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Dynamic FTSS in Asynchronous Systems: the Case of Unison

Swan Dubois∗ Maria Gradinariu Potop-Butucaru† Sébastien Tixeuil‡

Abstract

Distributed fault-tolerance can mask the effect of a limited number of permanent faults,
while self-stabilization provides forward recovery after an arbitrary number of transient fault
hit the system. FTSS protocols combine the best of both worlds since they are simultaneously
fault-tolerant and self-stabilizing. To date, FTSS solutions either consider static (i.e. fixed
point) tasks, or assume synchronous scheduling of the system components.

In this paper, we present the first study of dynamic tasks in asynchronous systems, consid-
ering the unison problem as a benchmark. Unison can be seen as a local clock synchronization
problem as neighbors must maintain digital clocks at most one time unit away from each other,
and increment their own clock value infinitely often. We present many impossibility results for
this difficult problem and propose a FTSS solution when the problem is solvable that exhibits
optimal fault containment.
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1 Introduction

The advent of ubiquitous large-scale distributed systems advocates that tolerance to various
kinds of faults and hazards must be included from the very early design of such systems. Self-
stabilization [8, 10] is a versatile technique that permits forward recovery from any kind of
transient fault, while Fault-tolerance [14] is traditionally used to mask the effect of a limited
number of permanent faults. Making distributed systems tolerant to both transient and per-
manent faults is appealing yet proved difficult [15, 1, 2] as impossibility results are expected in
many cases.

The seminal works of [1, 15] define FTSS protocols as protocols that are both fault tolerant
and self-stabilizing, i.e. able to tolerate a few crash faults as well as arbitrary initial mem-
ory corruption. In [1], impossibility results for size computation and election in asynchronous
systems are presented, while unique naming is proved possible. In [15], a general transformer
is presented for synchronous systems, as well as positive results with failure detectors. The
transformer of [15] was proved impossible to transpose to asynchronous systems in [2] due to
the impossibility of tight synchronization in the FTSS context. For local tasks (i.e. tasks whose
correctness can be checked locally, such as vertex coloring), the notion of strict stabilization was
proposed [21, 19]. Strict stabilization guarantees that there exists a containment radius outside
which the effect of permanent faults is masked, provided that the problem specification makes
it possible to break the causality chain that is caused by the faults.

It turns out that FTSS possibility results in fully asynchronous systems known to date are
restricted to static tasks, i.e. tasks that require eventual convergence to some global fixed point
(tasks such as naming or vertex coloring fall in this category). In this paper, we consider the
more challenging problem of dynamic tasks, i.e. tasks that require both eventual safety and
liveness properties (examples of such tasks are clock synchronization and token passing). Due to
the aforementioned impossibility of tight clock synchronization, we consider the unison problem,
that can bee seen as a local clock synchronization problem. In the unison problem [20], each
node is expected to keep its digital clock value within one time unit of every of its neighbors’
clock values (weak synchronization), and increment its clock value infinitely often. Note that in
synchronous completely connected systems where clocks have discrete time unit values, unison
induces tight clock synchronization. Several self-stabilizing solutions exist for this problem [17,
6, 4, 5], both in synchronous and asynchronous systems, yet none of those can tolerate crash
faults.

As a matter of fact, there exists a number of FTSS results for dynamic tasks in synchronous
systems. In [12, 22] provide self-stabilizing clock synchronization that is also wait free, i.e that
tolerate napping faults, in complete networks. Also, [11] presents a FTSS clock synchronization
for general networks. Still in synchronous systems, it was proved that even malicious (i.e.
Byzantine) faults can be tolerated, to some extent. In [13, 3], probabilistic FTSS protocols were
proposed for up to one third of Byzantine processors, while in [18, 9] deterministic solution
tolerate up to one fourth and one third of Byzantine processors, respectively. Note that all
solutions presented in this paragraph are for fully synchronous systems.

In this paper, we tackle the open issue of FTSS solutions to dynamic tasks in asynchronous
systems, using the unison problem as a case study. Our first negative results show that whenever
two or more crash faults may occur, FTSS unison is impossible in any asynchronous setting.
The remaining case of one crash fault drives the most interesting results (see Section 3). We
first extract two key properties satisfied by all previous self-stabilizing asynchronous unison
protocols: minimality and priority. Minimality means that nodes maintain no extra variables
but the digital clock value. Priority means that whenever incrementing the clock value does not
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Unfair Weakly fair Strongly fair
Minimal Priority Neither Minimal Priority Neither

f = 1, Imp. Imp.
∆ ≥ 3 Imp. Imp. Imp. ?? (Prop.5) (Prop.6) ??
f = 1, (Prop.2) (Prop.3) (Prop.4) Pos.
∆ ≤ 2 (Prop.11)

f ≥ 2 Imp. (Prop.1)

Table 1: Summary of results

break the local safety predicate between neighbors, the clock value is actually incremented in a
finite number of activations, even when no neighbor modifies its clock value. Then, depending
on the fairness properties of the scheduling of nodes, we provide various results with respect to
the possibility or impossibility of unison. When the scheduling is unfair (only global progress
is guaranteed), FTSS unison is impossible. When the scheduling is weakly fair (a processor
that is continuously enabled is eventually activated), then it is impossible to solve FTSS unison
by a protocol that satisfies either minimality or priority. The case of strongly fair scheduling
(a processor that is activated infinitely often is eventually activated) is similar whenever the
maximum degree of the graph is at least three. Our negative results still apply when the clock
variable is unbounded and the scheduling is central (i.e. a single processor is activated at any
time).

