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Abstract: Solving polynomials and performing operations with real algebraic
numbers are critical issues in geometric computing, in particular when dealing
with curved objects. Moreover, the real roots need to be computed in a certified
way in order to avoid possible inconsistency in geometric algorithms. Developing
efficient solutions for this problem is thus an important issue for the develop-
ment of libraries of computational geometry algorithms and, in particular, for
the state-of-the-art (open source) CGAL library. We present a CGAL-based uni-
variate algebraic kernel, which provides certified real-root isolation of univariate
polynomials with integer coefficients and standard functionalities such as basic
arithmetic operations, greatest common divisor (gcd) and square-free factoriza-
tion, as well as comparison and sign evaluations of real algebraic numbers.

We compare our kernel with other comparable kernels, demonstrating the
efficiency of our approach. Our experiments are performed on large data sets in-
cluding polynomials of high degree (up to 2000) and with very large coefficients
(up to 25000 bits per coefficient).

We also address the problem of computing arrangements of z-monotone
polynomial curves. We apply our kernel to this problem and demonstrate its
efficiency compared to previous solutions available in cGAL. We also present
the first bit-complexity analysis of the standard sweep-line algorithm for this
problem.
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comparison
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Noyau univarié et application aux arrangements

Résumé : Résoudre des systémes polynomiaux et effectuer des opérations
avec des nombres algébriques réels ont une importance critique en géométrie
algorithmique, notamment dans la gestion d’objets courbes. De plus, les ra-
cines réelles nécessitent d’étre isolées d’une maniére certifiée pour éviter toute
incohérence dans les algorithmes géométriques. La conception de solutions effi-
caces pour ce probléme est donc une tache importante pour le développement de
bibliothéques d’algorithmes de géométrie algorithmique et, en particulier, pour
la bibliothéque (open source) de référence CGAL. Nous présentons ici un noyau
algébrique univarié répondant aux spécifications CGAL et permettant d’isoler et
de comparer, de facon certifié, les racines réelles de polyndémes univariés a co-
efficients entiers. Ce noyau permet également le calcul de pged et ’élimination
de facteurs carrés (square-free factorization), et il posséde les fonctionnalités
standards, comme les opérations arithmétiques.

Nous comparons notre noyau avec les autres noyaux similaires, démontrant
ainsi l'efficacité de notre approche. Nous avons testé les noyaux sur de gros
ensembles de données comprenant des polyndomes de haut degré (jusqu’a 2 000)
et avec de trés grands coefficients (jusqu’a 25000 bits par coefficient).

Nous considérons également le probléme du calcul d’arrangements de courbes
polynomiales monotones en 2. Nous testons notre noyau sur ce probléme et nous
prouvons son efficacité par rapport aux solutions déja existantes dans CGAL.
Nous présentons enfin la premiére analyse de bit complexité de ’algorithme
standard de balayage.

Mots-clés :  CGAL, noyau algébrique, RS, isolation des racines, comparaison
des nombres algébriques



Univariate Algebraic Kernel and Application to Arrangements 3

1 Introduction

Implementing geometric algorithms robustly is known to be a difficult task for
two main reasons. First, all degenerate situations have to be handled and sec-
ond, algorithms often assume a real-RAM model (a random-access machine
where each register can hold a real number and each arithmetic operation has
unit cost) which is not realistic in practice. In recent years, the paradigm of exact
geometric computing has arisen as a standard for robust implementations [27].
In this paradigm, geometric queries, also called predicates, such as “is a point
inside, outside or on a circle?”, are made exactly using, usually, either (i) ex-
act arithmetic combined, for efficiency, with interval arithmetic on doubles or
(ii) interval arithmetic on arbitrary-fixed-precision floating-point numbers com-
bined with separation bounds; on the other hand, geometric constructions, such
as the circle through three points or points of intersection between two curves,
may be approximated.

We address here one recurrent difficulty arising when implementing algo-
rithms dealing, in particular, with curved objects. Such algorithms usually
require evaluating, manipulating and solving systems of polynomials equations
and comparing their roots. One of the most critical parts of dealing with poly-
nomials or polynomial systems is the isolation of the real roots and their com-
parison.

We restrict here our attention to the case of univariate polynomials and
address this problem in the context of cGaL, a C++ Computational Geometry
Algorithms Library, which is an open source project and became a standard for
the implementation of geometric algorithms [4].

