
HAL Id: inria-00372412
https://inria.hal.science/inria-00372412

Submitted on 3 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code generation strategies in the Polychrony
environment

Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin

To cite this version:
Loïc Besnard, Thierry Gautier, Jean-Pierre Talpin. Code generation strategies in the Polychrony
environment. [Research Report] RR-6894, INRIA. 2009, pp.34. �inria-00372412�

https://inria.hal.science/inria-00372412
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
68

94
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Code generation strategies in the Polychrony
environment

Loïc Besnard — Thierry Gautier — Jean-Pierre Talpin

N° 6894

Avril 2009

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Code generation strategies in the Polychrony environment

Löıc Besnard , Thierry Gautier , Jean-Pierre Talpin

Thème COM — Systèmes communicants
Équipes-Projets Espresso

Rapport de recherche n° 6894 — Avril 2009 — 31 pages

Abstract: This report describes all code generation strategies available in the Polychrony toolset [1].
The data structure manipulated by the Signal compiler is outlined and put to work presenting dif-
ferent ways to transform it in order to implement specific code generation schemes. Each compilation
strategy is briefly presented.

Key-words: synchronous programming, compilation, program transformation, code generation

Strategies de génération de code de l’environnement

Polychrony

Résumé : Ce rapport décrit les stratégies de génération de code disponibles dans l’environnement
Polychrony. Nous présentons les structures de données manipulées par le compilateur Signal puis
les différentes stratégies mises en oeuvre pour la manipuler de manire générer du code.

Mots-clés : programmation synchrone, compilation, transformation de programmes, génération
de code

Code generation strategies with Polychrony 3

Contents

1 Introduction 4

1.1 An example . 4

2 Data structures 7

2.1 Clock relations . 7
2.2 Scheduling relations . 8
2.3 Clock hierarchization . 8
2.4 Clock-driven graph scheduling . 11
2.5 Refinement heuristics . 11

3 Code generation principle 11

3.1 The main program . 12
3.2 The input-output interface . 12
3.3 The iterate function . 13

4 Sequential code generation 13

5 Clustered code generation with static scheduling 14

6 Clustered code generation with dynamic scheduling 16

7 Distributed code generation 19

7.1 Topological annotations . 19
7.2 Communication annotations . 20
7.3 Code generation . 21

8 Modular code generation 21

8.1 Sequential code generation for separate compilation 22
8.2 Clustered code generation for separate compilation 24
8.3 Legacy code encapsulation for separate compilation 26

9 Conclusion 28

RR n° 6894

4 Besnard, Gautier & Talpin

1 Introduction

This report describes all code generation strategies available in the Polychrony toolset [1]. It starts
with a gentle example and its implementation. Then, the data structure of the Signal compiler is
outlined and put to work presenting different ways to transform it in order to implement specific
code generation schemes. Each compilation strategy is briefly presented, the last one being that
selected for the Spacify project.

1.1 An example

Our example is the resolution of the equation aX2 + bX + c = 0 using the iterative Newton method
(when a > 0). The parameters a, b, c are the inputs of the algorithm. The variable X is the output.
Starting from ∆ ≥ 0, the computation of

√
∆ is defined by the limit of the series (Xn)n≥0:

∆ = b2 − 4ac X0 =
∆

2
Xn+1 =

(Xn ∗ Xn + ∆)/Xn

2
(n ≥ 0)

An implementation of this resolution method features two modes depicted by the first degree and
second degree of figure 1. The first degree mode is reactive and immediately outputs −b/c when
a = 0. The second degree mode implements Newton’s iteration method and outputs the solutions
of the equation upon stabilization.

The clock that triggers an iteration is left implicit in this specification. It will be made explicit
in the process of generating code.

Figure 1: Block diagrammatic rendering of the solver

A close-up on the textual rendering of the solver, figure 2, shows that mode management is
performed by three equations to select and activate them, merge their solutions or report errors.� The interface (? real a, b, c; ! real x2, x1; boolean oc;) consists of three real in-

put signals a, b, c that are the parameters of the equation. It defines two real output signals

INRIA

Code generation strategies with Polychrony 5

process equationSolving = (? real a, b, c; ! real x2, x1; boolean oc;)

(| (a2, err2) := FirstDegree (when (not OK), b, c)

| (err1, a1, x2) := SecondDegree (OK, a, b, c)

| OK := a/=0.0

| x1 := a1 default a2

| oc := (when err1) default err2

| a ^= b ^= c

|)

Figure 2: Equational rendering of the solver

that hold the solutions of the equation when present and, otherwise, the boolean output signal
oc, that is true iff the equation has no solution, that is false iff the equation has infinitely many
solutions.� Equation (a2, err2) := FirstDegree (when (not OK), b, c) calls the first degree mode
when the input parameter a equals 0. The input boolean signal Compute is present and true
iff the mode is active. The output signal x samples the value of the solution −c/b when the
mode is active (the signal Compute is true) and when the factor b is not 0. Otherwise, the
boolean signal err2 indicates that the equation has no solution (if a and b are 0 and not c) or
inifinitely many (if c is 0 as well).

process FirstDegree = (? boolean Compute; real b, c; ! real x; boolean err2;)

(| bb1 := bb when (bb/=0.0)

| cc1 := cc when (bb/=0.0)

| x := -(cc1/bb1)

| err2 := (cc/=0.0) when (bb=0.0)

| bb := b when Compute

| cc := c when Compute

|)� Equation (err1, a1, x2) := SecondDegree (OK, a, b, c) calls the second degree mode.
As above, the mode is active when its boolean input signal OK is present and true. Its two
real output signals x21 and x2 hold the solution of the equation for the input parameters
a, b, c. If no solution exists then the boolean output signal is instead set to true.

process SecondDegree = (? boolean OK; real a, b, c; ! boolean err; real x21, x2;)

(| (nul,err,d) := Discriminant{}(bb,cc)

| aa := a when OK

| bb := (b when OK)/aa

| cc := (c when OK)/aa

| x21 := x1 default z

| z := (-(bb when nul))/2.0

| (stable, x1, x2) := twoRoots{epsilon}(d, bb)

| c ^= b ^= a

| c ^= when stable

|)� Equation OK := a /= 0.0 is present and false when the first degree mode is active, present
and true when the second degree mode is active, and absent when the solver is inactive.� Equation x1:= a1 default a2 merges the first solution of the equation provided by either of
the modes

RR n° 6894

6 Besnard, Gautier & Talpin� Equation oc := (when err1) default err2 merges the error signals of either of the active
modes� Equation a ^= b ^= c synchronizes the input parameters.

The complete Signal specification of the solver is given in Figure 3. The complete definition of
the Signal language can be found in [2].

process equationSolving =
(? real a, b, c; ! real x2, x1; boolean oc;)

(| OK := a/=0.0
| (err1,a1,x2) := SecondDegree(OK,a,b,c)

| (a2,err2) := FirstDegree(not OK,b,c)
| (| x1 := a1 default a2

| oc := (when err1) default err2

|)
| a ^= b ^= c

|)
where

boolean OK, err1;
real a1, a2;
err2;

process FirstDegree =
(? boolean Compute;

real b;
real c;

! real x;

boolean err2;
)

(| bb1 := bb when (bb/=0.0)
| cc1 := cc when (bb/=0.0)

| x := -(cc1/bb1)
| err2 := (cc/=0.0) when (bb=0.0)
| bb := b when Compute

| cc := c when Compute
|)

where
bb1, cc1;
real bb, cc;

end;
process SecondDegree =

(? boolean OK; real a, b, c;
! boolean err; real x21, x2;)

(| (nul,err,d) := Discriminant{}(bb,cc)
| aa := a when OK
| bb := (b when OK)/aa

| cc := (c when OK)/aa
| c ^= b ^= a

| z := (-(bb when nul))/2.0
| (stable,x1,x2) := twoRoots{epsilon}(d,bb)
| x21 := x1 default z

| c ^= when stable
|)

where
constant real epsilon = 0.00001;

process Discriminant =

(? real b, c; ! event nul; boolean err; real d;)
(| dd := (b*b)-(4.0*c)

| d := dd when (dd>0.0)
| nul := when (dd=0.0)

| err := when (dd<0.0)
|)

where

real dd;
end;

process twoRoots =
{ real eps; }

(? real discr, b; ! boolean stable; real x1, x2;)
(| (stable,d) := rac{eps}(discr)
| bb := (b cell (^d)) when (^d)

| x2 := -((bb-d)/2.0)
| x1 := -((bb+d)/2.0)

|)
where

process rac =

{ real epsilon; }
(? real x; ! boolean stable; real y;)

(| (| mx := x cell (^yy)
| next_yy := (((yy+(mx/yy))/2.0) when biterate)

default yy
| yy := (x/2.0) default (next_yy$1 init 1.0)
|)

| (| biterate := (^x) default (not stable)
| next_stable := abs(next_yy-yy)<epsilon

| stable := next_stable$1 init true
| yy ^= stable
| y := yy when (next_stable and biterate)

|)
|)

where
real yy, next_yy, mx;

boolean next_stable, biterate;
process abs = (? x; ! s;)

(| s := (x when (x>=0.0)) default (-x) |)

;
end;

real d;
bb;
end;

event nul;
real d, aa, bb, cc;

z, x1, stable;
end;

end;

Figure 3: A specification of the solver in Signal

INRIA

Code generation strategies with Polychrony 7

2 Data structures

Because Signal programs are systems of equations, producing executable code amounts to “solving”
these equations. The code generation strategy that achieves this goal uses the synchronization and
scheduling relations that are induced by the program. This yields an intermediate representation
consisting of a directed acyclic graph structure called the Hierarchical Conditional Dependence

Graph (HCDG). This graph is composed of a clock hierarchy and of a conditioned scheduling graph.
This section explains how the information carried by the HCDG is computed.

2.1 Clock relations

Table 1 gives the clock relations (or synchronization relations) associated with Signal equations.
The clock of a signal x is noted x̂. It symbolically represents the periods in time during which the
signal x is present.

