interpreted as investment). Note that for everya > 0

J(a, 0) =
f(a)

F (a)
= h(a),

J(a,∞) =
F (a)

∫∞

0 F (a + t) dt
= 1/E[X − a|X > a].

Note further thatJ(a, ∆) is continuous with respect to∆.

Definition 2. The Gittins index function is defined by

G(a) = sup
∆≥0

J(a, ∆), (2)

for anya ≥ 0.

We callG(a) theGittins indexafter the author of book [Git89], which handles various static and
dynamic scheduling problems. Independently, Sevcik defined a corresponding index when conside-
ring scheduling problems without arrivals in [Sev74]. In addition, this index has been dealt with by
Yashkov, see [Yas92] and references therein, in particularthe works by Klimov [Kli74, Kli78].

Definition 3. For anya ≥ 0, let

∆∗(a) = sup{∆ ≥ 0 | J(a, ∆) = G(a)}. (3)

By definition,G(a) = J(a, ∆∗(a)) for all a.

Definition 4. The Gittins index policyπg is the scheduling discipline that at every instant of time
gives service to the job in the system with highestG(a), wherea is the job’s attained service.

Theorem 1. The Gittins index policy minimizes the mean sojourn time in the system between all
non-anticipating scheduling policies. In other words, in theM/G/1 queue for anyπ ∈ Π,

T
πg

≤ T
π
.

Démonstration.See [Git89].

Note that by Little’s law the Gittins index policy also minimizes the mean number of jobs in the
system.

We generalize the result of Theorem 1 to the case of the multi-class single server queue. Let
us consider a multi-classM/G/1 queue. LetXi denote the service time with distributionP (Xi ≤
x) = Fi(x) for every classi = 1, . . . , N . The density is denoted byfi(x) and the complementary
distribution byF i(x) = 1 − Fi(x). The jobs of every class-i arrive with the Poisson process with
rateλi, the total arrival rate isλ =

∑N
i=1 λi. For every classi = 1, . . . , N we defineJi(a, ∆) =

R ∆
0

fi(a+t)dt
R

∆
0

F i(a+t)dt
and then the Gittins index of a class-i job is defined asGi(a) = sup∆≥0 Ji(a, ∆).

We define asT
π

i (x) the mean conditional sojourn time for the class-i job of sizex, i = 1, . . . , N
and asT

π
the mean sojourn time in the system under the scheduling policy π ∈ Π.
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6 Natalia Osipova

Proposition 1. In a multi-classM/G/1 queue the policy that schedules the job with highest Gittins
indexGi(a), i = 1, . . . , N in the system, wherea is the job’s attained service, is the optimal policy
that minimizes the mean sojourn time.

Démonstration.The result follows directly from the application of the Definition 2 and Theorem 1
to a multi-classM/G/1 queue.

Let hi(x) = fi(x)/F i(x) denote the hazard rate function of classi = 1, . . . , N . Let the service
time distribution of class-i have a decreasing hazard rate. It is possible to show, see [AA07], that if
hi(x) is non-increasing, the functionJi(a, ∆) is non-increasing in∆. Thus

Gi(a) = Ji(a, 0) = hi(a). (4)

As a consequence we obtain the following proposition.

Proposition 2. In a multi-classM/G/1 queue with non-increasing hazard rate functionshi(x) for
every classi = 1, . . . , N , the policy that schedules the job with highesthi(a), i = 1, . . . , N in the
system, wherea is the job’s attained service, is the optimal policy that minimizes the mean sojourn
time.

Démonstration.Follows immediately from the Gittins policy Definition 4, Proposition 1 and equa-
tion (4).

The policy presented in Proposition 2 is an optimal policy for the multi-class single-server queue.
Let us notice that for the single class single server queue the Gittins policy becomes a LAS policy, as
the hazard rate function is the same for all jobs and so the jobwith the maximal value of the hazard
rate function from attained service is the job with the leastattained service. When we serve jobs
with the Gittins policy in the multi-class queue to find a job which has to be served next we need
to calculate the hazard rate of every job in the system. The job which has the maximal value of the
hazard rate function is served the next. Later by the value ofthe hazard rate we mean the value of
the hazard rate function of the job’s attained service.

Now let us consider several subcases of the described general approach. Depending on the beha-
vior of the hazard rate functions of the job classes the policy is different. We consider the case with
two job classes in the system and two subcases : (a) both job classes are distributed with Pareto and
the hazard rate functions do not cross and (b) job size distributions are hyper-exponential with one
and two phases and they cross at one point. Then we extend the case of two Pareto job classes to the
case ofN Pareto job classes. We provide the analytical expressions for the mean conditional sojourn
times in the system and numerical results. We implemented the algorithm for the case of two Pareto
classes with the NS-2 simulator on the packet level.

3 Two Pareto classes

Let us first present the case when job sizes are distributed according to Pareto distribution.

INRIA



Optimal policy for multi-class scheduling in a single server queue 7

θ g(x) x x

h1(x)

h2(0)

h2(x)

FIG. 1 – Two Pareto classes, hazard rates

Jobs

θ

class-1

class-2

high-priority queue

low-priority queue

class-1

class-2

LAS

Gittins
θ

FIG. 2 – Two Pareto classes, policy scheme

3.1 Model description

We consider the case when the job size distribution functions are Pareto. We consider the two-
class single serverM/G/1 queue. Jobs of each class arrive to the server with Poisson process with
ratesλ1 andλ2. The job sizes are distributed according to the Pareto distributions, namely

Fi(x) = 1 −
bci

i

(x + bi)ci
, i = 1, 2. (5)

Herebi = mi(ci − 1), wheremi is the mean of class-i, i = 1, 2. Thenfi(x) = bci

i ci/(x + bi)
ci+1,

i = 1, 2 and the hazard rate functions are

hi(x) =
ci

(x + bi)
, i = 1, 2.

These functions cross at the point

a∗∗ =
c2b1 − c1b2

c1 − c2
.

Without loss of generality suppose thatc1 > c2. Then the behavior of the hazard rate functions
depends on the values ofb1 andb2.

Let us first consider the case when the hazard rate function donot cross, soa∗∗ < 0. This
happens whenb1/b2 < c1/c2. Then the hazard-rate functions are decreasing and never cross and
h1(x) > h2(x), for all x ≥ 0.

RR n° 0123456789



8 Natalia Osipova

Let us denoteθ and functiong(x) in the following way that

h1(x) = h2(g(x)), h1(θ) = h2(0).