CGAL is designed in a modular fashion following the paradigm of generic
programming. Algorithms are typically parameterized by a traits class which en-
capsulates the geometric objects, predicates and constructions used by the algo-
rithm. Algorithms can thus typically be implemented independently of the type
of input objects. For instance, the core of a line-sweep algorithm for computing
arrangements of plane curves [7] can be implemented independently of whether
the curves are lines, line segments, or general curves; on the other hand, the
elementary operations that depend on the type of the objects (such as, compar-
ing z-coordinates of points of intersection) are implemented separately in traits
classes. Similarly, the model of computation, such as exact arbitrary-length
integer arithmetic or approximate fixed-precision floating-point arithmetic, are
encapsulated in the concept of kernel. An implementation is thus typically sep-
arated in three or four layers, (i) the geometric algorithm which relies on (ii)
a traits class, which itself relies on (iii) a kernel for elementary (typically ge-
ometric) operations. CGAL provides several predefined Cartesian kernels, for
instance allowing standard Cartesian geometric operations on inputs defined
with doubles and providing approximate constructions (i.e., defined with dou-
ble) but exact predicates. However, a kernel can also rely on (iv) a number type
which essentially encapsulates the type of number (such as, double, arbitrary-
length integers, intervals) and the associated arithmetic operations. A choice
of traits classes, kernels and number types is useful as it gives freedom to the
users and it makes it easier to compare and improve the various building blocks
of an implementation.

RR n°® 6893
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Our Contributions. We present in this paper a CGAL-compliant algebraic ker-
nel that provides real-root isolation of univariate integer polynomials and basic
operations, i.e. comparisons and sign evaluations, of real algebraic numbers.
This open-source kernel follows the CGAL specifications for algebraic kernels [3].
The root isolation is based on the interval Descartes algorithm [5] and uses the
library Rs [22]. Moreover, our kernel provides various operations for polynomi-
als, such as gecd, which are crucial for manipulating algebraic numbers.

We compare our kernel with other comparable kernels and demonstrate the
efficiency of our approach. We perform experiments on large data sets including
polynomials of high degree (up to 2 000) and with very large coefficients (up to
25 000 bits per coefficient).

Finally, we apply our kernel to the problem of computing arrangements
of z-monotone polynomial curves and demonstrate its efficiency compared to
previous solutions available in cGAL. We also present an output-sensitive bit-
complexity analysis of the standard sweep-line algorithm for this problem. We
establish a bound of Op ((n + k)d*(7? + s?)), where n is the number of curves, k
is the number of intersections, d bounds the degree of the polynomials, 7 bounds
the bitsize of their coefficients, and s is the logarithm of the minimum distance
between the (complex) roots of the difference of any two polynomials (that is
roughly speaking the bitsize of this distance); the Op(-) notation ignores the
logarithmic factors. If N = max{n,k,d, r, s}, this bound is in Op(N®) which
is, as expected, quadratic in the size of the input in the worst case; indeed, the
input consists of n polynomials of degree d and with coefficients of bitsize 7 and
is thus in ©(N?) in the worst case. To the best of our knowledge, this is the
first bit-complexity analysis of this algorithm.

Related work. Combining algebra and geometry for manipulating non-linear
objects has been a long-standing challenge. Previous work includes, but it is
not limited to, MAPC [I7] a library for manipulating points that are defined
algebraically and handling curves in the plane. More recently, the library EX-
AcUS [2], which handles curves and surfaces in computational geometry and
supports various algebraic operations, was developed and partially integrated
into cGAL. The notion of algebraic kernel for CGAL was proposed in 2004 [12];
in this work, the underlying algebraic operations were based on the SYNAPS
library [I8]. Several methods and algebraic kernels have been developed since
then.

One kernel was developed by Hemmer and Limbach [16] following the generic
programming paradigm using the C++ template mechanism. This kernel is
templated by the representation of algebraic numbers and by the real root iso-
lation method, for which two classes have been developed; one is based on the
Descartes method and the other on the Bitstream Descartes method [9]. This
approach has the advantage to allow, in principle, using the best instances for
both template arguments.

