F. Lobo, C. Lima, and Z. Michalewicz, Parameter Setting in Evolutionary Algorithms, ser. Studies in Computational Intelligence, 2007.

L. , D. Costa, and M. Schoenauer, GUIDE, a Graphical User Interface for Evolutionary Algorithms Design, GECCO Workshop on Open- Source Software (SoftGEC), 2007.

A. Eiben, Z. Michalewicz, M. Schoenauer, and J. Smith, Parameter Setting in Evolutionary Algorithms, ser, Studies in Computational Intelligence

V. Maniezzo, R. Battiti, and J. Watson, Learning and Intelligent Optimization, ser. Foundations of Computing, 2008.

E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross et al., Hyperheuristics: An Emerging Direction in Modern Search Technology, pp.457-474, 2003.

J. Maturana, F. Saubion, and G. Rudolph, A Compass to Guide Genetic Algorithms, Proc. PPSN'08, pp.256-265, 2008.
DOI : 10.1007/978-3-540-87700-4_26

D. Goldberg, Probability matching, the magnitude of reinforcement, and classifier system bidding, Machine Learning, pp.407-426, 1990.
DOI : 10.1007/BF00116878

A. Fialho, L. Da-costa, M. Schoenauer, M. Sebag, and G. Rudolph, Extreme Value Based Adaptive Operator Selection, Proc. PPSN'08, pp.175-184, 2008.
DOI : 10.1007/978-3-540-87700-4_18

URL : https://hal.archives-ouvertes.fr/inria-00287355

L. Costa, A. Fialho, M. Schoenauer, and M. Sebag, Adaptive operator selection with dynamic multi-armed bandits, Proc. GECCO'08, M. Keijzer et al, pp.913-920, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00278542

L. Davis, Adapting operator probabilities in genetic algorithms, Proc. ICGA'89, pp.61-69, 1989.

F. Lobo, D. Goldberg, and T. Bäck, Decision making in a hybrid genetic algorithm, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97), pp.121-125, 1997.
DOI : 10.1109/ICEC.1997.592281

A. Tuson and P. Ross, Adapting Operator Settings in Genetic Algorithms, Evolutionary Computation, vol.1, issue.3, pp.161-184, 1998.
DOI : 10.1162/evco.1998.6.2.161

H. J. Barbosa and A. M. Sá, On adaptive operator probabilities in real coded genetic algorithms, Proc. XX Intl. Conf. of the Chilean Computer Science Society, 2000.

B. A. Julstrom, What have you done for me lately? adapting operator probabilities in a steady-state genetic algorithm on genetic algorithms, Proc. ICGA'95, pp.81-87, 1995.

J. M. Whitacre, T. Q. Pham, and R. A. Sarker, Use of statistical outlier detection method in adaptive evolutionary algorithms, Proceedings of the 8th annual conference on Genetic and evolutionary computation , GECCO '06, pp.1345-1352, 2006.
DOI : 10.1145/1143997.1144205

D. Thierens, An adaptive pursuit strategy for allocating operator probabilities, Proceedings of the 2005 conference on Genetic and evolutionary computation , GECCO '05, pp.1539-1546, 2005.
DOI : 10.1145/1068009.1068251

L. Wong and H. Leung, A novel approach in parameter adaptation and diversity maintenance for GAs, Soft Computing, vol.7, issue.8, pp.506-515, 2003.

P. Auer, N. Cesa-bianchi, and P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning, pp.235-256, 2002.

C. Hartland, S. Gelly, N. Baskiotis, O. Teytaud, and M. Sebag, Multiarmed bandit, dynamic environments and meta-bandits, Online Trading of Exploration and Exploitation Workshop, NIPS, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00113668

E. Page, CONTINUOUS INSPECTION SCHEMES, Biometrika, vol.41, issue.1-2, pp.100-115, 1954.
DOI : 10.1093/biomet/41.1-2.100

A. Fialho, L. Da-costa, M. Schoenauer, and M. Sebag, Dynamic Multi-Armed Bandits and Extreme Value-Based Rewards for Adaptive Operator Selection in Evolutionary Algorithms, Proc. LION'09, 2009.
DOI : 10.1007/978-3-642-11169-3_13

URL : https://hal.archives-ouvertes.fr/inria-00377401

S. A. Cook, The complexity of theorem-proving procedures, Proceedings of the third annual ACM symposium on Theory of computing , STOC '71, pp.151-158, 1971.
DOI : 10.1145/800157.805047

H. Hoos and T. Stützle, SATLIB: An Online Resource for Research on SAT. www.satlib.org, pp.283-292, 2000.

M. Birattari, The problem of tuning metaheuristics as seen from a machine learning perspective, 2004.

B. Yuan and M. Gallagher, Statistical Racing Techniques for Improved Empirical Evaluation of Evolutionary Algorithms, Proc. PPSN'04, pp.172-181, 2004.
DOI : 10.1007/978-3-540-30217-9_18