We can see thatg(θ) = 0. For given expressions ofhi(x), i = 1, 2 we get

g(x) =
c2

c1
(x + b1) − b2, θ =

c1b2 − c2b1

c2
.

According to the definition of functiong(x), the class-1 job of sizex and the class-2 job of sizeg(x)
have the same value of the hazard rate when they are fully served, see Figure 1. Then the optimal
policy structure is given on Figure 2.

3.2 Optimal policy

Jobs in the system are served in two queues, low and high priority queues. The class-1 jobs which
have attained servicea < θ are served in the high priority queue with LAS policy. When the class-1
job achievesθ amount of service it is moved to the second low priority queue. The class-2 jobs are
moved immediately to the low priority queue. The low priority queue is served only when the high
priority queue is empty. In the low priority queue jobs are served in the following way : the service
is given to the job with the highesthi(a), wherea is the job’s attained service. So, for every class-1
job with a attained service the functionh1(a) is calculated, for every class-2 job with a attained
service the functionh2(a) is calculated. After all values ofhi(a) are compared, the job which has
the highesthi(a) is served.

Now let us calculate the expressions of the mean conditionalsojourn time for the class-1 and
class-2 jobs.

3.3 Mean conditional sojourn times

Let us denote by indices[](1) and[](2) the values for class-1 and class-2 accordingly.

Let us define asXn
y

(i)
then-th moment andρ(i)

y be the utilization factor for the distributionFi(x)
truncated aty for i = 1, 2. The distribution truncated aty equalsF (x) for x ≤ y and equals1 when
x > y. Let us denoteWx,y the mean workload in the system which consists only of class-1 jobs with
service times truncated atx and of class-2 jobs with service times truncated aty. According to the
Pollaczek-Khinchin formula

Wx,y =
λ1X2

x

(1)
+ λ2X2

y

(2)

2(1 − ρ
(1)
x − ρ

(2)
y )

.

Now let us formulate the following Theorem which we prove in the Appendix.

Theorem 2. In the two-classM/G/1 queue where the job size distributions are Pareto, given by
(5), and which is scheduled with the Gittins policy described in Subsection 3.2, the mean conditional

INRIA



Optimal policy for multi-class scheduling in a single server queue 9

sojourn times for class-1 and class-2 jobs are

T1(x) =
x + Wx,0

1 − ρ
(1)
x

, x ≤ θ, (6)

T1(x) =
x + Wx,g(x)

1 − ρ
(1)
x − ρ

(2)
g(x)

, x > θ, (7)

T2(g(x)) =
g(x) + Wx,g(x)

1 − ρ
(1)
x − ρ

(2)
g(x)

, x > θ. (8)

Démonstration.The proof is very technical and is given in the Appendix. Let us give a very general
idea of the proof. To obtain expressions (7), (8) we use the fact that the second low priority queue
is the queue with batch arrivals. To obtain expressions of the mean batch size with and without the
tagged job we apply the Generating function analysis using the method of the collective marks.

The obtained expressions (6), (7) and (8) can be interpretedusing the tagged-job and mean value
approach.

Let us consider class-1 jobs. The job of sizex ≤ θ is served in the high priority queue with
the LAS policy, so for it the mean conditional sojourn time isknown, [Kle76, Sec. 4.6],T1(x) =
x+Wx,0

1−ρ
(1)
x

, x ≤ θ, whereWx,0 is the mean workload andρ(1)
x is the mean load in the system for class-1

jobs with the service time distribution truncated atx. The mean workloadWx,0 and mean loadρ(1)
x

consider only jobs of the high priority queue of class-1.
For jobs of sizex > θ the expression (7) can be presented in the following way,T1(x) =

x + Wx,g(x) + T1(x)(ρ
(1)
x + ρ

(2)
g(x)), where

– x is time which is actually spent to serve the job ;
– Wx,g(x) is the mean workload which the tagged job finds in the system and which has to be

processed before it ;
– T1(x)(ρ

(1)
x +ρ

(2)
g(x)) is the mean time to serve jobs which arrive to the system during the sojourn

time of the tagged job and which have to be served before it.
Let us provide more explanations. Let us find the expression for the mean workload in the system

for the class-1 job of sizex, which is the tagged job. According to the PASTA property of Poisson
arrivals, all jobs arriving to the system see the system in the same steady state. So, class-1 and class-2
jobs see the same mean workload in the system when they arrive. As we need to take into account
only the mean workload which is served before the tagged job,then for each job the mean workload
Wx,g(x) depends on the size of the tagged job,x. Jobs which have to be served before the tagged job
of class-1 of sizex are class-1 jobs of size less thanx and class-2 jobs of size less thang(x). Then
using Pollaczek-Khinchin formula (6) for class-1 jobs of size less thanx and class-2 jobs less than
g(x) we conclude thatWx,g(x) gives the mean workload in the system for the class-1 job of sizex,
which has to be served before it. Let us notice that the mean workload in the system for the class-2
job of sizeg(x) is the same,Wx,g(x).

Now let us find the mean workload which arrives during the sojourn time of the tagged job.
The sojourn time of the tagged job isT1(x). The mean load of jobs arriving to the system is :

RR n° 0123456789



10 Natalia Osipova

for the class-1 of size less thanx is λ1X1
x

(1)
= ρ

(1)
x and for the class-2 with size less thang(x)

is λ2X1
g(x)

(2)
= ρ

(2)
g(x). ThenT1(x)(ρ

(1)
x + ρ

(2)
g(x)) is the mean workload which arrives during the

sojourn time of the tagged job of class-1 of sizex.
Now we use the similar analysis to give an interpretation to the expression ofT2(g(x)) for the

class-2 job of sizeg(x). We can rewrite expression (8) in the following wayT2(g(x)) = g(x) +

Wx,g(x) + T2(g(x))(ρ
(1)
x + ρ

(2)
g(x)).

In the case of the tagged job of class-2 of sizeg(x) jobs which have to be served before the
tagged job are jobs of class-1 of size less thanx and jobs of class-2 of size less thang(x). Then
in the previous expressiong(x) is the time to serve the class-2 job of sizeg(x) ; Wx,g(x) is the
mean workload in the system for the class-2 job of sizeg(x) which has to be served before it ;

T2(g(x))(ρ
(1)
x +ρ

(2)
g(x)) is the mean work which arrives during the sojourn timeT2(x) and which has

to be served before class-2 job of sizeg(x).