On the positive side (Section 4), we present a FTSS protocol for connected networks of
maximum degree at most two (i.e. rings and chains), that satisfies both minimality and priority
properties. This protocol makes minimal system hypotheses with respect to the aforementioned
impossibility results (maximum degree, scheduling, etc.) and is optimal with respect to the
containment radius that is achieved (no correct processor is ever prevented from incrementing
its clock). Table 1 provides a summary of the main results of the paper. Remaining open
questions (denoted by question marks in the above table) are discussed in Section 5.

2 Model, definitions and notations

We consider a network as an undirected connected graph G = (V, E) where V is a set of
processors and E is a binary relation that denotes the ability for two processors to communicate
((p, q) ∈ E if and only if p and q are neighbors). Every processor p can distinguish its neighbors
and locally label them, and we assume that p maintains Np, the set of its neighbors local labels.
In the following, n denotes the number of processors, and ∆ the maximal degree. If p and q
are two processors of the network, we denote by d(p, q) the length of the shortest path between
p and q (i.e the distance from p to q). In this paper, we assume that the network can be hit
by crash faults, i.e. some processors can stop executing their actions permanently and without
any warning to their neighborhood. Since the system is assumed to be fully asynchronous, no
processor can detect if one of its neighbors is crashed or slow.

We consider the classical local shared memory model of computation (see [10]) where com-
munications between neighbors are modeled by direct reading of variables instead of exchange
of messages. In this model, the program of every processor consists in a set of shared variables
(henceforth, referred to as variables) and a finite set of rules. A processor can write to its own
variables only, and read its own variables and those of its neighbors. Each rule consists of:
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<label>::<guard>−→<statement>. The label of a rule is simply a name to refer the action in
the text. The guard of a rule in the program of p is a boolean predicate involving variables of p
and its neighbors. The statement of a rule of p updates one or more variables of p. A statement
can be executed only if the corresponding guard is satisfied (the processor rule is then enabled).
The state of a processor is defined by the value of its variables. The state of a system (a.k.a.
the configuration) is the product of the states of all processors. We also refer to the state of a
processor and its neighborhood as a local configuration. We note Γ the set of all configurations
of the system.

Processor p is enabled in γ ∈ Γ if and only if at least one rule is enabled for p in γ. Let a
distributed protocol P be a collection of binary transition relations denoted by →, on Γ. An
execution of a protocol P is a maximal sequence of configurations ǫ = γ0γ1 . . . γiγi+1 . . . such
that, ∀i ≥ 0, γi → γi+1 ((γi, γi+1) ∈→ is called a step) if γi+1 exists (else γi is a terminal
configuration). Maximality means that the sequence is either finite (and no action of P is
enabled in the terminal configuration) or infinite. E is the set of all possible executions of P . A
processor p is neutralized in step γi → γi+1 if p is enabled in γi and is not enabled in γi+1, yet
did not execute any rule in step γi → γi+1.

A scheduler (also called daemon) is a predicate over the executions. In any execution, each
step γ −→ γ′ results from a non-empty subset of enabled processors atomically executing a rule.
This subset is chosen by the scheduler. A scheduler is central if it chooses exactly one enabled
processor in any particular step, it is distributed if it chooses at least one enabled processor,
and locally central if it chooses at least one enabled processor yet ensures that no two neighbors
are chosen concurrently. A scheduler is synchronous if it chooses every enabled processor in
every step. A scheduler is asynchronous if it is either central, distributed or locally central. A
scheduler may also have some fairness properties. A scheduler is strongly fair (the strongest
fairness assumption for asynchronous schedulers) if every processor that is enabled infinitely
often is eventually chosen to execute a rule. A scheduler is weakly fair if every continuously
enabled processor is eventually chosen to execute a rule. Finally, the unfair scheduler has the
weakest fairness assumption: it only guarantees that at least one enabled processor is eventually
chosen to execute a rule. As the strongly fair scheduler is the strongest fairness assumption, any
problem that cannot be solved under this assumption cannot be solved for all weaker fairness
assumptions. In contrast, any algorithm performing under the unfair scheduler also works for
all stronger fairness assumptions.

Fault-containment and Stabilization In a particular execution ǫ, we distinguish the
set of processors V ∗ that never crash in ǫ (i.e. the set of correct processors). By extension, C∗

denotes the set of correct processors in C ⊂ V . As crashed processors cannot be distinguished
from slow ones by their neighbors, we assume that variables of crashed processors are always
readable. We now recall definitions about self-stabilization and fault-tolerant self-stabilization.