Another kernel developed at INRIA relies on the sYNAPs library [I8]. In this
kernel there are several approaches concerning real root isolation, ¢.e., methods
based on Sturm subdivisions, sleeves approximations, continued fractions, and
a symbolic-numeric combination of the sleeve and continued fractions methods
(see [11]). Moreover, there are specialized methods for polynomials of degree
less or equal than four [24].

INRIA



Univariate Algebraic Kernel and Application to Arrangements 5

Emiris et al. [I1] presented some benchmarks of these various approaches in
these two kernels as well as some tests on the kernel we present here. The authors
mention that our kernel based on interval Descartes performs similarly to one
approach (refer to as NCF2) based on continued fractions [23] for coefficients with
(very) large bitsize but NCF2 is more efficient for small bitsize. They conclude
that, first, dedicated algorithms for polynomials of degree less than (or equal
to) four is always the most efficient approach and, second, that NCF2 always
perform the best except for low-degree and high-bitsize polynomials, in which
case the kernel based on the Bitstream Descartes method performs the best.
We moderate here these conclusions.

The rest of the paper is structured as follows. In the next section we describe
our univariate algebraic kernel. In Section B] we present various experiments
concerning real root isolation and comparison of real algebraic numbers. Finally,
in Section [ we sketch our traits class for arrangements, we present experiments
against the traits class that is currently available in cGAL, and we present the bit
complexity analysis of the algorithm for computing the arrangement of curves
defined by univariate polynomials.

2 Univariate algebraic kernel

We describe here our implementation of our univariate algebraic kernel. The
two main requirements of the CGAL specifications, which we describe here, are
the isolation of real roots and their comparison. We also describe our implemen-
tation of two operations, the gcd computation and the refinement of isolating
intervals, that are both needed for comparing algebraic numbers.

Preliminaries. The kernel handles univariate polynomials and algebraic num-
bers. The polynomials have integer coefficients and are represented by arrays
of GMP arbitrary-length integers [I5]. We implemented in the kernel the basic
functions for polynomials. An algebraic number that is a root of a polynomial
F is represented by F' and an isolating interval, that is an interval containing
this root but no other root of F. We implemented intervals using the MPFI
library [19], which represents intervals with two MPFR arbitrary-fixed-precision
floating-point numbers [20]; note that MPFR is developed on top of the aGmP
library for multi-precision arithmetic [15].

Root isolation. For isolating the real roots of univariate polynomials with
integer coefficients, we developed an interface with the library rs [22]. This
library is written in C and is based on Descartes’ rule for isolating the real roots
of univariate polynomials with integer coefficients.

We briefly detail here the general design of the Rs library; see [21] for de-
tails. RS is based on an algorithm known as interval Descartes [5]; namely, the
coefficients of the polynomials obtained by changes of variable, sending intervals
[a, b] onto [0, +00], are only approximated using interval arithmetic when this is
sufficient for determining their signs. Note that the order in which these trans-
formations are performed in RS is important for memory consumption. The
intervals and operations on them are handled by the MPFI library.

RR n°® 6893
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Algebraic number comparison. As mentioned above, one of the main re-
quirements of the CGAL algebraic kernel specifications is to compare two alge-
braic numbers r; and 7. If we are lucky, their isolating intervals do not overlap
and the comparison is straightforward. This is, of course, not always the case.
If we knew that they were not equal, we could refine both isolating intervals
until they are disjoint; see below for details on how we perform the refinements.
Hence, the problem reduces to determining whether the algebraic numbers are
equal or not.

To do so, we compute the square-free factorization of the gcd of the polyno-
mials associated to the algebraic numbers (see below for details). The roots of
this ged are the common roots of both polynomials. We calculate the intersec-
tion, I, of the isolating intervals of r; and ry. The gcd has a root in this interval
if and only if 1 = ry.

To determine whether the ged has a root in interval I, it suffices to check
the sign of the ged at the endpoints of I: if they are different or one of them is
zero, the ged has a root in I and ry = ra; otherwise, 1 # ro and we can refine
both intervals until they are disjoint.