3.4 Properties of the optimal policy

Property 1. When class-2 jobs arrive to the server they are not served immediately, but wait un-
til the high priority queue is empty. The mean waiting time isthe limit limg(x)→0 T2(g(x)). As
limx→θ g(x) = 0, then

lim
g(x)→0

T2(g(x)) =
Wθ,0

1 − ρ
(1)
θ

=
λ1X2

θ

(1)

2(1 − ρ
(1)
θ )2

.

Let us notice that

lim
g(x)→0

T2(g(x)) 6= T1(θ) =
θ + Wθ,0

1 − ρ
(1)
θ

.

Class-2 jobs wait in the system to be served in the low priority queue,the mean waiting time is
limg(x)→0 T2(g(x)). Class-1 jobs of size more thenθ also wait in the system to be served in the
low priority queue, the mean waiting time for them isT1(θ). Property 1 shows that these two mean
waiting times are not equal, so class-1 jobs and class-2 jobs wait different times to start to be served
in the low priority queue.

Property 2. Let us consider the condition of no new arrival. According tothe optimal policy struc-
ture in the low priority queue jobs are served according to the LAS policy with different rates, which
depend on the number of jobs in each class and hazard rate functions. For the case when there are
no new arrivals in the low priority queue we can calculate therates with which class-1 jobs and
class-2 jobs are served in the system at every moment of time. We consider that all class-1 jobs and
all class-2 jobs already received the same amount of service. Letn1 andn2 be the number of jobs in
class-1 and class-2 and letx1 andx2 be the attained services of every job in these classes. Then at
any moment

h1(x1) = h2(x2).

INRIA



Optimal policy for multi-class scheduling in a single server queue 11

If the total capacity of the server is∆, then let∆1 and∆2 be the capacities which each job of class-1
and class-2 receives. Then

n1∆1 + n2∆2 = ∆. (9)

Also

h1(x1 + ∆1) = h2(x2 + ∆2).

As∆ is very small (and so as well∆1 and∆2) according to the LAS policy, then we can approximate

hi(x + ∆i) = hi(x) + ∆ih
′
i(x), i = 1, 2.

Then from the previous equations we have

∆1h
′
1(x1) = ∆2h

′
2(x2).

Then using (9) we get

∆1

∆
=

h′
2(x2)

n1h′
2(x2) + n2h′

1(x1)
,

∆2

∆
=

h′
1(x1)

n1h′
2(x2) + n2h′

1(x1)
.

This result is true for any two distributions for which the hazard rates are decreasing and never
cross. For the case of two Pareto distributions given by (5) we have the following :

∆1

∆
=

c1

n1c1 + n2c2
,

∆2

∆
=

c2

n1c1 + n2c2
.

So, for the case of two Pareto distributions the service rates of class-1 and class-2 jobs do not depend
on the current jobs’ attained services.

Property 3. As one can see from the optimal policy description, class-1 and class-2 jobs leave the
system together if they have the same values of the hazard rate functions of their sizes and if they
find each other in the system. According to the definition of the g(x) function we can conclude that
the class-1 job of sizex and class-2 job of sizeg(x), if they find each other in the system, leave the
system together. But these jobs do not have the same conditional mean sojourn time,

T1(x) 6= T2(g(x)).

This follows from expressions (7) and (8).
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h1(x)
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h2(x)
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FIG. 3 – Two Pareto extension classes, hazard
rates

y = x

y = g(x)

a∗∗ > 0

a∗∗ < 0

y = g(x)

x

y

a∗∗θ

θ∗

FIG. 4 – Two Pareto extension classes,g(x)
function behavior

3.5 Two Pareto classes with intersecting hazard rate functions

Now let us consider the case when the hazard rate function cross, thena∗∗ = (c2b1−c1b2)/(c1−
c2) ≥ 0, see Figure 3. As we consideredc1 > c2, thenh1(0) < h2(0) and then class-2 jobs are
served in the high priority queue until they receiveθ∗ = (c2b1 − c1b2)/c1 amount of service. Here
θ∗ is such thath2(θ

∗) = h1(0) andg(θ∗) = 0. In this case theg(x) function crosses they = x
function at pointa∗∗, see Figure 4, and so in the low priority queue class-2 jobs are served with
higher priority with comparison to class-1 jobs until they receivea∗∗ amount of service. After class-
1 and class-2 jobs receiveda∗∗ amount of service the priority changes and class-1 jobs receive more
capacity of the server in the system. According to this analysis we can rewrite the expressions of
mean conditional sojourn times of Section 3, Theorem 2 in thefollowing way

Corollary 1. In the two-classM/G/1 queue where the job size distributions are Pareto, given by
(5) such that the hazard rate functions cross, and which is scheduled with the Gittins optimal policy,
the mean conditional sojourn times for class-1 and class-2 jobs are

T1(x) =
x + Wx,g(x)

1 − ρ
(1)
x − ρ

(2)
g(x)

, x ≥ 0,

T2(x) =
x + W0,x

1 − ρ
(2)
x

, x ≤ θ∗,

T2(g(x)) =
g(x) + Wx,g(x)

1 − ρ
(1)
x − ρ

(2)
g(x)

, x > θ∗.
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Démonstration.The proof follows from the previous discussion.

3.6 Numerical results
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FIG. 5 – Two Pareto classes, mean sojourn times
with respect to the loadρ, V1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

PS

LAS

Gittins

FIG. 6 – Two Pareto classes, mean sojourn times
with respect to the loadρ, V2

We consider two classes with parameters presented in Table 1and we calculate the mean sojourn
time in the system numerically, using the expressions of themean conditional sojourn time (7), (8)
and (6). We provide the results for two different parameterssets, which we callV1 andV2.

TAB . 1 – Two Pareto classes, parameters
V c1 c2 m1 m2 ρ1 ρ2 ρ
V1 25.0 2.12 0.04 0.89 0.1 0.4..0.85 0.5..0.95
V2 10.0 1.25 0.05 1.35 0.25 0.25..0.74 0.5..0.99

It is known that in the Internet most of the traffic is generated by the large files (80%), while
most of the files are very small (90%). This phenomenon is referred to as “mice-elephant” effect.
Also it is known that the file sizes are well presented by the heavy-tailed distributions like Pareto.
Here class-1 jobs represent "mice" class and class-2 jobs "elephants". We consider that the load of
the small files is fixed and find the mean sojourn time in the system according to the different values
of the "elephant" class arrival rate.
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14 Natalia Osipova

We compare the mean sojourn time for the Gittins policy, PS, FCFS and LAS policies. These
policies can be applied either in the Internet routers or in the Web service. The expected sojourn
times for these policies are, see [Kle76],

T
PS

=
ρ/λ

1 − ρ
,

T
FCFS

= ρ/λ + W∞,∞,

hereW∞,∞ means the total mean unfinished work in the system.

