Circuit visiting 10 ordered vertices in infinite grids

David Coudert 1 Frédéric Giroire 1 Ignasi Sau 1, 2
1 MASCOTTE - Algorithms, simulation, combinatorics and optimization for telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : A circuit in a simple undirected graph G=(V,E) is a sequence of vertices {v_1,v_2,...,v_{k+1}} such that v_1=v_{k+1} and {v_i,v_{i+1}} \in E for i=1,...,k. A circuit C is said to be edge-simple if no edge of G is used twice in C. In this article we study the following problem: which is the largest integer k such that, given any subset of k ordered vertices of an infinite square grid, there exists an edge-simple circuit visiting the k vertices in the prescribed order? We prove that k=10. To this end, we first provide a counterexample implying that k<11. To show that k>=10, we introduce a methodology, based on the notion of core graph, to reduce drastically the number of possible vertex configurations, and then we test each one of the resulting configurations with an ILP solver.
Type de document :
[Research Report] RR-6910, INRIA. 2009
Liste complète des métadonnées

Littérature citée [21 références]  Voir  Masquer  Télécharger
Contributeur : David Coudert <>
Soumis le : vendredi 24 avril 2009 - 17:25:57
Dernière modification le : jeudi 11 janvier 2018 - 16:03:59
Document(s) archivé(s) le : vendredi 12 octobre 2012 - 17:16:07


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00378586, version 1


David Coudert, Frédéric Giroire, Ignasi Sau. Circuit visiting 10 ordered vertices in infinite grids. [Research Report] RR-6910, INRIA. 2009. 〈inria-00378586〉



Consultations de la notice


Téléchargements de fichiers