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Résumé : Nous obtenons la politique optimale pour I'ordonnancerdans une file d’attente multi-
classe avec un serveur unique. Nous appliquons les résdédasittins[[Git89], ou il avait trouvé la
politique optimale qui minimise le temps moyen de sejoursd@nsystéme dans la file d’attente
M/G/1 avec un serveur unique parmi toutes les politiques nortigatbires. Nous montrons que
I'extension des résultats de Gittins permet de caractdasgolitique d’ordonnancement optimale
dans la file d’attenté//G /1 multi-classe. Nous appliquons le résultat général dansiealus cas,
lorsque la distribution de temps de service a un taux de Qalaroissant, comme Pareto et hyper-
exponentielle. Nous montrons que dans le cas de plusiaassad, la politique optimale est la poli-
tique prioritaire, dans laquelle les taches de classeérdiftes sont classifiés sur plusieurs niveaux
de priorité en fonction de leur service obtenu. Nous obtermmour chaque classe I'expression du
temps moyen conditionnel de séjour en utilisant une apgraehtache marquées. Avec ¢a, nous
comparons numériguement le temps moyen de séjour dandéer®yentre les politiques de Gittins
et les politiques populaires comme PS, FCFS et LAS. Comme bfdernet, la distribution de la
taille des fichiers est “heavy-tailed” et posséde la pra@mi& DHR, la politique optimale de Gittins
peut étre appliquée dans les routeurs d’Internet, ou lesgiagqyénérés par des applications diffé-
rentes doivent étre servis. Typiquement, le routeur n'add@sces au temps exact de séjour requis
(en paquets) de la connexion TCP, mais il peut avoir I'acaéseavice atteint de chaque connexion.
Ainsi, nous implémentons l'algorithme optimal de Gittins ¥S-2 et nous faisons des simulations
numeériques pour évaluer le gain de performance possible.
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Optimal policy for multi-class scheduling in a single servequeue

Abstract: In this chapter we apply the Gittins optimality result to cerize the optimal schedul-
ing discipline in a multi-clas3//G /1 queue. We apply the general result to several cases ofgahcti
interest where the service time distributions belong tosieof DHR distributions, like Pareto or
hyper-exponential. When there is only one class it is kndvai in this case the LAS policy is opti-
mal. We show that in the multi-class case the optimal poBypriority discipline, where jobs of the
various classes depending on their attained service assifidal into several priority levels. Using a
tagged-job approach we obtain, for every class, the meadittmmal sojourn time. This allows us to
compare numerically the mean sojourn time in the systemdmaivthe Gittins optimal and popular
policies like PS, FCFS and LAS.

Our results may be applicable for instance in an Interneterpwhere packets generated by
different applications must be served or service is nomipigive. Typically a router does not have
access to the exact required service time (in packets) af@fieconnections, but it may have access
to the attained service of each connection. Thus we implétherGittins optimal algorithm in NS-2
and perform experiments to evaluate the achievable pedocmgain. We find that in the particular
example with two classes and Pareto-type service timeilnlision the Gittins policy outperform
LAS by nearly10% under moderate load.

Key-words: M/G/1, multi-class queue, optimal scheduling, GittinsipgINS-2 simulator
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1 Introduction

We are interested to schedule jobs in the€’G/1 queue with the aim to minimize the mean
sojourn time in the system as well as the mean number of jotheiaystem. In our study we restrict
ourselves to the non-anticipating scheduling policies usarecall that the policy is non-anticipating
if it does not use information about the size of the arriviogg. In [Git89], Gittins considered an
M/G/1 queue and proved that the so-called Gittins index rule nmizemthe mean delay. At every
moment of time the Gittins rule calculates, depending orattened service times of jobs, which
job should be served. Gittins derived this result as a bypebdf his groundbreaking results on
the multi-armed bandit problem. The literature on multirad bandit related papers that build on
Gittins’ result is huge (see for example [VWB, Whi88, Weld92i93, DGNM96| FW99, BNM00]).
However, the optimality result of the Gittins index in thentext of anM /G/1 queue has not been
fully exploited, and it has not received the attention itetgss.

In the present work we generalize the Gittins index apprdadhe scheduling in the multi-
classM/G/1 queue. We emphasize that Gittins’ optimality in a multissigueue holds under much
more general conditions than the condition required footttemality of the well-knowrep-rule. We
recall that thec-rule is the discipline that gives strict priority in desdarg order ofcy, i, Wherecy,
andy, refer to a cost and the inverse of the mean service requirgnespectively, of clask. Indeed
itis known (see for example [BVW8bG, SYHZ, NT94]) that therule minimizes the weighted mean
number of customers in the queue in two main settings : (igggdly distributed service requirements
among all non-preemptive disciplines and (ii) exponehtidistributed service requirements among
all preemptive non-anticipating disciplines. In the predine case they-rule is only optimal if the
service times are exponentially distributed. On the otlardh by applying Gittins’ framework to
the multi-class queue one can characterize the optimalypfuli arbitrary service time distributions.
We believe that our results open an interesting avenue farduresearch. For instance well-known
optimality results in a single-class queue like the optitpalf the LAS discipline when the service
times are of type decreasing hazard rate or the optimal®C#S when the service time distribution
is of type New-Better-than-Used-in-Expectation can altleeved as corollaries of Gittins’ result.
The optimality of thecu-rule can also easily be derived from the Gittins’ result.

In order to get insights into the structure of the optimalgpin the multi-class case we consider
several relevant cases where the service time distritaiiom Pareto or hyper-exponential. We have
used these distributions due to the evidence that the fieedigtributions in the Internet are well
presented by the heavy-tailed distributions such as Pdistigbutions with the infinite second mo-
ment. Also it was shown that job sizes in the Internet are meltlelled with the distributions with
the decreasing hazard rate. We refer to [NMM98, COB97, Wildt]more details on this area, see
also Subsectiofd?. In particular, we study the optimal multi-class schedylimthe following cases
of the service time distributions : two Pareto distribuipseveral Pareto distributions, one hyper-
exponential and one exponential distributions. Using gedgjob approach and the collective marks
method we obtain, for every class, the mean conditionalsnjtme. This allows us to compare nu-
merically the mean sojourn time in the system between thin&ibptimal and popular policies like
PS, FCFS and LAS. We find that in a particular example with tlegses and Pareto-type service
time distribution the Gittins policy outperforms LAS by ma25% under moderate load.
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4 Natalia Osipova

From an application point of view, our findings could be apglin Internet routers. Imagine that
incoming packets are classified based on the applicatiomeosdurce that generated them. Then it
is reasonable to expect that the service time distributidtise various classes may differ from each
other. A router in the Internet does not typically have asdeshe exact required service time (in
packets) of the TCP connections, but it may have access tattdiaed service of each connection.
Thus we can apply our theoretical findings in order to obtaéndptimal (from the connection-level
performance point of view) scheduler at the packet levelindfgement the Gittins scheduling policy
in the NS-2 simulator and perform experiments to evaluaethievable performance gain.