T
LAS

=
1

λ1 + λ2

∫ ∞

0

T
LAS

(x)(λ1f1(x) + λ2f2(x))dx,

where

T
LAS

(x) =
x + Wx,x

1 − ρ
(1)
x − ρ

(2)
x

.

The mean sojourn times for the parameters setsV1 andV2 are presented in Figures 5,6. For the re-
sults ofV2 we do not plot the mean sojourn time for the FCFS policy as class-2 has an infinite second
moment. The relative gains in mean sojourn time between the Gittins and LAS and Gittins and PS po-

licies are the following. For the set of parametersV1 :max T
F CF S

−T
Gitt

T
F CF S = 0.99, max T

PS
−T

Gitt

T
P S =

0.78 andmax T
LAS

−T
Gitt

T
LAS = 0.45. For the set of parametersV2 : max T

PS
−T

Gitt

T
P S = 0.98 and

max T
LAS

−T
Gitt

T
LAS = 0.39. The maximal gain is achieved when the system is loaded by around90%.

We note that the PS policy produces much worse results than LAS and Gittins policies.

3.7 Simulation results

We implement Gittins policy algorithm for the case of two Pareto distributed classes in NS-2
simulator. The algorithm is implemented in the router queue. In the router we keep the trace of the
attained service (number of the transmitted packets) for every connection in the system. We use timer
to detect the moment when there are no more packets from a connection in the queue. Then we stop
to keep the trace of the attained service for this connection.

It is possible to select the packet with the minimal sequencenumber of the connections which has
to be served instead of selecting the first packet in the queue. In the current simulation this parameter
does not play a big role according to the selected model scheme and parameters. (There are no drops
in the system, so there are no retransmitted packets. Then all the packets arrive in the same order as
they were sent.)

The algorithm which is used for the simulations is as follows:
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FIG. 7 – NS-2 simulation scheme.

Algorithm
on packet dequeue
select the connectionf with the maxhi(af ), where

af is the flow’s attained service
select the first packetpf of the connectionf in the queue
dequeue selected packetpf

setaf = af + 1

To compare Gittins policy with the LAS policy we also implemented LAS algorithm in the router
queue. According to the LAS discipline the packet to dequeueis the packet from the connection with
the least attained service.

The simulation topology scheme is given in Figure 7. Jobs arrive to the bottleneck router in
two classes, which represent mice and elephants in the network. Jobs are generated by FTP sources
which are connected to TCP senders. File size distributionsare Pareto,Fi = 1 − bci

i /(x + bi)
ci ,

i = 1, 2. Jobs arrive according to Poisson arrivals with ratesλ1 andλ2.
We consider that all connections have the same propagation delays. The bottleneck link capacity

is µ = 100 Mbit/s. All the connections have a Maximum Segment Size (MSS) of540 B. The
simulation run time is2000 seconds. We provide two different versions of parameters selection,
which we call Vs1 and Vs2. In Vs1 first class takes25% of the total bottleneck capacity and in Vs2
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it takes50%. Both scenarios correspond to the case when the hazard rate function do not cross, see
Subsection 3.

The parameters we used are given in Table 2.

TAB . 2 – Two Pareto classes, simulation parameters
Ver. c1 c2 m1 m2 ρ1 ρ2 ρ
Vs1 10.0 1.25 0.5 6.8 0.25 0.50 0.75
Vs2 10.0 2.25 0.5 4.5 0.50 0.37 0.87

The results are given in Table 3. We provide results for the NS-2 simulations and the values of
the mean sojourn times provided by the analytical model withthe same parameters. We calculate the

related gain of the Gittins policy in comparison with DropTail and LAS policies,g1 = T
DT

−T
Gitt

T
DT

andg2 = T
LAS

−T
Gitt

T
LAS

TAB . 3 – Mean sojourn times

Ver. T
DT

T
LAS

T
Gitt

g1 g2

Vs1 NS-2 18.72 2.10 2.08 88.89% 0.95%
Vs1 theory PS : 4.71 1.58 1.01 78.56% 36.08%
Vs2 NS-2 6.23 2.03 1.83 70.63% 9.85%
Vs2 theory PS : 6.46 3.25 2.19 66.10% 32.62%

We found that with the NS-2 simulations the gain of the Gittins policy in comparison with the
LAS policy is not so significant when the small jobs do not takea big part of the system load. As
one can see in Vs2 when the class-1 load is50% the related gain of the Gittins policy in comparison
with LAS policy is10%. In both versions the relative gain for the corresponding analytical system is
much higher and reaches up to36%. We explain this results with the phenomena related to the TCP
working scheme. Also we explain the low gain in Vs1 by the fact that the load in the system is not
high.

3.8 Multiple Pareto classes

We consider a multi-class single serverM/G/1 queue. Jobs arrive to the system inN classes.
Jobs ofi-th class,i = 1, . . . , N arrive according to Poisson arrival processes with ratesλi. Jobs size
distributions are Pareto, namely

Fi(x) = 1 −
1

(x + 1)ci
, i = 1, . . . , N.

Then, the hazard rates

hi(x) =
ci

(x + 1)
, i = 1, . . . , N,
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FIG. 9 –N Pareto classes, policy scheme

never cross. Without loss of generality, let us consider that c1 > c2 > . . . > cN . Let us define the
values ofθi,j andgi,j(x), i, j = 1, . . . , N in the following way

hi(θi,j) = hj(0),

hi(x) = hj(gi,j(x)).

Then we get

gi,j(x) =
cj

ci

(x + 1) − 1, θi,j =
ci

cj

− 1.

Let us notice thatθk,i < θk,i+1 andθi,k > θi+1,k, k = 1, . . . , N , i = 1, . . . , N−1, i 6= k, i 6= k+1,
see Figure 8. Let us denote thatθi,i = 0 for i = 1, . . . , N .

