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Univariate Algebrai
 Kernel and Appli
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her
he n° 6893 � Mars 2009 � 18 pagesAbstra
t: Solving polynomials and performing operations with real algebrai
numbers are 
riti
al issues in geometri
 
omputing, in parti
ular when dealingwith 
urved obje
ts. Moreover, the real roots need to be 
omputed in a 
erti�edway in order to avoid possible in
onsisten
y in geometri
 algorithms. Developinge�
ient solutions for this problem is thus an important issue for the develop-ment of libraries of 
omputational geometry algorithms and, in parti
ular, forthe state-of-the-art (open sour
e) 
gal library. We present a 
gal-based uni-variate algebrai
 kernel, whi
h provides 
erti�ed real-root isolation of univariatepolynomials with integer 
oe�
ients and standard fun
tionalities su
h as basi
arithmeti
 operations, greatest 
ommon divisor (g
d) and square-free fa
toriza-tion, as well as 
omparison and sign evaluations of real algebrai
 numbers.We 
ompare our kernel with other 
omparable kernels, demonstrating thee�
ien
y of our approa
h. Our experiments are performed on large data sets in-
luding polynomials of high degree (up to 2 000) and with very large 
oe�
ients(up to 25 000 bits per 
oe�
ient).We also address the problem of 
omputing arrangements of x-monotonepolynomial 
urves. We apply our kernel to this problem and demonstrate itse�
ien
y 
ompared to previous solutions available in 
gal. We also presentthe �rst bit-
omplexity analysis of the standard sweep-line algorithm for thisproblem.Key-words: CGAL, algebrai
 kernel, RS, root isolation, algebrai
 number
omparison� INRIA Nan
y - Grand Est, LORIA, Fran
e. FirstName.Name�loria.fry INRIA Sophia-Antipolis - Méditerranée, Fran
e. FirstName.Name�sophia.inria.fr .Most part of this work was done while the author was at LORIA - INRIA Nan
y-Grand Est.



Noyau univarié et appli
ation aux arrangementsRésumé : Résoudre des systèmes polynomiaux et e�e
tuer des opérationsave
 des nombres algébriques réels ont une importan
e 
ritique en géométriealgorithmique, notamment dans la gestion d'objets 
ourbes. De plus, les ra-
ines réelles né
essitent d'être isolées d'une manière 
erti�ée pour éviter toutein
ohéren
e dans les algorithmes géométriques. La 
on
eption de solutions e�-
a
es pour 
e problème est don
 une tâ
he importante pour le développement debibliothèques d'algorithmes de géométrie algorithmique et, en parti
ulier, pourla bibliothèque (open sour
e) de référen
e 
gal. Nous présentons i
i un noyaualgébrique univarié répondant aux spé
i�
ations 
gal et permettant d'isoler etde 
omparer, de façon 
erti�é, les ra
ines réelles de polyn�mes univariés à 
o-e�
ients entiers. Ce noyau permet également le 
al
ul de pg
d et l'éliminationde fa
teurs 
arrés (square-free fa
torization), et il possède les fon
tionnalitésstandards, 
omme les opérations arithmétiques.Nous 
omparons notre noyau ave
 les autres noyaux similaires, démontrantainsi l'e�
a
ité de notre appro
he. Nous avons testé les noyaux sur de grosensembles de données 
omprenant des polyn�mes de haut degré (jusqu'à 2 000)et ave
 de très grands 
oe�
ients (jusqu'à 25 000 bits par 
oe�
ient).Nous 
onsidérons également le problème du 
al
ul d'arrangements de 
ourbespolynomiales monotones en x. Nous testons notre noyau sur 
e problème et nousprouvons son e�
a
ité par rapport aux solutions déjà existantes dans 
gal.Nous présentons en�n la première analyse de bit 
omplexité de l'algorithmestandard de balayage.Mots-
lés : CGAL, noyau algébrique, RS, isolation des ra
ines, 
omparaisondes nombres algébriques



Univariate Algebrai
 Kernel and Appli
ation to Arrangements 31 Introdu
tionImplementing geometri
 algorithms robustly is known to be a di�
ult task fortwo main reasons. First, all degenerate situations have to be handled and se
-ond, algorithms often assume a real-RAM model (a random-a

ess ma
hinewhere ea
h register 
an hold a real number and ea
h arithmeti
 operation hasunit 
ost) whi
h is not realisti
 in pra
ti
e. In re
ent years, the paradigm of exa
tgeometri
 
omputing has arisen as a standard for robust implementations [27℄.In this paradigm, geometri
 queries, also 
alled predi
ates, su
h as �is a pointinside, outside or on a 
ir
le?�, are made exa
tly using, usually, either (i) ex-a
t arithmeti
 
ombined, for e�
ien
y, with interval arithmeti
 on doubles or(ii) interval arithmeti
 on arbitrary-�xed-pre
ision �oating-point numbers 
om-bined with separation bounds; on the other hand, geometri
 