Definition 1 (self-stabilization [8]) Let T be a task, and ST a specification of T . A protocol
P is self-stabilizing for ST if and only if for every configuration γ0 ∈ Γ, for every execution
ǫ = γ0γ1 . . ., there exists a finite prefix γ0γ1 . . . γl of ǫ such that all executions starting from γl

satisfies ST .

Definition 2 ((f, r)−containment [21]) Let T be a task, and ST a specification of T . A
configuration γ ∈ Γ is (f, r)−contained for specification ST if and only if, given at most f
crashed processors, every execution starting from γ, always satisfies ST on the sub-graph induced
by processors which are at distance r or more from any crashed processor.
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Definition 3 (fault-tolerant self-stabilization (FTSS) [1, 15]) Let T be a task, and ST a
specification of T . A protocol P is fault-tolerant and self-stabilizing with radius r for f crashed
processors (and denoted by (f, r) − ftss) for specification ST if and only if, given at most f
crashed processors, for every configuration γ0 ∈ Γ, for every execution ǫ = γ0γ1 . . ., there exists
a finite prefix γ0γ1 . . . γl of ǫ such that γl is (f, r)−contained for specification ST .

Problem and specifications In the following, Hp is the variable of processor p that
represents its clock value. Values are taken in the set of natural integers (that is, the number
of states is unbounded, and a total order can be defined on clock values). We now define two
notions related to local clock synchronization: the first one restricts the safety property to
correct processors, while the second one considers all processors.

Definition 4 (weakly synchronized configurations Γ∗
1) Let be γ ∈ Γ. We say that γ is

weakly synchronized (denoted by γ ∈ Γ∗
1) if and only if :

∀p ∈ V ∗, ∀q ∈ N∗
p , |Hp − Hq| ≤ 1

Definition 5 (uniform weakly synchronized configurations Γ1) Let be γ ∈ Γ. We say
that γ is uniformly weakly synchronized (denoted by γ ∈ Γ1) if and only if :

∀p ∈ V, ∀q ∈ Np, |Hp − Hq| ≤ 1

Remark 1 If no processor is crashed, we have: Γ1 = Γ∗
1, on the contrary case, we have:

Γ1 ( Γ∗
1

For example, if G = (V, E) with V = {p0, p1, p2} and E = {{p0, p1}, {p1, p2}}, then config-
uration γ defined by Hp0

= 0, Hp1
= Hp2

= 2, and where p0 is crashed satisfies γ ∈ Γ∗
1 and

γ /∈ Γ1.
We now specify the two variants of our problem (depending whether safety property is

extended to crashed processors):

Specification 1 (asynchronous unison – AU)
Let be γ0 ∈ Γ. An execution ǫ = γ0γ1 . . . starting from γ0 is a legitimate execution for AU if
and only if:

• Safety: ∀i ∈ N, γi ∈ Γ∗
1.

• Liveness: Each processor p ∈ V ∗ increments its clock infinitely often in ǫ.

Specification 2 (uniform asynchronous unison – UAU)
Let be γ0 ∈ Γ. An execution ǫ = γ0γ1 . . . starting from γ0 is a legitimate execution for UAU if
and only if:

• Safety: ∀i ∈ N, γi ∈ Γ1.

• Liveness: Each processor p ∈ V ∗ increments its clock infinitely often in ǫ.

Remark 2 Note that:

• An algorithm which complies to the second specification complies to the first (the converse
is not true).

• These two specifications do not forbid decrementation of clocks.
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We now present two key properties satisfied by all known self-stabilizing unison protocols.
Those properties are used in the impossibility results presented in Section 3.

Definition 6 (minimality) A unison is minimal if and only if the set of variables of each
processor is reduced to its clock.

Remark 3 As the execution of a rule by a processor always modifies its state, every execution
of rule by a processor by a minimal unison modifies its clock value.

Definition 7 (priority) A unison is priority if and only if it satisfies the following property:
if there exists a processor p such that ∀q ∈ Np, (Hq = Hp or Hq = Hp + 1) in a configuration
γi, then there exists a fragment of execution ǫ = γi . . . γi+k such that:

• only p is chosen by the scheduler during ǫ.

• Hp is not modified during γi+j −→ γi+j+1, for j ∈ {0, . . . , k − 2}.

• Hp is incremented during γi+k−1 −→ γi+k.

Remark 4 If a priority unison is also minimal, then k = 1 since every execution of a rule by
a processor modifies its clock value.

3 Impossibility results

In this section we present a broad class of impossibility results related to the FTSS unison.
For the sake of the generality we assume the most constrained scheduler (the central one).
Additionally we assume each processor has an infinite memory.

3.1 Preliminaries

First, we introduce two preliminary results which show that in any execution of a (f, r)−ftss
algorithm for AU (under an asynchronous daemon) a processor can not modify its clock value
if it has two neighbors q and q′ such that: Hq = Hp − 1 and Hq′ = Hp + 1.

Lemma 1 Let A be a (f, r)−ftss algorithm for AU (under an asynchronous daemon). Let γ
be a configuration in which a processor p (such that Hp ≥ 1) has two neighbors q and q′ such
that: Hq = Hp − 1 and Hq′ = Hp + 1. If p executes an action of A during the step γ −→ γ′,
then this action does not modify the value of Hp.

