
HAL Id: inria-00379310
https://inria.hal.science/inria-00379310

Submitted on 28 Apr 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate Specular Reflections in Real-Time
David Roger, Nicolas Holzschuch

To cite this version:
David Roger, Nicolas Holzschuch. Accurate Specular Reflections in Real-Time. Computer Graphics
Forum, 2006, 25 (3), pp.293 - 302. �10.1111/j.1467-8659.2006.00948.x�. �inria-00379310�

https://inria.hal.science/inria-00379310
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2006 / E. Gröller and L. Szirmay-Kalos
(Guest Editors)

Volume 25 (2006), Number 3

Accurate Specular Reflections in Real-Time

David Roger and Nicolas Holzschuch

ARTIS–GRAVIR† IMAG INRIA

Figure 1: Left: Specular reflections computed with our algorithm. Middle: ray-traced reference. Right: Environment map reflection.

Abstract
Specular reflections provide many important visual cues in our daily environment. They inform us of the shape of
objects, of the material they are made of, of their relative positions, etc. Specular reflections on curved objects are
usually approximated using environment maps. In this paper, we present a new algorithm for real-time computation
of specular reflections on curved objects, based on an exact computation for the reflection of each scene vertex.
Our method exhibits all the required parallax effects and can handle arbitrary proximity between the reflector and
the reflected objects.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Reflections on specular objects are important in our percep-
tion of a synthetic 3D scene. They convey important infor-
mation about the specular reflector itself, conveying its shape
and its fabric. They can also give information about the rel-
ative spatial positions of objects or the distance between the
reflector and the reflected object. Finally, they give informa-
tion about objects that are not directly visible (see Figure 1).

Real-time computation of specular reflections is usually

† GRAVIR is UMR 5527 GRAVIR, a joint research laboratory of
CNRS, INRIA, INPG and UJF.

done using environment mapping. While these techniques
perform quite well in a wide variety of cases, they have their
shortcomings. They perform best if the reflected object is at
a large distance from the reflector, but as the reflected ob-
ject moves closer to the specular reflector, reflection errors
become more visible. The worst case for environment map-
ping techniques is when the reflector is in contact with the
object being reflected, as in Figure 1. Environment mapping
technique also suffer from the parallax problem: from all the
points on the specular reflector, we are seeing the same side
of the reflected objects, even if the specular reflector is large
enough to see the different sides of an object.

In this paper, we present a new method for computing
specular reflections. Our method is vertex based: we com-

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

pute the accurate reflected position of each vertex in the
scene, then interpolate between these positions. The advan-
tage of our method is that it is computing the reflection of
the object depending on the position on the reflector. We are
therefore exhibiting all parallax effects, and we can handle
proximity and even contact between the reflector and the re-
flected objects.

However, our method also has obvious limitations: as it is
vertex-based and uses the graphics hardware for linear inter-
polation between the projections of the vertices, artifacts can
appear if the model is not finely tessellated enough. These
artifacts can be overcome using either adaptive tessellation
or curvilinear interpolation. If the model is finely tesselated,
these artifacts are not visible. Our algorithm provides solu-
tions for situations where no convincing solutions existed
before.

Our paper is organized as follows: in the next section, we
review previous work on real-time computation of specular
reflections. Then, in section 3, we present our algorithm for
computing vertex-based specular reflections on curved sur-
faces. In section 4, we present experiments on various scenes
and comparisons with existing methods. Finally, in section 5,
we conclude and present future directions for research.

2. Previous Works

Ray-tracing has historically been used to compute reflec-
tions on specular objects. Despite several advances using ei-
ther highly parallel computers [WSB01,WBWS01,WSS05]
or GPUs [CHH02, PBMH02], ray-tracing is not, currently,
available for real-time computations on a standard worksta-
tion.

Planar specular reflectors are easy to model, at the cost of
a second rendering pass, with a camera placed in the mir-
ror position of the viewpoint [McR96]. Curved reflectors are
more complex; the easiest method uses environment map-
ping [BN76].