The clock of a Boolean signal b is partitioned into its exclusive sub-clocks [b] and [¬b] which
denote the times when the signal b is present and carries the values true and false, respectively.
The composition of equations induces the union of clock relations.

constructs clock relations
y := f(x1,...,xn) ŷ = x̂1 = ... = x̂n

y := x $1 init c ŷ = x̂

y := x when b ŷ = x̂ ∩ [b], [b] ∪ [¬b] = b̂ and [b] ∩ [¬b] = ∅
z := x default y ẑ = x̂ ∪ ŷ

Table 1: Clock relations for equations

In the example of the solver, the inference of clock relations yields the following profile of the
solver process. In this profile, the internal clocks triggering the iterative algorithm have been lifted
to the interface of the solver in order to modularly operate it.

process equationSolving_ABSTRACT =

(? real a, b, c; ! real x2, x1;

boolean oc, stable, C_y, C_err, C_x1;

)

spec (| stable ^= C_y ^= C_x1

| when stable ^= a ^= b ^= c ^= C_err

| when C_y ^= x2

| when C_err ^= oc

| when C_x1 ^= x1

| . . .� Equations when C_x1 ^= x1, when C_y ^= x2 and when C_err ^= oc define the boolean
signals C_x1, C_y, C_err to carry the clocks of the outputs x1, x2, err. They are true iff the
signal they are synchronized to is present. They are false otherwise.� Equation stable ^= C_y ^= C_x1 synchronizes the boolean signal stable, that tells when the
iteration is either progressing (false) or finished (true), to the clocks C_x1, C_y of the solutions
x1 and x2.� Equation when stable ^= a ^= b ^= c ^= C_err tells that the error code (true or false)
and the input signals a, b and c can be read and synchronized when the iteration has finished
(signal stable is true)

RR n° 6894

8 Besnard, Gautier & Talpin

2.2 Scheduling relations

Whereas clock relations allow us to determine which signals need to be computed at a given time,
scheduling relations tell us in which order these signals have to be computed. Therefore, each
vertex in the graph resulting of the scheduling analysis expresses a conditional scheduling relation:
c : x → y means that the computation of y cannot be performed before x at the clock c (it is written
x → y when conditioned by x̂. For instance, and for any signal x, we have that the value of x
cannot be computed before x̂, the clock of x, hence the implicit scheduling relation x̂ → x. Table 2
summarizes the scheduling relations associated with each primitive Signal equation. Notice, in
particular, that the delay does not have scheduling relations between its input and output. The
composition of equations induces the union of scheduling relations.

constructs scheduling relations
y := f(x1,...,xn) ŷ : x1 → y, . . . , ŷ : xn → y

y := x $1 init c

y := x when b x → y, ŷ : b → ŷ
z := x default y x → z, ŷ − x̂ : y → z

Table 2: Scheduling relations for equations

In the example of the solver, the inference of scheduling relations according to the rules of Table 2
yields the following scheduling profile, when reduced to the interface of the process. It simply says
that none of the outputs x1, x2 or oc can be computed before the input parameter a, b, c are
available.

process equationSolving_ABSTRACT =

(? real a, b, c; ! real x2, x1;

boolean oc, stable, C_y, C_err, C_x1;

)

spec (| . . .
| a --> x2

| b --> x2

| c --> x2

| a --> x1

| b --> x1

| c --> x1

| a --> oc

| b --> oc

| c --> oc

|)

It is worth mentioning that the complete scheduling graph of the solver should also contain
relations C_x1 --> x1, C_y --> x2, C_err --> oc, between the outputs and their clocks.

2.3 Clock hierarchization

To generate an executable program that is able to compute the value of each signal in a process, one
first needs to define a way to compute the clock of each signal. We say that a process is endochronous

when there is a unique (deterministic) way to compute the clock of all its signal.
The clock relations of a process provide the necessary information to determine how clocks can

be computed. From the clock relations induced by a process, we build a so-called hierarchy [3].
A hierarchy is a relation ≤ that groups synchronous signals x, y in an equivalence class Cx and
orders one equivalence class D above another, with C ≤ D, when the status of its signals (absent
or present) can be determined from the clock and value of signals of its predecessor C.

The construction of a hierarchy ≤ is based on three simple rules

INRIA

Code generation strategies with Polychrony 9

1. if x̂ = ŷ then Cx = Cy : two synchronous signals x and y are placed in the same clock
equivalence class.

2. if x̂ = [y] or x̂ = [¬y] then Cy ≤ Cx : if the clock of x is defined by a sample of that of y
then it can only be computed when the value of y is known. Hence its clock equivalence class
resides below that of y.

3. if x̂ = ŷ f ẑ and there exists C such that C ≤ Cy and C ≤ CZ then C ≤ Cx : if the clocks of
y and z can be computed from the same set C of clocks and if the clock of x is defined by a
function of them f ∈ {+, ∗,−}, then the clock of x can also be computed once C is known.

A functionality of the Polychrony environment, called the “clock calculus”, determines the hier-
archy of a process. The clock calculus has actually two functions:

1. it verifies that the synchronization relations of the program have a solution (they are said
well-clocked);

2. it structures the control of the program according to its clock hierarchy.

For the example of Section 1.1, the complete result of the clock calculus is given in Figure 4
as a transformed Signal program where the clocks and their definitions are made explicit (the
syntactic embedding reflects the hierarchy of clocks). The sub-processes in Figure 4 correspond to
the (non-singleton) clock equivalence classes of the original process. A graphical rendering of the
hierarchy, reduced to some of the most significant signals, would be as follows.

C1 C1 ={stable, yy, mx, s}
≤C2 C3 ={CLK_x2}
≤C3 C2 ={when stable, a, b, c, OK}

≤C4 C4 ={when OK, CLK_aa, cc, dd, XZX}
≤{CLK_d}
≤{CLK}
≤{nul}
≤{err1}

≤C5 C5 ={when (not OK), bb_177, cc_178}
≤{CLK_a2}
≤{CLK_err2}

≤C6 C6 ={CLK_oc, oc}
≤C7 C7 ={CLK_a1}
≤C8 C8 ={CLK_x1}

Let us pick, for instance, clock CLK_d. It is defined when dd>0.0, and sits below “when OK”, which
is itself below “when stable”, under the master clock. This means that, to compute the clock
CLK_d of d, one has to wait for the process to be triggered by the stable signal, and then test the
value of stable and OK.

Notice that the master clock of the process, called stable, has been synthesized, and, from the
larger Figure 4, that the clock of all input and output signals are computed. Therefore the solver
process is well-clocked and endochronous.

RR n° 6894

10 Besnard, Gautier & Talpin

process equationSolving_TRA =

(? real a, b, c;
! real x2, x1;

boolean oc;
)

pragmas
Main

end pragmas

(| (| CLK_stable := ^CLK_stable
| ACT_CLK_stable{}

|) |)
where
constant real epsilon = 0.00001;

event CLK_stable;
process ACT_CLK_stable = ()

(| CLK_stable ^= stable ^= yy ^= next_yy
^= next_stable ^= biterate ^= pre_next_yy

^= mx ^= s ^= XZX_131
| (| CLK_53 := when biterate

| CLK_54 := when (not biterate)

|)
| (| CLK_70 := when (XZX_131>=0.0)

| CLK_71 := when (not (XZX_131>=0.0))
|)

| (| CLK_x2 := when (next_stable

| (| and biterate)
| CLK_x2 ^= x2 ^= x1_47

| ACT_CLK_x2{}
| CLK_78 := when (not (next_stable

| and biterate))
|)

| (| XZX_163 := when stable

| XZX_163 ^= a ^= b ^= c
| ACT_XZX_163{}

| CLK_94 := when (not stable)
|)

| (| CLK_151 := CLK_x2 ^+ XZX_163 |)
| (| CLK_XZX_148 := CLK_x2 ^+ CLK_aa

| CLK_XZX_148 ^= XZX_148

| XZX_148 := (bb when CLK_aa)
| cell CLK_XZX_148 init 0.0e0

|)
| (| CLK_a1 := CLK_x2 ^+ nul

| CLK_a1 ^= a1

| a1 := (x1_47 when CLK_x2)
| default (z when CLK_171)

|)
| (| CLK_159 := CLK_a1 ^+ err1 |)

| (| CLK_x1 := CLK_a1 ^+ CLK_a2
| CLK_x1 ^= x1
| x1 := (a1 when CLK_a1)

| default (a2 when CLK_173)
|)

| (| CLK_163 := CLK_x1 ^+ CLK_oc |)
| (| CLK_168 := CLK_stable ^- CLK_d |)
| (| CLK_171 := nul ^- CLK_x2 |)

| (| CLK_173 := CLK_a2 ^- CLK_a1 |)
| (| stable := next_stable$1 init true

| yy := ((d/2.0) when CLK_d)
| default (pre_next_yy when CLK_168)

| next_yy := (((yy+(mx/yy))/2.0) when CLK_53)
| default (yy when CLK_54)
| mx := (d when CLK_d)

| cell CLK_stable init 0.0e0
| next_stable := s<epsilon

| biterate := CLK_d
| default ((not stable) when CLK_168)
| pre_next_yy := next_yy$1 init 1.0

| s := (XZX_131 when CLK_70)
| default ((-XZX_131) when CLK_71)

| XZX_131 := next_yy-yy
|)

|)
where
...

process ACT_CLK_x2 = ()

(| CLK_x2 ^= d_97 ^= bb_98

| (| x2 := -((bb_98-d_97)/2.0)
| x1_47 := -((bb_98+d_97)/2.0)

| d_97 := yy when CLK_x2
| bb_98 := XZX_148 when CLK_x2

|)
|)

where

real d_97, bb_98;
end %ACT_CLK_x2%;

process ACT_XZX_163 = ()
(| XZX_163 ^= OK
| (| CLK_aa := when OK

| CLK_aa ^= bb
| ACT_CLK_aa{}

| XZX_169 := when (not OK)
| ACT_XZX_169{}

|)
| (| CLK_oc := err1 ^+ CLK_err2

| CLK_oc ^= oc

| oc := err1
| default (err2 when CLK_err2)

|)
| (| OK := a/=0.0 |)
|)

where
event CLK_err2, XZX_169;

boolean OK, err2;
process ACT_CLK_aa = ()

(| CLK_aa ^= aa ^= cc ^= dd ^= XZX ^= XZX_77
| (| CLK_d := when (dd>0.0)

| CLK_d ^= d

| (| d := dd when CLK_d |)
| CLK := when (not (dd>0.0))

|)
| (| nul := when (dd=0.0)

| nul ^= z
| ACT_nul{}
| CLK_25 := when (not (dd=0.0))

|)
| (| err1 := when (dd<0.0)

| CLK_27 := when (not (dd<0.0))
|)

| (| CLK_144 := nul ^+ err1 |)

| (| CLK_146 := CLK_d ^+ CLK_144 |)
| (| CLK_148 := CLK_d ^+ err1 |)

| (| aa := a when CLK_aa
| bb := XZX/aa

| cc := XZX_77/aa
| dd := (bb*bb)-(4.0*cc)
| XZX := b when CLK_aa

| XZX_77 := c when CLK_aa
|)

|)
where
event CLK_148, CLK_146, CLK_144, CLK_27, CLK_25, CLK;

real aa, cc, dd, XZX, XZX_77;
process ACT_nul = ()

...
end %ACT_nul%;

end %ACT_CLK_aa%;
process ACT_XZX_169 = ()

...

|)
where

event CLK_142, CLK_118, CLK_110;
real bb_177, cc_178;
process ACT_CLK_a2 = ()

...
where

real bb1, cc1;
end %ACT_CLK_a2%;

end %ACT_XZX_169%;
end %ACT_XZX_163%;

end %ACT_CLK_stable%;

end %equationSolving_TRA%;

Figure 4: Rendering of the solver transformed by the clock calculus

INRIA

Code generation strategies with Polychrony 11

2.4 Clock-driven graph scheduling

In the process of creating the hierarchical representation of a process, Figure 4, the clock calculus
also associates a sub-process with each clock of the hierarchy. This sub-process represents the set
of the computations that occur at this clock. It is in fact the syntactic rendering of the scheduling
graph attached to that clock.