Proof. Let A be a (f, r)−ftss algorithm for AU (under an asynchronous daemon). Let G
be a network and γ be a configuration of G such that no processor is crashed, γ ∈ Γ1 and there
exists a processor p (such that Hp ≥ 1) which has two neighbors q and q′ such that: Hq = Hp−1
and Hq′ = Hp + 1.

Assume p executes an action of A during the step γ −→ γ′ (and only p) such that this action
modifies the value of Hp. Note that Hq and Hq′ are identical in γ and γ′. Let α be the value
of Hp in γ and α′ be the value of Hp in γ′. alpha and alpha′ verify one of the two following
relations:

Case 1: α < α′.
This implies that |α′ −Hq| = |α′ −α|+ |α−Hq| > 1 (since |α′ −α| ≥ 1 by hypothesis and
|α − Hq| = 1).
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Case 2: α′ < α.
This implies that |α′ − Hq′ | = |α′ − α| + |α − Hq′ | > 1 (since |α′ − α| ≥ 1 by hypothesis
and |α − Hq′ | = 1).

In the two above cases, γ′ /∈ Γ1, hence the safety property of A is not verified. �

Lemma 2 Let A be a (f, r)−ftss algorithm for minimal AU (under an asynchronous daemon).
Let γ be a configuration in which a processor p (such that Hp ≥ 1) has two neighbors q and q′

such that: Hq = Hp − 1 and Hq′ = Hp + 1. Processor p is not enabled for A in γ.

Proof. This is a direct consequence of Lemma 1. �

3.2 With respect to the number of crashed processors

Proposition 1 For any natural number r, there exists no (f, r)−ftss algorithm for AU under
an asynchronous daemon if f ≥ 2.

Proof. Let r be a natural number. Let A be a (2, r)−ftss algorithm for AU (under an
asynchronous daemon). Consider a network represented by the following graph: G = (V, E)
with V = {p0, . . . , p2(r+1)} and E = {{pi, pi+1}|i ∈ {0, . . . , 2r + 1}}. Let γ be the following
configuration of the network: p0 and p2(r+1) are crashed and ∀i ∈ {0, . . . , 2(r + 1)}, Hpi

= i (all
the other variables can have any value).

By Lemma 1, no processor between p2 and p2r+1 can change its clock value in every execution
starting from γ. However, pr+1 must verify the specification of the problem since the nearest
crashed processor is at r hops away. This contradicts the liveness property of A. �

3.3 With respect to unfair daemon

Proposition 2 For any natural number r, there exists no (1, r)−ftss algorithm for AU under
an unfair daemon.

Proof. Let r be a natural number. Assume that there exists an (1, r)−ftss algorithm A for
AU under an unfair daemon. Consider a network, G, of diameter greater than 2r + 2 1. Let p
be a processor of G. Since the daemon is unfair, it can choose to never activate p unless this
processor becomes the only enabled processor of G.

Assume that there exists a configuration γ such that no processor is crashed and in which
p is the only enabled processor of the network. The asynchronism assumption makes this
configuration indistinguishable from γ′, the same configuration in which p is crashed. We
assumed that in γ no other processor but p is enabled. Consequently, the network is starved in
γ′. This contradicts the liveness property of A, hence no such configuration γ exists.

Since there exists no configuration in which p is the unique enabled processor (in every
execution starting from an arbitrary configuration), the unfair daemon can starve p infinitely
(if no crash occurs). This contradicts the liveness property of A. �

1At least one processor verifies the specification of the AU problem
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Figure 1: The three configurations used in the proof of Lemma 3 (the numbers represent clock
values and the double circles represent crashed processors).

3.4 With respect to weakly fair daemon

In this section we prove there exists no (1, r)−ftss algorithm for minimal or priority AU under
a weakly fair daemon for any r value. The first impossibility result uses the following property:
if there exists an algorithm A which is (1, r)−ftss for minimal AU under a weakly fair daemon
for a natural number r, then an arbitrary processor p is not enabled for A if it has only one
neighbor p′ and if Hp = Hp′ (proved in Lemma 3 formally stated below). Then, we show that
A starves the network reduced to a two-correct-processor chain in which all clock values are
identical (see Proposition 3).

Lemma 3 If there exists an algorithm A which is (1, r)−ftss for minimal AU under a weakly
fair daemon for a natural number r, then an arbitrary processor p is not enabled for A if it has
only one neighbor p′ and if Hp = Hp′ .

Proof. Let r be a natural number. Let A be a (1, r)−ftss algorithm for the minimal AU
under a weakly fair daemon.

Let G be the network reduced to a chain of length r + 2. Assume processors in G labeled as
follows: p0, p1, . . . , pr+2. Consider the following configurations of G (see Figure 1):

• γ1 defined by ∀i ∈ {0, . . . , r + 1}, Hpi
= i and Hpr+2

= r + 1 and p0 crashed.

