K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, 2001.

C. A. Coello-coello, G. B. Lamont, and D. A. , Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, 2007.

E. Zitzler, M. Laumanns, and S. Bleuler, A Tutorial on Evolutionary Multiobjective Optimization, Lecture Notes in Economics and Mathematical Systems, vol.535, pp.3-38, 2004.
DOI : 10.1007/978-3-642-17144-4_1

J. D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, Proceedings of the 1st International Conference on Genetic Algorithms, pp.93-100, 1985.

C. M. Fonseca and P. J. Fleming, Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization, Proceedings of the 5th International Conference on Genetic Algorithms, pp.416-423, 1993.

N. Srinivas and K. Deb, Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms, Evolutionary Computation, vol.27, issue.3, pp.221-248, 1994.
DOI : 10.1162/evco.1994.2.3.221

K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol.6, issue.2, pp.182-197, 2002.
DOI : 10.1109/4235.996017

J. Horn, N. Nafpliotis, and D. E. Goldberg, A niched Pareto genetic algorithm for multiobjective optimization, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp.82-87, 1994.
DOI : 10.1109/ICEC.1994.350037

E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation, vol.3, issue.4, pp.257-271, 1999.
DOI : 10.1109/4235.797969

E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength pareto evolutionary algorithm, Swiss Federal Institute of Technology (ETH), 2001.

D. Corne, J. D. Knowles, and M. J. Oates, The pareto envelope-based selection algorithm for multi-objective optimisation, Conference on Parallel Problem Solving from Nature (PPSN VI), pp.839-848, 1917.

E. Zitzler, L. Thiele, M. Laumanns, C. M. Foneseca, V. Grunert et al., Performance assessment of multiobjective optimizers: an analysis and review, IEEE Transactions on Evolutionary Computation, vol.7, issue.2, pp.117-132, 2003.
DOI : 10.1109/TEVC.2003.810758

M. P. Fourman, Compaction of symbolic layout using genetic algorithms, Proceedings of the 1st International Conference on Genetic Algorithms, pp.141-153, 1985.

J. D. Knowles and D. Corne, Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy, Evolutionary Computation, vol.8, issue.2, pp.149-172, 2000.
DOI : 10.1109/4235.797969

M. Laumanns, E. Zitzler, and L. Thiele, A unified model for multiobjective evolutionary algorithms with elitism, IEEE Congress on Evolutionary Computation, pp.46-53, 2000.

K. Deb, A robust evolutionary framework for multi-objective optimization, Proceedings of the 10th annual conference on Genetic and evolutionary computation, GECCO '08, pp.633-640, 2008.
DOI : 10.1145/1389095.1389223

S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, PISA ??? A Platform and Programming Language Independent Interface for Search Algorithms, Lecture Notes in Computer Science, vol.2632, pp.494-508, 2003.
DOI : 10.1007/3-540-36970-8_35

J. J. Durillo, A. J. Nebro, F. Luna, B. Dorrosoro, and E. Alba, jMetal: A java framework for developing multi-objective optimization metaheuristics, 2006.

K. C. Tan, T. H. Lee, D. Khoo, and E. F. Khor, A multiobjective evolutionary algorithm toolbox for computer-aided multiobjective optimization, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), vol.31, issue.4, pp.537-556, 2001.
DOI : 10.1109/3477.938259

E. Zitzler and S. Künzli, Indicator-Based Selection in Multiobjective Search, Lecture Notes in Computer Science, vol.3242, pp.832-842, 2004.
DOI : 10.1007/978-3-540-30217-9_84

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 2003.

E. Talbi, Metaheuristics: from design to implementation, 2009.
DOI : 10.1002/9780470496916

URL : https://hal.archives-ouvertes.fr/hal-00750681

K. Miettinen, Nonlinear Multiobjective Optimization, ser. International Series in Operations Research and Management Science, 1999.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

K. Deb, M. Mohan, and S. Mishra, Evaluating the ??-Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions, Evolutionary Computation, vol.26, issue.4, pp.501-525, 2005.
DOI : 10.1109/TEVC.2003.810758

J. Molina, L. V. Santana, A. G. Hernández-díaz, C. A. Coello, and R. Caballero, g-dominance: Reference point based dominance for multiobjective metaheuristics, European Journal of Operational Research, vol.197, issue.2, 2008.
DOI : 10.1016/j.ejor.2008.07.015

N. Beume, B. Naujoks, and M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume, European Journal of Operational Research, vol.181, issue.3, pp.1653-1669, 2007.
DOI : 10.1016/j.ejor.2006.08.008

D. E. Goldberg and J. Richardson, Genetic algorithms with sharing for multimodal function optimization, Second International Conference on Genetic Algorithms and their application, pp.41-49, 1987.

