
HAL Id: inria-00372221
https://inria.hal.science/inria-00372221

Submitted on 31 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Composition of Ubiquitous Multimedia
Applications in REACHES

Oleg Davidyuk, Ivan Milara Sanchez, Jon Duran Imanol, Jukka J. R. Riekki

To cite this version:
Oleg Davidyuk, Ivan Milara Sanchez, Jon Duran Imanol, Jukka J. R. Riekki. Autonomic Composition
of Ubiquitous Multimedia Applications in REACHES. ACM Mobile and Ubiquitous Multimedia, Dec
2008, Umea, Sweden. �inria-00372221�

https://inria.hal.science/inria-00372221
https://hal.archives-ouvertes.fr

Autonomic Composition of Ubiquitous Multimedia
Applications in REACHES

Oleg Davidyuk
1
, Iván Sánchez

1
, Jon Imanol Duran

2
 and Jukka Riekki

1

1
Dept. of Electrical and Information Engineering, P.O. Box 4500, University of Oulu, 90014, Oulu, Finland

firstname.secondname@ee.oulu.fi

2
School of Computer Engineering, University of Basque Country, Spain

jiduran001@ikasle.ehu.es

ABSTRACT

In this paper, we describe our work in developing an autonomic
system that supports the composition of ubiquitous applications at
run-time. The applications are composed and adapted accordingly
to user preferences and user-provided criteria. We have designed a
proof-of-concept prototype of the system and an example
multimedia application. The application is a multimedia player
which users can control on a large screen using the mobile
phone’s UI as the controller. We present a user evaluation of the
prototype’s feasibility and also determine what feedback and
control mechanisms are required by the end-users. We report
initial analysis of how user satisfaction and comfort level are
affected by the autonomy of the system.

1. INTRODUCTION
Ubiquitous environments have recently become an important
application domain for autonomic computing [1, 2]. An
autonomic system adapts to resource availability changes, allows
user mobility across different environments, and, most
importantly, configures and controls applications according to the
user’s specified high-level goals and criteria. Thus, the users only
need to specify a desired task (or an application) to the system
which will then perform the task as required. Autonomic
computing also provides very promising solutions to deal with
composite applications built from a number of components which
are physically allocated on multiple computational devices. The
system has to dynamically discover relevant ubiquitous resources,
compare their properties and choose an optimal application
configuration (i.e., a combination of resources and application
components) from all the possible options in order to support such
applications. Moreover, the system has to be able to adapt
composed applications when the context or the user goals change.
Autonomic mechanisms are essential when realizing this
approach, because users may become too overloaded with manual
controlling and configuring tasks, and thus, they may even stop
using services offered in the environment, if no autonomic

mechanisms are provided. However, designing autonomic
mechanisms for ubiquitous environments is challenging: the end-
users may feel that the system does not support their actions or the
system can go out of control. Therefore, it is important to study
how the users experience autonomic mechanisms, how much
control should be given to the user, and what kind of user
interfaces should be offered for the user to control the autonomic
mechanisms.

The main contribution of this paper is the user study which
we conducted on a prototype autonomic system used for the
composition of ubiquitous applications. The results of the user
study have not been reported before. This prototype relies on the
REACHES middleware [3] and uses an application allocation
algorithm [4] which we described in our earlier publications. The
aim of this paper is to evaluate the feasibility of the system’s
prototype and also to study end-user control mechanisms which
the prototype has to use to ensure the user acceptability. Besides,
we identify possible situations and physical environments (i.e.,
locations) where the prototype can be used and we study how user
satisfaction and comfort level are affected by how autonomous the
system is.

The next section gives an introduction to the related work. A
short overview of our system and the prototype for application
composition is given in the section 3. We present the user
evaluation study in the section 4 before concluding the paper in
the last section.

2. RELATED WORK
A number of ubiquitous systems are based on automatic
application composition. For example, the system presented in
Sousa et al [1] supports the self-adaptation of composite
applications on several architectural levels. Sousa’s research
mainly focuses on expressing application requirements in a
framework-independent manner, thus, their work also includes a
set of user interfaces which are used to collect und-user
requirements and to forward them to the system. In contrast to
Sousa’s model, our system collects end-user requirements via a
physical (RFID-based) interface which we describe in more detail
in section 4. Another alternative is the COCOA [5] middleware
which focuses on composing task-based applications that are
modeled as workflows with QoS properties. COCOA utilizes an
ontology-based matching algorithm with QoS support to compose
applications. The Galaxy [6] framework enables the
interoperability of devices in pervasive environments and supports
composite services which control and cooperate with these
devices. Galaxy, like COCOA, mainly concentrates on semantic-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MUM’08, December 3-5 2008, Umeå, Sweden
Copyright 2008 ACM 978-1-60558-192-7/08/0012/$5.00.

free service composition. The Pervasive Component System
(PCOM) [7] uses a set of pluggable algorithms in application
composition as PCOM developers argue that in certain situations
ubiquitous applications may require changing the algorithm at
runtime. The balance between user control and system autonomy
is studied in [8] and [9]. However, these related works do not
consider application composition. Our work also differs from the
examples mentioned above in that our main objective is to assess
feasibility and user acceptance by carrying out user evaluation
experiments.