• γ2 defined by ∀i ∈ {0, . . . , r + 1}, Hpi
= 2r + 2 − i and Hpr+2

= r + 1 and p0 crashed.

• γ3 defined by ∀i ∈ {0, . . . , r + 2}, Hpi
= i and p0 crashed.

By Lemma 2, processors from p1 to pr are not enabled in such configurations (and remain
not enabled until one of the processors within p0 . . . pr+1 execute a rule).

Note that for the processor pr+2, the configurations γ1 and γ2 are indistinguishable (otherwise
the unison would not be minimal). We are going to prove the result by absurd. Assume pr+2 is
enabled in γ1 and γ2. The safety property of A implies that the enabled rule for pr+2 modifies
its clock either to r + 2 or to r. In the following we discuss these cases separately:
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Case 1: The enabled rule for pr+2 modifies its clock to r + 2.
Assume w.r.g. pr+2 is the only activated processor hence its clock takes the value r + 2.
The following cases are possible in the new configuration:

Case 1.1: pr+2 is not enabled.
If the execution started from γ1, then no processor is enabled, which contradicts the
liveness property of AU.

Case 1.2 : pr+2 is enabled and after execution its clock modifies to r + 1.
Let ǫ be an execution starting from γ1 in which only pr+2 is activated. Consequently,
the clock of the processor pr+2 takes infinitely the following sequence of values: r +
1, r + 2. In this execution, pr+2 executes infinitely often while processors from p0 to
pr are never enabled. Note that pr+1 is not enabled when Hpr+2

= r + 2, hence this
processor is never infinitely enabled. Overall, this execution is allowed by the weakly
fair scheduler, however it starves pr+1, which contradicts the liveness property of A.

Case 1.3 : pr+2 is enabled and after execution it modifies its clock to r.
The execution of this rule leads to case 2.

Case 2 : The enabled rule for pr+2 modifies its clock into r.
Assume w.r.g. pr+2 is the only activated processor and after its execution the new config-
uration verifies one of the the following cases:

Case 2.1 : pr+2 is not enabled.
If the execution started from γ2, then no processor is enabled, which contradicts the
liveness property (the network is starved).

Case 2.2 : pr+2 is enabled and its clock modifies to r + 1.
Let ǫ be an execution starting from γ2 which contains only actions of pr+2 (its clock
takes infinitely the following value sequence : r+1, r). In this execution, pr+2 executes
a rule infinitely often (by construction) and processors from p0 to pr are never enabled.
Note that pr+1 is not enabled when Hpr+2

= r, so this processor is never infinitely
enabled. In conclusion, this execution verifies the weakly fair scheduling.
Note that this execution starves pr+1, which contradicts the liveness property of A.

Case 2.3 : pr+2 is enabled and the execution of its enabled rule modifies its clock to r+2.
The execution of these rule leads to case 1.

Overall, the only two possible cases (cases 1.3 and 2.3) are the following:

1. pr+2 is enabled for modifying its clock value to r when Hpr+2
= r + 2 and Hpr+1

= r + 1.

2. pr+2 is enabled for modifying its clock value to r + 2 when Hpr+2
= r and Hpr+1

= r + 1.

Let ǫ be an execution starting from γ3 which contains only actions of pr+2 (its clock takes
infinitely the following sequence of values: r + 2, r). In this execution, pr+2 executes a rule
infinitely often (by construction) and processors in p0 . . . pr are never enabled. Note that pr+1

is not enabled when Hpr+2
= r + 2, so this processor is never infinitely enabled. In conclusion,

this execution verifies the weakly fair scheduling.
This execution starves pr+1, which contradicts the liveness property of A and proves the

result. �

Proposition 3 For any natural number r, there exists no (1, r)−ftss algorithm for minimal
AU under a weakly fair daemon.
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Figure 2: Initial configurations used in the proof of Proposition 4 (the numbers represent clock
values and the double circles represent crashed processors).

Proof. Let r be a natural integer. Assume there exists a (1, r)−ftss algorithm A for the
minimal AU under a weakly fair daemon. By Lemma 3, an arbitrary processor p is not enabled
for A if it has only one neighbor p′ and if Hp = Hp′ .

Let G be a network reduced to a chain of 2 processors p and p′. Let γ be a configuration of
G in which Hp = Hp′ and no crashed processor. Notice that no processor is enabled in γ which
contradicts the liveness property of A and proves the result. �

The second main result of this section is that there exists no (1, r)−ftss algorithm for priority
AU under a weakly fair daemon for any natural number r (see Proposition 4).

To prove this result by contradiction we construct an execution (allowed by a weakly fair
scheduler) starting from the configuration γ0

0 shown in Figure 2. We prove that this execution
starves pr+1 which contradicts the liveness property of the algorithm.

Proposition 4 For any natural number r, there exists no (1, r)−ftss algorithm for priority AU

under a weakly fair daemon.

Proof. Let r be a natural number. Assume that there exists a (1, r)−ftss algorithm A
for priority AU under a weakly fair daemon. Let G be the network reduced to a chain of
length r + 2. Assume that processors in G are labeled as follows: p0, p1, . . . , pr+2. Let γ0

0 be a
configuration and p0 crashed and ∀i ∈ {0, . . . , r + 2}, Hpi

= i (See Figure 2). Note that all the
other variables can have any value.