Environment mapping computes an image of the scene
and maps it on the reflector as if it was located at an infi-
nite distance. The reflection only depends on the direction
of the incoming vector from the viewpoint, and can be eas-
ily computed in real-time on graphics hardware. Obviously,
environment mapping suffers from parallax issues, since the
reflection depends on a single image computed from a sin-
gle point of view. There is also the question of accuracy:
since all objects are assumed to be at an infinite distance,
their reflection is not necessarily accurate, and the difference
becomes larger as the object gets closer to the reflector.

There has been much research to improve the original en-
vironment mapping algorithm. To remove the parallax is-
sues, Martin and Popescu [MP04] interpolate between sev-
eral environment maps. Yu et al. [YYM05] used an envi-
ronment light-field, containing all the information of a light

field, but organized like an environment map. Both methods
remove parallax issues, at the cost of a longer precomputa-
tion time. The specular reflector is also restricted, and can
only be moved inside the area where the light field or the
environment maps were computed. If it is moved outside of
this area, the environment light field must be recomputed, a
costly step.

Other research have dealt with distance-based reflection.
The simplest method is to replace the infinite-radius sphere
associated with the environment map by a finite-radius
sphere [Bjo04]; the reflection changes with the position of
the reflector in the environment, but parallax effects can not
be modeled.

More accurate methods use the Z-buffer to compute a dis-
tance map along with the environment map. For each pixel of
the environment map, they know both its color and the dis-
tance to the center of the reflected object. Patow [Pat95] and
Kalos et al. [SKALP05] used this information to select the
proper pixel inside the environment map. Their reflections
change depending on the distance between the reflector and
the reflected object. Kalos et al. [SKALP05] use the GPU for
a fast computation of the reflected pixel, and achieve real-
time rendering for moderately complex scenes. Still, image
based methods are inherently limited to the information in-
cluded in the original image.

For planar reflectors, the easiest way to compute the re-
flection is vertex-based, using an alternative camera to com-
pute the image of the scene as reflected by the planar reflec-
tor. For curved reflectors, there is no simple rule to tell the
position of the reflection of the objects. Even for a finite-
radius sphere, the simplest specular reflector, the position of
the reflection depends on a 4th-order polynomial.

Mitchell and Hanrahan [MH92] used the equation of the
underlying surface to compute the characteristic points in the
caustic created by a curved reflector. Ofek [Ofe98] and Ofek
and Rappoport [OR98] computed the explosion map to find
intersected triangles ID based on the reflected vector. Chen
and Arvo [CA00b, CA00a] used ray-tracing to compute the
reflection of some vertices, then applied perturbation to these
reflections to compute the reflection of neighboring vertices.

Estalella et al. [EMD∗05] computed the reflection of scene
vertices on curved specular objects by an iterative method.
At each iteration, the position of the reflection of the ver-
tex is modified, using the angles between the normal, the
vertex and the viewpoint, in the direction where these an-
gles will follow Descartes’ law. They did a fixed number of
iterations, and have implemented the method only on the
CPU. In a subsequent work, developed concurrently with
ours, Estalella et al. [EMDT06] extended this work to the
GPU, searching the position of the reflection of the vertex in
image space.

Our method is comparable to that of Estalella et
al. [EMD∗05, EMDT06], but we use a different refinement

c© The Eurographics Association and Blackwell Publishing 2006.

D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

V

Specular

reflector

E
P

Figure 2: Finding the reflection of a given vertex

criterion, keeping geometric bounds on the reflected position
for robustness. We use these geometric bounds for adaptive
refinement, stopping the iteration as soon as we reach sub-
pixel accuracy. In our experience, these two elements are of
great importance: in all the scenes we used, we encountered
robustness-related issues, especially for reflections at graz-
ing angle. We also noticed that the number of iterations re-
quired to reach convergence varies greatly with the position
of the reflection.

3. Algorithm
3.1. Principles
Our algorithm is vertex-based: we compute the reflected po-
sition of all the scene vertices, then let the graphics hardware
interpolate between these vertices and solve visibility issues
with a Z-buffer. Our algorithm therefore inserts itself as a re-
placement for the usual projection of the vertices. Knowing
the position of the viewpoint, E, for each vertex V , we find
the point P on the specular reflector that corresponds to the
position of V (see Figure 2).

The difficult part in this algorithm is computing P as a
function of V and E. Except in the most basic case of planar
specular reflectors, there is no simple relationship between
P, V and E. Even for a sphere, the explicit position of P de-
pends on a polynomial of the fourth order; finding the roots
of this polynomial is feasible, but takes actually longer than
the iterative method we use.