The scheme of the optimal policy is given on Figure 9.
Optimal policy.
There areN queues in the system. Class-1 jobs arrive to the system and go to the first-priority

queue-1. There they are served with the LAS policy until they getθ1,2 of service. Then they are
moved to the queue-2, which is served only when the queue-1 is empty. In the queue-2 jobs of class-
1 are served together with jobs of class-2. Every moment the service is given to the job with the
highesthi(a), i = 1, 2, wherea is a jobs attained service. When jobs of class-1 attain serviceθ1,3

they are moved to the queue-3. When jobs of class-2 attain serviceθ2,3 they are also moved to the
queue-3. In queue-3 the jobs of class-1, class-2 and class-3 are served together. Every moment of
time the service is given to the job with the highesthi(a), i = 1, 2, 3, wherea is a jobs attained
service. And so on.
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To find the expressions for the mean conditional sojourn times in the system we use the analysis
which we used in interpretation of the mean conditional sojourn times expressions in the case of two
class system, see Section 3. The mean conditional sojourn time for the tagged job of class-k consists
of the time to serve the tagged job when the system is empty, the mean workload in the system which
has to be served before the tagged job and the mean workload which arrives during the sojourn time
of the tagged job and has to be served before it.

Let the tagged job be from class-1 of sizex. Jobs which have the same priority in the system and
which have to be served before the tagged job are : class-1 jobs of size less thanx, class-i jobs of
size less thang1,i(x).

We denoteXn
y

(i)
then-th moment andρ(i)

y the utilization factor for the distributionFi(x) of the
class-i, i = 1, . . . , N truncated aty. The mean workload in the system which has to be served before
the tagged job is then found with Pollaczek-Khinchin formula and equals to

Wx,g1,2(x),...,g1,N (x) =

∑N
i=1 λiX2

g1,i(x)

2(1 −
∑N

i=1 ρg1,i(x))
.

Then we formulate the theorem.

Theorem 3. For class-1 jobs of sizex such asθ1,p < x < θ1,p+1, p = 1, . . . , N and corresponding
class-k jobs with sizesg1,k(x), k = 2, . . . , p the mean conditional sojourn times are given by

T1(x) =
x + W (x, g1,2(x), . . . , g1,p(x))

1 − ρ1(x) − ρ2(g1,2(x)) − . . . − ρp(g1,p(x))
,

Tk(g1,k(x)) =
g1,k(x) + W (x, g1,2(x), . . . , g1,p(x))

1 − ρ1(x) − ρ2(g1,2(x)) − . . . − ρp(g1,p(x))
.

Here we consider thatθi,N+1 = ∞, i = 1, . . . , N .

Démonstration.Similar to the proof of Theorem 2.

4 Hyper-exponential and exponential classes

We consider a two classM/G/1 queue. Jobs of each class arrive with Poisson arrival process
with ratesλ1 andλ2. The job size distribution of class-1 is exponential with mean1/µ1, and hyper-
exponential with two phases for class-2 with the mean(µ3p + (1 − p)µ2)/(µ2µ3). Namely,

F1(x) = 1−e−µ1x, F2(x) = 1 −pe−µ2x−(1 − p)e−µ3x. (10)

Note that the hazard rates are

h1(x) = µ1, h2(x) =
pµ2e

−µ2x + (1 − p)µ3e
−µ3x

pe−µ2x + (1 − p)e−µ3x
, x ≥ 0.

The hazard rate function of class-1 is a constant and equals toh1 = µ1. The hazard rate function
h2(x) of the class-2 is decreasing inx. As both hazard rate functions are non-increasing the optimal
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policy which minimizes the mean sojourn time is Gittins policy based on the value of the hazard
function, which gives service to jobs with the maximal hazard rate.

For the selected job size distributions the hazard rate functions behave in different ways depen-
ding on parametersµ1, µ2, µ3 andp. The possible behaviors of the hazard rate functions determine
the optimal policy in the system. If the hazard rate functions never cross, the hazard rate of class-1 is
higher than the hazard rate of class-2, then class-1 jobs are served with priority to class-2 jobs. This
happens whenh1 > h2(x), x > 0. As h2(x) is decreasing, then this happens whenµ1 > h2(0). Let
us consider thatµ2 > µ3, then ash2(0) = pµ2 + (1 − p)µ3 andµ1 > h2(0) if µ1 > µ2 > µ3.
For this case it is known that the optimal policy is a strict priority policy, which serves class-1 jobs
with the strict priority with respect to class-2 jobs. From our discussion it follows that this policy is
optimal even ifµ2 > µ1 > µ3, but still µ1 > pµ2 + (1 − p)µ3.

Let us consider the case whenµ2 > µ1 > µ3 andµ1 < pµ2 + (1 − p)µ3. Then it exists the
unique point of intersection ofh2(x) andh1. Let us denote bya∗ the point of this intersection. The

value ofa∗ is the solution ofpµ2e−µ2x+(1−p)µ3e−µ3x

pe−µ2x+(1−p)e−µ3x = µ1. Solving this equation, we get that

a∗ =
1

µ2 − µ3
ln

(

p

1 − p

µ2 − µ1

µ1 − µ3

)

.

The hazard rate function scheme is given on Figure 10. Then, the optimal policy is the following.
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4.1 Optimal policy.

There are three queues in the system, which are served with the strict priority between them.
The second priority queue is served only when the first priority queue is empty and the third priority
queue is served only when the first and second priority queuesare empty. Class-2 jobs that arrive
to the system are served in the first priority queue with the LAS policy until they geta∗ amount
of service. After they geta∗ amount of service they are moved to the third priority queue,where
they are served according to the LAS policy. Class-1 jobs arrive to the system and go to the second
priority queue, where they are served with LAS policy. Sinceh1(x) = µ1, class-1 jobs can be served
with any non-anticipating scheduling policy. The scheme ofthe optimal policy is given on Figure 11.

According to this optimal policy we find the expressions of the expected sojourn times for the
class-1 and class-2 jobs.

4.2 Expected sojourn times

Let us recall that the mean workload in the system for class-1 jobs of size less thanx and class-2
jobs of size less thany is Wx,y and is given by (6). We prove the following Theorem.