onstru
tions, su
has the 
ir
le through three points or points of interse
tion between two 
urves,may be approximated.We address here one re
urrent di�
ulty arising when implementing algo-rithms dealing, in parti
ular, with 
urved obje
ts. Su
h algorithms usuallyrequire evaluating, manipulating and solving systems of polynomials equationsand 
omparing their roots. One of the most 
riti
al parts of dealing with poly-nomials or polynomial systems is the isolation of the real roots and their 
om-parison.We restri
t here our attention to the 
ase of univariate polynomials andaddress this problem in the 
ontext of 
gal, a C++ Computational GeometryAlgorithms Library, whi
h is an open sour
e proje
t and be
ame a standard forthe implementation of geometri
 algorithms [4℄.Cgal is designed in a modular fashion following the paradigm of generi
programming. Algorithms are typi
ally parameterized by a traits 
lass whi
h en-
apsulates the geometri
 obje
ts, predi
ates and 
onstru
tions used by the algo-rithm. Algorithms 
an thus typi
ally be implemented independently of the typeof input obje
ts. For instan
e, the 
ore of a line-sweep algorithm for 
omputingarrangements of plane 
urves [7℄ 
an be implemented independently of whetherthe 
urves are lines, line segments, or general 
urves; on the other hand, theelementary operations that depend on the type of the obje
ts (su
h as, 
ompar-ing x-
oordinates of points of interse
tion) are implemented separately in traits
lasses. Similarly, the model of 
omputation, su
h as exa
t arbitrary-lengthinteger arithmeti
 or approximate �xed-pre
ision �oating-point arithmeti
, areen
apsulated in the 
on
ept of kernel. An implementation is thus typi
ally sep-arated in three or four layers, (i) the geometri
 algorithm whi
h relies on (ii)a traits 
lass, whi
h itself relies on (iii) a kernel for elementary (typi
ally ge-ometri
) operations. Cgal provides several prede�ned Cartesian kernels, forinstan
e allowing standard Cartesian geometri
 operations on inputs de�nedwith doubles and providing approximate 
onstru
tions (i.e., de�ned with dou-ble) but exa
t predi
ates. However, a kernel 
an also rely on (iv) a number typewhi
h essentially en
apsulates the type of number (su
h as, double, arbitrary-length integers, intervals) and the asso
iated arithmeti
 operations. A 
hoi
eof traits 
lasses, kernels and number types is useful as it gives freedom to theusers and it makes it easier to 
ompare and improve the various building blo
ksof an implementation.RR n° 6893



4 Lazard, Peñaranda & TsigaridasOur Contributions. We present in this paper a 
gal-
ompliant algebrai
 ker-nel that provides real-root isolation of univariate integer polynomials and basi
operations, i.e. 
omparisons and sign evaluations, of real algebrai
 numbers.This open-sour
e kernel follows the 
gal spe
i�
ations for algebrai
 kernels [3℄.The root isolation is based on the interval Des
artes algorithm [5℄ and uses thelibrary rs [22℄. Moreover, our kernel provides various operations for polynomi-als, su
h as g
d, whi
h are 
ru
ial for manipulating algebrai
 numbers.We 
ompare our kernel with other 
omparable kernels and demonstrate thee�
ien
y of our approa
h. We perform experiments on large data sets in
ludingpolynomials of high degree (up to 2 000) and with very large 
oe�
ients (up to25 000 bits per 
oe�
ient).Finally, we apply our kernel to the problem of 
omputing arrangementsof x-monotone polynomial 
urves and demonstrate its e�
ien
y 
ompared toprevious solutions available in 
gal. We also present an output-sensitive bit-
omplexity analysis of the standard sweep-line algorithm for this problem. Weestablish a bound of eOB �(n+ k)d3(�2 + s2)�, where n is the number of 
urves, kis the number of interse
tions, d bounds the degree of the polynomials, � boundsthe bitsize of their 
oe�
ients, and s is the logarithm of the minimum distan
ebetween the (
omplex) roots of the di�eren
e of any two polynomials (that isroughly speaking the bitsize of this distan
e); the eOB(�) notation ignores thelogarithmi
 fa
tors. If N = maxfn; k; d; �; sg, this bound is in eOB(N6) whi
his, as expe
ted, quadrati
 in the size of the input in the worst 
ase; indeed, theinput 
onsists of n polynomials of degree d and with 
oe�
ients of bitsize � andis thus in �(N3) in the worst 
ase. To the best of our knowledge, this is the�rst bit-
omplexity analysis of this algorithm.Related work. Combining algebra and geometry for manipulating non-linearobje
ts has been a long-standing 
hallenge. Previous work in
ludes, but it isnot limited to, map
 [17℄ a library for manipulating points that are de�nedalgebrai
ally and handling 
urves in the plane. More re
ently, the library ex-a
us [2℄, whi
h handles 
urves and surfa
es in 
omputational geometry andsupports various algebrai
 operations, was developed and partially integratedinto 
gal. The notion of algebrai
 kernel for 
gal was proposed in 2004 [12℄;in this work, the underlying algebrai
 operations were based on the synapslibrary [18℄. Several methods and algebrai
 kernels have been developed sin
ethen.One kernel was developed by Hemmer and Limba
h [16℄ following the generi
programming paradigm using the C++ template me
hanism. This kernel istemplated by the representation of algebrai
 numbers and by the real root iso-lation method, for whi
h two 
lasses have been developed; one is based on theDes
artes method and the other on the Bitstream Des
artes method [9℄. Thisapproa
h has the advantage to allow, in prin
iple, using the best instan
es forboth template arguments.Another kernel developed at inria relies on the synaps library [18℄. In thiskernel there are several approa
hes 
on
erning real root isolation, i.e., methodsbased on Sturm subdivisions, sleeves approximations, 
ontinued fra
tions, anda symboli
-numeri
 
ombination of the sleeve and 
ontinued fra
tions methods(see [11℄). Moreover, there are spe
ialized methods for polynomials of degreeless or equal than four [24℄. INRIA