According to Fermat’s principle, light travels along paths
of extremal length, so P must correspond to an extremum
of the optical path length ` = EP + PV . We are searching
for extrema of `, or equivalently, for zeros of its first order
derivative, the gradient ∇`.

This is an optimization problem, with a function of two
parameters (the surface of the specular reflector is a 2D man-
ifold). Usually, optimization problems are solved with line
search methods, such as the gradient descent or the con-
jugate gradient methods. These method progress iteratively
from an initial guess. At each step, they know the direction
in which they should progress, but not necessarily the dis-
tance along this direction. Knowing this distance accurately

requires knowledge about the second derivatives of the func-
tion.

Our application is inherently graphical: we are display-
ing the result of our computations on the screen, and chang-
ing parameters — the viewpoint, the reflected scene, the re-
flector — dynamically. One of the most important points
for such graphical applications is temporal coherency: the
reflection of one point must not change suddenly between
frames. We therefore need spatial information about the ac-
curacy of the computations: if we have not yet computed the
position of one point with sub-pixel accuracy, we run the risk
of seeing temporal discontinuities at the next frame. We also
observed in our experiences that the number of iterations re-
quired for convergence varies greatly with the configuration
of the vertex. Spatial information about convergence help in
adapting the number of iterations to the current case.

Line search methods typically use residuals to check the
numerical accuracy of the computations, but they do not pro-
vide information about the spatial accuracy. At each step,
we know the distance traveled from the previous step, but
this information is only linear. Since the reflector is a 2-
dimension surface, it can happen that the algorithm has
closed in on the result along one dimension, but is still far
from it on the other dimension.

The secant method searches for roots of one function f
by replacing it with a linear interpolation between samples,
picking the root of the linear interpolation and iterating.
While the secant method does not guarantee that the root
remains bracketed, it provides a good information about the
accuracy achieved so far, and converges faster than the sim-
pler bisection method. Newton’s method converges faster
than the secant method, but requires computing the deriva-
tive of f .

Since we are looking for zeros of ∇`, we apply to it a
variant of the secant method. At each step, we maintain a
triangle of sample points where we compute ∇` and linearly
interpolate between these gradients. At each step, the trian-
gle of sample points gives us approximate geometric bounds
on the projection of the vertex.

3.2. Algorithm for specular vertex reflection
Our algorithm for computing the reflection of a 3D scene in
a specular reflector uses the following steps:
1. render the scene into the framebuffer, with direct lighting

and shadowing;
2. for all vertices of the scene, find their reflection on the

specular reflector;
3. interpolate between these vertices, computing lighting

and doing hidden surface removal.
For each vertex, finding the position of its reflection is

done iteratively, using a variant of the secant method on the
gradient of the optical path length: at each step, we maintain
a triangle of sample points, and we:

c© The Eurographics Association and Blackwell Publishing 2006.

D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

(a) Example of successive trian-
gles generated by our algorithm

(b) Example image rendered with our
algorithm

0

10

5

(c) Number of iterations required for conver-
gence

Figure 3: Convergence of our iterative system.

• compute the gradient of the optical path length for each
sample point (see section 3.3.2),

• linearly interpolate between these gradients,
• find the resulting gradient with the smallest norm (see sec-

tion 3.3.3).
• discard the original sample point with the largest gradi-

ent, replace it by the new sample point and iterate (see
Figure 3(a)).

At each step, the projected area of the triangle gives us an
indication of the accuracy of our computations. We stop the
computation if this area falls below a certain threshold.

Our method converges quickly in most cases, in 5 to 10
iterations in moderately complex cases but can require up
to 20 iterations for certain difficult points, such as vertices
whose reflection is close to the boundary of the reflector (see
Figure 3(c)).

The method is robust enough to converge even if the initial
set of sample points is poorly chosen. However, it converges
faster if the sample points are close to the actual solution.
Section 3.3.4 describes our strategy for picking the initial
sample points.

Once we have computed the reflection of each vertex, we
project it on the screen and let the graphics hardware does
linear interpolation between the vertices. We exploit the fact
that we know the spatial position of the point being reflected
to compute direction-dependent lighting (see Section 3.3.5).