The structure of the chapter is as follows : In Secfibn 2 wéerthe Gittins index policy for
the single-class\//G/1 queue and then provide a general framework of the Gittingxrblicy
for the multi-classM/G/1 queue. In Sectiohl 3, we study the Gittins index policy for thse of
two Pareto distributed classes. In particular, we deriaydit expressions for the mean conditional
sojourn times, study various properties of the optimalqyolprovide numerical examples and NS-2
simulations. At the end of Sectibh 3 we generalize the resalnultiple Pareto classes. In Secfion 4
we study the case of two distributions : one distributiomgedxponential and the other distribution
being hyper-exponential with two phases. For the case afreqtial and hyper-exponential distri-
butions, we also obtain analytical results and provide mizakexamples. Sectidd 5 concludes the
chapter. Some additional profs are given in the Appendix.

2 Gittins policy in multi-class M /G /1 queue

Let us first recall the basic results related to the Gittireinpolicy in the context of a single-
classM/G/1 queue.

Let IT denote the set of non-anticipating scheduling policiepuRar disciplines such as PS,
FCFS and LAS, also called FB, belonglio Important disciplines that do not belonglicare SRPT
and Shortest Processing Time (SPT).

We consider a single-clas®//G/1 queue. LetX denote the service time with distribution
P(X < z) = F(z). The density is denoted bf/(z), the complementary distribution by(z) =
1 — F(x) and the hazard rate function byz) = f(z)/F(x). LetT" (z), = € II denote the mean
conditional sojourn time for the job of sizein the system under the scheduling policyandT™",

m € Il denote the mean sojourn time in the system under the schgdadlicy .

Let us give some definitions.

Definition 1. Foranya, A > 0, let

_ Jo fla+tydt _F(a) ~Flatd)

7(4) fOA F(a+t)dt fOA F(a+t)dt

)

For a job that has attained servigeand is assigned\ units of service, equatio](1) can be
interpreted as the ratio between (i) the probability that jisb will complete with a quota ofA
(interpreted as payoff) and (ii) the expected processoe tinat a job with attained servieeand

INRIA
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service quota\ will require from the server (interpreted as investmentté\that for every, > 0

J(a,0) = % = h(a),
= —F(a) = —Qa a
T(a,00) = Tt 0di 1/E[X - a|X > d.

Note further that/(a, A) is continuous with respect ta.

Definition 2. The Gittins index function is defined by

G(a) = Zu>[()) J(a,A), 2

foranya > 0.

We callG(a) theGittins indexafter the author of book [Git89], which handles variousistand
dynamic scheduling problems. Independently, Sevcik défineorresponding index when conside-
ring scheduling problems without arrivals In [SeVv74]. Irddibn, this index has been dealt with by
Yashkov, see [Yas92] and references therein, in particoéaworks by Klimov [KIi74[KIi7§&].

Definition 3. For anya > 0, let
A*(a) =sup{A > 0| J(a,A) = G(a)}. (3)
By definition,G(a) = J(a, A*(a)) for all a.

Definition 4. The Gittins index policyr, is the scheduling discipline that at every instant of time
gives service to the job in the system with higli@ést), whereq is the job’s attained service.

Theorem 1. The Gittins index policy minimizes the mean sojourn timéhédystem between all
non-anticipating scheduling policies. In other words, e ///G/1 queue for anyr € II,

T <T".
Démonstration.See [Git89]. O

Note that by Little’s law the Gittins index policy also minires the mean number of jobs in the
system.

We generalize the result of Theoréin 1 to the case of the rlaléis single server queue. Let
us consider a multi-clas¥//G/1 queue. LetX; denote the service time with distributidh X; <
x) = F;(z) for every class = 1,..., N. The density is denoted bf(x) and the complementary
distribution by F;(x) = 1 — F;(x). The jobs of every classarrive with the Poisson process with
rate \;, the total arrival rate is\ = Zf;l A;. For every class = 1,..., N we defineJ;(a,A) =
Jo> fiatt)dt
2 Fi(at+t)dt

We define ag; () the mean conditional sojourn time for the clageb of sizex, i = 1,..., N
and asI”" the mean sojourn time in the system under the schedulingypoli I1.

and then the Gittins index of a claggeb is defined ass;(a) = supa > Ji(a, A).
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6 Natalia Osipova

Proposition 1. In a multi-classM /G/1 queue the policy that schedules the job with highest Gittins
indexG;(a), 7 = 1,..., N in the system, whereis the job’s attained service, is the optimal policy
that minimizes the mean sojourn time.

Démonstration.The result follows directly from the application of the Défiion [2 and Theorernl1
to a multi-class\//G/1 queue. O

Leth;(z) = f;(z)/F;(z) denote the hazard rate function of class 1, ..., N. Let the service
time distribution of class-have a decreasing hazard rate. It is possible to show, se@7)#at if
h;(x) is non-increasing, the functiaf} (a, A) is non-increasing if\. Thus

Gi(a) = Ji(a,0) = h;(a). 4)
As a conseqguence we obtain the following proposition.

Proposition 2. In a multi-classM /G/1 queue with non-increasing hazard rate functiénée) for
every class = 1,..., N, the policy that schedules the job with highkgtz), i = 1,..., N in the
system, where is the job’s attained service, is the optimal policy that imizes the mean sojourn
time.

Démonstration.Follows immediately from the Gittins policy Definitidn 4, ¢positionl and equa-
tion (4). O

The policy presented in Propositibh 2 is an optimal poliaytfie multi-class single-server queue.
Let us notice that for the single class single server queaiEttiins policy becomes a LAS policy, as
the hazard rate function is the same for all jobs and so thejdbthe maximal value of the hazard
rate function from attained service is the job with the lesttdined service. When we serve jobs
with the Gittins policy in the multi-class queue to find a johieh has to be served next we need
to calculate the hazard rate of every job in the system. Thevjuich has the maximal value of the
hazard rate function is served the next. Later by the valubehazard rate we mean the value of
the hazard rate function of the job’s attained service.

Now let us consider several subcases of the described dappraach. Depending on the beha-
vior of the hazard rate functions of the job classes the pdadiclifferent. We consider the case with
two job classes in the system and two subcases : (a) bothgsbead are distributed with Pareto and
the hazard rate functions do not cross and (b) job size bligioins are hyper-exponential with one
and two phases and they cross at one point. Then we extendsb®ttwo Pareto job classes to the
case ofN Pareto job classes. We provide the analytical expressoriisdé mean conditional sojourn
times in the system and numerical results. We implementedltforithm for the case of two Pareto
classes with the NS-2 simulator on the packet level.

3 Two Pareto classes

Let us first present the case when job sizes are distributmidiag to Pareto distribution.