Univariate Algebrai
 Kernel and Appli
ation to Arrangements 5Emiris et al. [11℄ presented some ben
hmarks of these various approa
hes inthese two kernels as well as some tests on the kernel we present here. The authorsmention that our kernel based on interval Des
artes performs similarly to oneapproa
h (refer to as n
f2) based on 
ontinued fra
tions [23℄ for 
oe�
ients with(very) large bitsize but n
f2 is more e�
ient for small bitsize. They 
on
ludethat, �rst, dedi
ated algorithms for polynomials of degree less than (or equalto) four is always the most e�
ient approa
h and, se
ond, that n
f2 alwaysperform the best ex
ept for low-degree and high-bitsize polynomials, in whi
h
ase the kernel based on the Bitstream Des
artes method performs the best.We moderate here these 
on
lusions.The rest of the paper is stru
tured as follows. In the next se
tion we des
ribeour univariate algebrai
 kernel. In Se
tion 3 we present various experiments
on
erning real root isolation and 
omparison of real algebrai
 numbers. Finally,in Se
tion 4, we sket
h our traits 
lass for arrangements, we present experimentsagainst the traits 
lass that is 
urrently available in 
gal, and we present the bit
omplexity analysis of the algorithm for 
omputing the arrangement of 
urvesde�ned by univariate polynomials.2 Univariate algebrai
 kernelWe des
ribe here our implementation of our univariate algebrai
 kernel. Thetwo main requirements of the 
gal spe
i�
ations, whi
h we des
ribe here, arethe isolation of real roots and their 
omparison. We also des
ribe our implemen-tation of two operations, the g
d 
omputation and the re�nement of isolatingintervals, that are both needed for 
omparing algebrai
 numbers.Preliminaries. The kernel handles univariate polynomials and algebrai
 num-bers. The polynomials have integer 
oe�
ients and are represented by arraysof gmp arbitrary-length integers [15℄. We implemented in the kernel the basi
fun
tions for polynomials. An algebrai
 number that is a root of a polynomialF is represented by F and an isolating interval, that is an interval 
ontainingthis root but no other root of F . We implemented intervals using the mpfilibrary [19℄, whi
h represents intervals with two mpfr arbitrary-�xed-pre
ision�oating-point numbers [20℄; note that mpfr is developed on top of the gmplibrary for multi-pre
ision arithmeti
 [15℄.Root isolation. For isolating the real roots of univariate polynomials withinteger 
oe�
ients, we developed an interfa
e with the library rs [22℄. Thislibrary is written in C and is based on Des
artes' rule for isolating the real rootsof univariate polynomials with integer 
oe�
ients.We brie�y detail here the general design of the rs library; see [21℄ for de-tails. rs is based on an algorithm known as interval Des
artes [5℄; namely, the
oe�
ients of the polynomials obtained by 
hanges of variable, sending intervals[a; b℄ onto [0;+1℄, are only approximated using interval arithmeti
 when this issu�
ient for determining their signs. Note that the order in whi
h these trans-formations are performed in rs is important for memory 
onsumption. Theintervals and operations on them are handled by the mpfi library.RR n° 6893



6 Lazard, Peñaranda & TsigaridasAlgebrai
 number 
omparison. As mentioned above, one of the main re-quirements of the 
gal algebrai
 kernel spe
i�
ations is to 
ompare two alge-brai
 numbers r1 and r2. If we are lu
ky, their isolating intervals do not overlapand the 
omparison is straightforward. This is, of 
ourse, not always the 
ase.If we knew that they were not equal, we 
ould re�ne both isolating intervalsuntil they are disjoint; see below for details on how we perform the re�nements.Hen
e, the problem redu
es to determining whether the algebrai
 numbers areequal or not.To do so, we 
ompute the square-free fa
torization of the g
d of the polyno-mials asso
iated to the algebrai
 numbers (see below for details). The roots ofthis g
d are the 
ommon roots of both polynomials. We 
al
ulate the interse
-tion, I , of the isolating intervals of r1 and r2. The g
d has a root in this intervalif and only if r1 = r2.To determine whether the g
d has a root in interval I , it su�
es to 
he
kthe sign of the g
d at the endpoints of I : if they are di�erent or one of them iszero, the g
d has a root in I and r1 = r2; otherwise, r1 6= r2 and we 
an re�neboth intervals until they are disjoint.G
d 
omputations. Computing greatest 
ommon divisors between two poly-nomials is not a di�
ult task, however, it is not trivial to do so e�
iently. Anaive implementation of the Eu
lidean algorithm works �ne for small polynomi-als but the intermediate 
oe�
ients su�er an exponential grow in size, whi
h isnot manageable for medium to large size polynomials. We thus implemented amodular g
d fun
tion. We did not use some existing implementations mainly fore�
ien
y be
ause 
onverting polynomials from one representation to another issubstantially 
ostly as soon as the degree and bitsize are large. Our fun
tion
al
ulates the g
d of polynomials modulo some prime numbers and re
onstru
tslater the result with the help of the Chinese remainder theorem. Details on thesealgorithms 
an be found in, e.g. [26℄. Note that modular g
d is always moree�
ient than regular g
d and it is mu
h more e�
ient when the two polynomialshave no 
ommon roots.Re�ning isolating intervals. As we mentioned before, re�ning the intervalrepresenting an algebrai
 number is 
riti
al for 
omparing su
h numbers. Weprovide two approa
hes for re�nement.Both approa
hes require that the polynomial asso
iated to the algebrai
number is square free. The �rst step thus 
onsists of 
omputing the square-free part of the polynomial (by 
omputing the g
d of the polynomial and itsderivative).Our �rst approa
h is a simple bise
tion algorithm. It 
onsists in 
al
ulatingthe sign of the polynomial asso
iated to the algebrai
 number at the endpointsand midpoint of the interval. Depending on these signs, we re�ne the isolatinginterval to its left of right half.Our se
ond approa
h is a quadrati
 interval re�nement [1℄. Roughly speak-ing, this method splits the interval in many parts and, based on a linear interpo-lation, guesses in whi
h one the root lies. If the guess is 
orre
t, the algorithmdivides in the next re�nement step the interval in more parts and, if not, in less.Unfortunately, even with our 
areful implementation this approa
h turnsout to be, on average, only just a bit faster than the bise
tion approa
h. OurINRIA



Univariate Algebrai
 Kernel and Appli
ation to Arrangements 7
0 400 800 1200 1600 2000
oe�
ient bitsize012

34isolationtime[ms℄ Our kernelMPII's kernelSYNAPS' kernel(a)
0 10000 20000 30000 40000 50000
oe�
ient bitsize01020