Gcd computations. Computing greatest common divisors between two poly-
nomials is not a difficult task, however, it is not trivial to do so efficiently. A
naive implementation of the Euclidean algorithm works fine for small polynomi-
als but the intermediate coefficients suffer an exponential grow in size, which is
not manageable for medium to large size polynomials. We thus implemented a
modular ged function. We did not use some existing implementations mainly for
efficiency because converting polynomials from one representation to another is
substantially costly as soon as the degree and bitsize are large. Our function
calculates the ged of polynomials modulo some prime numbers and reconstructs
later the result with the help of the Chinese remainder theorem. Details on these
algorithms can be found in, e.g. [26]. Note that modular gcd is always more
efficient than regular gcd and it is much more efficient when the two polynomials
have no common roots.

Refining isolating intervals. As we mentioned before, refining the interval
representing an algebraic number is critical for comparing such numbers. We
provide two approaches for refinement.

Both approaches require that the polynomial associated to the algebraic
number is square free. The first step thus consists of computing the square-
free part of the polynomial (by computing the ged of the polynomial and its
derivative).

Our first approach is a simple bisection algorithm. It consists in calculating
the sign of the polynomial associated to the algebraic number at the endpoints
and midpoint of the interval. Depending on these signs, we refine the isolating
interval to its left of right half.

Our second approach is a quadratic interval refinement [I]. Roughly speak-
ing, this method splits the interval in many parts and, based on a linear interpo-
lation, guesses in which one the root lies. If the guess is correct, the algorithm
divides in the next refinement step the interval in more parts and, if not, in less.

Unfortunately, even with our careful implementation this approach turns
out to be, on average, only just a bit faster than the bisection approach. Our

INRIA
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Figure 1: Running time for isolating all the real roots of degree 12 polynomials
with 12 real roots in terms of the maximum bitsize of their coefficients.

experiments showed that the bottleneck of the refinement is the evaluation of
polynomials.

3 Kernel benchmarks

In this section, we analyze the running time of the two main functions of our
algebraic kernel, that (i) isolate the roots of a polynomial and (ii) compare
two algebraic numbers that is, compare the roots of two polynomials. We also
compare the performance of our kernel with the one based on the Bistream
Descartes method [J] and developed by Hemmer and Limbach [16] (referred
to as MPII's kerneland with a kernel based on continued fractions [23] and
developed on top of the SYNAPS library [I8] (referred to as SYNAPS’ kernel).

All tests were ran on a single-core 3.2 GHz Intel Pentium 4 with 2 Gb of
RAM and 2048 kb of cache memory, using 64-bit Linux.

Root isolation. We consider two suites of experiments in which we either
fix the degree of the polynomials and vary the bitsize of the coefficients or the

L To compare both algebraic kernels with the same inputs, we parameterized MpII’s kernel
to use Bitstream Descartes as root isolator, algebraic_real_bfi_rep as algebraic number
representation and CoRrEintegers and rationals to represent the coefficients of the polynomials
and the isolation bounds of algebraic numbers, respectively. The choice of CORE(vs. LEDA)
was induced by the need of testing the kernels in the same conditions, that is, relying on amp.

RR n°® 6893
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Figure 2: Running time for isolating all the real roots of (a) degree 100 poly-
nomials in terms of the maximum bitsize of their coefficients and (b) Mignotte
polynomials of the form f = 2% — 2(kxz — 1) in terms of the degree d.

converse; see Figs. [ and In each experiment, we report the running time
for isolating all the roots per polynomial, averaged over different trials, for our
kernel, MPII’'s and SYNAPS’ kernel.

Varying bitsize. We study here polynomials with rather low degree (12) but
with no complex root and polynomials with reasonably large degree (100) with
random coefficients (and thus with few real roots).

The first test sets comes from [16]. See Fig. [l It consists of polynomials
of degree 12, each one being the product of six degree-two polynomials with
two roots, at least one of them in the interval [0, 1]; every polynomial thus has
12 real roots. We vary the maximum bitsize of all the coefficients of the input
polynomial from 100 to 50 000 and average each test over 250 trials.

Secondly, we consider random polynomials with constant degree 100 and
coefficients with varying bitsize. See Fig. Note that such random poly-
nomials have few roots: the expected number of real roots of a polynomial of
degree d with coefficients independently chosen from the standard normal dis-
tribution is 21In(d) + C + =2 + O(1/d*) where C' ~ 0.625735 [8]; this gives,
for degree 100 an average of about 3.6 roots (note that this bound matches
extremely well experimental observations). We vary the maximum bitsize of all
the coefficients from 2 000 to 25000 and average each test over 100 trials.