For the example of Section 1.1, for instance, the computations associated with the master clock
is given in Figure 5 (left, and its corresponding graph, right).

| stable := next_stable$1 init true
| yy := ((d/2.0) when CLK_d) default (pre_next_yy when CLK_168)

| next_yy := (((yy+(mx/yy))/2.0) when CLK_53) default (yy when CLK_54)
| mx := (d when CLK_d) cell CLK_stable init 0.0e0

| next_stable := s<epsilon
| biterate := CLK_d default ((not stable) when CLK_168)
| pre_next_yy := next_yy$1 init 1.0

| s := (XZX_131 when CLK_70) default ((-XZX_131) when CLK_71)
| XZX_131 := next_yy-yy

d --> yy
yy --> next_yy

yy --> XZX_131
next_yy --> XZX_131

XZX_131 --> s
d --> mx
s --> next_stable

CLK_d --> biterate
stable --> biterate

Figure 5: Equation solving example: the set of computations of the master clock.

2.5 Refinement heuristics

When a process is deemed endochonous because its clock hierarchy is a tree, and when its scheduling
graph is acyclic, then the code generation functionalities of Polychrony can be applied. Generated
code can be obtained for different target languages (C, C++, Java).

If the analyzed process is not endochronous, then heuristics can be applied to instrument each
root of its hierarchy with a default parameterization. This parameterization can be used to sim-
ulate an otherwise non-deterministic process. This parameterization can also be used as a way to
trigger the different threads of a, so-called, weakly-endochronous process (a process consisting of
independent or confluent endochronous sub-processes). For instance, one would refine the hierarchy
with two independent master classes C1 and D1, below left, with an added boolean clock B, below
right, to select one or the other at all times.

C1≤C2

≤C3

D1≤D2

≤D3

⇒
B≤C1≤C2

≤C3

≤D1≤D2

≤D3

Heuristics may also be employed to refine the synthesized scheduling graph. For instance, and
for a given graph G, if the targeted execution scheme is sequential (monolithic code generation,
code generation inside a cluster), then one needs to reinforce or saturate the graph G. A graph G
can be saturated with the graph H as G ∪ H iff, for any call context represented by a graph F , if
F ∪G is acyclic then so is F ∪G∪H : (1). Reinforcement is not optimal, since there can possibly be
several incomparable (not included in one another) maximal pre-orders saturating the same graph
F according to the property (1).

3 Code generation principle

Code generation strongly relies on the clock hierarchy resulting from the clock calculus. Each clock
is represented by a Boolean variable which is true when the clock is present. Code generation also
takes into account the scheduling graph to order elementary operations in sequence.

The code generated by the compiler is an infinite loop of elementary iterations. Each iteration is
a reaction to input signals in which the embedding of if-then-else statements corresponds to the
hierarchy of clocks and in which sequencing corresponds to the structure of the scheduling graph.

RR n° 6894

12 Besnard, Gautier & Talpin

Generated code is produced in different files. For example, for C code generation, we have
a main program suffixed main.c, a program body suffixed body.c, and an input-output module
suffixed io.c. The main program calls the initialization function defined in the program body, then
keeps calling the iterate function (see Figure 6). The file io.c defines the inputs and outputs of the
program with the operating system.

Figure 6: Single loop code

3.1 The main program

The main (see Figure 7) is responsible for initiating communication with the operating system, for
initializing the state variables of the program, and for launching the infinite loop that iterates the
execution step. In the case of simulation code, as in Figure 7, the infinite loop can be stopped if the
iterate function returns error code 0 (meaning that input streams are empty) and the main program
will close communication.

EXTERN int main()
{

logical code;
equationSolving_OpenIO(); /* input/output initialising */

code = equationSolving_initialize(); /* initializing the application */
while(code) code = equationSolving_iterate(); /* the steps */
equationSolving_CloseIO(); /* input/output finalizing. */

}

Figure 7: Generated C code of the solver : the main program

3.2 The input-output interface

Communication of the program with the execution environment is implemented in the i/o file. In
the simulation code generator, each input or output signal is interfaced with the operating system
by a stream connected to a file containing input data and collecting output data. The i/o files
declares global functions for opening and closing all files, and for reading and writing events along
all input and output signals.

For instance, Figure 8, function equationSolving_OpenIO opens a stream fra for input sig-
nal a uploading data from the file Ra.dat, function equationSolving_CloseIO closes it, function
r_equationSolving_a allows to read from it (as long as EOF is not readched, meaning the end of
the simulation).

INRIA

Code generation strategies with Polychrony 13

EXTERN void equationSolving_OpenIO()

{
fra = fopen("Ra.dat","rt");

if (!fra)
{

fprintf(stderr,"Can not open file %s\n","Ra.dat");

exit(1);
}

/* ... idem for b, c */

fwx1 = fopen("Wx1.dat","wt");

if (!fwx1)
{

fprintf(stderr,"Can not open file %s\n","Wx1.dat");
exit(1);

}
/* ... idem for x2, oc */

}

EXTERN void equationSolving_CloseIO()

{
fclose(fra);

...
fclose(fwx1);

...
}

EXTERN logical r_equationSolving_a(float *a)
{

if (fscanf(fra,"%f",a)==EOF)return FALSE;
return TRUE;

}

/* ... idem for b, c */

EXTERN void w_equationSolving_x1(float x1)
{

fprintf(fwx1,"%f ",x1);
fprintf(fwx1,"\n");
fflush(fwx1);

}
/* ... idem for x2, oc */

Figure 8: Generated C code of the solver : the i/o part

The generated code in the i/o file is highly configurable. In can connect the program to any
operating system or any middleware interface supporting lossless FIFO communication media. Nat-
urally the infinite loop break can be omitted for embedded execution or possibly configured as a
reset function, etc. The i/o file is the place where the interface of generated code with an external
visualization and simulation tool can be implemented.

3.3 The iterate function

Once the program and its interface are initialized, the iterate function is responsible for iteratively
performing the execution steps that read data from input streams, calculate and write results
along output streams. There are many ways to implement this function starting from the clock
hierarchy and scheduling graph produced by the front end of the compiler. These code generation
schemes [6, 5, 4] are all implemented in the Polychrony toolset and are detailed in the subsequent
sections of the report.� Global compilation

– Sequential code generation (section 4)

– Clustered code generation with static scheduling (section 5)

– Clustered code generation with dynamic scheduling (section 6)

– Distributed code generation (section 7)� Modular compilation

– Monolithic code generation (section 8.1)

– Legacy code encapsulation (section 8.3)

– Clustered code generation (section 8.2)

4 Sequential code generation

This section describes the basic, sequential, inlining, code generation scheme that directly interpret
the Signal program obtained after clock hierarchization (Figure 4) in order to produce sequential
code.

RR n° 6894

14 Besnard, Gautier & Talpin

/* input signals */

static float a, b, c;
/* output signals */

static float x2, x1;
static logical oc;

/* local signals */
...

static void equationSolving_STEP_initialize()
{

OK = FALSE;
C_cc = FALSE;
C_d = FALSE;

C_ = FALSE;
C_cc_422 = FALSE;

}
EXTERN logical equationSolving_STEP_finalize()

{
stable = next_stable;
C_411 = FALSE;

C_error = FALSE;
equationSolving_STEP_initialize();

return TRUE;
}
EXTERN logical equationSolving_iterate()

{
if (stable) {

if (!r_equationSolving_a(&a)) return FALSE;
if (!r_equationSolving_b(&b)) return FALSE;

if (!r_equationSolving_c(&c)) return FALSE;
OK = a != 0.0;
C_cc = !OK;

if (OK)
{

bb = b / a;
dd = bb * bb - 4.0 * (c / a);

C_d = dd > 0.0;
C_ = dd == 0.0;
C_411 = dd < 0.0;

}
C_414 = (OK ? C_411 : FALSE);

if (C_cc) {

C_cc_422 = b != 0.0;
C_error = b == 0.0;

if (C_error) error = c != 0.0;
}

C_error_436 = (C_cc ? C_error : FALSE);
C_err = C_414 || C_error_436;
if (C_err) {

if (C_414) err_262 = TRUE; else err_262 = error;
oc = err_262;

w_equationSolving_oc(oc);
}

}

OK_385 = (stable ? OK : FALSE);
C_d_395 = (OK ? C_d : FALSE);

if (C_d_395) mx = dd;
C__406 = (OK ? C_ : FALSE);

C_cc_428 = (C_cc ? C_cc_422 : FALSE);
if (C_d_395) yy = dd / 2.0; else yy = next_yy;
if (C_d_395) biterate = TRUE; else biterate = !stable;

if (biterate) next_yy = (yy + mx/yy)/2.0; else next_yy = yy;
XZX_168 = next_yy - yy;

if (XZX_168 >= 0.0) s = XZX_168; else s = -XZX_168;
next_stable = s < (0.00001);
C_y = next_stable && biterate;

C_x = C_y || C__406;
C_x1 = C_x || C_cc_428;

if (C_y) {
x2 = -((bb - yy) / 2.0);

w_equationSolving_x2(x2);
}

if (C_x)

if (C_y) x21 = -((bb + yy)/2.0); else x21 = -bb/2.0;
if (C_x1) {

if (C_x) x1 = x21; else x1 = -(c / b);
w_equationSolving_x1(x1);

}
equationSolving_STEP_finalize();
return TRUE;

}

Figure 9: Generated C code of the solver : the body part

A few observations can be made on the iterate block. A first observation is that the internal
clocks that were lifted in Figure 4 have disappeared. They have been unified with that of the the
stable variable, that ticks every time the iterate function is called.