We construct a fragment of execution ǫ′0 = γ0
0γ0

1γ0
2 . . . γ0

r+1 starting from γ0
0 such that ∀i ∈

{0, 1, . . . , r}, the step γ0
i → γ0

i+1 contains only the action of pi+1 if pi+1 is enabled. By Lemma
1, this fragment does not modify the clock value of processors in p0 . . . pr+1.

We also construct a fragment of execution, ǫ′′0 , starting from γ0
r+1 using the following cases:

Case 1: pr+2 is not enabled in γ0
r+1.

Let ǫ′′0 be ǫ (empty word).

Case 2: pr+2 is enabled in γ0
r+1.

In the sequel we distinguish following cases:

Case 2.1: The execution of a rule by pr+2 in γ0
r+1 doesn’t modify its clock value.

Let ǫ′′0 be γ0
r+1γ

0
r+2 in which the step γ0

r+1 → γ0
r+2 contains only the execution of a

rule by pr+2.

Case 2.2: The execution of a rule by pr+2 in γ0
r+1 modifies its clock value.

The safety property of A implies that the clock of pr+2 takes the value r or r + 1.

Case 2.2.1: The execution of a rule by pr+2 in γ0
r+1 modifies its clock value into

r + 1.
Since A is a priority unison, there exists by definition a fragment of execution
ǫ′′0 = γ0

r+1γ
0
r+2 . . . γ0

r+k which contains only actions of pr+2 such that (i) in the
steps from γ0

r+2 to γ0
r+k−1 the clock value of pr+2 is not modified while (ii) in the

step γ0
r+k−1 → γ0

r+k the clock value of pr+2 is incremented.

10



Case 2.2.2: The execution of a rule by pr+2 in γ0
r+1 modifies its clock value into r.

Since A is a priority unison, there exists by definition a fragment of execution
ǫa = γ0

r+1γ
0
r+2 . . . γ0

r+k which contains only actions of pr+2 such that (i) in the
steps from γ0

r+2 to γ0
r+k−1 the clock value of pr+2 is not modified and (ii) in the

step γ0
r+k−1 → γ0

r+k the clock of pr+2 takes the value r + 1.
Since A is a priority unison, there exists by definition a fragment of execution
ǫb = γ0

r+kγ0
r+k+1 . . . γ0

r+j which contains only actions of pr+2 such that (i) in the

steps from γ0
r+k+1 to γ0

r+j−1 the clock value of pr+2 is not modified and (ii) in

the step γ0
r+j−1 → γ0

r+j the clock value of pr+2 is incremented.
Let ǫ′′0 be ǫaǫb.

In all cases, we construct a fragment of execution ǫ0 = ǫ′0ǫ
′′
0 such that its last configuration

(let us denote it by γ1
0) verifies: the values of the network clocks are identical to those in γ0

0 (the
others variables may have changed). Then, we can reiterate the reasoning and obtain a fragment
of execution ǫ1, ǫ2 . . . (respectively starting from γ1

0 , γ2
0 , . . .) that verifies the same property.

We finally obtain an execution ǫ = ǫ0ǫ1 . . . which verifies:

• No processor is infinitely enabled without executing a rule (since all enabled processors in
γi
0 execute a rule or are neutralized during ǫi). Consequently ǫ is an execution that verifies

the weakly fair scheduling.

• The clock of the processor pr+1 never changes (whereas d(p0, pr+1) = r + 1).

This execution contradicts the liveness property of A which is a (1, r)−ftss algorithm for
priority AU under a weakly fair daemon by hypothesis. �

3.5 With respect to strongly fair daemon

In this section we prove that there exists no (1, r)−ftss algorithm for minimal or priority AU
under a strongly fair daemon if the degree of the network is greater or equal to 3. In order to
prove the first impossibility result, we use the following property: if a processor p has only one
neighbor q such that Hq = r + 1 and if |Hp − Hq| ≤ 1, then p is enabled in any (1, r)−ftss
algorithm for minimal AU (see Lemma 4). Then we construct a strongly fair infinite execution
which starves a processor more than r hops away from a crashed processor. This execution
contradicts the liveness property of the AU problem (see Proposition 5).

Lemma 4 Let A a (1, r)−ftss algorithm for minimal AU. If a processor p has only one neighbor
q such that Hq = r + 1 and if |Hp − Hq| ≤ 1, then p is enabled in A.

Proof. Assume that there exists an algorithm A which is (1, r)−ftss for minimal AU. Let G
be a network that executes A and which contains at least one processor p which has only one
neighbor q. Assume Hq = r + 1 and |Hp − Hq| ≤ 1. Then, we have:

1. If Hp = r, then p is enabled for at least one rule of A. Otherwise, the network reduced to
the chain p0, . . . , pr, q, p in the configuration γ1 defined by ∀i ∈ {0, . . . , r}, Hpi

= 2r+2− i,
Hq = r+1, Hp = r where p0 is crashed (see Figure 3) is starved since no correct processor
is enabled (by Lemma 2).