Varying degree. We consider two sets of experiments in which we study ran-
dom polynomials and Mignotte polynomials (which have two very close roots).

We first consider polynomials with random coefficients of fixed bitsize for
various values between 32 and 1 000. We then vary the degree of the polynomials
from 100 to 2000 and average our experiments over 100 trials (see Fig.[B]). Note
that the above formula gives an expected number of roots varying from 3.6 to
5.5. We observe that the running time is almost independent of the bitsize in
the considered range.

Finally, we test Mignotte polynomials, that is polynomials of the form z¢ —
2(kz — 1)2. Such polynomials are known to be challenging for Descartes al-
gorithms because two of their roots are very close to each other; the isolating

INRIA



Univariate Algebraic Kernel and Application to Arrangements 9

25 70
o 4 Our kernel 4 Our kernel
o MPIT's kernel 60 o o MPII's kernel
20 0 SYNAPS’ kernel © SYNAPS’ kernel
= ° =50 °
- = o
o v
o
g 15 E 40 o
2 @ 3
5 ° [ 5
2 o = 30 °
EIO & %00 E o
o o © c o
E ’ 0 " 7 20 a
o o
s o o%o‘!“w‘ o &
o
,.,muf M "’ ] _M%
=] o
0 Q —aﬁ

0 500 1000 1500 2000 0 500 1000 1500 2000

polynomial degree polynomial degree

(a) (b)

Figure 3: Running time for isolating all the real roots of random polynomials
with coefficients of bitsize (a) 32 and (b) 1000, and depending on the degree.

intervals for these two roots are thus very small. For these tests, we used
Mignotte polynomials with coefficients of bitsize 50, with varying degree d from
5 to 50. See Fig. We averaged the running time over 5 trials for each
degree. We observed essentially no difference between our kernel and MPII’s
one; they take roughly 0.2 and 5.5 seconds for Mignotte polynomials of degree
20 and 50, respectively. However, SYNAPS’ kernel is much more efficient as the
continued fractions algorithm is not so affected by the closeness of the roots.

Discussion. We observe (Fig. that SYNAPS’ kernel is more efficient
than both our and MPII’s kernel in the case of polynomials of small degree (e.g.,
twelve) and small to moderately large coefficients (up to 2000 bits per coeffi-
cient). However, for extremely large coefficients MPII’s kernel is substantially
more efficient (by a factor of up to 3 for coefficients of up to 50000 bits) than
both our and SYNAPS’ kernels, which perform similarly.

For polynomials of reasonable large degree, both our and SYNAPS’ kernels
are much more efficient that MPII’s kernel; furthermore these two kernels behave
similarly for degrees up to 1500 and our kernel becomes more efficient for higher
degrees (by a factor 2 for degree 2 000).

We also observe that the running time is highly dependent of the various
settings. For instance, our kernel is up to 5 times slower when using approximate
evaluation for high-degree and high-bitsize polynomials. Also, MPII’s kernel is in
some cases about 10 times slower when changing the arithmetic kernel to LEDA,
the representation of algebraic numbers and some internal algorithms such as
the refinement function. This explains why our benchmarks on both MPIr’s and
SYNAPS’ kernels are substantially better than in Emiris et al. experiments [I1].

We also observe that the running time of MPII's kernel is unstable in our
experiments (Figs. [ and 2(a)); surprisingly, this instability occurs when the
experiments are performed on a 64-bits architecture, but it is stable on 32-bits
architecture as shown in previous experiments [11].

Comparison of algebraic numbers. We consider three suites of experiments
for comparing algebraic numbers; see Fig. [l Recall that an algebraic number
p is here represented by a polynomial F' that vanishes at p and an isolating
interval containing p but no other root of F'. Recall also that the comparison of

RR n°® 6893
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Figure 4: Running time for comparing two distinct close roots of two almost
identical polynomials of degree 20 with (a) no common roots and (b) a common
factor of degree 10.

two algebraic numbers is done by (i) testing whether the intervals are disjoint;
if so, report the ordering, otherwise (ii) compute the ged of the two polynomials
and test whether the gcd vanishes in the intersection of the two intervals; if so,
report the equality of the numbers, otherwise (iii) refine the intervals until they
are disjoint.