Inputs are read as soon as their clock is evaluated and is true. For example the reading of the
signal a (statement r_equationSolving_a(&a)) is called when the signal stable is true. Out-
puts are sent as soon as they are evaluated. For example the writing of the signal oc (statement
w_equationSolving_oc(oc)) is called when the signal C_err is true.

The state variables are updated at the end of the step (equationSolving_STEP_finalizeblock).
Note that in some cases, X$1 and X can be merged.

Finally, one can also notice the tree structure of conditional if-then-else statements which directly
translates the clock hierarchy. For instance, the statements associated with C_err are executed
only if stable is satisfied. In this code generation scheme, the scheduling and the computations are
merged.

5 Clustered code generation with static scheduling

Instead of being flattened as a clock hierarchy, generated code can be partitioned into clusters
mimicking the structure of the scheduling graph, in order to exploit some of its concurrency. This
method is particularly relevant in code generation scenarios such as separate compilation and dis-
tribution. Figure 10 presents generated code for a partition of the solver into four clusters. The
function equationSolving_iterate encodes a static scheduler for the clusters.

INRIA

Code generation strategies with Polychrony 15

static void equationSolving_Cluster_1()

{
C_d = FALSE;

C_ = FALSE;
C_411 = FALSE;

C_414 = FALSE;
C_err = FALSE;
if (stable)

{
if (C_cc)

{
if (C_cc_422) x = -(c / b);
if (C_error) error = c != 0.0;

}
if (OK)

{
dd = bb * bb - 4.0 * cc;

C_d = dd > 0.0;
C_ = dd == 0.0;
C_411 = dd < 0.0;

if (C_) x_1 = -bb / 2.0;
}

C_414 = (OK ? C_411 : FALSE);
C_err = C_414 || C_error_436;
if (C_err)

{
if (C_414) err_262 = TRUE; else err_262 = error;

oc = err_262;
}

}
C_d_395 = (OK ? C_d : FALSE);
if (C_d_395) mx = dd;

C__406 = (OK ? C_ : FALSE);
C_475 = !C_d_395;

if (C_d_395) yy = dd / 2.0; else yy = next_yy;
if (C_d_395) biterate = TRUE; else biterate = !stable;

C = !biterate;
if (biterate) next_yy = (yy + mx/yy)/2.0; else next_yy = yy;
XZX_168 = next_yy - yy;

C_369 = XZX_168 >= 0.0;
C_372 = !(XZX_168 >= 0.0);

if (C_369) s = XZX_168; else s = -XZX_168;
next_stable = s < (0.00001);
C_y = next_stable && biterate;

C__454 = C_y || OK_385;
C_x = C_y || C__406;

C_x1 = C_x || C_cc_428;
C_479 = !C_y && C__406;

C_483 = !C_x && C_cc_428;
if (C_y)

{

x_191 = -((bb - yy) / 2.0);
x2 = x_191;

x_200 = -((bb + yy) / 2.0);
}

if (C_x) if (C_y) x21 = x_200; else x21 = x_1;

if (C_x1) if (C_x) x1 = x21; else x1 = x;
}

static void equationSolving_Cluster_2()

{
OK = FALSE;

C_cc = FALSE;
if (stable)

{
OK = a != 0.0;
C_cc = !OK;

}
OK_385 = (stable ? OK : FALSE);

}
static void equationSolving_Cluster_3()
{

C_cc_422 = FALSE;
C_error = FALSE;

C_error_436 = FALSE;
if (stable)

{
if (OK) bb = b / a;
if (C_cc)

{
C_cc_422 = b != 0.0;

C_error = b == 0.0;
}

C_error_436 = (C_cc ? C_error : FALSE);

}
C_cc_428 = (C_cc ? C_cc_422 : FALSE);

}
static void equationSolving_Cluster_4()

{
if (OK) cc = c / a;

}

static void equationSolving_Cluster_delays()
{

stable = next_stable;
equationSolving_STEP_initialize();

}
EXTERN logical equationSolving_iterate()
{

if (stable)
{

if (!r_equationSolving_a(&a)) return FALSE;
if (!r_equationSolving_b(&b)) return FALSE;
if (!r_equationSolving_c(&c)) return FALSE;

}
equationSolving_Cluster_2();

equationSolving_Cluster_3();
if (stable) equationSolving_Cluster_4();

equationSolving_Cluster_1();
if (stable)
if (C_err) w_equationSolving_oc(oc);

if (C_y) w_equationSolving_x2(x2);
if (C_x1) w_equationSolving_x1(x1);

equationSolving_Cluster_delays();
return TRUE;

}

Figure 10: Generated C code of the solver : statically scheduled clusters

The code comprises one main computation cluster equationSolving_Cluster_1, that performs
an iteration of the resolution, and three auxiliary clusters. By contrast to the previous code gen-
eration method, which globally relies on the clock hierarchy and locally relies (for each equivalence
class of the hierarchy) on the scheduling graph, clustering globally relies on the scheduling graph
and locally relies (for each cluster of the graph) on the clock hierarchy.

The principle of clustering is to partition the scheduling graph into computations that rely on
the exact same set of inputs. Conversely, one can also cluster the scheduling graph of a program
according to its output signals. A cluster can be executed atomically as soon as its inputs are
available. The clock of a cluster is given by the common ancestor of its nodes in the clock hierarchy.
Let G ⊆ X2 be a scheduling graph on the set of signals X , I ⊂ X the input signals in this graph.
Then, for any x ∈ X and J ⊆ I, x belongs to the cluster J , written x ∈ CJ , iff pred∗

G(x) ∩ I = J .

RR n° 6894

16 Besnard, Gautier & Talpin

Cluster_2 =C{a}

Cluster_3 =C{a,b}

Cluster_4 =C{a,c}

Cluster_1 =C{a,b,c}

Figure 11: A cluster of G depends on the same set of inputs J

In the case of the solver, Figure 11, three inputs a, b, c can lead to, at most, 23 = 8 clusters,
plus one for delayed signals (as explained below). Clustering is, fortunately, never combinatoric. In
the case of the solver, only four clusters are non-empty. Furthermore, the static scheduling of the
main iteration function shows that these clusters are subject to inter-cluster data-dependencies. For
instance, variable OK is defined in Cluster_2 and then used in Cluster_3, meaning that these two
clusters could be merged.

Cluster_2→ Cluster_3→ Cluster_4→ Cluster_1

A feature of our clustering technique maximizes the possibility to adapt it to the structure of the
scheduling graph. It is to make all combinatoric clusters of the process precede one that is in charge
of updating variables : ∀i, Cluster_i→ Cluster_delays.

Note In general, there is a great flexibility in choosing a good partition of the scheduling graph.
Any clustering is optimal with respect to some arbitrary criterion. Monolithic clustering (one
cluster for the whole process) minimizes scheduling overhead and concurrency. Extreme clustering
(one cluster per signal) maximizes scheduling overhead and concurrency. To avoid a combinatoric
exploration of all partitions, Polychrony relies on heuristics to combine neighbor clusters together
(those who always execute one after the other).

6 Clustered code generation with dynamic scheduling

Clustered code generation can be used for multi-threaded simulation by equipping it with dynamic

scheduling artifacts. The code generation method implements clusters by tasks and generates syn-
chronizations between tasks. Its principles are outlined in Figures 12 and 13.� One task Ti is generated for each cluster Cluster_i, for each input-output function, plus one

called T0 for the iterate function iterate.� The code of clusters Cluster_i is unchanged.� Each task Ti has a semaphore Si.

INRIA

Code generation strategies with Polychrony 17� Each task Ti starts by waiting on its Mi predecessors with wait(Si)statements.� Each task Ti ends by signaling all its successors j = 1, ..Ni with signal(Sij).

void * X_Ti() { /* task i */

while (true) {

pK_Isem_wait(Si);

... /* for all predecessors of i*/

pK_Isem_wait(Si);

X_Cluster_i();

pK_Isem_signal(Si1);

... /* for all successors of i */

pK_Isem_signal(SiNi);

}

}

Figure 12: Code template of a cluster task� The iterate function starts execution by signaling all source tasks j = 1, ..N0 with signal(S0j)� The iterate function ends by waiting on its sink tasks with wait(S0) statements.

void * X_iterate_Task() /* Task 0 */

{

while (true) {

/* signals the semaphores of

all source tasks */

pK_Isem_signal(S01); ?

...

pK_Isem_signal(S0N0); ?

/* wait on own semaphore */

for all sink tasks */

pK_Isem_wait(S0);

...

pK_Isem_wait(S0);

}

}

Figure 13: Code template of the iterate task

The semaphores and tasks are created in the _initialize function of the generated code. When
simulation code is generated, a _terminate task is also added to kill all tasks of the application. The
complete generated code for the clustered and dynamically scheduled solver is given in Figure 14.

RR n° 6894

18 Besnard, Gautier & Talpin

EXTERN logical equationSolving_initialize() {
bb = 0.0e0;

stable = TRUE;
mx = 0.0e0;
next_yy = 1.0;

equationSolving_STEP_initialize();
pK_Isem_ini(0,0);

pK_Isem_ini(1,0);
...

pK_Isem_ini(11,0);
pK_Isem_ini(12,0);
pK_Task_create(0,_a_Task);

pK_Task_create(1,_b_Task);
pK_Task_create(2,_c_Task);

pK_Task_create(3,_equationSolving_Cluster_2_Task);
pK_Task_create(4,_equationSolving_Cluster_3_Task);
pK_Task_create(5,_equationSolving_Cluster_4_Task);

pK_Task_create(6,_equationSolving_Cluster_1_Task);
pK_Task_create(10,_equationSolving_Cluster_delays_Task);

pK_Task_create(7,_oc_Task);
pK_Task_create(8,_x2_Task);

pK_Task_create(9,_x1_Task);
pK_Task_create(11,_equationSolving_iterate_Task);
pK_Task_create(12,_equationSolving_terminate_Task);

return TRUE;
}

pK_decl_Task(_equationSolving_iterate_Task) {
while(TRUE)
{

pK_Isem_signal(0);
pK_Isem_signal(1);

pK_Isem_signal(2);
pK_Isem_wait(11);

}
}
static void equationSolving_Cluster_1()