Theorem 4. The mean conditional sojourn times in theM/G/1 queue with job size distribution
given by (10) under Gittins optimal policy described in Subsection 4.1 are given by

T1(x) =
x + Wx,a∗

1 − ρ
(1)
x − ρ

(2)
a∗

, x ≥ 0, (11)

T2(x) =
x + W0,x

1 − ρ
(2)
x

, x ≤ a∗, (12)

T2(x) =
x + W∞,x

1 − ρ
(1)
∞ − ρ

(2)
x

, x > a∗. (13)

Démonstration.To find expressions of the mean conditional sojourn times we use the mean-value
analysis and tagged job approach. The mean conditional sojourn time for the class-1 job of sizex
consists of the following elements.

– x, time needed to serve the job itself.
– mean workload in the system which has to be served before thetagged job.
– mean time to serve jobs which arrive to the system during thesojourn time of the current job

and which have to be served before the tagged job.
When the tagged job is a class-1 job of sizex jobs which have to be served before it are all class-1
jobs of sizex and all class-2 jobs of size less thana∗. Then the mean workload which the tagged job
finds in the system and which has to be served before it isWx,a∗ . The mean work which arrives to
the system during the sojourn time of the tagged jobT1(x) and have to be done before it takes into
account only class-1 jobs of size less thanx and class-2 jobs of size less thana∗. So, it equals to
T1(x)(ρ

(1)
x + ρ

(2)
a∗ ).

For the tagged job of class-2 of sizex ≤ a∗ the jobs which have to be served before it are class-2
jobs of size less thanx. Then the mean workload which the tagged job finds in the system and which
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has to be served before it isW0,x and the mean time to serve jobs which arrive to the system during

T 2(x) is T2(x)ρ
(2)
x .

For the class-2 job of sizex > a∗ the jobs which have to be served before it are all class-1
jobs and class-2 jobs of size less thanx. Then the mean workload which has to be served before the
tagged job isW∞,x and the mean time spend to serve jobs which arrive during the sojourn time of

the current job isT2(x)(ρ
(1)
∞ + ρ

(2)
x ).

Summarizing the results of the previous discussion we get

T1(x) = x + Wx,a∗ + T1(x)(ρ(1)
x + ρ

(2)
a∗ ) x ≥ 0,

T2(x) = y + W0,x + T2(x)ρ(2)
x , x ≤ a∗,

T2(x) = y + W∞,x + T2(x)(ρ(1)
∞ + ρ(2)

x ) x > a∗.

from here we get the proof of the Theorem.

4.3 Numerical results

Let us calculate numerically for some examples the mean sojourn time in the system when the
Gittins policy is used. We consider two classes with the parameters given in Table 4. Also here
p = 0.1 and the threshold value isa∗ = 7.16. We compare the obtained results with the mean
sojourn times when the system is scheduled with FCFS, PS and LAS policies, the results are given
on Figure 12.

TAB . 4 – Exponential and HE classes, simulation parameters
µ1 µ2 µ3 m1 m2 ρ1 ρ2 ρ
0.6 1.0 0.5 1.6 1.1 0.1 0.4..0.85 0.5..0.95

4.4 Pareto and exponential classes

We can apply the same analysis for the case when class-1 job size distribution is exponential
and class-2 job size distribution is Pareto. Let us consider the case when the hazard rate functions of
class-1 and class-2 cross at one point.

LetF1(x) = 1−e−µ1x andF2(x) = 1−bc2
2 /(x+b2)

c2 . Thenh1 = µ1 andh2(x) = c2/(x+b2).
The crossing point isa∗ = c2/µ1− b2. Whena∗ ≤ 0 the hazard rate functions do not cross and then
the optimal policy is to give strict priority to class-1 jobs. If a∗ > 0 then the hazard rate functions
cross at one point and the optimal policy is the same as in the previous section. Then the expressions
of the mean conditional sojourn timed of class-1 and class-2 are also (11), (12) and (13).

5 Conclusions

In [Git89], Gittins considered anM/G/1 queue and proved that the so-called Gittins index rule
minimizes the mean delay. The Gittins rule determines, depending on the jobs attained service, which
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job should be served next. Gittins derived this result as a by-product of his groundbreaking results
on the multi-armed bandit problem. Gittins’ results on the multi-armed bandit problem have had a
profound impact and it is extremely highly cited. However, Gittins work in theM/G/1 context has
not received much attention.

In [AA07], the authors showed that Gittins policy could be used to characterize the optimal
scheduling policy when the hazard rate of the service time distribution is not monotone. In the
current work we use the Gittins policy to characterize the optimal scheduling discipline in a multi-
class queue. Our results show that, even though all service times have a decreasing hazard rate, the
optimal policy can significantly differ from LAS, which is known to be optimal in the single-server
case. We demonstrate that in particular cases PS has much worse performance than Gittins policy.

Using NS-2 simulator we implemented the Gittins optimal policy in the router queue and provi-
ded simulations for several particular schemes. With the simulation results we found that the Gittins
policy can achieve10% gain in comparison with the LAS policy and provides much better perfor-
mance than the DropTail policy.

In future research we may consider other types of service time distributions. The applicability
of our results in real systems like the Internet should also be more carefully evaluated. We also
would like to investigate the conditions under which the Gittins policy gives significantly better
performance than LAS policy.
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6 Appendix : Proof of Theorem 2

We prove that the mean conditional sojourn times in the system described in Section 3 scheduled
with the optimal Gittins policy given in Subsection 3.2 are given with (6), (7) and (8).

The class-1 jobs of sizex ≤ θ are served in the high priority queue with LAS policy, so the
expression for the mean conditional sojourn time for this case is known, see [Kle76, sec. 4.6], as is
given by (6).

Let us consider class-1 jobs with sizesx > θ and class-2 jobs, which are served in the low
priority queue. There is a strict priority between the queues and the low priority queue is served only
when the high priority queue is empty. Then the low priority queue is a queue with batch arrivals. To
find the expressions of the mean conditional sojourn times inthe system we use the analysis similar
to the one of Kleinrock for Multi Level Processor Sharing queue in [Kle76, sec. 4.7].

In the following analysis we consider only the class-1 jobs of size less thanx and class-2 jobs
of size less thang(x). So, we consider that the class-1 job size distribution is truncated atx and job
size distribution of class-2 is truncated atg(x).

We formulate the following Lemma.