INRIA
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high-priority queue  LAS
0

'} class-1

v

- =

low-priority queue Gittins

hz(o)

:

TR

FIG. 1 — Two Pareto classes, hazard rates FiG. 2 — Two Pareto classes, policy scheme

3.1 Model description

We consider the case when the job size distribution funstame Pareto. We consider the two-
class single server//G/1 queue. Jobs of each class arrive to the server with Poissmess with
ratesA; and\,. The job sizes are distributed according to the Paretailoligions, namely

byt

Fi(m)zl—m, i=1,2. (5)

Hereb; = m;(c; — 1), wherem; is the mean of clasg-i = 1,2. Thenf;(z) = bSic; /(x + b;)* T+,
1 = 1,2 and the hazard rate functions are

These functions cross at the point

*k

coby — c1ba
C1 —C2 .

Without loss of generality suppose that > c,. Then the behavior of the hazard rate functions
depends on the values bf andbs.

Let us first consider the case when the hazard rate functiomotl@ross, sa** < 0. This
happens wheh; /bs < ¢1/ca. Then the hazard-rate functions are decreasing and neves and
hi(z) > ho(z), forallz > 0.

RR n° 0123456789



8 Natalia Osipova

Let us denot@ and functiory(z) in the following way that

ha(g(x)), hi(0) = ha(0).

We can see that(¢) = 0. For given expressions &f,(z), i = 1,2 we get

hl (IZ?)

c c1bay — cob
g(@) = Z2(x+b) —by, =221

C1 C2
According to the definition of function(z), the classt job of sizex and the clasg-job of sizeg(x)
have the same value of the hazard rate when they are fullgdesee Figurgl1. Then the optimal
policy structure is given on Figufé 2.

3.2 Optimal policy

Jobs in the system are served in two queues, low and hightgmmeues. The claskjobs which
have attained service < 6 are served in the high priority queue with LAS policy. Whea tasst
job achieve® amount of service it is moved to the second low priority qudire class? jobs are
moved immediately to the low priority queue. The low prigrifueue is served only when the high
priority queue is empty. In the low priority queue jobs areved in the following way : the service
is given to the job with the highe#t (a), wherea is the job’s attained service. So, for every class-
job with a attained service the functiom (a) is calculated, for every classjob with « attained
service the functiors(a) is calculated. After all values df;(a) are compared, the job which has
the highest;(a) is served.

Now let us calculate the expressions of the mean conditissjalurn time for the class-and
class2 jobs.

3.3 Mean conditional sojourn times

Let us denote by indicg?) and[](? the values for class-and class? accordingly.

Let us define aX_;(Z) then-th moment anqbgf) be the utilization factor for the distributiaf («)
truncated ay for i = 1, 2. The distribution truncated atequalsF'(z) for z < y and equald when
x > y. Letus denotéV,, ,, the mean workload in the system which consists only of clgsss with
service times truncated atand of class? jobs with service times truncated @t According to the
Pollaczek-Khinchin formula

)\1X_§(1) +)\2X_§(2)
Way = M _ @y
20=pa’ —py )

Now let us formulate the following Theorem which we provelie Appendix.

Theorem 2. In the two-classM//G/1 queue where the job size distributions are Pareto, given by
(@), and which is scheduled with the Gittins policy desalireSubsection 312, the mean conditional

INRIA



Optimal policy for multi-class scheduling in a single sergaeue 9

sojourn times for clasg-and class2 jobs are

T+ WI70

Ti(z) = , <0, (6)
1-pt”
T+ WJ), x
Tl(x):l(l)—g((;), x>0, (7
“Pr T Py(a)
9(x) + W gz
To(g(w)) = =725, ©>0. ®
L=pz’ = Py

Démonstration.The proofis very technical and is given in the Appendix. Legive a very general
idea of the proof. To obtain expressiohs (F], (8) we use thetfat the second low priority queue
is the queue with batch arrivals. To obtain expressionseftiean batch size with and without the
tagged job we apply the Generating function analysis usiagrtethod of the collective marks[]

The obtained expressions (6)] (7) and (8) can be interptesieg the tagged-job and mean value
approach.

Let us consider clastjobs. The job of sizec < 6 is served in the high priority queue with
the LAS policy, so for it the mean conditional sojourn timekrown, [Kle76, Sec. 4.6][% (z) =

f”lJng;“ ,x < 6, wherell/,, ¢ is the mean workload aryfil) is the mean load in the system for class-
—Px

jobs with the service time distribution truncatedraffThe mean workloadl’,, o and mean I0a¢§})
consider only jobs of the high priority queue of cldss-
For jobs of sizex > 6 the expressior{7) can be presented in the following Wayz) =

4+ Wy o) + Tl(ac)(pg,;l) + pfl)), where
— x is time which is actual<ly spent to serve the job;
— W, 4(«) is the mean workload which the tagged job finds in the systedndrich has to be
processed before it;

-T (:c)(pél) +pf&,)) is the mean time to serve jobs which arrive to the system duini@ sojourn
time of the tagged job and which have to be served before it.

Let us provide more explanations. Let us find the expressipthé mean workload in the system
for the classt job of sizex, which is the tagged job. According to the PASTA property ofsBon
arrivals, all jobs arriving to the system see the systemérstime steady state. So, clasmd clas?
jobs see the same mean workload in the system when they.aksuge need to take into account
only the mean workload which is served before the taggedfan for each job the mean workload
W 4(z) depends on the size of the tagged jobJobs which have to be served before the tagged job
of classi of sizex are classt jobs of size less tham and class? jobs of size less thag(z). Then
using Pollaczek-Khinchin formul@l(6) for claggebs of size less tham and clas<2 jobs less than
g(x) we conclude thalV, .,y gives the mean workload in the system for the clagsh of sizer,
which has to be served before it. Let us notice that the meakl@ad in the system for the clags-
job of sizeg(x) is the samelV, ;).

Now let us find the mean workload which arrives during the sojatime of the tagged job.
The sojourn time of the tagged job 1§ (z). The mean load of jobs arriving to the system is :

RR n° 0123456789



10 Natalia Osipova

(1) (1)

for the classt of size less tham is \; X!~ = p}’ and for the clasg-with size less tham(z)
—(2
is )\QXgl(w)( ) pf&). ThenT; (x)(pg) + pf(l)) is the mean workload which arrives during the

sojourn time of the tagged job of cla$f sizex.

Now we use the similar analysis to give an interpretatiorhtoedxpression df»(g(x)) for the
class2 job of sizeg(x). We can rewrite expressionl (8) in the following way(g(x)) = g(z) +
W gty + Talg(2)) (08 + p70).

In the case of the tagged job of cla&a®f size g(x) jobs which have to be served before the
tagged job are jobs of cladsef size less than: and jobs of clasg-of size less tha(z). Then
in the previous expressiof(x) is the time to serve the clagsjob of sizeg(xz); W, 4, is the
mean workload in the system for the cla@b of sizeg(x) which has to be served before it;

T (g(:c))(p;l) + pf(l)) is the mean work which arrives during the sojourn tifa¢x) and which has

to be served before claggob of sizeg(x).