{ ... }
pK_decl_Task(_equationSolving_Cluster_1_Task) {

while(TRUE)
{

pK_Isem_wait(6);

pK_Isem_wait(6);
pK_Isem_wait(6);

equationSolving_Cluster_1();
pK_Isem_signal(7);

pK_Isem_signal(9);
pK_Isem_signal(8);

}

}
static void equationSolving_Cluster_2()

{ ... }
pK_decl_Task(_equationSolving_Cluster_2_Task) {

while(TRUE)

{
pK_Isem_wait(3);

equationSolving_Cluster_2();
pK_Isem_signal(5);

pK_Isem_signal(4);
pK_Isem_signal(6);

}

}
static void equationSolving_Cluster_3()

{ ...}
pK_decl_Task(_equationSolving_Cluster_3_Task) {

while(TRUE)
{

pK_Isem_wait(4);
pK_Isem_wait(4);

equationSolving_Cluster_3();
pK_Isem_signal(6);

}

}
static void equationSolving_Cluster_4()

{ ...}
pK_decl_Task(_equationSolving_Cluster_4_Task) {

while(TRUE)
{

pK_Isem_wait(5);

pK_Isem_wait(5);
if (stable) equationSolving_Cluster_4();

pK_Isem_signal(6);
}

}

static void equationSolving_Cluster_delays()
{ ... }

pK_decl_Task(_equationSolving_Cluster_delays_Task) {
while(TRUE)

{
pK_Isem_wait(10);
pK_Isem_wait(10);

pK_Isem_wait(10);
equationSolving_Cluster_delays();

pK_Isem_signal(11);
}

}

pK_decl_Task(_a_Task) {
while(TRUE)

{
pK_Isem_wait(0);

if (stable)
if (!r_equationSolving_a(&a))

{

pK_Isem_signal(12);
return NULL;

}
pK_Isem_signal(3);

}

}
pK_decl_Task(_x1_Task) {

while(TRUE)
{

pK_Isem_wait(9);
if (C_x1) w_equationSolving_x1(x1);
pK_Isem_signal(10);

}
}

pK_decl_Task(_equationSolving_terminate_Task) {
pK_Isem_wait(12);
pK_Task_Cancel(0,_a_Task);

pK_Task_Cancel(1,_b_Task);
pK_Task_Cancel(2,_c_Task);

pK_Task_Cancel(3,_equationSolving_Cluster_2_Task);
pK_Task_Cancel(4,_equationSolving_Cluster_3_Task);

pK_Task_Cancel(5,_equationSolving_Cluster_4_Task);
pK_Task_Cancel(6,_equationSolving_Cluster_1_Task);
pK_Task_Cancel(7,_oc_Task);

pK_Task_Cancel(8,_x2_Task);
pK_Task_Cancel(9,_x1_Task);

pK_Task_Cancel(10,_equationSolving_Cluster_delays_Task);
pK_Task_Cancel(11,_equationSolving_iterate_Task);

}

Figure 14: Generated C code of the solver : dynamically scheduled clusters

INRIA

Code generation strategies with Polychrony 19

7 Distributed code generation

Distributed code generation in Polychrony follows along the same principles as for dynamically
scheduled clustered code generation. While clustered code generation is automatic, distribution
requires additional information to be provided by the user. Namely:� A block-diagramming description of the architecture software.� A topological description of the target architecture.� A morphism to map software diagrams onto the target architecture blocks.

Figure 15: Overview of a distributed code

Automated distribution consists of a global compilation script that proceeds with the following
steps:

1. Hierarchization of the main program structure (sub-programs may still be compiled separately)

2. “Booleanization” signals clocks are represented by booleans.

3. Partition of the main program according to the given software architecture.

4. Extractions of sub-graphs induced by each partition.

5. Synthesis of interfaces for each partition (projection, i/o dependences).

6. Addition of communication informations.

7. Compilation of each partition into clusters.

8. Communications are generated in the i/o module (the simulation code generator uses the MPI
“Message-Passing Interface”).

9. The main program is responsible for initiating/finalizing communications.

7.1 Topological annotations

The distribution methodology is applied on the example of Section 1.1 in Figure 16. The user
partition is specified by associating the program with a few pragmas.

The pragma RunOn specifies the location on which a set of partitions is computed. For example,
the expression RunOn {e1} "1" specifies that the partition labelled with e1 is mapped on the
location 1. The statement e1::PROC1{} additionally declares e1 as being the partition consisting
of the subprocess PROC1.

RR n° 6894

20 Besnard, Gautier & Talpin

The pragma Topology associates the input or output signals of the program with a location.
For example, the pragma Topology {a,b} "1" tells that the input signals a and b must be read
from location 1.

The pragma Target specifies the API used to generate code that implements communication.
for instance, Target "MPI" says that the MPI library is used.

process equationSolving =
(? real a,b,c;

! boolean error;
real x1, x2;
)

pragmas
Topology {b,a} "1"

Topology {c} "2"
Topology {x1, x2} "2"
Topology {error} "1"

Target "MPI"
RunOn {e1} "1"

RunOn {e2} "2"
end pragmas

(| e1:: PROC1{}
| e2:: PROC2{}
|)

where
label e1,e2;

boolean OK;
real x;
err2;

process PROC1 =
(? real a, b,c,x;

err2;

! boolean OK;
real x2;

x1;
boolean error;

)

(| (| err1 := err
| a1 := x21

| a2 := x
| (| x1 := a1 default a2

| error := err1 default err2

|)
|) where real a2, a1;

event err1; end
| SecondDegree{0.0001}(when OK,a,b,c)

| OK := a/=0.0
|)

where

real x21;
event err;

end
;
process PROC2 =

(? boolean OK;
real b, c;

! real x;
err2;

)
(| b ^= c
| FirstDegree(when (not OK),b,c)

|)
;

process SecondDegree =
{ real epsilon; }
(? event OK;

real a, b, c;
! event err;

real x21, x2;
)

...
;

process FirstDegree =

(? boolean Compute;
real b, c;

! real x;
boolean err2;
)

...
where

end ;
end ;

Figure 16: Functional partition of the solver

7.2 Communication annotations

Figure 17 displays the program transformation resulting of the functional partition requested by the
user. Some signals have been added to the interface of the partitions : signals and clocks produced
on one end of the system and used on the other must be communicated.

process equationSolving_EXTRACT_1_TRA =
(? boolean err2;

real x, a, b, c;

boolean C_cc_1692, C_error;
! boolean error;

real x1, x2;
boolean stable, C_cc;

)
pragmas

RunOn "1"

DefinedClockHierarchy
Environment {c} "1"

Environment {b} "3"
Environment {a} "5"

Environment {error} "6"
Environment {x1} "7"
Environment {x2} "8"

Sending {stable} "9" "equationSolving_EXTRACT_2"
Sending {C_cc} "10" "equationSolving_EXTRACT_2"

Receiving {x} "11" "equationSolving_EXTRACT_2"
Receiving {err2} "12" "equationSolving_EXTRACT_2"
Receiving {C_cc_1692} "13" "equationSolving_EXTRACT_2"

Receiving {C_error} "14" "equationSolving_EXTRACT_2"

process equationSolving_EXTRACT_2_TRA =
end pragmas

...

end %equationSolving_EXTRACT_1_TRA%;
(? real b, c;

boolean stable, C_cc;
! real x;

boolean err2, C_cc_1692, C_error;
)

pragmas

RunOn "2"
DefinedClockHierarchy

Environment {c} "2"
Environment {b} "4"

Receiving {stable} "9" "equationSolving_EXTRACT_1"
Receiving {C_cc} "10" "equationSolving_EXTRACT_1"
Sending {x} "11" "equationSolving_EXTRACT_1"

Sending {err2} "12" "equationSolving_EXTRACT_1"
Sending {C_cc_1692} "13" "equationSolving_EXTRACT_1"

Sending {C_error} "14" "equationSolving_EXTRACT_1"
end pragmas
....

end %equationSolving_EXTRACT_2_TRA%;

Figure 17: The extracted sub-graphs after the partition

INRIA

Code generation strategies with Polychrony 21

Communications are specified using additional pragmas. Pragma Environment associates an
input or output signal to the location of a communication channel. For instance, Environment c

"1" means that signal c is communicated along channel 1.
Pragma Receiving associates an input signal with a channel location and its sending process.

For instance, the pragma Receiving {x} "11" "equationSolving EXTRACT 2" tells that signal x
is sent from process equationSolving EXTRACT 1 TRA along channel 11.

Similarly, pragma Sending associates an output signal with a channel location and its receiving
processes. For example, Sending {C cc} "10" "equationSolving EXTRACT 2” tells that the out-
put signal C cc of process equationSolving EXTRACT 1 TRA is sent to process equationSolving EXTRACT 2

along channel 10.

7.3 Code generation

Multi-threaded, dynamically scheduled, code generation, as described in Section 6, can be applied
on the program resulting of the transformations performed for automated distribution.

The information carried by the pragmas Environment, Receiving and Sending is used to gen-
erate communications. For instance, Figure 18 gives the generated code that implements commu-
nications for the signal C error sent by the process equationSolving EXTRACT 2 to the process
equationSolving EXTRACT 1 using the MPI library.

From the file : equationSolving EXTRACT 1 io.c

EXTERN logical r_equationSolving_EXTRACT_1_C_error(logical *C_error)

MPI_Recv(C_error, /* name */
1,MPI_INT, /* type */

equationSolving_EXTRACT_2, /* received from */
14, /* the logical tag of the pragma receiving */
MPI_COMM_WORLD, /* MPI specific parameter */

MPI_STATUS_IGNORE); /* MPI specific parameter */
return TRUE;

From the file : equationSolving EXTRACT 2 io.c

EXTERN void w_equationSolving_EXTRACT_2_C_error(logical C_error)

MPI_Send(&C_error, /* name */
1,MPI_INT, /* type */

equationSolving_EXTRACT_1, /* sent to */
14, /* the logical tag of the pragma sending */
MPI_COMM_WORLD); /* MPI specific parameter */

Figure 18: Example of communications

8 Modular code generation

Polychrony provides all needed services to implement a separate compilation methodology [4]. Sep-
arate compilation consists of compiling a process, of exporting its model, and use this model in
another process. For the purpose of exporting and importing the model of a process whose code
has been compiled separately, the Signal compiler provides an annotation mechanism to associate
a profile to a compiled program.

This profile consists of an abstraction of the original process’ model consisting of the synchro-
nization and scheduling relations of the input and output signals of the process. These properties
may be provided by the designer (in the case of legacy C code, for instance) or calculated by the
compiler (in the case of a compiled Signal program). The annotations also gives the possibility
to specify the language in which the program is compiled (C, C++, Java) since the function call
convention and variable binding may vary slightly from one to another.