3040isolationtime[ms℄
Our kernelMPII's kernelSYNAPS' kernel

(b)Figure 1: Running time for isolating all the real roots of degree 12 polynomialswith 12 real roots in terms of the maximum bitsize of their 
oe�
ients.experiments showed that the bottlene
k of the re�nement is the evaluation ofpolynomials.3 Kernel ben
hmarksIn this se
tion, we analyze the running time of the two main fun
tions of ouralgebrai
 kernel, that (i) isolate the roots of a polynomial and (ii) 
omparetwo algebrai
 numbers that is, 
ompare the roots of two polynomials. We also
ompare the performan
e of our kernel with the one based on the BistreamDes
artes method [9℄ and developed by Hemmer and Limba
h [16℄ (referredto as mpii's kernel)1 and with a kernel based on 
ontinued fra
tions [23℄ anddeveloped on top of the synaps library [18℄ (referred to as synaps' kernel).All tests were ran on a single-
ore 3.2 GHz Intel Pentium 4 with 2 Gb ofRAM and 2048 kb of 
a
he memory, using 64-bit Linux.Root isolation. We 
onsider two suites of experiments in whi
h we either�x the degree of the polynomials and vary the bitsize of the 
oe�
ients or the1 To 
ompare both algebrai
 kernels with the same inputs, we parameterized mpii's kernelto use Bitstream Des
artes as root isolator, algebrai
_real_bfi_rep as algebrai
 numberrepresentation and Coreintegers and rationals to represent the 
oe�
ients of the polynomialsand the isolation bounds of algebrai
 numbers, respe
tively. The 
hoi
e of Core(vs. leda)was indu
ed by the need of testing the kernels in the same 
onditions, that is, relying on gmp.RR n° 6893



8 Lazard, Peñaranda & Tsigaridas
0 5000 10000 15000 20000 25000
oe�
ient bitsize050100150200250

isolationtime[ms℄
Our kernelMPII's kernelSYNAPS' kernel

(a) 0 10 20 30 40 50
d

0123
456isolationtime[s℄

Our kernelMPII's kernelSYNAPS' kernel
(b)Figure 2: Running time for isolating all the real roots of (a) degree 100 poly-nomials in terms of the maximum bitsize of their 
oe�
ients and (b) Mignottepolynomials of the form f = xd � 2(kx� 1)2 in terms of the degree d.
onverse; see Figs. 1 and 2. In ea
h experiment, we report the running timefor isolating all the roots per polynomial, averaged over di�erent trials, for ourkernel, mpii's and synaps' kernel.Varying bitsize. We study here polynomials with rather low degree (12) butwith no 
omplex root and polynomials with reasonably large degree (100) withrandom 
oe�
ients (and thus with few real roots).The �rst test sets 
omes from [16℄. See Fig. 1. It 
onsists of polynomialsof degree 12, ea
h one being the produ
t of six degree-two polynomials withtwo roots, at least one of them in the interval [0; 1℄; every polynomial thus has12 real roots. We vary the maximum bitsize of all the 
oe�
ients of the inputpolynomial from 100 to 50 000 and average ea
h test over 250 trials.Se
ondly, we 
onsider random polynomials with 
onstant degree 100 and
oe�
ients with varying bitsize. See Fig. 2(a). Note that su
h random poly-nomials have few roots: the expe
ted number of real roots of a polynomial ofdegree d with 
oe�
ients independently 
hosen from the standard normal dis-tribution is 2� ln(d) + C + 2�d + O(1=d2) where C � 0:625735 [8℄; this gives,for degree 100 an average of about 3.6 roots (note that this bound mat
hesextremely well experimental observations). We vary the maximum bitsize of allthe 
oe�
ients from 2 000 to 25 000 and average ea
h test over 100 trials.Varying degree. We 
onsider two sets of experiments in whi
h we study ran-dom polynomials and Mignotte polynomials (whi
h have two very 
lose roots).We �rst 
onsider polynomials with random 
oe�
ients of �xed bitsize forvarious values between 32 and 1 000. We then vary the degree of the polynomialsfrom 100 to 2 000 and average our experiments over 100 trials (see Fig. 3). Notethat the above formula gives an expe
ted number of roots varying from 3.6 to5.5. We observe that the running time is almost independent of the bitsize inthe 
onsidered range.Finally, we test Mignotte polynomials, that is polynomials of the form xd �2(kx � 1)2. Su
h polynomials are known to be 
hallenging for Des
artes al-gorithms be
ause two of their roots are very 
lose to ea
h other; the isolatingINRIA
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0 500 1000 1500 2000polynomial degree051015

2025isolationtime[s℄
Our kernelMPII's kernelSYNAPS' kernel

(a) 0 500 1000 1500 2000polynomial degree010203040
506070isolationtime[s℄

Our kernelMPII's kernelSYNAPS' kernel
(b)Figure 3: Running time for isolating all the real roots of random polynomialswith 
oe�
ients of bitsize (a) 32 and (b) 1000, and depending on the degree.intervals for these two roots are thus very small. For these tests, we usedMignotte polynomials with 
oe�
ients of bitsize 50, with varying degree d from5 to 50. See Fig. 2(b). We averaged the running time over 5 trials for ea
hdegree. We observed essentially no di�eren
e between our kernel and MPII'sone; they take roughly 0.2 and 5.5 se
onds for Mignotte polynomials of degree20 and 50, respe
tively. However, synaps' kernel is mu
h more e�
ient as the
ontinued fra
tions algorithm is not so a�e
ted by the 
loseness of the roots.Dis
ussion. We observe (Fig. 1(a)) that synaps' kernel is more e�
ientthan both our and mpii's kernel in the 
ase of polynomials of small degree (e.g.,twelve) and small to moderately large 
oe�
ients (up to 2 000 bits per 
oe�-
ient). However, for extremely large 
oe�
ients mpii's kernel is substantiallymore e�
ient (by a fa
tor of up to 3 for 
oe�
ients of up to 50 000 bits) thanboth our and synaps' kernels, whi
h perform similarly.For polynomials of reasonable large degree, both our and synaps' kernelsare mu
h more e�
ient that mpii's kernel; furthermore these two kernels behavesimilarly for degrees up to 1 500 and our kernel be
omes more e�
ient for higherdegrees (by a fa
tor 2 for degree 2 000).We also observe that the running time is highly dependent of the varioussettings. For instan
e, our kernel is up to 5 times slower when using approximateevaluation for high-degree and high-bitsize polynomials. Also, mpii's kernel is insome 
ases about 10 times slower when 
hanging the arithmeti
 kernel to leda,the representation of algebrai
 numbers and some internal algorithms su
h asthe re�nement fun
tion. This explains why our ben
hmarks on both mpii's andsynaps' kernels are substantially better than in Emiris et al. experiments [11℄.We also observe that the running time of mpii's kernel is unstable in ourexperiments (Figs. 1 and 2(a)); surprisingly, this instability o