Lemma 1. The mean conditional sojourn times for class-1 job of sizex > θ and for class-2 job of
sizeg(x) > 0 equal to

T1(x) =
θ + Wθ,0

1 − ρ
(1)
θ

+
α1(x − θ, g(x))

1 − ρ
(1)
θ

, (14)

T2(g(x)) =
Wθ,0

1 − ρ
(1)
θ

+
α2(x − θ, g(x))

1 − ρ
(1)
θ

, (15)

whereα1(x − θ, g(x)) andα2(x − θ, g(x)) are the times spent in the low priority queue by class-1
and class-2 jobs respectively and equal to

α1(x − θ, g(x)) =
x − θ + A1(x) + Wb

1 − ρb

,

α2(x − θ, g(x)) =
g(x) + A2(g(x)) + Wb

1 − ρb

,

whereWb is the mean workload in the low priority queue which the tagged batch sees when arrives
to the low priority queue,ρb is the mean load in the low priority queue andAi(x), i = 1, 2 are the
mean works which arrive to the low priority queue with the tagged job in the batch.

Démonstration.Let us consider that the tagged job is from class-1 and has a sizex > θ. The time
it spends in the system consists of the mean time it spends in the high priority queue. This time is
θ+Wθ,0

1−ρθ
as it has to be served only with class-1 jobs until it getsθ amount of service. After the tagged

job is moved to the low priority queue after waiting while thehigh priority queue becomes empty.
The timeα1(x − θ) is the time spent by the tagged job in the low priority queue. This time consists
of the time spent to serve the job itself,x− θ, of the mean workload in the low priority queue which
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the tagged job finds,Wb, of the mean work which arrives in the batch with the tagged job, A1(x)
and of the mean work which arrives during the sojourn time of the tagged job,α1(x − θ)ρb.

We use the same analysis for the mean conditional sojourn time of the class-2 job of sizeg(x).

Now let us find the expressions for theWb, ρb, A1(x) andA2(x). Let us define the truncated

distributionF1,θ,x(y) = F1(y), θ < y < x andF1,θ,x(y) = 0, y < θ, y > x. Let Xn
θ,x

(i)
be the

n-th moment andρ(i)
θ,x, i = 1, 2 be the utilization factor for this truncated distribution.We use this

notation because jobs of class-1 which find themselves in a batch are already served untilθ.
Let Ni be the random variable which denotes the number of jobs in a batch of class-i, i = 1, 2.

We defineX(1)
θ,x as the random variable which denotes the size of class-1 job in a batch. LetX(2)

g(x)
be the random variable which corresponds to the size of the class-2 job in a batch. Then

Yb =

N1
∑

i=1

X
(1)
i,θ,x +

N2
∑

i=1

X
(2)
i,g(x),

is the random variable which denotes the size of the batch. Let us denote asλb the batch arrival rate.
We know thatλb = λ1 + λ2. According to the previous notations we can write

ρb = λbE[Yb],

hereE[Yb] is the mean work that a batch brings and by Pollaczek-Khinchin

Wb =
λbE[Y 2

b ]

2(1 − ρb)
.

Let us note thatWb does not depend from which class the tagged job comes. As we know the first
and the second moments ofX

(1)
θ,x, X

(2)
g(x), to findρb andWb we need to know the first and the second

moments ofNi, i = 1, 2. To find this values we we use the method of the Generating functions,
which is described in the following section.

6.1 Generating function calculation

We propose a two dimension generating functionG(z1, z2), which we obtain using collective
marks method. The method of the collective marks is described in [Kle75, Ch. 7].

Definition 5. Let us mark jobs in a batch in the following way. We mark a job ofclass-1 with a
probability1 − z1, thenz1 is a probability that a job of class-1 is not marked. The same is defined
for jobs of class-2 asz2. Letpn1,n2 be the probability thatn1 class-1 andn2 class-2 jobs arrive in
the batch. Then

G(z1, z2) =
∑

n1

∑

n2

zn1
1 zn2

2 pn1,n2

is a generation function and it gives a probability that there are no marked jobs in the batch.
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Let us define as a "starter" orS a tagged job. Let us distinguish the cases when the starterS
belongs to class-1 or class-2 and denote byG1(z1, z2) andG2(z1, z2) the probabilities that there are
no marked jobs in the batch if the starter is from the class-1 and class-2. When theS ∈ class-1, we
consider two cases depending on the size of the starter (S ≤, > θ). Then

G(z1, z2) =
λ1

λb

([G1(z1, z2), S ≤ θ] + [G1(z1, z2), S > θ]) +
λ2

λb

G2(z1, z2).

Lemma 2. The Generating function equals to

G(z1, z2) =
λ1

λb

(

∫ θ

0

e−λ1x(1−G1(z1,z2))−λ2x(1−z2)dF1(x) +

+ z1e
−λ1θ(1−G1(z1,z2))−λ2θ(1−z2)F 1(θ)) +

λ2

λb

z2. (16)

Démonstration.Let us calculateG1(z1, z2). When the class-1 job arrives to the system it creates the
busy period. Still this job does not receiveθ amount of service the low priority queue is not served.
So, jobs which arrive to the low priority queue and jobs whichare already in the low priority queue
are waiting and so they create a batch. The probability that there are no marked job in this batch is
G1(z1, z2).

Let the class-1 job of sizex arrives to the system. Letx ≤ θ. The probability thatk1 class-1
jobs arrive in the period(0, x) is P1(x) = e−λ1x(λ1x)k1/k1!. The probability that all the batches
generated by this arrivedk1 jobs of class-1 is G1(z1, z2)

k1 , because each of them generates the batch
which does not have marked jobs with probabilityG1(z1, z2). During time(0, x) the probability that
k2 class-2 jobs arrive to the system isP2(x) = e−λ2x(λ2x)k2/k2!. The probability that this jobs are
not marked is not included inG1(z1, z2) and equals tozk2

2 . Then we summarize onk1 and k2,
integrate onx in (0, θ) with dF1(x), as only the class-1 jobs generate busy periods. We get that the
probability that there are no marked jobs in the batch is

[G1(z1, z2), S ≤ θ] =

∫ θ

0

(

∞
∑

k1=0

P1(x)G1(z1, z2)
k1P2(x)zk1

2

)

dF1(x) =

=

∫ θ

0

e−λ1x(1−G1(z1,Z2))−λ2x(1−z2)dF1(x).

Let class-1 job of sizex > θ arrives to the system. The class-1 job is first served in the high priority
queue until it getsθ of service. Then it is moved to the low priority queue. The probability thatk1

class-1 jobs arrive in the period(0, θ) isP1(θ) = e−λ1θ(λ1θ)
k1/k1!. The probability that there are no

marked jobs in all the batches generated by this arrivedk1 class-1 jobs isG1(z)k1 . The probability
that k2 class-2 jobs arrive to the system in the period(0, θ) is P2(θ) = e−λ2θ(λ2θ)

k2/k2!. The
probability that all this jobs are not marked iszk2 .