First, we analyze the cost of trivial comparisons that is, when the two in-
tervals representing the numbers are disjoint. For that we compare the roots of
two random polynomials. We observe that, as expected, the comparison time is
negligible and independent of both the degree of the polynomials and the bitsize
of their coefficients.

Second, we analyze the cost of comparing roots that are very close to each
other but whose associate polynomials have no common root. This case is
expensive because we need to refine the intervals until they do not overlap; this
is, however, not the worst situation because the ged of the two polynomials is 1
which is tested efficiently with a modular gcd. We perform these experiments as
follows. We generate pairs of polynomials, one with random coefficients and the
other by only adding 1 to one of the coefficients of the first polynomial. Such
polynomials are such that the i-th roots of both polynomials are very close to
each other. We generate such pairs of polynomials with constant degree (equal
to 20) and vary the maximum bitsize of the coefficients. As the bitsize increases,
the pairs of roots that are close become even closer and thus the comparison
time increases. The results of these experiments are presented in Fig.|4(a)| which
reports the average running time for comparing two close roots. We show in
this figure three curves, one corresponding to our bisection algorithm, and two
corresponding the two refinement methods implemented in the MPII’s kernel:
the usual bisection and a quadratic refinement algorithm.

Third, we consider the, a priori, most expensive scenario in which we com-
pare roots that are either equal or very close to each others and such that their
associate polynomials have some roots in common. In this case, we accumulate
the cost of computing a non-trivial ged of the two polynomials with the cost of
refining intervals when comparing two non-equal roots. In practice, we gener-
ate pairs of degree-20 polynomials each defined as the product of two degree-10
terms; one of these factors is random and common to the two polynomials; the

INRIA
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Figure 5: Arrangements of five polynomials, shifted four times each, (a) of
degree 20 and varying bitsize and (b) of bitsize 32 and varying degree.

other factor is random in one of the polynomials and slightly modified in the
other polynomial where, slightly modified means, as above, that we add 1 to
one of the coefficients. We then vary the maximum bitsize of the coefficients.

Discussion. We see in Fig. [ that the MpP1I’'s quadratic refinement algorithm
largely outperforms the two bisection methods. However, our bisection method
is faster than MPII’s one, by a factor up to 10. We also observed that the running
time for comparing equal roots is negligible compared to the cost of comparing
close but distinct roots. (The running time reported in Fig. [i(b)]is actually the
total time for comparing all pairs of roots divided by the number of comparisons
of close but distinct roots.) This explains why our kernel behaves similarly in
Figs. and Overall, it appears that comparing algebraic numbers that
are very close is fairly time consuming and that the most time-consuming part
of the comparison is the evaluation of polynomials performed during the interval
refinements.

4 Arrangements

As an example of possible benefit of having efficient algebraic kernels in CGAL,
we used our implementation to construct arrangements of polynomial functions.
Wein and Fogel [25] provided a c¢GAL package for calculating arrangements of
general curves which requires as parameter a traits class containing the data
structures to store the curves and various primitive operations, such as compar-
ing the relative positions of points of intersection. We implemented a traits class
which uses the functions of our algebraic kernel and compared its performance
with another traits classes which comes with CGAL’s arrangement package and
uses the CORE library [6].

In order to generate challenging data sets we proceed as follows. First we
generate n random polynomials. To each of them we add 1 to the constant coef-
ficient, m times, thus producing a data set of n(m + 1) univariate polynomials.
Notice that the arrangement of the graphs of these polynomials is guaranteed
to be degenerate, i.e., there are intersections with the same z-coordinate. The
arrangements generated this way have four parameters: the number n of initial
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polynomials, the number m of “shifts” that we perform, the degree d of the
polynomials, and the bitsize 7 of their coefficients. We ran experiments varying
the values of the last three of these parameters and setting n = 5.

Fig. shows the running time in terms of the bitsize 7 for a data set
where d = 20 and m = 4 (giving 25 polynomials). Fig. shows the running
time in terms of the degree d for a second data set where 7 = 32 and m = 4.
We see from these experiments that running time using CORE is considerably
higher than when using our kernel. We also make the following observations.