urs when theexperiments are performed on a 64-bits ar
hite
ture, but it is stable on 32-bitsar
hite
ture as shown in previous experiments [11℄.Comparison of algebrai
 numbers. We 
onsider three suites of experimentsfor 
omparing algebrai
 numbers; see Fig. 4. Re
all that an algebrai
 number� is here represented by a polynomial F that vanishes at � and an isolatinginterval 
ontaining � but no other root of F . Re
all also that the 
omparison ofRR n° 6893
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0 500 1000 1500 2000 2500 3000
oe�
ient bitsize02505007501000


omparisontime[ms
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(a) 0 500 1000 1500 2000 2500 3000
oe�
ient bitsize02505007501000

omparisontime[ms
℄ Our bise
tionMPII's quadrati
MPII's bise
tion

(b)Figure 4: Running time for 
omparing two distin
t 
lose roots of two almostidenti
al polynomials of degree 20 with (a) no 
ommon roots and (b) a 
ommonfa
tor of degree 10.two algebrai
 numbers is done by (i) testing whether the intervals are disjoint;if so, report the ordering, otherwise (ii) 
ompute the g
d of the two polynomialsand test whether the g
d vanishes in the interse
tion of the two intervals; if so,report the equality of the numbers, otherwise (iii) re�ne the intervals until theyare disjoint.First, we analyze the 
ost of trivial 
omparisons that is, when the two in-tervals representing the numbers are disjoint. For that we 
ompare the roots oftwo random polynomials. We observe that, as expe
ted, the 
omparison time isnegligible and independent of both the degree of the polynomials and the bitsizeof their 
oe�
ients.Se
ond, we analyze the 
ost of 
omparing roots that are very 
lose to ea
hother but whose asso
iate polynomials have no 
ommon root. This 
ase isexpensive be
ause we need to re�ne the intervals until they do not overlap; thisis, however, not the worst situation be
ause the g
d of the two polynomials is 1whi
h is tested e�
iently with a modular g
d. We perform these experiments asfollows. We generate pairs of polynomials, one with random 
oe�
ients and theother by only adding 1 to one of the 
oe�
ients of the �rst polynomial. Su
hpolynomials are su
h that the i-th roots of both polynomials are very 
lose toea
h other. We generate su
h pairs of polynomials with 
onstant degree (equalto 20) and vary the maximum bitsize of the 
oe�
ients. As the bitsize in
reases,the pairs of roots that are 
lose be
ome even 
loser and thus the 
omparisontime in
reases. The results of these experiments are presented in Fig. 4(a), whi
hreports the average running time for 
omparing two 
lose roots. We show inthis �gure three 
urves, one 
orresponding to our bise
tion algorithm, and two
orresponding the two re�nement methods implemented in the mpii's kernel:the usual bise
tion and a quadrati
 re�nement algorithm.Third, we 
onsider the, a priori, most expensive s
enario in whi
h we 
om-pare roots that are either equal or very 
lose to ea
h others and su
h that theirasso
iate polynomials have some roots in 
ommon. In this 
ase, we a

umulatethe 
ost of 
omputing a non-trivial g
d of the two polynomials with the 
ost ofre�ning intervals when 
omparing two non-equal roots. In pra
ti
e, we gener-ate pairs of degree-20 polynomials ea
h de�ned as the produ
t of two degree-10terms; one of these fa
tors is random and 
ommon to the two polynomials; theINRIA
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(b)Figure 5: Arrangements of �ve polynomials, shifted four times ea
h, (a) ofdegree 20 and varying bitsize and (b) of bitsize 32 and varying degree.other fa
tor is random in one of the polynomials and slightly modi�ed in theother polynomial where, slightly modi�ed means, as above, that we add 1 toone of the 
oe�
ients. We then vary the maximum bitsize of the 
oe�
ients.Dis
ussion. We see in Fig. 4 that the mpii's quadrati
 re�nement algorithmlargely outperforms the two bise
tion methods. However, our bise
tion methodis faster than mpii's one, by a fa
tor up to 10. We also observed that the runningtime for 
omparing equal roots is negligible 
ompared to the 
ost of 
omparing
lose but distin
t roots. (The running time reported in Fig. 4(b) is a
tually thetotal time for 
omparing all pairs of roots divided by the number of 
omparisonsof 
lose but distin
t roots.) This explains why our kernel behaves similarly inFigs. 4(a) and 4(b). Overall, it appears that 
omparing algebrai
 numbers thatare very 
lose is fairly time 
onsuming and that the most time-
onsuming partof the 
omparison is the evaluation of polynomials performed during the intervalre�nements.4 ArrangementsAs an example of possible bene�t of having e�
ient algebrai
 kernels in 
gal,we used our implementation to 
onstru
t arrangements of polynomial fun
tions.Wein and Fogel [25℄ provided a 
gal pa
kage for 
al
ulating arrangements ofgeneral 
urves whi
h requires as parameter a traits 
lass 
ontaining the datastru
tures to store the 
urves and various primitive operations, su
h as 
ompar-ing the relative positions of points of interse
tion. We implemented a traits 
lasswhi
h uses the fun
tions of our algebrai
 kernel and 
ompared its performan
ewith another traits 
lasses whi
h 
omes with 
gal's arrangement pa
kage anduses the Core library [6℄.In order to generate 
hallenging data sets we pro
eed as follows. First wegenerate n random polynomials. To ea
h of them we add 1 to the 
onstant 
oef-�
ient, m times, thus produ
ing a data set of n(m+1) univariate polynomials.Noti
e that the arrangement of the graphs of these polynomials is guaranteedto be degenerate, i.e., there are interse
tions with the same x-
oordinate. Thearrangements generated this way have four parameters: the number n of initialRR n° 6893