2. If Hp = r +1, then p is enabled for at least one rule of A. Otherwise, the network reduced
to the chain q, p in the configuration γ2 defined by Hq = Hp = r + 1 and in which no
processor is crashed (see Figure 3) is starved since no correct processor is enabled.

11
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Figure 3: The three configurations used in the proof of Lemma 4 (the numbers represent clock
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3. If Hp = r+2, then p is enabled for at least one rule of A. Otherwise, the network reduced to
the chain p0, . . . , pr, q, p in the configuration γ3 defined by ∀i ∈ {0, . . . , r}, Hpi

i, Hq = r+1,
Hp = r + 2 and p0 crashed (see Figure 3) is starved since no correct processor is enabled
(by Lemma 2).

�

Proposition 5 For any natural number r, there exists no (1, r)−ftss algorithm for minimal
AU under a strongly fair daemon if the graph modeling the network has a degree greater or
equal to 3.

Proof. Let r be a natural number. Assume that there exists a (1, r)−ftss algorithm A
for the minimal AU under a strongly fair daemon in a network with a degree greater or equal
to 3. Let G be the network defined by: V = {p0, . . . , pr+1, q, q

′} and E = {{pi, pi+1}, i ∈
{0, . . . , r}} ∪ {{pr+1, q}, {pr+1, q

′}}.
As A is deterministic, q and q′ must behave identically if they have the same clock value (in

this case, their local configurations are identical). If Hpr+1
= r + 1 and |Hpr+1

− Hq| ≤ 1, there
exists three local configurations for q: (1) Hq = r, (2) Hq = r + 1 or (3) Hq = r + 2 (the same
property holds for q′).

By Lemma 4, Processor q (respectively q′) is enabled in any configuration in which Hpr+1
=

r +1 and |Hpr+1
−Hq| ≤ 1 (respectively |Hpr+1

−Hq′ | ≤ 1). Moreover, in this case, the enabled
rule for q (respectively q′) modifies its clock into a value in {r, r + 1, r + 2} \ Hq (respectively
{r, r + 1, r + 2} \ Hq′) by the safety property of A.

For each of the three possible local configurations for q or q′ (studied in the proof of Lemma
4), A can only allow 2 moves. Hence, there exists 8 possible moves for A. Let denote each of
these possibilities by a triplet (a, b, c) where a, b and c are the clock value of q after the allowed
move when Hq = r, Hq = r+1, and Hq = r+2 respectively. Note that, due to the determinism
of A, moves allowed for q′ and q are identical. There exists the following cases:

Case 1: (r + 1, r, r)
Let γ1 be the configuration of G defined by: ∀i ∈ {0, . . . , r+1}, Hpi

= 2r+2−i, Hq = r+1

12
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Figure 4: The three configurations used in the proof of Proposition 5 (the numbers represent clock
values and the double circles represent crashed processors).

and Hq′ = r and p0 crashed (see Figure 4). Note that only q and q′ are enabled (by Lemma
2). Assume q executes. Hence, its clock takes the value r. By Lemma 2, only q and q′ are
enabled. Assume now that q′ executes. Its clock takes the value r + 1. This configuration
is identical to γ1 (since processors are anonymous), we can repeat the above reasoning in
order to obtain an infinite execution in which processors p1, . . . , pr+1 are never enabled
(see Figure 5 for an illustration when r = 1).

Case 2: (r + 1, r + 2, r)
Let γ2 be the configuration of G defined by: ∀i ∈ {0, . . . , r + 1}, Hpi

i, Hq = r and
Hq′ = r+2 and p0 crashed (see Figure 4). Note that only q and q′ are enabled (by Lemma
2). Assume q executes. Its clock takes the value r + 1. By Lemma 2, only q and q′ are
enabled. Assume q executes its rule again. Its clock takes the value r + 2. By Lemma 2,
only q and q′ are enabled. Assume now that q′ executes its rule. Its clock takes the value
r. This configuration is identical to γ2 (since processors are anonymous). We can repeat
the reasoning in order to obtain an infinite execution in which processors in p1, . . . , pr+1

are never enabled.

Case 3: (r + 1, r, r + 1)
Similar to the reasoning of case 1.

Case 4: (r + 1, r + 2, r + 1)
Let γ3 be the configuration of G defined by: ∀i ∈ {0, . . . , r + 1}, Hpi

= i, Hq = r + 2 and
Hq′ = r +1 and in which p0 is crashed (see Figure 4). Note that only q and q′ are enabled
(by Lemma 2). Assume q′ executes its rule. Its clock takes the value r + 2. By Lemma
2, only q and q′ are enabled. Assume now that q executes its rule. Its clock takes the

13
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value r + 1. This configuration is identical to γ3 (since processors are anonymous). We
can repeat the reasoning in order to obtain an infinite execution in which processors in
p1, . . . , pr+1 are never enabled.