3. APPLICATION COMPOSITION

SYSTEM

We assume that ubiquitous applications are built from a set of
software components which may reside on physically distributed
computational nodes. Each node can host a single component or
component groups, however, the node’s resource capacities must
not be exceeded. Starting and adapting of applications in our
system is governed by the three phase application composition
process which is illustrated at Figure 1. The first phase of the
process starts either explicitly, after the user activated the
application via the application’s UI, or implicitly, after the
Context Management component, which is responsible for
managing context information, automatically triggers the
application startup. In this phase, the Application Assembly
component searches for the available local nodes (that is, nodes in
the user’s close proximity, e.g. in the same room), or remote
nodes (that is, nodes located physically further away from the
user) through the Service Discovery component. However, the
nodes have to be searched according to their functional and non-
functional (i.e., resource) properties. The functional properties of
a node denote its ability to provide certain services. The
functional properties are descriptions which resemble interface
statements in Java. The non-functional properties mainly denote
device resource constraints, such as maximum available memory
or computational resource capacity. The applications and nodes
are specified using similar descriptions in our system. These
descriptions are managed by the Service Discovery component
whose main purpose is to find matches between discovery
requests (coming from the Application Assembly component) and
the available descriptions.

During the second phase of the application composition

process the Application Assembly produces the application
configuration (i.e., the allocation of components groups onto
networking nodes) optimized according to user specified criteria,
user needs and the situation in the environment. The Application
Assembly component may minimize bandwidth consumption,
balance load among the nodes, and meet the various resource
requirements imposed by the application components. The
resulting application configuration has to meet the functional
properties of nodes and application components involved in the
configuration. In addition to that, it must not violate the nodes’
resource capacities. Our composition system uses a genetic
algorithm, which is capable of optimizing application
configurations at run-time. The implementation details of the
algorithm are presented in [4].

During the third phase of the application composition
process the Resource Management component realizes the
application configuration by leasing the necessary resources,
deploying the components onto them and, finally, configuring the
application.

3.1 Proof-of-concept prototype

We realized a proof-of-concept prototype of the application
composition system using the REACHES (Remotely Enabling and
Controlling Heterogeneous) middleware [3]. It enables the
utilization of a mobile terminal UI to control a wide range of
ubiquitous applications which can be composed dynamically from
pluggable service components. The REACHES architecture
(presented in Figure 2) is centralized and consists of four
components: Remote Control, User Interface Gateway, System
Display Control and Service Components.

The Remote Control UI (RC) consists of a physical user
interface (a set of RFID tags) placed in the user’s local
environment and of a phone equipped with an RFID reader. The
RFID tags contain commands which are triggered when the tags
are read using the phone. For example, these tags may trigger an
application to start, point to a certain resource to be utilized (e.g.,
an external display), start the adaptation of multimedia content or
set user preferences. Both browser and MIDLet-based user
interfaces can be used in the mobile phone. The former can be
generated and modified at run-time. Predefined user interfaces
(created at design time) have to be used in the latter case.

Figure 2. The REACHES architecture.

Figure 1. The three phase application composition process.

A

B

The User Interface Gateway (UIG) connects users and
service components. It synchronizes different subsystems by
processing events from the RC and dispatching them to
appropriate service components. In addition, the UIG provides the
Service Discovery functionality.

The System Display Control (SDC) connects external
displays to the REACHES server. After the UIG registers a
display, the browser, which is hosted on a computer connected to
the display, loads scripts (REACHeS client) that enable
communication between the SDC and the browser. The
REACHES architecture does not require deploying any other
software on the display side. When an application is started, the
system assigns one or more services and resources to it. Then, the
service components send events to the displays via the SDC,
which dispatches each event to the corresponding browser to
perform the requested update to the user interface. Service
components can send events to the mobile terminal as well.

The Service Components perform application specific
functions and are allocated onto remote computation nodes. The
Service Components communicate with the other elements of the
REACHES architecture via the UIG.