Hidden surface removal requires special handling, as we
have several possible sources of occlusion: the scene and the
reflector may be hiding each other, parts of the reflector may
be hiding themselves, and parts of the reflected scene are
hiding other parts of the reflected scene. Section 3.3.6 de-
scribes our solution to these combined occlusion issues.

The entire algorithm was implemented on the GPU, using
programmable capabilities for vertex and fragment process-
ing. Hardware implementation issues are described in sec-
tion 3.3.7.

O u
r

r(θ,φ)

Figure 4: To reduce dimensionality, we assume that the re-
flector is star-shaped.

3.3. Details of the algorithm

3.3.1. Specular reflector parameterization

In order to provide interesting reflections, it is better if our
reflector is actually smooth. We also assume that it is pa-
rameterizable. Finally, to reduce the dimensionality of the
problem, we assume that the reflector is star-shaped: there is
a point O that is directly connected to all the points on the
surface of the reflector (see Figure 4).

This reduces the equation of the specular reflector to a
scalar function, r. Using spherical coordinates, for example,
all point P(θ, φ) on the receiver can be expressed as:

P(θ, φ) = O + r(θ, φ)ur with ur =





















sin θ cos φ
sin θ sin φ
cos θ





















For our algorithm, we will also need the variations of the
surface of the reflector: we also compute the derivatives of
the function r.

In a preliminary step, r and its partial derivatives are com-
puted and stored in a texture. Although our algorithm works
with any kind of reflector, the star-shaped hypothesis allows
us to retrieve all the required information about the specular
reflector at any given point with a single texture read. This

c© The Eurographics Association and Blackwell Publishing 2006.

D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

will be useful for implementing our algorithm efficiently on
the GPU.

Using spherical coordinates introduces singularities in the
parameterization, at the poles. To avoid numerical issues in
our computations, we do not use r or its partial derivatives
directly, but we only use 3-dimensional vectors such as P
or ∇r. All computations and interpolations are done in 3D
space, never in parameter space.

3.3.2. Optical path derivatives
Assuming we have a sample point on the surface of the
reflector, we can compute the length ` of the optical path
length from the viewpoint E to the vertex V through P (see
Figure 2):

` = EP + PV

The gradient of the optical path length depends on the
derivative of point P on the reflector surface:

∇` = ∇(EP) + ∇(PV)

∇` = d(P)














−−→EP
EP +

−−→PV
PV















Here d(P) is the derivative of point P, a linear form oper-
ating on a vector. With our parameterization of P on a star-
shaped reflector, d(P) is also reduced in dimension, and we
can express ∇` as a function of ∇r:

∇` = (∇r · e)ur + (uθ · e)uθ + (uφ · e)uφ (1)

with:

e =
−−→EP
EP +

−−→PV
PV

uθ =





















cos θ cos φ
cos θ sin φ
− sin θ





















uφ =





















− sin φ
cos φ
0





















∇r can be expressed as a function of the partial deriva-
tives of r, but it is not actually necessary in our case. We are
storing information about r and its derivatives in a texture,
which will be accessed by the GPU. As a single texture read
gives access to 4 channels, we store r and its gradient ∇r,
saving computations.

3.3.3. Finding a better estimate for vertex reflection
At each step, we have a triangle of sample points (A, B,C).
For all points D, expressed in barycentric coordinates with
respect to (A, B,C):

D = αA + βB + (1 − α − β)C

we compute an approximation ∇̃dD the gradient of ` using
linear approximation:

∇̃dD = α∇dA + β∇dB + (1 − α − β)∇dC

= αa + βb + c

V

E

O

A
B

Figure 5: On a sphere, the reflection lies on the arc (A, B)

Ideally, we would like to select (α, β) such that ∇̃dD = 0.
However, this is not always possible, unless the vectors a, b
and c are linearly dependent. So we pick (α, β) so that ‖∇̃dD‖

is minimum: we derivate ‖∇̃dD‖
2 with respect to α and β,

and find (α, β) such that both derivatives are null. This is
equivalent to solving the linear system:

{

αa2 + β(a · b) + (a · c) = 0
α(a · b) + βb2 + (b · c) = 0

whose determinant is:

δ = a2 b2 − (a · b)2

The (α, β) parameters give us a new point D. We discard the
point in (A, B,C) with the largest gradient and replace it with
point D, then iterate.