3.4 Properties of the optimal policy

Property 1. When clas£ jobs arrive to the server they are not served immediatelywait un-
til the high priority queue is empty. The mean waiting timehi limit limg,) o 72(g(z)). As
lim,_,p g(z) = 0, then

51
. Wo o M X2
lim Ty(g(x)) = o= 0(1) .
g9(x)—0 1—py 2(1—py )2
Let us notice that
. 0+ W97
lim Ty(g(x)) # T1(0) = ———7--
g(z)—0 1— Po

Class2 jobs wait in the system to be served in the low priority quéie,mean waiting time is
limg ;)0 T2(g(x)). Classi jobs of size more thef also wait in the system to be served in the
low priority queue, the mean waiting time for then¥ig#). Property1 shows that these two mean
waiting times are not equal, so claggebs and clas< jobs wait different times to start to be served
in the low priority queue.

Property 2. Let us consider the condition of no new arrival. Accordinghe optimal policy struc-
ture in the low priority queue jobs are served according te S policy with different rates, which
depend on the number of jobs in each class and hazard ratéidmsc For the case when there are
no new arrivals in the low priority queue we can calculate thtes with which class-jobs and
class? jobs are served in the system at every moment of time. Wedeotisat all classt jobs and

all class2 jobs already received the same amount of servicenl@ndn, be the number of jobs in
classi and class2 and letz; andx, be the attained services of every job in these classes. Tthen a
any moment

hl(ml) = hg(l’g).

INRIA



Optimal policy for multi-class scheduling in a single sergaeue 11

If the total capacity of the server i§, then letA; and A be the capacities which each job of clalss-
and class2 receives. Then

n1 A1 +nolAy = A, 9
Also
hi(zy + Ar) = ha(za + Ag).
AsA isvery small (and so as well; andA,) according to the LAS policy, then we can approximate
hi(z 4+ A;) = hi(x) + Ahi(z), i=1,2.
Then from the previous equations we have
A1k (z1) = Aghb ().

Then using[(9) we get

A _ hy ()
A nlhé(zg) +n2h’1(x1)’
Ay b (1)

A nlhé(mg) —l—ngh/l(l'l)

This result is true for any two distributions for which thezZlaad rates are decreasing and never
cross. For the case of two Pareto distributions given[By (&)have the following :
Aq C1 AV C2

A nic1 + naco ’ A nici + TLQCQ.

So, for the case of two Pareto distributions the servicesafelasst and class2 jobs do not depend
on the current jobs’ attained services.

Property 3. As one can see from the optimal policy description, claasd class2 jobs leave the
system together if they have the same values of the hazadwattions of their sizes and if they
find each other in the system. According to the definition@fth) function we can conclude that
the classt job of sizex and class2 job of sizeg(x), if they find each other in the system, leave the
system together. But these jobs do not have the same coraditiean sojourn time,

Ty(x) # Ta(g(x)).
This follows from expressiong}(7) ard (8).
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A A
h(0) Y
) =g(x)

a™ >
hl(o)

y=g(x)

0* Yy =1
0 a* g(x) T T P

FIG. 3 — Two Pareto extension classes, hazaréric. 4 — Two Pareto extension classegy)
rates function behavior

3.5 Two Pareto classes with intersecting hazard rate funatns

Now let us consider the case when the hazard rate functiesdfteru** = (caby —c1b2)/(c1—
c2) > 0, see Figurgl3. As we considered > ¢, thenh;(0) < ho(0) and then clasg-jobs are
served in the high priority queue until they recefe= (c2b; — ¢1b2)/c1 amount of service. Here
6* is such thatha(6*) = h1(0) andg(6*) = 0. In this case the(x) function crosses thg = «
function at pointa**, see Figur€l4, and so in the low priority queue clagsbs are served with
higher priority with comparison to clagsjobs until they receive** amount of service. After class-
1 and clas<2 jobs received** amount of service the priority changes and clagsbs receive more
capacity of the server in the system. According to this asialwe can rewrite the expressions of
mean conditional sojourn times of Sect{dn 3, Thedrém 2 ifdhewing way

Corollary 1. In the two-class\//G/1 queue where the job size distributions are Pareto, given by
(®) such that the hazard rate functions cross, and whichhedualed with the Gittins optimal policy,
the mean conditional sojourn times for classnd class? jobs are

xr + WLg(I)
h@=r—"m_ & 20
T Pr T Py(a)
x+ Wy "
TQ(:E) = ((;) ) T S 9 )
1— px
g(x) =+ Ww, x *
Tag(w)) = =725, = >0".
L=pa” =Py
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Démonstration.The proof follows from the previous discussion.

3.6 Numerical results

0.5 n
’
— ‘ -
FCFS 0.45F , PS
- = =PS ’ (=1='LAS
’ s
- = LAS 04l , —— Gittins
— Gittins
’
’
41 ’
’
v
20 PPN 0.05
J--s—-""l__-‘-'_‘ ‘‘‘‘‘‘‘‘‘‘
0 n n n | | . . 0
0.6 0.65 0.7 0.75 0.8 0.85 0.9

055 06 065 07 075 08 08 09 095

FiG. 5—Two Pareto classes, mean sojourn timegc. 6 — Two Pareto classes, mean sojourn times
with respect to the loagd, V; with respect to the loagd, V>

We consider two classes with parameters presented in[Tizid Wve calculate the mean sojourn
time in the system numerically, using the expressions ofrthan conditional sojourn timgl(7.1(8)
and [6). We provide the results for two different paramesets, which we call; andVs.

TAB. 1 — Two Pareto classes, parameters

\Y c1 Co mi ma P1 P2 P
Vi | 25.0| 2.12| 0.04| 0.89| 0.1 | 0.4..0.85| 0.5..0.95
Vo | 10.0]| 1.25| 0.05| 1.35| 0.25| 0.25..0.74| 0.5..0.99

It is known that in the Internet most of the traffic is genedalby the large files (80%), while
most of the files are very small (90%). This phenomenon igmedeto as “mice-elephant” effect.
Also it is known that the file sizes are well presented by thaviidailed distributions like Pareto.
Here classt jobs represent "mice" class and cl&spbs "elephants”. We consider that the load of
the small files is fixed and find the mean sojourn time in thessgstccording to the different values
of the "elephant” class arrival rate.
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We compare the mean sojourn time for the Gittins policy, RS:& and LAS policies. These
policies can be applied either in the Internet routers oh&\Web service. The expected sojourn
times for these policies are, sée [Kle76],

PS5 _ p/A 7
I—p
TFCFS _ p/)\ + Woo7007

hereW, . means the total mean unfinished work in the system.

—LAS 1 *_ras
T [T @00 @) + el
)\1 + )\2 0
where
) =
1-— Px — Px

The mean sojourn times for the parameters §gtand 5 are presented in Figure§5,6. For the re-

sults ofV; we do not plot the mean sojourn time for the FCFS policy aseldss an infinite second

moment. The relative gains in mean sojourn time between iti@e€and LAS and Gittins and PS po-
TFCFS FGitt PSS Gttt

licies are the following. For the set of parametgfsmax TF+FTS = 0.99, max % =

TLAS _pGitt TPS _mGitt
0.78 and max ——s— = 0.45. For the set of parametei$ : max ——ps— = 0.98 and

max % = 0.39. The maximal gain is achieved when the system is loaded hyndf@%.