12 Lazard, Peñaranda & Tsigaridaspolynomials, the number m of �shifts� that we perform, the degree d of thepolynomials, and the bitsize � of their 
oe�
ients. We ran experiments varyingthe values of the last three of these parameters and setting n = 5.Fig. 5(a) shows the running time in terms of the bitsize � for a data setwhere d = 20 and m = 4 (giving 25 polynomials). Fig. 5(b) shows the runningtime in terms of the degree d for a se
ond data set where � = 32 and m = 4.We see from these experiments that running time using Core is 
onsiderablyhigher than when using our kernel. We also make the following observations.Fig. 5(a) shows that the running time depends on the bitsize. When we
hange the bitsize of the 
oe�
ients of the random polynomials, the size of thearrangement does not 
hange; that means that the number of 
omparisons androot isolations the kernel must perform is roughly the same in all the arrange-ments of the test suite. The isolation time for random polynomials does notdepend mu
h on the bitsize (as shown in Fig. 2(a)), but the 
omparison timedoes. It follows that the running time in
reases with the bitsize.Fig. 5(b) shows that the running time depends also on the degree of theinput polynomials. As we saw in Se
tion 3, the expe
ted number of real rootsof a random polynomial depends on its degree. The size of the arrangementthus in
reases with the degree of the input polynomials: ea
h vertex is the rootof the di�eren
e between two input polynomials, therefore there will be moreverti
es. Thus, when we in
rement the degree of the inputs, the number of
omparisons and isolations in
reases; furthermore, the running time for ea
h ofthese operations in
reases with the degree of the input.We ran additional tests to see the impa
t of the input shifts in the 
al
ulationtime. We generated �ve random polynomials of bitsize 1000 and degree 20. We
al
ulated arrangements, then, varying the number of shifts we perform to ea
hpolynomial. As Fig. 6 shows, we were only able to solve, using Core, the �rstarrangement, generated without shifts (note the point on the verti
al axis). Wenote that the running time in
reases fast with the number of shifts. This isreasonable sin
e, ea
h time we in
rease by 1 the number of shifts, we add tothe arrangement n polynomials, hen
e in
reasing the number of verti
es of thearrangement. Sin
e the root isolation and 
omparison time remains the same(be
ause the degree and the bitsize are 
onstant), the running time in
reaseswith the number of these operations.4.1 Complexity analysisIn this se
tion we present an output-sensitive analysis of the bit 
omplexity ofthe standard line-sweep algorithm for 
omputing arrangements of graphs of uni-variate polynomial fun
tions. The same analysis, and thus the same 
omplexitybound, applies also in the 
ase of rational univariate fun
tions.In what follows, 
ombinatorial and bit 
omplexities will be denoted by Oand OB , respe
tively. The eO and eOB notations refer to 
omplexities in whi
hwe ignore (poly-)logarithmi
 fa
tors. We also refer to the separation bound ofa univariate polynomial as to the minimum distan
e between any two (possibly
omplex) roots of the polynomial. The bitsize of the separation bound is thenumber of bits, s, needed to represent the largest lower bound of the form 2�sthat is smaller than the separation bound.First, we note that the results of [10, 13℄ 
an easily be generalized to expressthe 
omplexities of isolating the real roots of a polynomial in terms of theINRIA
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ation to Arrangements 13separation bounds of the 
onsidered instan
es of polynomials rather than interms of worst-
ase separation bounds.Proposition 1. The real roots of a univariate polynomial of degree d withinteger 
oe�
ients of bitsize at most � and separation bound of bitsize s 
an beisolated, with their multipli
ities, in eOB(d3(�2 + s2)) time. The bitsize of theendpoints of the isolating intervals is in O(s).Proof. In [10℄ it was proven that the worst 
ase 
omplexity is eOB(d4 + d4�2).The result is based on the fa
t that the bitsize of the worst 
ase separationbound is O(d�). To derive an output sensitive result we repla
e this by s.Then, to isolate a root we need to perform at most eO(� + s) step. Atea
h step we perform a polynomial shift, in the 
ase of Des
artes' solver, or anevaluation of a Sturm sequen
e, with a number of bitsize � + s, resulting a 
ost,in both 
ases, of eOB(d2�2 + d2�s+ d2s2) for ea
h root. The result follows if wemultiply by the number of roots, d.We also re
all an output-sensitive result on the 
omplexity of 
omparing theroots of two polynomials.Proposition 2 ([13℄). Two real algebrai
 numbers de�ned as roots of polynomi-als of degree at most d with integer 
oe�
ients of bitsize at most � and separationbounds of bitsize at most s 
an be 
ompared in eOB(d2(� + s)) time.These 
omplexity results yield, almost dire
tly, the following output-sensitivebit 
omplexity of the standard line-sweep algorithm for 
omputing arrangementsof graphs of univariate polynomial fun
tionsTheorem 3. The arrangement of n 
urves, de�ned by univariate polynomialsof degree at most d, with integer 
oe�
ients of bitsize at most � , and separationbound of bitsize at most s 
an be 
omputed in time eOB((n + k)d3(�2 + s2)),where k is the number of interse
tion points between the 
urves.Proof. Re
all �rst that the 
ombinatorial 
omplexity of the standard line-sweepalgorithm for 
omputing arrangements of n algebrai
 