In some circumstances, the determinant δ of the system
can be null or very small, making the system ill-conditioned.
When it happens, we backtrack in time, replacing one of
the points {A, B,C} by the most recently discarded point. Of
course, we cannot replace the most recently added point, or
the system would enter an infinite loop.

3.3.4. Initialization

Our method is efficient and converges even if arbitrary sam-
ple points are used as a starting triangle. However, the con-
vergence is faster if the starting triangle is small and close to
the result. It is not necessary for our initial guess to actually
enclose the result, since our algorithm is able to extrapolate
outside the triangle if necessary.

For a spherical reflector, the reflection of a vertex V is in
the plane defined by V , the eye E and the center of the sphere
O. Ofek [Ofe98] shows that the reflected vertex is bound on
the arc of circle [AB] where A (resp. B) is the projection of
V (resp. E) on the reflector (see Figure 5).

For non-spherical reflectors, this property does not hold.
We nevertheless use A and B as as two of our initial points.
The third point C is chosen so that ABC is an equilateral
triangle.

c© The Eurographics Association and Blackwell Publishing 2006.

D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

Specular

reflector

E

P

L

V

Figure 6: Computing the illumination of the reflected scene:
illumination at the reflected point is computed using its
BRDF, with −−→VL and −−→VP as incoming and outgoing direc-
tions; it is then multiplied by the BRDF on the reflector, with
−−→PV and −−→PE as incoming and outgoing directions.

E

P
P’

V’

V

Figure 7: For a ray originating from the eye, we have to re-
solve visibility issues both between P and P′, on the reflector,
and between V and V ′, on the reflected ray.

3.3.5. Direction-dependent lighting on the reflected
scene

When we display a fragment of the reflected scene, we
know its spatial position V and the approximate spatial posi-
tion of its reflection P. We use this information to compute
directionally-dependent lighting:

• compute illumination at point V , using its BRDF, with the
light source L as the incoming direction and the reflected
point P as the outgoing direction (see Figure 6).

• multiply this by the BRDF of the specular reflector at
point P, using the reflected point V as the incoming di-
rection, and the viewpoint E as the outgoing direction.

This simple rule allows us to have directional lighting on
the reflected scene. The lighting on the reflected scene is thus
not necessarily the same as the lighting on the original scene.

3.3.6. Multiple Hidden-Surface Removal
Hidden surface removal requires special handling, as we
have several possible sources of occlusion (see Figure 7):

the scene and the reflector may be occluding each other,
and we also have to conduct hidden-surface removal on the
reflected scene. The ideal solution would be to use several
depth buffers, or a multi-channel depth-buffer. As these are
not available, we have designed a workaround.

For each vertex V , when we compute its projection P,
we store in the depth buffer the distance between P and V .
This way, the Z-buffer of the graphics card naturally removes
fragments of the reflected scene that are hidden by other ob-
jects.

To solve the other occlusion issues, we use the following
strategy:

• pre-render the frontmost back-facing polygons of the re-
flector into a depth texture; clear the Z-buffer and frame-
buffer.

• render the scene, with lighting and shadowing; clear the
stencil-buffer.

• render the reflector, with hidden surface removal. For pix-
els that are touched by the reflector, set the stencil buffer
to 1.

• clear the depth buffer and render the reflected scene us-
ing our algorithm. The fragments generated are discarded
if the stencil buffer is not equal to 1 (using the classical
stencil test) and if they are further away than the back-
faces of the reflector (using the depth texture computed at
the first step).

• (optional) enable blending and render the reflector, com-
puting its illumination.

Our strategy correctly handles occlusions between the re-
flector and the scene (using the stencil test), as well as self
occlusion of the reflector, using the depth texture. Note that
we have to use frontmost back-facing polygons: using the
frontmost front-facing polygons would falsely remove all the
reflected scene for locally convex reflectors, since we are lin-
early interpolating between reflected points that are on the
surface of the reflector.

3.3.7. GPU implementation

We have implemented our algorithm on the GPU for better
efficiency. To compute the reflected position of one vertex,
we need access to the equation and derivatives of the spec-
ular reflector. Since we stored these in a texture to handle
arbitrary specular reflectors, this limits us to two possible
implementation strategies:

• place our algorithm in vertex shader, using graphics hard-
ware with vertex texture fetch (NVidia GeForce 6 and
above).