Starting from a Signal program, separate compilation supports both of the code generation
strategies we previously outlined : with or without clusters. Considering the specification of the

RR n° 6894

22 Besnard, Gautier & Talpin

solver, we detail all possible compilation scenarios in which the sub-processes FirstDegree and
SecondDegree are compiled separately.

8.1 Sequential code generation for separate compilation

The first compilation method consists of associating each of the sub-processes of the solver with a
monolithic iterate function. Figure 19 gives the Signal abstractions that are inferred (or could be
user-provided) in order to use the FirstDegree and SecondDegree processes as external functions.

process FirstDegree_ABSTRACT =

(? boolean Compute;
real b, c;

! real x;

boolean err2, C_bb, C_error;
)

spec (| (| Compute --> x
| b --> x
| c --> x

| Compute --> err2
| b --> err2

| c --> err2
|)

| (| Compute ^= b ^= c
| when Compute ^= C_bb ^= C_error
| when C_bb ^= x

| when C_error ^= err2
|)

|)
pragmas

BlackBox "FirstDegree"

end pragmas
external "C"

%FirstDegree_ABSTRACT%;
process SecondDegree_ABSTRACT =

(? boolean OK;
real a, b, c;

! boolean err;

real x21, x2;
boolean stable, C_y, C_err, C_x;

)
spec (| (| OK --> err

| a --> err

| b --> err
| c --> err

| OK --> x21
| a --> x21
| b --> x21

| c --> x21
| OK --> x2

| a --> x2
| b --> x2

| c --> x2
|)

| (| stable ^= C_y ^= C_x

| when OK ^= C_err
| when stable ^= OK ^= a ^= b ^= c

| when C_y ^= x2
| when C_err ^= err
| when C_x ^= x21

|)
|)

pragmas
BlackBox "SecondDegree"

end pragmas
external "C"

%SecondDegree_ABSTRACT%;

Figure 19: Black boxes abstraction of the FirstDegree and SecondDegree processes

One can observe that the interfaces of the processes FirstDegree and SecondDegree have been
modified. The reason is that it is necessary to export some signals to rebuild the clock hierarchy of
the original programs in the calling program. For a black box abstraction, the profile of a process,
listed affter the keyword spec, is composed of its input/output synchronization and scheduling
relations.

The C code corresponding to process SecondDegree is given in Figure 20. The difference with
that of Section 4 is that its parameters are carried by a structure data in order to, of course, have
multiple calls of the process in different call contexts.

INRIA

Code generation strategies with Polychrony 23

typedef struct

{
/* ==> input signals */

logical OK;
float a, b, c;

/* ==> output signals */
logical err;
float x21, x2;

logical stable, C_y, C_err, C_x;
/* ==> local signals */

float bb, dd, yy, next_yy;
logical biterate;
float mx;

logical next_stable;
float s, XZX_135, x_176;

logical OK_263,C_d,C_d_277,C__282,C__288;
} SecondDegree;

EXTERN logical SecondDegree_initialize
(SecondDegree *data) {

data->stable = TRUE;

data->bb = 0.0e0;
data->mx = 0.0e0;

data->next_yy = 1.0;
data->err = TRUE;
SecondDegree_STEP_initialize(data);

return TRUE;
}

static void SecondDegree_STEP_initialize
(SecondDegree *data) {

data->C_d = FALSE;
data->C__282 = FALSE;

}

EXTERN void SecondDegree_iterate(SecondDegree *data,
logical _OK_,float _a_,float _b_, float _c_,

logical *_err_,float *_x21_,float *_x2_,
logical *_stable_,logical _C_y_,

logical *_C_err_,logical *_C_x_) {
*_stable_ = data->stable;
data->OK = _OK_;

data->a = _a_;
data->b = _b_;

data->c = _c_;
if (data->stable)

if (data->OK) {

data->bb = data->b / data->a;

data->dd = data->bb * data->bb - 4.0 * (data->c / data->a);
data->C_d = data->dd > 0.0;

data->C__282 = data->dd == 0.0;
data->C_err = data->dd < 0.0;

*_C_err_ = data->C_err;
if (data->C_err) *_err_ = TRUE;

}

data->OK_263 = (data->stable ? data->OK : FALSE);
data->C_d_277 = (data->OK ? data->C_d : FALSE);

if (data->C_d_277) data->mx = data->dd;
data->C__288 = (data->OK ? data->C__282 : FALSE);
if (data->C_d_277) data->yy = data->dd/2.0;

else data->yy = data->next_yy;
if (data->C_d_277) data->biterate = TRUE;

else data->biterate = !data->stable;
if (data->biterate)

data->next_yy = (data->yy + data->mx / data->yy)/2.0;
else data->next_yy = data->yy;
data->XZX_135 = data->next_yy - data->yy;

if (data->XZX_135 >= 0.0) data->s = data->XZX_135;
else data->s = -data->XZX_135;

data->next_stable = data->s < (0.00001);
data->C_y = data->next_stable && data->biterate;
data->C_x = data->C_y || data->C__288;

*_C_y_ = data->C_y;
*_C_x_ = data->C_x;

if (data->C_y) {
data->x2 = -((data->bb - data->yy) / 2.0);

*_x2_ = data->x2;
}

if (data->C_x) {

if (data->C_y) data->x_176 = -((data->bb + data->yy) / 2.0);
else data->x_176 = -data->bb / 2.0;

data->x21 = data->x_176;
*_x21_ = data->x21;

}
SecondDegree_STEP_finalize(data);

}

EXTERN logical SecondDegree_STEP_finalize(SecondDegree *data) {
data->stable = data->next_stable;

SecondDegree_STEP_initialize(data);
return TRUE;

}

Figure 20: C code for the SecondDegree model: the body part for separated compilation

Figure 21 defines the Signal program in which the separately compiled processes FirstDegree
and SecondDegree are called. The modular code generation scheme proposed so far appears best
suited to integrate small and mostly sequential specification.

process equationSolving = (? real a, b, c; ! real x2, x1; boolean oc;)
(| OK := a/=0.0

| (err1,a1,x2,stable,C_y,C_err,C_x) := SecondDegree_ABSTRACT(OK,a,b,c)
| (a2,err2,C_bb,C_error) := FirstDegree_ABSTRACT(not OK,b,c)
| x1 := a1 default a2

| oc := (when err1) default err2
| a ^= b ^= c

|) where ...
end;

Figure 21: Importing separately compiled processes in the specification of the solver

In the case of the solver, however, the second degree function is one sophisticated process. In
particular, it contains an internal loop controlled by the stable signal. However, during the separate
compilation of SecondDegree_ABSTRACT, we applied the compiler heuristics of section 2.5 in order
to produce a sequential C function from this process. In doing so, its interface was slightly modified
with additional clock and scheduling relations (FIgure 19). It turns out that these additional

RR n° 6894

24 Besnard, Gautier & Talpin

scheduling relations, put in the context of process equationSolving, form a causality cycle that is
reported by the compiler, Figure 22. Code generation cannot proceed further.

process equationSolving_CYC = ()

(| (err1,a1,x2,stable,C_y,C_err,C_x) := SecondDegree_ABSTRACT(OK,a,b,c)
| stable --> when stable | when stable --> a | a --> x2 | x2 --> stable
|) %equationSolving_CYC% ;

Figure 22: Cycle induced by the imported processes as reported by the compiler

8.2 Clustered code generation for separate compilation

To prevent for the scenario of Figure 22 from happening, it is better suited to apply clustering code
generation techniques in order to avoid spurious causality cycles from being introduced. The profile
of a clustered and separately compiled process, Figure 23, is called a “grey box”.

process SecondDegree_ABSTRACT =

(? boolean OK;

real a, b, c;

! boolean err;

real x21, x2;

boolean stable, C_y, C_err, C_x;

)

pragmas GreyBox "SecondDegree"

end pragmas

(| (| Tick := true

| when Tick ^= stable ^= C_y ^= C_x

| when OK ^= C_err

| when stable ^= OK ^= a ^= b ^= c

| when C_y ^= x2

| when C_err ^= err

| when C_x ^= x21

|)

| (| nlabel :: (err,x21,x2,C_y,C_err,C_x) :=

SecondDegree_Cluster_1(OK)

| nlabel ^= when Tick

|)

| (| nlabel_328 :: SecondDegree_Cluster_2(OK)

| nlabel_328 ^= when OK

|)

| (| nlabel_329 :: SecondDegree_Cluster_3(OK)

| nlabel_329 ^= when OK

|)

| (| nlabel_330 :: SecondDegree_Cluster_4(OK,a)

| nlabel_330 ^= when stable

|)

| (| nlabel_331 :: SecondDegree_Cluster_5(OK,b)

| nlabel_331 ^= when stable

|)

| (| nlabel_332 :: SecondDegree_Cluster_6(OK,c)

| nlabel_332 ^= when stable

|)

| (| nlabel_333 :: SecondDegree_Cluster_7(OK)

| nlabel_333 ^= when Tick

|)

| (| nlabel_368 :: stable := SecondDegree_Cluster_delays()

| nlabel_368 ^= when Tick

|)

| (| c --> nlabel

| b --> nlabel

| a --> nlabel

| OK --> nlabel

| nlabel_328 --> nlabel

| OK --> nlabel_328

| nlabel_329 --> nlabel

| OK --> nlabel_329

| nlabel_330 --> nlabel_329

| nlabel_330 --> nlabel_328

| a --> nlabel_330

| OK --> nlabel_330

| nlabel_331 --> nlabel_328

| b --> nlabel_331

| OK --> nlabel_331

| nlabel_332 --> nlabel_329

| c --> nlabel_332

| OK --> nlabel_332

| nlabel_333 --> nlabel

| OK --> nlabel_333

| nlabel_333 --> nlabel_368

| nlabel_332 --> nlabel_368

| nlabel_331 --> nlabel_368

| nlabel_330 --> nlabel_368

| nlabel_329 --> nlabel_368

| nlabel_328 --> nlabel_368

| nlabel --> nlabel_368

|)

|)

where

boolean Tick;

label nlabel, nlabel_328, nlabel_329, nlabel_330,

nlabel_331, nlabel_332, nlabel_333, nlabel_368;

action SecondDegree_Cluster_1 =

(? boolean OK;

! boolean err;

real x21, x2;

boolean C_y, C_err, C_x;

)

pragmas

DefinedClockHierarchy

Cluster

BlackBox ""

end pragmas

external "C"