urves of bounded degree isO((n+ k) logn), where k is the number of interse
tion points (see, e.g., [7, 14℄).To evaluate the bit 
omplexity of the algorithm, we split the analysis in twoparts. In the �rst part, we 
onsider the 
omplexity of the 
onstru
tion of theinterse
tion points of the 
urves. In the se
ond part, we 
onsider the 
ost of
omparing the x-
oordinates of the interse
tion points.In order to 
ompute (that is, to isolate) the interse
tion points of two 
urvesy = f1(x) and y = f2(x), represented by polynomials f1; f2 2 Z[x℄ of degreeat most d with integer 
oe�
ients of bitsize at most � and separation bound ofbitsize at most s, we 
an �rst isolate the real roots of the polynomial f(x) =f1(x)�f2(x) in time eOB(d3(�2+s2)) (by Proposition 1). We 
an then 
omputethe image by f of these intervals of in time eOB(d(� + ds)) (by Horner's rule).To begin the algorithm we need to 
ompute a verti
al line that is to the leftall the interse
tion points between the 
urves. The 
ost of 
omputing su
h aline is eOB(n d �) and is dominated by the other steps of the algorithm. We then
ompute the interse
tion points of this line with all the 
urves, so that to orderthe 
urves along the sweep line. We then 
ompute the interse
tion between theRR n° 6893



14 Lazard, Peñaranda & Tsigaridasn� 1 pairs of adja
ent 
urves along the sweep line. Thus, we initially performO(n) interse
tions between pairs of 
urves.Then, during the sweep, every time an interse
tion point is en
ountered bythe sweep line, we ex
hange two 
urves is the list of 
urves interse
ted by thesweep line and we 
ompute the interse
tion between (at most) two new pairs ofadja
ent 
urves in this list. Hen
e, we perform, in total, O(n+ k) interse
tionsbetween pairs of 
urves in eOB((n+ k)d3(�2 + s2)) time.We now 
onsider the 
ost of 
omparing the x-
oordinates of the interse
tionpoints when updating the event list. Every time two 
urves be
ome adja
entalong the verti
al line of sweep, we insert their �rst interse
tion point that is tothe right of the line. Sin
e we only insert one interse
tion point (rather thand), this requires in total O((n + k) logn) 
omparisons whi
h 
an be done ineOB((n+ k)d2(� + s)) time by Proposition 2.Note that, as mentioned in se
tion 1, if N = maxfn; k; d; �; sg, this bound isin eOB(N6) whi
h is, as expe
ted, quadrati
 in the size of the input in the worst
ase.5 Con
lusionWe presented a new 
gal-
ompliant algebrai
 kernel that provides 
erti�edreal-root isolation of univariate polynomials with integer 
oe�
ients based onthe interval Des
artes algorithm. This kernel also provides the 
omparison ofalgebrai
 numbers and other standard fun
tionalities.We 
ompared our kernel with other 
omparable kernels on large data setsin
luding, for the �rst time, polynomials of high degree (up to 2 000) and withextremely large 
oe�
ients (up to 25 000 bits per 
oe�
ient). We demonstratedthe e�
ien
y of our approa
h and showed that it performs similarly, in most
ases, with one kernel based on the synaps library; more pre
isely, our kernel ismore e�
ient for polynomials of very large degree (greater than 1 800) and lesse�
ient for polynomials of very small degree and with small to moderate size
oe�
ients. Also, our kernel is a lot more e�
ient that the kernel developedat mpii for polynomials of large degree (greater than 200); it is however lesse�
ient for polynomials of small degree and with extremely large 
oe�
ients.Our tests indi
ate that the kernel developed at mpii appears to be less e�-
ient than the other two for polynomials of large degree. However it should bestressed that this kernel is the only one among the three that is templeted bythe number type of the 
oe�
ients. Of 
ourse this does not imply that e�
ien
yis ne
essarily lost by following the generi
 programming paradigm, but it doesimply that, from the user point of view, some substantial gain of e�
ien
y 
ansometimes be made by using a kernel that does not follow this paradigm.We also 
ompared the performan
e of the kernels on the 
omparison of al-gebrai
 numbers. We observed in these tests that the bise
tion algorithm runsmu
h faster when it is spe
ialized on a number type sin
e it allows for low leveloptimizations, 
on�rming thus the assertion in the previous paragraph. Onthe other hand, it be
omes evident that the bise
tion method is not the moste�
ient algorithm when a large number of re�nements is needed, and mpii'squadrati
 re�nement is the fastest method by far. INRIA
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ation to Arrangements 15A fairly large 
hoi
e of algebrai
 kernels and, in parti
ular, of methods forisolating the real roots of polynomials, is now available in Cgal. This allows,in parti
ular, to 
ompare and improve the various methods. It appears that be-tween the two big 
lasses of methods, based on 
ontinued fra
tions and Des
artesalgorithms, neither is 
learly mu
h better than the other. However, some sub-stantial di�eren
es appear between the various implementations, but, of 
ourse,it is always very di�
ult to ben
hmark implementations. For instan
e, we ob-served here that the running times are highly dependent of the various settingsand ar
hite
tures.Finally, we also address the problem of 
omputing arrangements of x-monotonepolynomial 
urves. We apply our kernel to this problem and demonstrate itse�
ien
y 
ompared to previous solutions available in 
gal. We also presentthe �rst bit-
omplexity analysis of the standard sweep-line algorithm for thisproblem.A
knowledgmentsThe authors are grateful to F. Rouillier for various dis
ussions and suggestions.We thank Z. Zafeirakopoulos for dis
overing many bugs in our implementation.We also thank M. Hemmer, E. Berberi
h, M. Kerber, and S. Limba
h for fruitfuldis
ussion on the kernel developed at mpii and on the experiments.Referen
es[1℄ J. Abbott. Quadrati
 interval re�nement for real roots. In InternationalSymposium on Symboli
 and Algebrai
 Computation (ISSAC), poster pre-sentation, 2006.[2℄ E. Berberi
h, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn,J. Rei
hel, S. S
hmitt, E. S
hömer, and N. Wolpert. EXACUS: E�
ient andExa
t Algorithms for Curves and Surfa
es. In Pro
. 13th Annual EuropeanSymposium on Algorithms (ESA), volume 1669 of LNCS, pages 155�166.Springer, 2005.[3℄ E. Berberi
h, M. Hemmer, M. Karavelas, and M. Teillaud. Revision ofthe interfa
e spe
i�
ation of algebai
 kernel. Te
hni
al Report ACS-TR-243301-01, ACS European Proje
t, 2007.[4℄ Cgal, Computational Geometry Algorithms Library.http://www.
gal.org.[5℄ G. Collins, J. Johnson, and W. Krandi
k. Interval Arithmeti
 in Cylindri
alAlgebrai
 De
omposition. Journal of Symboli
 Computation, 34(2):145�157, 2002.[6℄ The Core library. http://
s.nyu.edu/exa
t/.[7℄ M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. ComputationalGeometry: Algorithms and Appli
ations. Springer-Verlag, 3rd edition, 2008.[8℄ A. Edelman and E. Kostlan. How may zeros of a random polynomial arereal? Bulletin of Ameri
an Mathemati
al So
iety, 32(1):1�37, Jan 1995.RR n° 6893