3.2 Ubiquitous Multimedia Application
We integrated a multimedia player application into REACHES.
The application is based on Flash and supports various types of
multimedia content. The player allows rendering of files, supports
streaming and accepts dynamic playlists.

The application controller UI is shown in Figure 3, A. The
multimedia player is controlled by a Service Component which
manages the multimedia content. The SC receives commands
(generated by the user) from the Remote Control, interprets them
and dispatches the commands to the external display which
embeds the multimedia player and updates the display with the
action required. The URL specifying details of the playlist file can
be stored as a parameter in an RFID tag. This data is delivered to
the SC when the application is started. Figure 3, B shows the
RFID control panel used in our user experience tests.

4. EXPERIMENTAL EVALUATION

We evaluated the feasibility of the application composition
prototype via user evaluation in a real environment. Our main
goal was to assess user attitudes towards autonomy of the system
and analyze the relationship between user satisfaction and the

extent of control provided by the system. The user study also
helped us to understand how users interact with the prototype in a
real situation.

The test subjects were 10 students and research staff members
who represented people interested in using new technologies.
They were given a task to watch a video file using the multimedia
player application (shown at Figure 3, A). The users started the
application by touching an RFID tag on a control panel (shown at
Figure 5, B) where each tag was associated with a certain video
quality. We used four video quality levels which represented
user’s fidelity requirements: very low (240x180 pixels), low
(480x360 pixels), medium (768x576 pixels) and high (1024x768
pixels). After a user chose a quality level the system then
determined an optimal configuration of the application according
to the available resources. After the application was composed
and started, the user could watch the video and control playback
using his mobile phone’s UI. Users could also change the quality
of the video during playback. We used two types of network
resources: PCs connected to monitors and three media servers.
The PCs provided audio/video capabilities and the media servers
hosted the replicated video files. The properties of the network
resources included processor CPU speed, bandwidth, memory and
screen size. The screen sizes varied from 11 inches (a laptop) to
100 inches (a video projector). The bandwidth levels varied from
very slow (GPRS), to medium (WLAN) and fast (broadband). The
CPU and memory levels were set according to capacities of the
PCs. In addition, each media server only hosted two copies of
video files locally, so that different server instances had to be used
even during the same test session. Although, all the resources
were available, only two configurations of resources (i.e., a
combination of a PC with monitor and a media server) could
satisfy the application and user requirements simultaneously. All
the other configurations were inappropriate, because the playback
was either too slow (due to network or CPU speed), or the display
size was too small or the chosen nodes did not have the required
video files available. For example, if a user chose medium or high
quality video files, they were only played on the PC which had a
fast (broadband) connection to the server hosting the video file’s
replica. Also, to satisfy the application requirements, the system
had to maximize the screen size, minimize the number of
hardware nodes used to allocate the application and minimize the
overall bandwidth consumed by the application. We conducted
personal interviews and used anonymous questionnaires to collect
feedback from our testers. Next, we discuss the user study results.

Feasibility. All the participants found the demonstrated prototype
feasible. When asked them to describe a typical situation where
they would use our system, they suggested public places such as
shopping malls, business centers, and airports. We, then,
identified two important characteristics of these environments:
first, such places are populated with a large number of ubiquitous
resources and, secondly, users are not familiar with resources in
these places and, therefore, they have problems comparing the
resource properties. Our test subjects also remarked that our
system required less cognitive effort to start the application
because they did not explicitly need to choose or compare
resources. Yet, the users were concerned that the system’s
autonomy breached their privacy in some application scenarios.
Privacy is an important factor to consider, because it may prevent
users using the system in real-life.

Figure 3. The remote controller GUI (A) and the control

panel for choosing quality (B).