%SecondDegree_Cluster_1%;

action SecondDegree_Cluster_2 =

(? boolean OK;)

pragmas

DefinedClockHierarchy

Cluster

BlackBox ""

end pragmas

external "C"

%SecondDegree_Cluster_2%;

action SecondDegree_Cluster_3 =

(? boolean OK;)

pragmas

DefinedClockHierarchy

Cluster

BlackBox ""

end pragmas

external "C"

%SecondDegree_Cluster_3%;

action SecondDegree_Cluster_4 =

(? boolean OK; real a;)

pragmas

DefinedClockHierarchy

Cluster

BlackBox ""

end pragmas

external "C"

%SecondDegree_Cluster_4%;

action SecondDegree_Cluster_5 =

(? boolean OK; real b;)

pragmas

DefinedClockHierarchy

Cluster

BlackBox ""

end pragmas

external "C"

%SecondDegree_Cluster_5%;

action SecondDegree_Cluster_6 =

(? boolean OK; real c;)

pragmas

DefinedClockHierarchy

Cluster

BlackBox ""

end pragmas

external "C"

%SecondDegree_Cluster_6%;

action SecondDegree_Cluster_7 =

(? boolean OK;)

pragmas

DefinedClockHierarchy

Cluster

BlackBox ""

end pragmas

external "C"

%SecondDegree_Cluster_7%;

action SecondDegree_Cluster_delays =

(! boolean stable init true;)

pragmas

DelayCluster

Cluster

BlackBox ""

end pragmas

external "C"

%SecondDegree_Cluster_delays%;

end

%SecondDegree_ABSTRACT%;

Figure 23: The “grey box” abstraction of the SecondDegree model

A grey box provides the same information as a “black box”, but it partitions it into the clusters
that are generated from the original process, and details the clocks and the scheduling relations
between the clusters. In turn, its profile contains sufficient information to schedule the clusters, and
hence, call them in the appropriate order dictated by the calling context.

INRIA

Code generation strategies with Polychrony 25

EXTERN logical SecondDegree_initialize(SecondDegree *data) {
data->stable = TRUE;

data->bb = 0.0e0;
data->mx = 0.0e0;
data->next_yy = 1.0;

data->err = TRUE;
SecondDegree_STEP_initialize(data);

return TRUE;
}

EXTERN void SecondDegree_Cluster_1 (
SecondDegree *data,logical _OK_,logical *_err_,
float *_x21_,float *_x2_,logical *_C_y_,

logical *_C_err_,logical *_C_x_)
{

data->OK = _OK_;
data->C_d = FALSE;
data->C__282 = FALSE;

if (data->stable) {
if (data->OK) {

data->dd = data->bb * data->bb - 4.0 * data->cc;
data->C_d = data->dd > 0.0;

data->C__282 = data->dd == 0.0;
data->C_err = data->dd < 0.0;
if (data->C__282)

data->x = -data->bb / 2.0;
}

}
data->C_d_277 = (data->OK ? data->C_d : FALSE);
if (data->C_d_277) data->mx = data->dd;

data->C__288 = (data->OK ? data->C__282 : FALSE);
data->C_311 = !data->C_d_277;

if (data->C_d_277) data->yy = data->dd / 2.0;
else data->yy = data->next_yy;

if (data->C_d_277) data->biterate = TRUE;
else data->biterate = !data->stable;
data->C = !data->biterate;

if (data->biterate)
data->next_yy = (data->yy + data->mx / data->yy) / 2.0;

else data->next_yy = data->yy;
data->XZX_135 = data->next_yy - data->yy;

data->C_244 = data->XZX_135 >= 0.0;
data->C_247 = !(data->XZX_135 >= 0.0);
if (data->C_244) data->s = data->XZX_135;

else data->s = -data->XZX_135;
data->next_stable = data->s < (0.00001);

data->C_y = data->next_stable && data->biterate;
data->C_260 = data->C_y && data->stable;
data->C_ = data->C_y || data->OK_263;

data->C_x = data->C_y || data->C__288;
data->C_315 = !data->C_y && data->C__288;

data->C_321 = data->stable && data->C_x;
if (data->C_y) {

data->x_158 = -((data->bb - data->yy) / 2.0);
data->x2 = data->x_158;
data->x1 = -((data->bb + data->yy) / 2.0);

}

if (data->C_x) {
if (data->C_y) data->x_176 = data->x1;

else data->x_176 = data->x;
data->x21 = data->x_176;

}

if (data->stable)
if (data->OK) if (data->C_err) *_err_ = TRUE;

if (data->C_x) *_x21_ = data->x21;
if (data->C_y) *_x2_ = data->x2;

*_C_y_ = data->C_y;
if (data->stable)

if (data->OK) *_C_err_ = data->C_err;

*_C_x_ = data->C_x;
}

EXTERN void SecondDegree_Cluster_2
(SecondDegree *data,logical _OK_) {
data->OK = _OK_;

data->bb = data->b / data->a;
}

EXTERN void SecondDegree_Cluster_3
(SecondDegree *data,logical _OK_) {

data->OK = _OK_;
data->cc = data->c / data->a;

}

EXTERN void SecondDegree_Cluster_4

(SecondDegree *data,logical _OK_,float _a_) {
data->OK = _OK_;
data->a = _a_;

}
EXTERN void SecondDegree_Cluster_5

(SecondDegree *data,logical _OK_,float _b_) {
data->OK = _OK_;

data->b = _b_;
}
EXTERN void SecondDegree_Cluster_6

(SecondDegree *data,logical _OK_,float _c_) {
data->OK = _OK_;

data->c = _c_;
}

EXTERN void SecondDegree_Cluster_7
(SecondDegree *data,logical _OK_) {
data->OK = _OK_;

data->OK_263 = (data->stable ? data->OK : FALSE);
}

EXTERN void SecondDegree_Cluster_delays
(SecondDegree *data,logical *_stable_) {
data->stable = data->next_stable;

*_stable_ = data->stable;
SecondDegree_STEP_initialize(data);

}
static void SecondDegree_STEP_initialize

(SecondDegree *data) {}

Figure 24: Generated modular C code for the second degree process

The clustered C code of process SecondDegree is given in Figure 24. It differs from that of
Section 5 in the parameter data that carries its calling context (its input, output and local signals).
Another noticeable change is the disappearance of the iterate function. Instead, the calling program
schedules the generated clusters in the order best appropriate to its local context, as shown in the
next Figure 25.

In the generated code of the solver, Figure 25, the clusters of the separately compiled processes
FirstDegree and SecondDegree, are called in the very order dictated by scheduling constraints of
the solver process, avoiding the introduction of any spurious cycle.

RR n° 6894

26 Besnard, Gautier & Talpin

EXTERN logical equationSolving_initialize() {
stable = TRUE;

SecondDegree_initialize(&SecondDegree1);
FirstDegree_initialize(&FirstDegree2);
equationSolving_STEP_initialize();

return TRUE;
}

static void equationSolving_STEP_initialize() {
C_err = FALSE;

C_bb = FALSE;
OK = FALSE;
err1 = FALSE;

XZX_116 = FALSE;
}

EXTERN logical equationSolving_iterate() {
if (stable) {

if (!r_equationSolving_a(&a)) return FALSE;

if (!r_equationSolving_b(&b)) return FALSE;
if (!r_equationSolving_c(&c)) return FALSE;

OK = a != 0.0;
SecondDegree_Cluster_4(&SecondDegree1,OK,a);

SecondDegree_Cluster_5(&SecondDegree1,OK,b);
SecondDegree_Cluster_6(&SecondDegree1,OK,c);
XZX_116 = !OK;

FirstDegree_Cluster_2
(&FirstDegree2,XZX_116,b,&C_bb,&C_error);

FirstDegree_Cluster_3(&FirstDegree2,XZX_116,c);
C_error_183 = (XZX_116 ? C_error : FALSE);
if (XZX_116) FirstDegree_Cluster_1

(&FirstDegree2,XZX_116,&a2,&err2);
if (OK) {

SecondDegree_Cluster_2(&SecondDegree1,OK);
SecondDegree_Cluster_3(&SecondDegree1,OK);

}}
SecondDegree_Cluster_7(&SecondDegree1,OK);
SecondDegree_Cluster_1

(&SecondDegree1,OK,&err1,&a1,&x2,&C_y,&C_err,&C_x);
C_error = FALSE;

C_bb_177 = (XZX_116 ? C_bb : FALSE);
C_x1 = C_x || C_bb_177;

if (stable) {
err1_211 = (C_err ? err1 : FALSE);
C_oc = C_error_183 || err1_211;

if (C_oc)
{

if (err1_211) oc = TRUE; else oc = err2;
w_equationSolving_oc(oc);

}

}
if (C_y) w_equationSolving_x2(x2);

if (C_x1) {
if (C_x) x1 = a1; else x1 = a2;

w_equationSolving_x1(x1);
}

equationSolving_STEP_finalize();

return TRUE;
}

EXTERN logical equationSolving_STEP_finalize() {
SecondDegree_Cluster_delays(&SecondDegree1,&stable);
C_error = FALSE;

equationSolving_STEP_initialize();
return TRUE;

}

Figure 25: Generated C code of the solver importing the first and second degree clusters

8.3 Legacy code encapsulation for separate compilation

Just as with the separate compilation functionalities we just described, foreign programs, in C or
Java code, can be encapsulated with a grey-box or black-box profile and used in a Signal program.

Such an imported program module can be declared as a process (like the second degree func-
tion), an action (a cluster), node (a Scade-like program) or function (it is combinatoric). We
consider here only the process and the function models. A process may be declared safe (if it
doesn’t have any side-effect), deterministic, or unsafe (by default).

For instance, the arithmetic C function abs could be declared as function abs=(? real x; !

real s;). Implicitly, this would mean that it has no side-effect, that its input and output signals
are synchronous, i.e. x ^= s and that its output depends on its input, i.e. x --> s.

Let us consider the slightly bigger example of the first degree function FirstDegree. Figure 26
displays its C code (left) and necessary profile (right) before import in the solver program. One
notice that FirstDegree has no side effect. However, output variables oc and x are not always
produced. One is produced when cond is false, the other when it is true. Therefore, its profile
cannot be declared as a function. It must be declared as a safe process.

As a consequence, its synchronization and scheduling relation must be made explicit. They are
that the output signals depend on all input signals, written {cond , b, c} --> {x , oc}. The
signal x is synchronized to the condition that cond is true and that b is non-zero. The signal oc is
present iff cond is false and b is zero.