We have to take into account the "starter" itself, as it has the size more thanθ and it comes in
the batch. The probability that the starter is not marked isz1. Then we summarize onk1 andk2,
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integrate onx on (θ,∞) with dF1(x), as only the class-2 jobs generate busy periods. We get

[G1(z1, z2), S > θ] =

∫ ∞

θ

(

∞
∑

k1=0

P1(θ)G1(z1, z2)
k1z1P2(θ)z

k1
2

)

dF1(x) =

= z1e
−λ1θ(1−G1(z1,z2))−λ2θ(1−z2)F 1(θ).

Let us findG2(z1, z2). When a job of the second class arrives to the system it generates the batch of
size one, then the probability that jobs of this batch are notmarked isz2. ThenG2(z1, z2) = z2.

[G2(z1, z2)] =

∫ ∞

0

z2dF2(x) = z2.

Finally

G(z1, z2) =
λ1

λb

G1(z1, z2) +
λ2

λb

G2(z1, z2),

and we get (16). Let us notice thatG(1, 1) = 1.

Now we can calculateE[N1], E[N2] and soρb andWb. After some mathematical calculations
we get the following result.

Lemma 3.

ρb = 1 −
1 − ρ

(1)
x − ρ

(2)
g(x)

1 − ρ
(1)
θ

,

Wb = Wx,g(x) − Wθ(1 + ρb) − θ
ρ
(1)
x − ρ

(1)
θ

1 − ρ
(1)
θ

.

Démonstration.We use the following equations. Fori = 1, 2

E[Ni] =
∂G(z1, z2)

∂zi

|1,1,

E[Ni(Ni − 1)] = E[N2
i ] − E[Ni] =

∂2G(z1, z2)

∂z2
i

|1,1,

E[N1N2] =
∂2G(z1, z2)

∂z1∂z2
|1,1.

Using bi =
E[N2

i ]
E[Ni]

− 1 after some mathematical calculations we obtain the result of the current
Lemma.

Now let us find expressions forA1(x) andA2(x).
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Lemma 4. The mean workload which comes with the tagged job of class-1 of sizex in the batch
and has to be served before it equals to

A1(x) = 2(Wθ + θ)ρb − θ
ρ
(2)
g(x)

1 − ρ
(1)
θ

.

Démonstration.The termA1(x) is the work that arrives with the tagged job of class-1 of sizex and
that gets served before its departure. Since the tagged job arrives from class-1 only when the batch is
started by a class-1 job, the calculations now will depend onG1(z1, z2). We denoteb1|1 andb2|1 the
mean number of jobs of class-1 and class-2 which arrive in the batch with the tagged job of class-1
when the batch is initiated by a class-1 job. Then

A1(x) = b1|1E[X
(1)
θ,x] + b2|1E[X

(2)
g(x)] − E[X

(1)
θ,x].

Here

b1|1 =
∑

n1

n1
n1P (n1)

E[N1|1]
=

E[N2
1|1]

E[N1|1]
,

whereN1|1 is the random variable which corresponds to the number of jobs of class-1 in the batch
when the batch is initiated by the class-1 job. So the number of class-1 jobs that arrive in addition to

the tagged job is

(

E[N2
1|1]

E[N1|1]
− 1

)

. Note that since we condition on the fact that the starter is aclass-1

job,N1|1 is now calculated fromG1(z1, z2) so :

E[N1|1] =
∂G1(z1, z2)

∂z1
|1,1,

E[N1|1(N1|1 − 1)] =
∂2G1(z1, z2)

∂z1∂z1
|1,1.

Then we can find(b1|1 − 1). Now we need to calculateb2|1, that is, the mean number of class-2
jobs that the tagged job of class-1 job see. We have that from the Generating functionG1(z1, z2) by
conditioning on the number of class-1 jobs :

G1(z1, z2) =
∑

n1

∑

n2

zn1
1 zn2

2 pn1,n2 =
∑

n1

∑

n2

zn1
1 zn2

2 pn2|n1
pn1 ,

∂2G1(z1, z2)

∂z1∂z2
|1,1 = E[N1]

∑

n1

∑

n2

n2pn2|n1

n1pn1

E[N1]
= E[N1]b2|1.

Then we can calculateb2|1

b2|1 =
1

E[N1|1]

∂2G1(z1, z2)

∂z1∂z2
|(1,1).

Finally we find the expression forA1(x).
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Lemma 5. The mean workload which comes with the tagged job of class-2 of sizeg(x) in the batch
and has to be served before it equals to

A2(g(x)) = 2(Wθ + θ)ρb − θ
ρ
(2)
g(x)

1 − ρ
(1)
θ

− θρb.

Démonstration.The termA2(g(x)) is the work that arrives with the tagged job of sizeg(x) of class-
2 and that gets served before its departure. When the tagged job arrives from class-2 the batch can
be started by a class-1 or by a class-2 job, so the calculations depend onG(z1, z2). We denoteb1|2

andb2|2 the mean number of jobs of class-1 and class-2 which arrive in the batch with the tagged
job of class-2. Then

A2(g(x)) = b1|2E[X
(1)
θ,x] + b2|2E[X

(2)
g(x)] − E[X

(2)
g(x)] =

= b1|2E[X
(1)
θ,x] + (b2|2 − 1)E[X

(2)
g(x)].

As the tagged job is from class-2, thenb2|2 = b2. We need to find the value ofb1|2. We use the fact
that jobs of class-1 and class-2 arrive independently from each other.

G(z1, z2) =
∑

n1

∑

n2

zn1
1 zn2

2 pn1,n2 =
∑

n1

∑

n2

zn1
1 zn2

2 pn1|n2
pn2

∂2G(z1, z2)

∂z1∂z2
|1,1 = E[N2]

∑

n1

∑

n2

n1pn1|n2

n2pn2

E[N2]
= E[N2]b1|2.

Then

b1|2 =
1

E[N2]

∂2G(z1, z2)

∂z1∂z2
|1,1.

From here we get the expression forA2(g(x)).

Now we can prove the result of Theorem 2.

Lemma 6. Expressions (14), (15) and (7), (8) are equal.

Démonstration.After simplification of the expressions (14), (15) we get equations (7), (8).
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