Fig. shows that the running time depends on the bitsize. When we
change the bitsize of the coefficients of the random polynomials, the size of the
arrangement, does not change; that means that the number of comparisons and
root isolations the kernel must perform is roughly the same in all the arrange-
ments of the test suite. The isolation time for random polynomials does not
depend much on the bitsize (as shown in Fig. 2(a)), but the comparison time
does. It follows that the running time increases with the bitsize.

Fig. shows that the running time depends also on the degree of the
input polynomials. As we saw in Section [3] the expected number of real roots
of a random polynomial depends on its degree. The size of the arrangement
thus increases with the degree of the input polynomials: each vertex is the root
of the difference between two input polynomials, therefore there will be more
vertices. Thus, when we increment the degree of the inputs, the number of
comparisons and isolations increases; furthermore, the running time for each of
these operations increases with the degree of the input.

We ran additional tests to see the impact of the input shifts in the calculation
time. We generated five random polynomials of bitsize 1000 and degree 20. We
calculated arrangements, then, varying the number of shifts we perform to each
polynomial. As Fig. @l shows, we were only able to solve, using CORE, the first
arrangement, generated without shifts (note the point on the vertical axis). We
note that the running time increases fast with the number of shifts. This is
reasonable since, each time we increase by 1 the number of shifts, we add to
the arrangement n polynomials, hence increasing the number of vertices of the
arrangement. Since the root isolation and comparison time remains the same
(because the degree and the bitsize are constant), the running time increases
with the number of these operations.

4.1 Complexity analysis

In this section we present an output-sensitive analysis of the bit complexity of
the standard line-sweep algorithm for computing arrangements of graphs of uni-
variate polynomial functions. The same analysis, and thus the same complexity
bound, applies also in the case of rational univariate functions.

In what follows, combinatorial and bit complexities will be denoted by O
and Op, respectively. The O and Op notations refer to complexities in which
we ignore (poly-)logarithmic factors. We also refer to the separation bound of
a univariate polynomial as to the minimum distance between any two (possibly
complex) roots of the polynomial. The bitsize of the separation bound is the
number of bits, s, needed to represent the largest lower bound of the form 27°
that is smaller than the separation bound.

First, we note that the results of [10] [13] can easily be generalized to express
the complexities of isolating the real roots of a polynomial in terms of the
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separation bounds of the considered instances of polynomials rather than in
terms of worst-case separation bounds.

Proposition 1. The real roots of a univariate polynomial of degree d with
integer coefficients of bitsize at most T_and separation bound of bitsize s can be
isolated, with their multiplicities, in Op(d®(7® + s%)) time. The bitsize of the
endpoints of the isolating intervals is in O(s).

Proof. In [I0] it was proven that the worst case complexity is Og(d* + d*72).
The result is based on the fact that the bitsize of the worst case separation
bound is O(dr). To derive an output sensitive result we replace this by s.
Then, to isolate a root we need to perform at most (5(7' + s) step. At
each step we perform a polynomial shift, in the case of Descartes’ solver, or an
evaluation of a Sturm sequence, with a number of bitsize 7 + s, resulting a cost,
in both cases, of Op(d*7? + d*7s + d*s®) for each root. The result follows if we
multiply by the number of roots, d. O

We also recall an output-sensitive result on the complexity of comparing the
roots of two polynomials.

Proposition 2 ([I3]). Two real algebraic numbers defined as roots of polynomi-
als of degree at most d with integer coefficients of bitsize at most T and separation
bounds of bitsize at most s can be compared in Og(d?(t + s)) time.

These complexity results yield, almost directly, the following output-sensitive
bit complexity of the standard line-sweep algorithm for computing arrangements
of graphs of univariate polynomial functions

Theorem 3. The arrangement of n curves, defined by univariate polynomials
of degree at most d, with integer coefficients of bitsize at most T, and separation
bound of bitsize at most s can be computed in time Og((n + k)d*(7? + s?)),
where k is the number of intersection points between the curves.

Proof. Recall first that the combinatorial complexity of the standard line-sweep
algorithm for computing arrangements of n algebraic curves of bounded degree is
O((n+ k) logn), where k is the number of intersection points (see, e.g., [7, [14]).
To evaluate the bit complexity of the algorithm, we split the analysis in two
parts. In the first part, we consider the complexity of the construction of the
intersection points of the curves. In the second part, we consider the cost of
comparing the z-coordinates of the intersection points.