• place our algorithm in a fragment shader and render the
reflected positions of the vertices in a Vertex Buffer Ob-
ject. In a subsequent pass, render this VBO. This requires
hardware with render-to-vertex-buffer capability, which
was not available to us at the time of writing.

c© The Eurographics Association and Blackwell Publishing 2006.

D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

We have used the first strategy, but found that it suffers
from several limitations: there are less vertex processing
units than fragment processing units on GPUs, so we are not
taking full advantage of its parallel engine; a texture fetch in
a vertex processor has a large latency; vertex processors can
not currently read from cube maps or rectangular textures,
forcing us to use square textures.

As pointed out by [EMD∗05], it makes sense to use a cube
map to store the information about the specular reflector,
since reflector information is queried based on a direction
vector d, as cube maps are. In the current implementation,
we have to convert the vector d into spherical coordinates
(θ, φ), a costly step.

An implementation of our algorithm using the second
strategy is likely to have much better rendering times, as well
as a simpler code.

4. Experiments and Comparisons
4.1. Comparison with other reflection methods
The strongest point of our algorithm is its ability to produce
reflections with great accuracy. Figure 1 and Figure 8 show,
for comparison, pictures generated with our algorithm, ray-
traced pictures for reference, and pictures generated with en-
vironment mapping. Our method handles all the reflection
issues, including contacts between the reflector and the re-
flected object. Differences between our method and the envi-
ronment mapping method especially appear for objects that
are close to the reflector, such as the hand in Figure 1 and the
handle of the kettle in Figure 8. Notice how the reflection of
the handle of the kettle appears to be flying in the reflection
of the room in Figure 8(c).

For objects that are close to the reflector, our algorithm
exhibits all the required parallax effects. One of the prob-
lems with environment mapping techniques is when objects
are visible from some parts of the reflector but not from its
center. In figure 9, our algorithm properly renders the back
of the chair.

Another strong point of our algorithm is its robustness and
temporal stability. As shown in the accompanying video, re-
flections computed by our algorithm exhibit great temporal
stability, without temporal aliasing. This property is essen-
tial for practical applications, such as video games.

4.2. Rendering speed
As we have seen in Figure 3(c), the number of iterations re-
quired for convergence depends greatly on the position of
the reflection. Reflections close to the center of the reflector
converge quickly, in less than 5 iterations, while reflections
of objects located close to the silhouette of the reflector take
longer to reach convergence.

As a consequence, the rendering time depends on the re-
spective position of the object and the reflector. We observe

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10000 20000 30000 40000 50000 60000 70000

Re
nd

er
in

g
tim

e
(m

s)

Number of polygons

Our algorithm
Env. Map.

No Reflections

Figure 10: Observed rendering time (in ms) for render-
ing scenes, with no specular reflections, with environment-
mapping specular reflections and with our algorithm.

the worse timing results if the scene being reflected com-
pletely surrounds the reflector. In that case, many objects are
reflected on the silhouette, dragging the rendering process.
These scenes are also more interesting to render, which is
why we used them nevertheless in all our timings results.

Figure 10 shows the rendering times for scenes of various
sizes, surrounding the specular reflector. For comparison, we
plotted the rendering time for the scene, without specular re-
flections, with specular reflections simulated by environment
mapping and with specular reflections computed by our al-
gorithm. The extra cost introduced by our algorithm is al-
ways larger than that of environment maps, but it remains
within the same order of magnitude. We observe satisfying
performances for scenes up to 40,000 polygons, and we also
observe that rendering times depend linearly on the number
of vertices (all timings in this section were measured on a
2-processor Pentium IV, running at 3 GHz, with a NVidia
GeForce 7800 graphics card). We measure rendering times
in ms by taking the reciprocal of the observed framerate,
multiplied by 1000.

4.3. Robustness and early exit

As our method is based on a triangle of sample points and
uses the gradient of the optical path at each sample point, it
has several advantages:

• we make large steps if we are far from the solution,
and smaller steps as we approach the solution (see Fig-
ure 3(a)). This ensures faster convergence, even with poor
initial conditions.