http://cs.nyu.edu/exact/


16 Lazard, Peñaranda & Tsigaridas[9℄ A. Eigenwillig, L. Kettner, W. Krandi
k, K. Mehlhorn, S. S
hmitt, andN. Wolpert. A Des
artes Algorithm for Polynomials with Bit-Stream Coef-�
ients. In Pro
. 8th Int. Workshop on Computer Algebra in S
ient. Com-put. (CASC), volume 3718 of LNCS, pages 138�149. Springer, 2005.[10℄ A. Eigenwillig, V. Sharma, and C. K. Yap. Almost tight re
ursion treebounds for the Des
artes method. In Pro
. Int. Symp. on Symboli
 andAlgebrai
 Computation, pages 71�78, New York, NY, USA, 2006. ACMPress.[11℄ I. Emiris, M. Hemmer, M. Karavelas, S. Limba
h, B. Mourrain, E. Tsigari-das, and Z. Zafeirakopoulos. Cross-ben
hmarks for univariate algebrai
 ker-nels. Te
hni
al Report ACS-TR-363602-02, ACS European Proje
t, 2008.[12℄ I. Z. Emiris, A. Kakargias, S. Pion, M. Teillaud, and E. P. Tsigaridas.Towards and open 
urved kernel. In Pro
. 20th Annual ACM Symp. onComputational Geometry (SoCG), pages 438�446, New York, USA, 2004.[13℄ I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real Algebrai
 Numbers:Complexity Analysis and Experimentation. In P. Hertling, C. Ho�mann,W. Luther, and N. Revol, editors, Reliable Implementations of Real Num-ber Algorithms: Theory and Pra
ti
e, volume 5045 of LNCS, pages 57�82.Springer Verlag, 2008.[14℄ E. Fogel, D. Halperin, L. Kettner, M. Teillaud, R. Wein, and N. Wolpert.Arrangements. In J.-D. Boissonnat and M. Teillaud, editors, E�e
tive Com-putational Geometry for Curves and Surfa
es, Mathemati
s and Visualiza-tion, 
hapter 1. Springer, 2006.[15℄ Gmp, Gnu multiple pre
ision arithmeti
 library. http://gmplib.org/.[16℄ M. Hemmer and S. Limba
h. Ben
hmarks on a generi
 univariate algebrai
kernel. Te
hni
al Report ACS-TR-243306-03, ACS European Proje
t, 2006.[17℄ J. Keyser, T. Culver, D. Mano
ha, and S. Krishnan. E�
ient and ex-a
t manipulation of algebrai
 points and 
urves. Computer-Aided Design,32(11):649�662, 2000.[18℄ B. Mourrain, P. Pavone, P. Trébu
het, E. P. Tsigaridas, and J. Wintz.Synaps, a library for dedi
ated appli
ations in symboli
 numeri
 
om-putations. In M. Stillman, N. Takayama, and J. Vers
helde, editors, IMAVolumes in Mathemati
s and its Appli
ations, pages 81�110. Springer, NewYork, 2007. http://synaps.inria.fr.[19℄ Mpfi, multiple pre
ision interval arithmeti
 library.http://perso.ens-lyon.fr/nathalie.revol/software.html.[20℄ Mpfr, library for multiple-pre
ision �oating-point 
omputations.http://mpfr.org/.[21℄ F. Rouillier and Z. Zimmermann. E�
ient isolation of polynomial's realroots. J. of Computational and Applied Mathemati
s, 162(1):33�50, 2004.[22℄ Rs, a software for real solving of algebrai
 systems. F. Rouillier.http://fgbrs.lip6.fr. INRIA

http://gmplib.org/
http://synaps.inria.fr
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://mpfr.org/
http://fgbrs.lip6.fr


Univariate Algebrai
 Kernel and Appli
ation to Arrangements 17[23℄ E. P. Tsigaridas and I. Z. Emiris. On the 
omplexity of real root isolationusing Continued Fra
tions. Theoreti
al Computer S
ien
e, 392:158�173,2008.[24℄ E. P. Tsigaridas and I. Z. Emiris. Real algebrai
 numbers and polynomialsystems of small degree. Theoreti
al Computer S
ien
e, 409(2):186 � 199,2008.[25℄ R. Wein and E. Fogel. The new design of CGAL's arrangement pa
kage.Te
hni
al report, Tel-Aviv University, 2005.[26℄ C. Yap. Fundamental Problems of Algorithmi
 Algebra. Oxford UniversityPress, Oxford-New York, 2000.[27℄ C. Yap. Robust geometri
 
omputation. In J. E. Goodman andJ. O'Rourke, editors, Handbook of Dis
rete and Computational Geometry,
hapter 41, pages 927�952. Chapmen & Hall/CRC, Bo
a Raton, FL, 2ndedition, 2004.

RR n° 6893



18 Lazard, Peñaranda & Tsigaridas
0 2 4 6 8 10verti
al shifts0100200300


onstru
tiontime[s℄
Our kernelCORE

Figure 6: Arrangement generated from �ve random polynomials of bitsize 1000and degree 20, varying the number of shifts performed.
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