We note that the PS policy produces much worse results th&hdl Gittins policies.

3.7 Simulation results

We implement Gittins policy algorithm for the case of two €&ardistributed classes in NS-2
simulator. The algorithm is implemented in the router quén¢he router we keep the trace of the
attained service (number of the transmitted packets) feryesonnection in the system. We use timer
to detect the moment when there are no more packets from &ctiomin the queue. Then we stop
to keep the trace of the attained service for this connection

Itis possible to select the packet with the minimal sequ&niceber of the connections which has
to be served instead of selecting the first packet in the quetiee current simulation this parameter
does not play a big role according to the selected model selagh parameters. (There are no drops
in the system, so there are no retransmitted packets. Théreglackets arrive in the same order as
they were sent.)

The algorithm which is used for the simulations is as follows
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class-1

Fic. 7 — NS-2 simulation scheme.

Algorithm
on packet dequeue
select the connectiofiwith the maxh;(ay), where
ay is the flow’s attained service
select the first packet; of the connectiorf in the queue
dequeue selected packst
setay = ay + 1

To compare Gittins policy with the LAS policy we also implemted LAS algorithm in the router
queue. According to the LAS discipline the packet to dequthee packet from the connection with
the least attained service.

The simulation topology scheme is given in Figlite 7. Jobyeato the bottleneck router in
two classes, which represent mice and elephants in the rietdabs are generated by FTP sources
which are connected to TCP senders. File size distributoasParetof; = 1 — b7 /(z + b;)*,

i = 1,2. Jobs arrive according to Poisson arrivals with rateand .

We consider that all connections have the same propagatlapsd The bottleneck link capacity
is © = 100 Mbit/s. All the connections have a Maximum Segment Size (MSSj40fB. The
simulation run time i2000 seconds. We provide two different versions of parametdesten,
which we call Vg and Vs. In Vs, first class takeg5% of the total bottleneck capacity and iny/s
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it takes50%. Both scenarios correspond to the case when the hazardiratiéon do not cross, see

Subsectiofl3.
The parameters we used are given in Table 2.

TaB. 2 — Two Pareto classes, simulation parameters
Ver. | o c2 | m1 | me| m P2 P
Vs; | 10.0] 1.25| 05| 6.8 | 0.25| 0.50| 0.75
Vs, | 10.0| 2.25| 0.5 | 45| 0.50| 0.37 | 0.87

The results are given in Tallé 3. We provide results for the2NsBmulations and the values of
the mean sojourn times provided by the analytical model thidhsame parameters. We calculate the

DT FGitt
e

related gain of the Gittins policy in comparison with DrofBad LAS policies,g; = =T —

=LAS =Gitt
T =T
and92 = FLAS

TaB. 3 —Mean sojourn times
ver. TDT TLAS TGztt 7 g
Vs; NS-2 18.72 2.10 | 2.08 | 88.89% | 0.95%
Vs; theory | PS:4.71| 1.58 | 1.01 | 78.56% | 36.08%
Vs, NS-2 6.23 2.03 | 1.83 | 70.63% | 9.85%

Vs, theory | PS:6.46| 3.25 | 2.19 | 66.10% | 32.62%

We found that with the NS-2 simulations the gain of the Gétfpolicy in comparison with the
LAS policy is not so significant when the small jobs do not takgig part of the system load. As
one can see in \tswhen the clasd-load is50% the related gain of the Gittins policy in comparison
with LAS policy is10%. In both versions the relative gain for the correspondirajdital system is
much higher and reaches up36%. We explain this results with the phenomena related to thie TC
working scheme. Also we explain the low gain inMsy the fact that the load in the system is not
high.

3.8 Multiple Pareto classes

We consider a multi-class single servei/G/1 queue. Jobs arrive to the systemNhclasses.
Jobs ofi-th classi = 1, ..., N arrive according to Poisson arrival processes with rate3obs size
distributions are Pareto, namely

1
E r)=1= ’ v = 1) 7N
( ) (:17+1)C7'
Then, the hazard rates
Ci
h;(x) = , 1=1, , N,
(z) (x+1)
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class1 1-priority queue LAS

| — 9112

E—

—

class-2
2-priority queue Gittins

Jobs
: —
class-3
P E ; : —— If‘> 3-priority queue
01.2913(y) 013 91.2(y) Y T e o o
FIG. 8 — N Pareto classes, hazard rates FIG. 9 — N Pareto classes, policy scheme

never cross. Without loss of generality, let us consider ¢ha> co > ... > cy. Let us define the
values of9; ; andg; ;(z),4,j = 1,..., N in the following way

hi(i,;) = h;(0),
hi(z) = D (9.3 (x))-

Then we get

gij@) = L@+1)—1, ;== —1.

C; Cj

Letus notice thafl, ; < 0k ;41 @andb; > 0;p1 6, k=1,...,N,i=1,..., N=1,i #k, i #k+1,
see Figurél8. Let us denote tifat = 0 fori =1,..., N.

The scheme of the optimal policy is given on Figule 9.

Optimal policy.

There areV queues in the system. Clasgebs arrive to the system and go to the first-priority
queuetl. There they are served with the LAS policy until they get of service. Then they are
moved to the queu;which is served only when the queliégs empty. In the queugjobs of class-

1 are served together with jobs of cladsEvery moment the service is given to the job with the
highesth;(a), ¢ = 1,2, wherea is a jobs attained service. When jobs of classttain service); 3
they are moved to the queeWhen jobs of clasg-attain service, 3 they are also moved to the
queues. In queues the jobs of clasg, class2 and class3 are served together. Every moment of
time the service is given to the job with the highésta), i = 1,2, 3, wherea is a jobs attained
service. And so on.
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To find the expressions for the mean conditional sojourndimehe system we use the analysis
which we used in interpretation of the mean conditional sojdimes expressions in the case of two
class system, see Sectldn 3. The mean conditional sojoneftr the tagged job of clagseonsists
of the time to serve the tagged job when the system is emgtynttan workload in the system which
has to be served before the tagged job and the mean workldat aives during the sojourn time
of the tagged job and has to be served before it.

Let the tagged job be from clagssf sizex. Jobs which have the same priority in the system and
which have to be served before the tagged job are : dlagbs of size less tham, class: jobs of
size less thag ;(z).

We denoteX_;(i) then-th moment anqbgf) the utilization factor for the distributiof; (x) of the
classé, i = 1,..., N truncated ay. The mean workload in the system which has to be served before
the tagged job is then found with Pollaczek-Khinchin forenahd equals to

N Y2
Zi:l Anglyi(z)
~ .
2(1 - Zi:1 Pgl,qz(w))

W,

z,91,2(2),....91,5 (x) =

Then we formulate the theorem.