Control. All the participants reported that they wanted more
control over the system’s choices in order to feel comfortable. For
example, the participants suggested that the system should show
feedback, clarifying its choices, on the mobile terminal UI or even
on the displays in the environment. Other users desired to confirm
the system’s choices manually before the system requests the
resources and deploys the service components. Thus our key
finding is that the system feedback is an important factor which
increases the feeling of control. Riekki et al [10] have also studied
this issue. We also observed that the users felt more in control
when they were just aware of the fact that they were able to
change (or cancel) the system’s choices, if they wanted to. So, the
testers suggested that the system should recommend several
application configurations instead of choosing the best one
automatically. These recommended configurations have to meet
the user criteria and have to be ordered by their fitness value (“the
best” configuration - first), so that the user can choose another
one if “the best” recommended configuration is not desirable. We
found the idea potential, as the system can then automatically
adjust the selection criteria according to past user preferences and
current context information. However, a further problem is
introduced if the users want to choose from multiple application
configurations, because the users need graphical interfaces
capable of visualizing the available resources and application
configurations on a small-sized terminal screen. We also observed
whether or not the system behavior matched the user expectations.
Although, the majority of the testers indicated that the system
behaved as they anticipated, two participants had expected
different behavior. That is, they assumed that if they opted for a
low video quality level (see control panel at Figure 3, B) the
system should then choose an application configuration with a
small-sized wall display. However, the system played low quality
video on a large display, thus resulting in visible noise caused by
video compression. The two testers were not satisfied with the
system’s choice and preferred to choose a smaller display
manually. Thus, we discovered that if additional control
mechanisms are provided, the user may tolerate system’s choices
that do not exactly meet his expectations.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a user study in which we
evaluated feasibility and user’s attitudes towards the system for
composing ubiquitous applications. We have implemented a
proof-of-concept prototype which is capable of automatic
composition of applications accordingly to user-preferences and
user-provided criteria. We evaluated the prototype on 10 users.
Whilst admitting that the user group reproduced only a small
sample of the population, we found the initial results promising
because they indicated that technical users experienced our
prototype well. More extensive experiments (e.g., in different
contexts and with different user groups) are necessary to study the
feasibility of our approach thoroughly.

This user study showed that there is a relationship between
user satisfaction and the extent of control provided by the system.
That is, we found out that the user’s feeling of control was the
most important factor which dominated over the other ones. We
also found out that even if the system is meant to be autonomous,
it nevertheless has to provide optional control mechanisms to
correct system’s behavior when it doesn’t match the user’s

expectations. We recommend using multiple control mechanisms.
E.g., our test subjects required explicit manual control for
applications where privacy is a crucial issue. But, they preferred
autonomy support when using an application for entertainment.
These findings are similar to ones reported by Hardian et al [8].
Thus the most interesting direction of our future research is to
study how to balance user control and system’s autonomy in order
to increase user’s comfort level, feeling of control while at the
same time minimizing the cognitive load. To address this, we are
planning on designing a set of interactive control mechanisms,
each of them providing different degree of user control and
system’s autonomy at run-time. We will compare these
mechanisms in order to clarify factors affecting the user’s comfort
level and feeling of control.

6. REFERENCES
[1] J. Sousa et al, “Task-based Adaptation for Ubiquitous

Computing,” IEEE Trans. on Systems, Man, and
Cybernetics, Special Issue on Engineering Autonomic
Systems, Vol. 36 (3), pp. 328-340, 2006.

[2] J. Kephart and D. Chess, “The Vision of Autonomic
Computing”, Computer, Vol. 36 (1), pp. 41-50. April 2003.

[3] Sánchez, I., Cortés, M., & Riekki, J. (2007) Controlling
Multimedia Players using NFC Enabled mobile phones. In
Proc. of 6th Int. Conference on Mobile and Ubiquitous
Multimedia, Oulu, Finland, December 12-14 2007.

[4] O. Davidyuk, I. Selek, J. I. Duran and J. Riekki, Algorithms
for Composing Pervasive Applications, Int. Journal of
Software Engineering and Its Applications, Vol. 2, No. 2,
April, 2008, pp. 71-94.

[5] S. Ben Mokhtar, N. Georgantas, and V. Issarny, “COCOA:
COnversation-based Service Composition in PervAsive
Computing Environments with QoS Support”, Journal of
Systems and Software, Vol. 80 (12), 2007.

[6] J. Nakazawa, J. Yura and H. Tokuda, "Galaxy: a service
shaping approach for addressing the hidden service
problem," In Proc. of the 2nd IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems,
pp. 35-39, 11-12 May, 2004.

[7] M. Handte, K. Herrmann, G. Schiele and C. Becker,
“Supporting Pluggable Configuration Algorithms in PCOM”
In Proc. of Int. Workshop on Pervasive Computing and
Communications, pp. 472 – 476, 19-23 March, 2007.

[8] B. Hardian, J. Indulska and K. Henricksen, “Exposing
Contextual Information for Balancing Software Autonomy
and User Control in Context-Aware Systems”, Workshop on
Context-Aware Pervasive Communities: Infrastructures,
Services and Applications, Sydney, May, 2008.

[9] M. Vastenburg, D. Keyson, and H. de Ridder, “Measuring
User Experiences of Prototypical Autonomous Products in a
Simulated Home Environment”, HCI (2) 2007, pp. 998-
1007.

[10] J. Riekki, T. Salminen and I. Alakärppä, “Requesting
Pervasive Services by Touching RFID Tags”, IEEE
Pervasive Computing, Vol. 5 (1), pp. 40-46, 2006.