INRIA

Code generation strategies with Polychrony 27

extern void FirstDegree(int cond, float b, float c,

float *x, int *oc) {

if (cond) {

if (b != 0.0)

*x = -(c/b);

else

*oc = (c !=0.0);

}

}

process FirstDegree =

(? boolean cond; real b, c;

! real x; boolean oc;)

safe

spec (| {cond , b, c} --> {x , oc}

| x ^= when cond when (b/=0.0)

| oc ^= when not cond when (b=0.0)

|)

external "C" ;

Figure 26: Legacy C code and profile of the first degree function

The profile of Figure 26, right, can actually be automatically inferred from its source C code,
left, by using Polychrony’s functionality for interpreting C code in SSA form. Figure 27 displays
the result of this interpretation, left, and the abstraction of the generated process, right. In the
encoding of the SSA form of the first degree function, each sequence of instruction is associated with
a label (here L1 to L3). Each individual instruction is translated by an equation and each label is
translated by a boolean signal that guards its activation. As a result, the Signal interpretation has
an identical behavior as the original C program.

process FirstDegree =

(? boolean cond;

real b;

real c;

! real x;

boolean oc;

)

pragmas

I_Names {cond,b,c}

O_Names {x,oc}

end pragmas

(| (| __pK_1 := b_2 ^+ c_3 |)

| cond_1 ^= b_2 ^= c_3 ^= bb_0

| (| D_1739_6 := ((c_3 cell __pK_1)

/(b_2 cell __pK_1)) when L1

| D_1740_7 := (-D_1739_6) when L1

| x_8 := D_1740_7 when L1

|)

| (| D_1741_4 := (c_3/=0.0) when L2

| oc_5 := D_1741_4 when L2

|)

| when bb_0 ^= cond ^= b ^= c

| (| cond_1 := cond cell (^bb_0)

| b_2 := b cell (^bb_0)

| c_3 := c cell (^bb_0)

|)

| (| x := x_8 when L3

| oc := oc_5 when L3

|)

| (| bb_0 := (not (^bb_0))$1 init true

| L0 := (cond_1) when bb_0

| L1 := (b_2/=0.0) when L0

| L2 := (not (b_2/=0.0)) when L0

| L3 := (true when L2) default (true when L1)

default (not (cond_1) when bb_0

|)

|)

where

event __pK_1;

boolean bb_0,L0,L1,L2,L3;

real D_1739_6, b_2, c_3, x_8;

real D_1740_7;

boolean D_1741_4, cond_1, oc_5;

end

%FirstDegree%;

process FirstDegree_ABSTRACT =

(? boolean cond;

real b, c;

! real x;

boolean oc, bb_0, C_x, C_oc;

)

spec (| (| cond --> x

| b --> x

| c --> x

| cond --> oc

| b --> oc

| c --> oc

|)

| (| bb_0 ^= bb_0

| when bb_0 ^= cond ^= b

^= c ^= C_x ^= C_oc

| when C_x ^= x

| when C_oc ^= oc

|)

|)

pragmas

BlackBox "FirstDegree"

end pragmas

external "C"

%FirstDegree_ABSTRACT%;

Figure 27: Model and abstraction of the legacy first degree function

RR n° 6894

28 Besnard, Gautier & Talpin

Moreover, the abstraction of that process by its synchronization and scheduling relations (Fig-
ure 27, right), once projected on the input-output signals of the process, displays similar relations
as that given above, Figure 26.

The last figure, Figure 28 displays the generated code of the solver in which the FirstDegree

process is an external C program written and when SecondDegree has been compiled separately
into clusters (section 8.2).

EXTERN logical equationSolving1_initialize () {
stable = TRUE;
SecondDegree_initialize (&SecondDegree1);

equationSolving1_STEP_initialize ();
return TRUE;

}
static void equationSolving1_STEP_initialize () {

C_err = FALSE;
OK = FALSE;
err1 = FALSE;

XZX_110 = FALSE;
C_err2 = FALSE;

}
EXTERN logical equationSolving1_iterate () {

if (stable) {

if (!r_equationSolving1_a (&a)) return FALSE;
if (!r_equationSolving1_b (&b)) return FALSE;

if (!r_equationSolving1_c (&c)) return FALSE;
OK = a != 0.0;

SecondDegree_Cluster_4 (&SecondDegree1, OK, a);
SecondDegree_Cluster_5 (&SecondDegree1, OK, b);
SecondDegree_Cluster_6 (&SecondDegree1, OK, c);

XZX_110 = !OK;
FirstDegree (XZX_110, b, c, &a2, &err2);

C_err2 = XZX_110 && (b == 0.0);
if (OK)
{

SecondDegree_Cluster_2 (&SecondDegree1, OK);

SecondDegree_Cluster_3 (&SecondDegree1, OK);
}}

SecondDegree_Cluster_7 (&SecondDegree1, OK);

SecondDegree_Cluster_1 (&SecondDegree1, OK, &err1, &a1,
&x2, &C_y, &C_err, &C_x);

C_a2_179 = (stable ? ((b != 0.0) && XZX_110) : FALSE);
C_x1 = C_x || C_a2_179;

if (stable) {
err1_207 = (C_err ? err1 : FALSE);
C_oc = C_err2 || err1_207;

if (C_oc)
{

if (err1_207) oc = TRUE; else oc = err2;
w_equationSolving1_oc (oc);

}}

if (C_y) w_equationSolving1_x2 (x2);
if (C_x1) {

if (C_x) x1 = a1; else x1 = a2;
w_equationSolving1_x1 (x1);

}
equationSolving1_STEP_finalize ();
return TRUE;

}
EXTERN logical equationSolving1_STEP_finalize () {

SecondDegree_Cluster_delays (&SecondDegree1, &stable);
equationSolving1_STEP_initialize ();
return TRUE;

}

Figure 28: Generated code of the solver calling external C and clustered Signal modules

9 Conclusion

In this report, we have informally presented all the code generation strategies available in the
Polychrony toolset [1] by considering a program solving second degree equations. While math-
ematically simple, this program exhibits non-trivial modes, synchronization relations, scheduling
relations, which we analyzed and transformed to illustrate several usage scenarios and apply one of
the following code generation strategies :� Sequential code generation, Section 4, consists of producing one iterate function for a complete

Signal program.� Clustered code generation with static scheduling, Section 5, consists of partitioning the gen-
erated code into one cluster per set of input signals. The iterate function is a static scheduler
of these clusters� Clustered code generation with dynamic scheduling, Section 6, consists of a dynamic scheduling
a set of program clusters.� Distributed code generation, Section 7, consists of physically partitioning a program across
several locations and of installing point to point communications between them.� Sequential code generation for separate compilation, Section 8.1, consists of associating the
sequential generated code of a process with a profile describing its synthesized synchronization
and scheduling relations. The calling context of the process is passed to it as parameter.

INRIA

Code generation strategies with Polychrony 29� Clustered code generation for separate compilation, Section 8.2, consists of associating the clus-
tered generated code of a process with a profile describing the synchronization and scheduling
relations of and between its clusters. The scheduler of the process is generated in each call
context.� Legacy code encapsulation for separate compilation, Section 8.3, consists of associating a
foreign function or procedure with a profile which declares its synchronization and scheduling
relations, for the purpose of properly calling it from within a Signal program.

RR n° 6894

30 Besnard, Gautier & Talpin

List of Figures

1 Block diagrammatic rendering of the solver . 4
2 Equational rendering of the solver . 5
3 A specification of the solver in Signal . 6
4 Rendering of the solver transformed by the clock calculus 10
5 Equation solving example: the set of computations of the master clock. 11
6 Single loop code . 12
7 Generated C code of the solver : the main program 12
8 Generated C code of the solver : the i/o part . 13
9 Generated C code of the solver : the body part . 14
10 Generated C code of the solver : statically scheduled clusters 15
11 A cluster of G depends on the same set of inputs J 16
12 Code template of a cluster task . 17
13 Code template of the iterate task . 17
14 Generated C code of the solver : dynamically scheduled clusters 18
15 Overview of a distributed code . 19
16 Functional partition of the solver . 20
17 The extracted sub-graphs after the partition . 20
18 Example of communications . 21
19 Black boxes abstraction of the FirstDegree and SecondDegree processes 22
20 C code for the SecondDegree model: the body part for separated compilation 23
21 Importing separately compiled processes in the specification of the solver 23
22 Cycle induced by the imported processes as reported by the compiler 24
23 The “grey box” abstraction of the SecondDegree model 24
24 Generated modular C code for the second degree process 25
25 Generated C code of the solver importing the first and second degree clusters 26
26 Legacy C code and profile of the first degree function 27
27 Model and abstraction of the legacy first degree function 27
28 Generated code of the solver calling external C and clustered Signal modules 28

INRIA

Code generation strategies with Polychrony 31

References

[1] Espresso Team, IRISA. Polychrony tool. http://www.irisa.fr/espresso/Polychrony.

[2] Löıc Besnard, Thierry Gautier, and Paul Le Guernic. Signal V4-Inria Version: Reference
manual. http://www.irisa.fr/espresso/Polychrony.

[3] Tochéou Amagbegnon, Löıc Besnard,and Paul Le Guernic Inria report n. 2290, 1994. Arbores-
cent Canonical Form of Boolean Expressions.

[4] Thierry Gautier and Paul Le Guernic. Code generation in the SACRES project. Towards
System Safety, Proceedings of the Safety-critical Systems Symposium, SSS’99, Huntingdon,
UK, Springer, 1999, 127-149.

[5] Pascal Aubry, Paul Le Guernic, and Sylvain Machard. Synchronous distribution of Signal
programs. In Proc. of the 29th Hawaii International Conference on System Sciences, vol. 1.
1996, IEEE Computer Society Press, 656–665.

[6] Olivier Maffëıs and Paul Le Guernic. Distributed Implementation of SIGNAL: Scheduling
& Graph Clustering. In 3rd International School and Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems,1994. LNCS vol. 863, Springer-Verlag, p547-566.

RR n° 6894

Centre de recherche INRIA Rennes – Bretagne Atlantique
IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	An example

	Data structures
	Clock relations
	Scheduling relations
	Clock hierarchization
	Clock-driven graph scheduling
	Refinement heuristics

	Code generation principle
	The main program
	The input-output interface
	The iterate function

	Sequential code generation
	Clustered code generation with static scheduling
	Clustered code generation with dynamic scheduling
	Distributed code generation
	Topological annotations
	Communication annotations
	Code generation

	Modular code generation
	Sequential code generation for separate compilation
	Clustered code generation for separate compilation
	Legacy code encapsulation for separate compilation

	Conclusion