Theorem 3. For classd jobs of sizer such ad; , < « < 61 ,41,p=1,..., N and corresponding
classk jobs with sizeg, 1 (x), k = 2,. .., p the mean conditional sojourn times are given by

Ty(z) = z+W(z,g12(),...,91p(x)) 7

1= pi(x) = p2(g1,2(®)) — .. = pplg1,p())
Tk(glk(x)) _ gl,k(z) +W($791,2($),---;91,p($)) )
1= pi(z) = p2(g1,2(2) — . = pp(91,p(2))

Here we consider that; y11 = 00,9 =1,..., N.
Démonstration.Similar to the proof of Theorei 2. O

4 Hyper-exponential and exponential classes

We consider a two clasd//G/1 queue. Jobs of each class arrive with Poisson arrival psoces
with rates)\; and\.. The job size distribution of claskis exponential with meai/u, and hyper-
exponential with two phases for clagsvith the mean(usp + (1 — p)us2)/(p2ps). Namely,

Fi(z) =1—e "M% Fy(z) =1—pe #2"—(1 — p)e 137, (10)

Note that the hazard rates are

—pox 1 — — 3
ha(e) = o, ho(e) = P2 H QoD BT 1

pera & (L= ple=ror

The hazard rate function of clagss a constant and equals @ = 1. The hazard rate function
ha(z) of the class2 is decreasing in:. As both hazard rate functions are non-increasing the @ptim
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high-priority queue [,AS priority

class-2 a*

Jobs |——
— >

second-priority queue LAS

class-1

E—
)
\ ]

—

third-priority queue LAS

*

a

FIG. 10 — Exponential and HE classes, hazard=IG. 11 — Exponential and HE classes, policy
rates. description.

policy which minimizes the mean sojourn time is Gittins pglbased on the value of the hazard
function, which gives service to jobs with the maximal halzate.

For the selected job size distributions the hazard ratetimme behave in different ways depen-
ding on parameters,, u2, u3 andp. The possible behaviors of the hazard rate functions déterm
the optimal policy in the system. If the hazard rate functinever cross, the hazard rate of class-
higher than the hazard rate of claxghen classt jobs are served with priority to clagsiobs. This
happens wheh; > ho(z), x > 0. As ho(z) is decreasing, then this happens whgn> ho(0). Let
us consider thati, > p3, then ashz(0) = puo + (1 — p)uz andpy > ho(0) if p1 > o > ps.
For this case it is known that the optimal policy is a strigbpty policy, which serves classjobs
with the strict priority with respect to classjobs. From our discussion it follows that this policy is
optimal even ifus > g > ps, butstill uy > pus + (1 — p)us.

Let us consider the case whep > p1 > ps andpu; < pus + (1 — p)us. Then it exists the
unique point of intersection df;(z) andh, . Let us denote by* the point of this intersection. The

i ; puze 27 +(1—p)uge” #3”
value ofa* is the solution of e T (1=p)e—FaT

. 1 ( p uz—m)
a* = In .
p2 — 3 L—ppr—ps

The hazard rate function scheme is given on Figufe 10. Thergptimal policy is the following.

= u1. Solving this equation, we get that
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4.1 Optimal policy.

There are three queues in the system, which are served weithttict priority between them.
The second priority queue is served only when the first gyiguieue is empty and the third priority
queue is served only when the first and second priority quareesmpty. Clasg-jobs that arrive
to the system are served in the first priority queue with theSLgolicy until they geta* amount
of service. After they get* amount of service they are moved to the third priority queugegre
they are served according to the LAS policy. Clagebs arrive to the system and go to the second
priority queue, where they are served with LAS policy. Sihgér) = 111, classi jobs can be served
with any non-anticipating scheduling policy. The schemthefoptimal policy is given on FiguteTL 1.

According to this optimal policy we find the expressions df #xpected sojourn times for the
classi and clas< jobs.

4.2 Expected sojourn times

Let us recall that the mean workload in the system for clasdbs of size less thanand clas
jobs of size less thagis W, ,, and is given by[(6). We prove the following Theorem.

Theorem 4. The mean conditional sojourn times in thé/G/1 queue with job size distribution
given by[(ID) under Gittins optimal policy described in Sadti®4.1 are given by

$+Wx.a*
1_pI — Pax
Tg(z):%, z <a*, (12)
1—px
T+ Weo .
TQ(I):W, T >a. (13)
1 — P — Pz

Démonstration.To find expressions of the mean conditional sojourn times seethe mean-value
analysis and tagged job approach. The mean conditionalisofone for the class-job of sizex
consists of the following elements.

— x, time needed to serve the job itself.

— mean workload in the system which has to be served befotagfged job.

— mean time to serve jobs which arrive to the system duringdj@urn time of the current job

and which have to be served before the tagged job.

When the tagged job is a clasgeb of sizex jobs which have to be served before it are all class-
jobs of sizer and all class? jobs of size less thadi*. Then the mean workload which the tagged job
finds in the system and which has to be served beforéelit,is,-. The mean work which arrives to
the system during the sojourn time of the taggedjsbr) and have to be done before it takes into
account only clasg-jobs of size less tham and class? jobs of size less thaa*. So, it equals to
Ty (@) (5" + o).

For the tagged job of classef sizex < ax the jobs which have to be served before it are class-
jobs of size less than. Then the mean workload which the tagged job finds in the syated which
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has to be served before itig; , and the mean time to serve jobs which arrive to the systenmgluri
To(z) is Ta(z)pt?.

For the clas2 job of sizexz > a* the jobs which have to be served before it are all class-
jobs and clas&-jobs of size less than. Then the mean workload which has to be served before the
tagged job iV, , and the mean time spend to serve jobs which arrive duringdjoeis time of
the current job ig% (x)(pg? + p§3>).

Summarizing the results of the previous discussion we get

Ti(x) = &+ Wa o + Ta(2) (o) +p&) 2 >0,
To(x) =y + Wor + Ta(z)p?, z < a*,
To(x) =y + Wooo + T2(117)(p((>2) + pf)) T > a*.

from here we get the proof of the Theorem. O

4.3 Numerical results

Let us calculate numerically for some examples the meamnusojime in the system when the
Gittins policy is used. We consider two classes with the p&tars given in Tablel4. Also here
p = 0.1 and the threshold value is* = 7.16. We compare the obtained results with the mean
sojourn times when the system is scheduled with FCFS, PS ABddblicies, the results are given
on Figurd1P.

TAB. 4 — Exponential and HE classes, simulation parameters

M1 | M2 | B3 | Ty | T2 | P1 P2 P
06(10(05|16|11|0.1]|0.4.0.85| 0.5..0.95

4.4 Pareto and exponential classes

We can apply the same analysis for the case when tl@als-size distribution is exponential
and clas2 job size distribution is Pareto. Let us consider the casewtihe hazard rate functions of
classi and clas<2 cross at one point.

Let i} ($) =1—e H1% anng (IZ?) = 17b§2/($+b2)c2. Thenh1 = 1 andh2($) = CQ/($+b2).

The crossing point ia* = ¢o/u1 — be. Whena* < 0 the hazard rate functions do not cross and then
the optimal policy is to give strict priority to cladsjobs. If a* > 0 then the hazard rate functions
cross at one point and the optimal policy is the same as inrthéqus section. Then the expressions
of the mean conditional sojourn timed of clasand class? are also[(111) [{12) an@d (L 3).