In order to compute (that is, to isolate) the intersection points of two curves
y = fi(z) and y = fo(z), represented by polynomials fi, fo € Z[xz] of degree
at most d with integer coefficients of bitsize at most 7 and separation bound of
bitsize at most s, we can first isolate the real roots of the polynomial f(z) =
fi(z) = fo(2) in time Op(d3(r2 + 5%)) (by Proposition[D). We can then compute
the image by f of these intervals of in time Op(d(r + ds)) (by Horner’s rule).

To begin the algorithm we need to compute a vertical line that is to the left
all the intersection points between the curves. The cost of computing such a
line is Op(nd ) and is dominated by the other steps of the algorithm. We then
compute the intersection points of this line with all the curves, so that to order
the curves along the sweep line. We then compute the intersection between the
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n — 1 pairs of adjacent curves along the sweep line. Thus, we initially perform
O(n) intersections between pairs of curves.

Then, during the sweep, every time an intersection point is encountered by
the sweep line, we exchange two curves is the list of curves intersected by the
sweep line and we compute the intersection between (at most) two new pairs of
adjacent curves in this list. Hence, we perform, in total, O(n + k) intersections
between pairs of curves in Op((n + k)d* (72 + 52)) time.

We now consider the cost of comparing the z-coordinates of the intersection
points when updating the event list. Every time two curves become adjacent
along the vertical line of sweep, we insert their first intersection point that is to
the right of the line. Since we only insert one intersection point (rather than
d), this requires in total O((n + k)logn) comparisons which can be done in
Op((n + k)d2(r + s)) time by Proposition O

Note that, as mentioned in section [T} if N = max{n, k,d, 7, s}, this bound is

in 6B(N6) which is, as expected, quadratic in the size of the input in the worst
case.

5 Conclusion

We presented a new CGAL-compliant algebraic kernel that provides certified
real-root isolation of univariate polynomials with integer coefficients based on
the interval Descartes algorithm. This kernel also provides the comparison of
algebraic numbers and other standard functionalities.

We compared our kernel with other comparable kernels on large data sets
including, for the first time, polynomials of high degree (up to 2000) and with
extremely large coefficients (up to 25 000 bits per coefficient). We demonstrated
the efficiency of our approach and showed that it performs similarly, in most
cases, with one kernel based on the SYNAPS library; more precisely, our kernel is
more efficient for polynomials of very large degree (greater than 1800) and less
efficient for polynomials of very small degree and with small to moderate size
coefficients. Also, our kernel is a lot more efficient that the kernel developed
at MPII for polynomials of large degree (greater than 200); it is however less
efficient for polynomials of small degree and with extremely large coefficients.

Our tests indicate that the kernel developed at MPII appears to be less effi-
cient than the other two for polynomials of large degree. However it should be
stressed that this kernel is the only one among the three that is templeted by
the number type of the coefficients. Of course this does not imply that efficiency
is necessarily lost by following the generic programming paradigm, but it does
imply that, from the user point of view, some substantial gain of efficiency can
sometimes be made by using a kernel that does not follow this paradigm.

We also compared the performance of the kernels on the comparison of al-
gebraic numbers. We observed in these tests that the bisection algorithm runs
much faster when it is specialized on a number type since it allows for low level
optimizations, confirming thus the assertion in the previous paragraph. On
the other hand, it becomes evident that the bisection method is not the most
efficient algorithm when a large number of refinements is needed, and MPIT’s
quadratic refinement is the fastest method by far.
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A fairly large choice of algebraic kernels and, in particular, of methods for
isolating the real roots of polynomials, is now available in CcAr. This allows,
in particular, to compare and improve the various methods. It appears that be-
tween the two big classes of methods, based on continued fractions and Descartes
algorithms, neither is clearly much better than the other. However, some sub-
stantial differences appear between the various implementations, but, of course,
it is always very difficult to benchmark implementations. For instance, we ob-
served here that the running times are highly dependent of the various settings
and architectures.

Finally, we also address the problem of computing arrangements of z-monotone
polynomial curves. We apply our kernel to this problem and demonstrate its
efficiency compared to previous solutions available in cGAL. We also present
the first bit-complexity analysis of the standard sweep-line algorithm for this
problem.
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