• the method is remarkably robust, and converges even for
difficult cases, such as vertices reflected at grazing angles;
in that case, it takes longer to reach a converged solution,
but it reaches one, sometimes after more than 10 iterations
(see Figure 3(c)).

c© The Eurographics Association and Blackwell Publishing 2006.

D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

(a) Our method (b) Ray traced reference (c) Environment mapping

Figure 8: Comparison of our results (left) with ray-tracing (center, for reference) and environment-mapping (right). The differ-
ence are especially visible for objects that are close to the kettle, such as its handle and the right hand of the character.

(a) Our algorithm (b) Environment mapping

Figure 9: Our algorithm is able to display objects that are not visible from the center of the reflector. Notice here how the back
of the chair is properly rendered.

We note that for simple cases, our method reaches con-
vergence very quickly (less than 5 iterations), while for dif-
ficult cases it requires more computations. As we are doing
our computations on the vertex processing units, the fact that
different vertices require different computation times is not
a big issue. In our tests, we found that using the early exit
greatly improved the speed of the computations compared
to using a fixed number of iterations.

Spatial consistency could become a larger issue if we
moved the computations to the fragment processing unit, but
we observe (see Figure 3(c)) that all the vertices from one
object have similar complexities; all these vertices should
take roughly the same computation time, ensuring that early
exit also works well in this situation.

4.4. Concave reflectors

Concave reflectors are a special case. As noted by [Ofe98,
OR98], concave reflectors divide space into three zones. Ob-
jects that are in the first zone, close to the reflector, are
reflected only once and upside-up. Objects that are in the

Figure 11: Example of a reflection with a concave reflec-
tor. As our algorithm only captures the first reflection of the
scene in the bowl, the top of the bowl looks empty.

c© The Eurographics Association and Blackwell Publishing 2006.

D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

Figure 13: Example of Z-fighting when a small object is lay-
ered on top of a larger object.

third zone, far from the reflector, are reflected only once,
and upside-down (as in Figure 11). Objects that are in the
second zone, between the other two, can have several reflec-
tions, sometimes an infinite number, and their reflection is
numerically unstable.

As with [Ofe98, OR98], our algorithm properly handles
objects that are either completely in the first or the third
zone, but not objects that cross or are in the second zone.

In our experiments, another problem appeared: concave
objects are highly likely to cause secondary reflections (re-
flections with several bounces inside the specular reflector).
As our algorithm only captures the first reflection of the
scene by the specular reflector, the place where these sec-
ondary reflections should be looks empty.

4.5. Tesselation issues
One of the biggest drawback of our algorithm is that we are
only computing the exact reflection position at the vertices,
and we let the graphics hardware interpolate between the re-
flected positions. Currently, the graphics hardware is only
able to interpolate linearly. This has several consequences.
The first one is that the interpolated objects are located be-
hind the front face of the reflector if the reflector is locally
convex. Thus, the front face of the reflector would hide the
reflection. We had to ensure that the front face of the reflec-
tor was not present in the Z-buffer to avoid this problem.
The second one is that for objects that are not finely tesse-
lated, we see interpolation artifacts. These artifacts can either
be discontinuities between neighboring faces with different
levels of tessellation, or a reflection that looks straight, as
in Figure 12(a). The third consequence appears for thin ob-
jects layered on top of another, larger object (see Figure 13).
Because we are linearly interpolating Z-values as well as po-
sition, the back object may pop in front of the other object,
partially occluding it.

The solution to these issues would be to use curvilin-
ear interpolation, or adaptive tessellation. In the meantime,
we apply our algorithm to well-tessellated scenes (see Fig-
ure 12(b)). Note that curvilinear interpolation of depth val-
ues would be easier with current graphics hardware than
curvilinear interpolation in pixel space.

5. Conclusion and Future Works
We have presented an algorithm for computing reflections on
curved specular surfaces, using vertex-based computations.
Our algorithm produces realistic specular reflections in real-
time, showing all the required parallax effects. Our algorithm
is iterative, with an adaptive number of iterations, and has a
geometry-based criterion for deciding convergence.

In its current form, our algorithm uses linear interpolation
between the projections of the vertices, resulting in artifacts
for scenes that are not finely tessellated. Solutions to this
problem are either adaptive tessellation or curvilinear inter-
polation techniques.