J. H. Holland, Adaptation in Natural and Artificial Systems, 1975.

K. A. Jong, An analysis of the behavior of a class of genetic adaptive systems, 1975.

S. Helbig and D. Pateva, On several concepts for ??-efficiency, Operations-Research-Spektrum, vol.14, issue.3, pp.179-186, 1994.
DOI : 10.1007/BF00932614

S. Cahon, N. Melab, and E. Talbi, ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics, Journal of Heuristics, vol.10, issue.3, pp.357-380, 2004.
DOI : 10.1023/B:HEUR.0000026900.92269.ec

A. Liefooghe, M. Basseur, L. Jourdan, and E. Talbi, ParadisEO- MOEO: A framework for evolutionary multi-objective optimization, " in Evolutionary Multi-Criterion Optimization, Fourth International Conference ser. Lecture Notes in Computer Science, pp.386-400, 2007.

M. Keijzer, J. Merelo, G. Romero, and M. Schoenauer, Evolving Objects: A General Purpose Evolutionary Computation Library, Proceedings of the 5th International Conference on Artificial Evolution (EA'01), pp.231-244, 2001.
DOI : 10.1007/3-540-46033-0_19

F. Streichert and H. Ulmer, JavaEvA : a java based framework for evolutionary algorithms, Centre for Bioinformatics Tübingen, 2005.

C. Gagné and M. Parizeau, GENERICITY IN EVOLUTIONARY COMPUTATION SOFTWARE TOOLS: PRINCIPLES AND CASE-STUDY, International Journal on Artificial Intelligence Tools, vol.15, issue.02, pp.173-194, 2006.
DOI : 10.1142/S021821300600262X

S. Poles, M. Vassileva, and D. Sasaki, Multiobjective Optimization Software, Lecture Notes in Computer ScienceLNCS, vol.5252, pp.329-348, 2008.
DOI : 10.1007/978-3-540-88908-3_12

E. Talbi, A taxonomy of hybrid metaheuristics, Journal of Heuristics, vol.8, issue.5, pp.541-564, 2002.
DOI : 10.1023/A:1016540724870

M. Basseur, F. Seynhaeve, and E. Talbi, Design of multi-objective evolutionary algorithms: application to the flow-shop scheduling problem, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), pp.1151-1156, 2002.
DOI : 10.1109/CEC.2002.1004405

URL : https://hal.archives-ouvertes.fr/inria-00092668

H. Meunier, E. Talbi, and P. Reininger, A multiobjective genetic algorithm for radio network optimization, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), pp.317-324, 2000.
DOI : 10.1109/CEC.2000.870312

A. Liefooghe, L. Jourdan, and E. Talbi, Metaheuristics and their hybridization to solve the bi-objective ring star problem: a comparative study, Institut National de Recherche en Informatique et Automatique (INRIA), 2008.
URL : https://hal.archives-ouvertes.fr/inria-00275659

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, Scalable test problems for evolutionary multi-objective optimization, Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, pp.105-145, 2005.

A. Liefooghe, M. Basseur, L. Jourdan, and E. Talbi, Combinatorial Optimization of Stochastic Multi-objective Problems: An Application to the Flow-Shop Scheduling Problem, ser. Lecture Notes in Computer Science, pp.457-471, 2007.
DOI : 10.1007/978-3-540-70928-2_36

URL : https://hal.archives-ouvertes.fr/inria-00269974

J. Boisson, L. Jourdan, E. Talbi, and D. Horvath, Parallel multiobjective algorithms for the molecular docking problem, IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00336578

E. Talbi, L. Jourdan, J. Garcia-nieto, and E. Alba, Comparison of population based metaheuristics for feature selection: Application to microarray data classification, 2008 IEEE/ACS International Conference on Computer Systems and Applications, pp.45-52, 2008.
DOI : 10.1109/AICCSA.2008.4493515

URL : https://hal.archives-ouvertes.fr/hal-00837520

O. Schuetze, L. Jourdan, T. Legrand, E. Talbi, and J. Wojkiewicz, New analysis of the optimization of electromagnetic shielding properties using conducting polymers and a multi???objective approach, Polymers for Advanced Technologies, vol.75, issue.3, pp.762-769, 2008.
DOI : 10.1002/pat.1030

E. Talbi, S. Cahon, and N. Melab, Designing cellular networks using a parallel hybrid metaheuristic on the computational grid, Computer Communications, vol.30, issue.4, pp.698-713, 2007.
DOI : 10.1016/j.comcom.2006.08.017