5 Conclusions

In [Git89], Gittins considered an//G/1 queue and proved that the so-called Gittins index rule
minimizes the mean delay. The Gittins rule determines, aiéipg on the jobs attained service, which
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FIG. 12 — Exponential and HE classes, mean sojourn times wigieot$o the loag

job should be served next. Gittins derived this result as-aroguct of his groundbreaking results
on the multi-armed bandit problem. Gittins’ results on theltirarmed bandit problem have had a
profound impact and it is extremely highly cited. Howeveitti@s work in theM /G /1 context has
not received much attention.

In [AAQ7], the authors showed that Gittins policy could beedido characterize the optimal
scheduling policy when the hazard rate of the service tinséridution is not monotone. In the
current work we use the Gittins policy to characterize theénogal scheduling discipline in a multi-
class queue. Our results show that, even though all seiwies thave a decreasing hazard rate, the
optimal policy can significantly differ from LAS, which is kavn to be optimal in the single-server
case. We demonstrate that in particular cases PS has musk penformance than Gittins policy.

Using NS-2 simulator we implemented the Gittins optimalgoin the router queue and provi-
ded simulations for several particular schemes. With thmeikition results we found that the Gittins
policy can achievé0% gain in comparison with the LAS policy and provides much drepterfor-
mance than the DropTail policy.

In future research we may consider other types of service tistributions. The applicability
of our results in real systems like the Internet should aksortore carefully evaluated. We also
would like to investigate the conditions under which theti@g policy gives significantly better
performance than LAS policy.
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6 Appendix : Proof of Theorem 2

We prove that the mean conditional sojourn times in the systescribed in Sectidd 3 scheduled
with the optimal Gittins policy given in SubsectibnB.2 aieeg with (8), [7) and[(B).

The classt jobs of sizex < 6 are served in the high priority queue with LAS policy, so the
expression for the mean conditional sojourn time for thiseda known, see [Kle76, sec. 4.6], as is
given by [6).

Let us consider class-jobs with sizese > 6 and class? jobs, which are served in the low
priority queue. There is a strict priority between the queeared the low priority queue is served only
when the high priority queue is empty. Then the low prioriteege is a queue with batch arrivals. To
find the expressions of the mean conditional sojourn timéisdérsystem we use the analysis similar
to the one of Kleinrock for Multi Level Processor Sharing geén [Kle76, sec. 4.7].

In the following analysis we consider only the claspbs of size less tham and class? jobs
of size less thag(z). So, we consider that the clasgeb size distribution is truncated atand job
size distribution of clasg-is truncated ag(z).

We formulate the following Lemma.

Lemma 1. The mean conditional sojourn times for clals@b of sizex > 6 and for class2 job of
sizeg(x) > 0 equal to

_ 0+ Weo ai(z—0,9(x))

Tl(z) ) (14)
BV
Wa.o as(x—0,g(x
Ta(g(a) = 20 2202 09(0)) 15)
1—py 1—py

wherea; (z — 0, g(z)) andaa(x — 6, g(x)) are the times spent in the low priority queue by class-
and class2 jobs respectively and equal to

x—0+ A (x)+ Wy
L—pp ’

() + As(g(x) + W
L—pp

al(m - evg(m)) =

an(z — 0, g(x)) = ,
wherelV, is the mean workload in the low priority queue which the taflgatch sees when arrives
to the low priority queuey, is the mean load in the low priority queue add(z), « = 1,2 are the
mean works which arrive to the low priority queue with theged job in the batch.

Démonstration.Let us consider that the tagged job is from clasd has a size > 6. The time
it spends in the system consists of the mean time it spendihigh priority queue. This time is
% as it has to be served only with clasgbs until it gets®) amount of service. After the tagged
job is moved to the low priority queue after waiting while thigh priority queue becomes empty.
The timea; (x — 0) is the time spent by the tagged job in the low priority queud@sTime consists

of the time spent to serve the job itself;- 6, of the mean workload in the low priority queue which
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the tagged job findgj;,, of the mean work which arrives in the batch with the taggéx jb, (x)
and of the mean work which arrives during the sojourn timéneftagged jobg; (z — 6) pp.

We use the same analysis for the mean conditional sojoumdirthe class job of sizeg(x).

O

Now let us find the expressions for thg,, p», A1(x) and A;(z). Let us define the truncated
distribution F1 9 »(y) = Fi(y),0 <y < z andFy9,(y) = 0,y < 0,y > z. Let Xg,w(z) be the

n-th moment anqbéfl, i = 1,2 be the utilization factor for this truncated distributiofe use this
notation because jobs of claswhich find themselves in a batch are already served @ntil
Let N; be the random variable which denotes the number of jobs inchlod classz, i = 1, 2.

We defmeX(l) as the random variable which denotes the size of dges-in a batch. LetX(a)
be the random variable which corresponds to the size of #Hes2ljob in a batch. Then

Z Xt Z X Stor

is the random variable which denotes the size of the batdiud denote aa, the batch arrival rate.
We know that\, = A\; + A2. According to the previous notations we can write

Po = M E[Yh],
hereE[Y};] is the mean work that a batch brings and by Pollaczek-Khinchi
B[]
2(1—pp)

Let us note thatV, does not depend from which class the tagged job comes. As aw Hre first

and the second momentsﬁﬁl) X(2 , to find p, andW;, we need to know the first and the second
moments ofN;, i = 1,2. To find tghls values we we use the method of the Generatingtifurs;
which is described in the following section.

Wy =

6.1 Generating function calculation

We propose a two dimension generating functi®fx,, z2), which we obtain using collective
marks method. The method of the collective marks is desgiio{Kle75, Ch. 7].

Definition 5. Let us mark jobs in a batch in the following way. We mark a jolclafsd with a
probability 1 — z1, thenz; is a probability that a job of clas$-is not marked. The same is defined
for jobs of class2 as z,. Letp,, ., be the probability that:; class1 andn, class2 jobs arrive in

the batch. Then
Zl;Z2 Zzzl 22 pn1 no

nl n2

is a generation function and it gives a probability that there no marked jobs in the batch.
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Let us define as a "starter" ¢ a tagged job. Let us distinguish the cases when the starter
belongs to class-or class2 and denote by (21, 22) andGa(z1, 22) the probabilities that there are
no marked jobs in the batch if the starter is from the claasid class2. When theS € classi, we
consider two cases depending on the size of the stéfter, & 0). Then

A A
G(Zl,ZQ) = )\—Z([Gl(zl,ZQ),S S 9] + [Gl(zl,ZQ),S > 9]) + )\—jGQ(Zl,ZQ).