The strongest point of our algorithm is that it can handle
arbitrary geometry on the reflector and the reflected object,
including contact between the two surfaces. It is for this sit-
uation — close proximity between the reflected object and
the reflector — that current environment-map methods do
not provide convincing results. We think that our algorithm
would be best used as a complement to existing methods,
handling the reflection of close objects, while environment-
map based methods would be used for the reflection of fur-
ther objects and the background.

As our algorithm provides a method to compute the re-
flected ray passing by two endpoints, it can be used for other
computations, such as caustics and refraction computations.

References
[Bjo04] B K.: Finite-radius sphere environment

mapping. In GPU Gems. Addison-Wesley, 2004.
[BN76] B J. F., N M. E.: Texture and reflection

in computer generated images. Communications of the
ACM 19, 10 (1976), 542–547.

[CA00a] C M., A J.: Perturbation methods for in-
teractive specular reflections. IEEE Transactions on Visu-
alization and Computer Graphics 6, 3 (2000), 253–264.

[CA00b] C M., A J.: Theory and application of
specular path perturbation. ACM Transactions on Graph-
ics 19, 4 (2000), 246–278.

[CHH02] C N. A., H J. D., H J. C.: The ray
engine. In Graphics Hardware 2002 (2002).

[EMD∗05] E P., M I., D G., T D.,
D O., C F.: Accurate interactive specular re-
flections on curved objects. In Proceedings of VMV 2005
(Nov. 2005).

c© The Eurographics Association and Blackwell Publishing 2006.

D. Roger & N. Holzschuch / Accurate Specular Reflections in Real-Time

(a) The bar is not tessellated, and its reflection is not curved —
as it should be.

(b) The problem disappears if we tessellate the bar.

Figure 12: The scene has to be well tesselated, or artifacts appear because we cannot render curved triangles.

[EMDT06] E P., M I., D G., T
D.: A gpu-driven algorithm for accurate interactive reflec-
tions on curved objects. In Rendering Techniques 2006
(Proc. EG Symposium on Rendering) (June 2006).

[McR96] MR T.: Programming with OpenGL:
Advanced rendering. Siggraph’96 Course, 1996.

[MH92] M D., H P.: Illumination from
curved reflectors. Computer Graphics (Proc. of SIG-
GRAPH ’92) 26, 2 (1992), 283–291.

[MP04] M A., P V.: Reflection Morphing.
Tech. Rep. CSD TR#04-015, Purdue University, 2004.

[Ofe98] O E.: Modeling and Rendering 3-D Objects.
PhD thesis, Institute of Computer Science, The Hebrew
University, 1998.

[OR98] O E., R A.: Interactive reflections
on curved objects. In Proc. of SIGGRAPH ’98 (1998),
pp. 333–342.

[Pat95] P G. A.: Accurate reflections through a Z-
buffered environment map. In Proceedings of Sociedad
Chilena de Ciencias de la Computacin (1995).

[PBMH02] P T. J., B I., M W. R., H-
 P.: Ray tracing on programmable graphics hardware.
ACM Transactions on Graphics (Proc. of Siggraph 2002)
21, 3 (July 2002), 703–712.

[SKALP05] S-K L., A B., L I., P-
 M.: Approximate ray-tracing on the GPU with dis-
tance impostors. Computer Graphics Forum(Proceedings
of Eurographics ’05) 24, 3 (2005).

[WBWS01] W I., B C., W M., S
P.: Interactive rendering with coherent ray tracing. Com-
puter Graphics Forum (Proc. of EUROGRAPHICS 2001)
20, 3 (2001).

[WSB01] W I., S P., B C.: Interactive
distributed ray tracing of highly complex models. In Ren-
dering Techniques 2001 (Proc. 12th EUROGRAPHICS
Workshop on Rendering) (2001), pp. 277–288.

[WSS05] W S., S J., S P.: Rpu: a
programmable ray processing unit for realtime ray trac-
ing. ACM Transactions on Graphics (Proc. of Siggraph
2005) 24, 3 (2005), 434–444.

[YYM05] Y J., Y J., MM L.: Real-time reflec-
tion mapping with parallax. In Proc. I3D 2005 (2005),
pp. 133–138.

c© The Eurographics Association and Blackwell Publishing 2006.