Lemma 2. The Generating function equals to

A 0
G(Zl,ZQ) — )\_ll)(/ e*Alm(lfcl(21,22))7A2I(1722)dF1(m) +
0
— A
+ Zle—/\10(1—G1(z1,zQ))—/\QG(l—zQ)Fl(9)) + )\_222. (16)
b

Démonstration.Let us calculat&r; (21, z2). When the clasg-job arrives to the system it creates the
busy period. Still this job does not recei#f@mount of service the low priority queue is not served.
So, jobs which arrive to the low priority queue and jobs whach already in the low priority queue
are waiting and so they create a batch. The probability tirexetare no marked job in this batch is
Gl (2’1, 22).

Let the classt job of sizexz arrives to the system. Lat < 6. The probability that:; classi
jobs arrive in the period0, z) is P (z) = e 1%(\1z)* /k1!. The probability that all the batches
generated by this arrived jobs of classt is G (21, z2)*, because each of them generates the batch
which does not have marked jobs with probabifity(z1, z2). During time(0, «) the probability that
ko class? jobs arrive to the system B, (z) = e~ 2% (\yz)2 /ky!. The probability that this jobs are
not marked is not included i¥; (21, z;) and equals ta}2. Then we summarize oh; and ks,
integrate one in (0, §) with dF; (x), as only the clas$-jobs generate busy periods. We get that the
probability that there are no marked jobs in the batch is

-0 00
/0 (Z P, (z)Gl(zl,ZQ)klpg(z)z§1> dFy(z) =

k1=0

6
= /e—m(l—Gl(zUZz))—W(l—“)dFl(x)-
0

[G1(21,2’2>, S S 9]

Let classi job of sizex > 6 arrives to the system. The clasgeb is first served in the high priority
queue until it get® of service. Then it is moved to the low priority queue. Thelyability thatk;
classi jobs arrive in the periodD, 0) is P, () = e~ *1(\10)*1 /k,!. The probability that there are no
marked jobs in all the batches generated by this arriedassi jobs isG; (z)*1. The probability
that k class2 jobs arrive to the system in the perigd, ) is Py (0) = e=*2%(\20)"2 /k,!. The
probability that all this jobs are not marked:i%.

We have to take into account the "starter" itself, as it hassikte more thad and it comes in
the batch. The probability that the starter is not markeg isSThen we summarize ok, and ko,
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integrate on: on (6, co) with dF; (), as only the clas8-jobs generate busy periods. We get

[G1(z1,22),S > 0] /000 (Z Pi(9)Gy (Z1,22)k121P2(9)z§1> dFy(z) =

k1=0
ZlefAle(lfGl(21,22))7A20(1722)F1 (9)

Let us findG2(z1, z2). When a job of the second class arrives to the system it gersatae batch of
size one, then the probability that jobs of this batch aremarked iszo. ThenGa(z1, 22) = 22.

[GQ(Zl,ZQ)] = / ZQdFQ(IL') = Z2.
0
Finally

A A
G(z1,22) = A—ZG1(21722) + )\—sz(Zh@),

and we get{(16). Let us notice th@(1,1) = 1. O

Now we can calculaté’[N;], E[Nz] and sop, andW,. After some mathematical calculations
we get the following result.

Lemma 3.
1 2
L=t — )
py=1- -
1—py
1 _ @
Wb = Wz,g(z) - WO(l + pb) - 9%
1—py
Démonstration.We use the following equations. Foe= 1,2
8G(z1, 2’2)
EIN;| = ——11,
[Vi] o7, 1,1
0%G(z1, 2
BNV - 1)) = B - i) = PO
620(z1 22)
E[N|Ny| = ———— 27|, 4.
[ ! 2] 821822 |171
Using b; = g[[%ij]} — 1 after some mathematical calculations we obtain the resuhe current
Lemma. O

Now let us find expressions fot; () and A (z).
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Lemma 4. The mean workload which comes with the tagged job of dasfssizex in the batch
and has to be served before it equals to

(2

Po(e

Ay (z) = 2(Wy + 0)p, — 06— (>
I—p

6

1)°

Démonstration.The termA; (x) is the work that arrives with the tagged job of cldsst sizex and
that gets served before its departure. Since the taggedrjubsafrom classt only when the batch is
started by a classjob, the calculations now will depend @y (21, 22). We denote, ; andb,|; the
mean number of jobs of cladsand clas2 which arrive in the batch with the tagged job of cldss-
when the batch is initiated by a clas$eb. Then

Ai(z) = bipEXS))+ b EIXS)] - BXS)).

Here

b —Zn ’an(’l’Ll) _ E[N12|1]
= 1 = ,

11 - E[Nl\l] E[N1|1]

whereNy|; is the random variable which corresponds to the number of gélzlasst in the batch

when the batch is initiated by the clas$b. So the number of classsjobs that arrive in addition to

E[N7,]

E[N1i1]

the tagged job is< — 1 ). Note that since we condition on the fact that the starterclassi

job, Ny, is now calculated frontr (21, z2) SO :

E[Nyj1] = %ﬁ|171,
82G1 (Zl, ZQ)

621621 |171.
Then we can findb,;; — 1). Now we need to calculatl,,, that is, the mean number of clads-
jobs that the tagged job of claggeb see. We have that from the Generating functiiriz1, z2) by
conditioning on the number of claggebs :

_ E E ni ,n2 _ E § ni _no
G1(21;Z2) = 21 %29 Pning = 21 %9 pnz\nlpnlv

B[Ny (Nyp —1)] =

nl n2 nl n2

9*G1 (21, 22) n1pn
— .5, ha=EN L — B[Ny ]byy.
021022 |1,1 [ 1];;7121?712\711]3[]\[1] [ 1] 201

Then we can calculate),

b 7 1 82G1(21,22)|
21 E[Nl\l] 021029 1.1

Finally we find the expression fot; (). O
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Lemma 5. The mean workload which comes with the tagged job of daxfssizeg(x) in the batch
and has to be served before it equals to

()

Py(a
Az(g(@)) = 2(Wa + 0)pp = 005 — O,

S

Démonstration.The termAs(g(x)) is the work that arrives with the tagged job of sige’) of class-

2 and that gets served before its departure. When the tagbeatijwes from clas€-the batch can
be started by a classer by a clas job, so the calculations depend Gffz1, z2). We denote, |,
andb,), the mean number of jobs of clagsand class2 which arrive in the batch with the tagged
job of class2. Then

As(g(x)) = bipBIX)] + bapBIX )] - EIX(?)

@) =
= b1|2E[ 9(_,2] + (b2|2 -1E[X (?))]

As the tagged job is from class-thenb, ), = b2. We need to find the value of . We use the fact
that jobs of clasg-and class? arrive independently from each other.

ni  n2 ni  n2
217’22 E E Zl 22 pn1,7L2 E E Zl 22 pn1|n2pn2

nl n2 nl n2
%'1 1= BN ;;nlpnl\nz me] = E[N2]by2.
Then
bijs = 1 (’)2G(z1,z2)|171.
E[N3] 021029
From here we get the expression fbs(g(z)). 0

Now we can prove the result of Theorém 2.
Lemma 6. Expressiond(14)[{15) andl(7L] (8) are equal.
Démonstration.After simplification of the expressions {14}, {15) we get&ipns [T),[(8). O
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