Case 5: (r + 2, r, r)
Let γ2 be the configuration of G as defined in the case 2 above. Note that only q and q′

are enabled (by Lemma 2). Assume q executes its rule. Its clock takes the value r + 2.
By Lemma 2, only q and q′ are enabled. Assume now that q′ executes its rule. Its clock
takes the value r. This configuration is identical to γ2 (since processors are anonymous).
We can repeat the reasoning in order to obtain an infinite execution in which processors
p1, . . . , pr+1 are never enabled.

Case 6: (r + 2, r + 2, r)
The reasoning is similar to the case 5.

Case 7: (r + 2, r, r + 1)
Let γ2 be the configuration of G as defined in the case 2 above. Note that only q and q′

are enabled (by Lemma 2). Assume q executes its rule. Its clock takes the value r + 2.
By Lemma 2, only q and q′ are enabled. Assume q′ executes its rule. Its clock takes
the value r + 1. By Lemma 2, only q and q′ are enabled. Assume q′ executes again its
rule. Its clock takes the value r. This configuration is identical to γ2 (since processors are
anonymous). We can repeat the above scenario in order to obtain an infinite execution in
which processors p1, . . . , pr+1 are never enabled.

Case 8: (r + 2, r + 2, r + 1)
The proof is similar to the case 4.
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Overall, we can construct an infinite execution in which processor p0 is crashed, processors
from p1 to pr+1 are never enabled and processors q and q′ execute a rule infinitely often. This
execution verifies the strongly fair scheduling. Notice that in this execution pr+1 is never enabled,
hence it is starved. This contradicts the liveness property of A and proves the result. �

The second main result of this section is that there exists no (1, r)−ftss algorithm for priority
AU under a strongly fair daemon for any natural number r if the degree of the graph modeling
the network is greater or equal to 3. (see Proposition 6).

To prove this result we assume the contrary and we construct an execution starting from
the configuration γ0

0 of Figure 6 verifying the strongly fair scheduling which starves pr+1, that
contradicts the liveness of the algorithm.

Proposition 6 For any natural number r, there exists no (1, r)−ftss algorithm for priority AU

under a strongly fair daemon if the graph modeling the network has a degree greater or equal to
3.

Proof. Let r be a natural number. Assume that there exists a (1, r)−ftss algorithm A
for priority AU under a strongly fair daemon even if the graph modeling the network has a
degree greater or equal to 3. Let G be the network defined by: V = {p0, . . . , pr+1, q, q

′} and
E = {{pi, pi+1}, i ∈ {0, . . . , r}} ∪ {{pr+1, q}, {pr+1, q

′}}. Note that G has a degree equal to 3.
Let γ0

0 be the following configuration: ∀i ∈ {0, . . . , r + 1}, Hpi
= i, Hq = Hq′ = r + 2 and

p0 crashed (see Figure 6). Note that, for all execution ǫ starting from γ0
0 , the processors q and

q′ are allowed to modify their clocks in a finite time (otherwise the network would be starved
following Lemma 1).

Let ǫ0a = γ0
0γ0

1 . . . γ0
k be a fragment of execution with the following properties:

1. k ≥ 1 if there exists i ∈ {0, . . . , r + 1} such that pi is enabled in γ0
0 ; k = 0 otherwise

2. it contains no modification of clock values

3. γ0
k is the first configuration in which q or q′ are enabled for the modification of their clock

value.

We consider the following scheduling scenario: in each step in ǫ0a is executed the least recently
executed processor in the set of enabled processors. Note that this scenario is compatible with
a strongly fair scheduling. Let us study the following cases:

Case 1: q is enabled in γ0
k for a modification of its clock value. The safety property of A implies

that the value of Hq should be modified to either r or r + 1.

Case 1.1: The value of Hq is modified to r.
Since A is a priority unison, there exists by definition a fragment of execution ǫ0b1 =
γ0

kγ0
k+1 . . . γ0

k+r which contains only actions of q such that (i) in the steps from γ0
k to
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γ0
k+r−1 the clock value of q is not modified and (ii) in the step γ0

k+r−1 → γ0
k+r the

clock value of q is incremented.
Since A is a priority unison, there exists by definition a fragment of execution ǫ0b2 =
γ0

k+rγ
0
k+r+1 . . . γ0

k+j which contains only executions of a rule by q such that (i) in the

steps from γ0
k+r to γ0

k+j−1 the clock value of q is not modified and (ii) in the step

γ0
k+j−1 → γ0

k+j the clock value of q is incremented.

Let ǫ0b be ǫ0b1ǫ
0
b2.

Case 1.2: The value of Hq is modified to r + 1.
Since A is a priority unison, there exists by definition a fragment of execution ǫ0b =
γ0

kγ0
k+1 . . . γ0

k+r which contains only actions of q such that (i) in the steps from γ0
k to

γ0
k+r−1 the clock value of q is not modified and (ii) in the step γ0

k+r−1 → γ0
k+r the

clock value of q increments.

If q′ is enabled in the last configuration of ǫ0b
2, we can construct ǫ0c similarly to ǫ0b using

processor q′. Otherwise, let ǫ0c be ǫ (the empty word).

Case 2: q′ is enabled in γ0
k for a modification of its clock value.

We can construct ǫ0b and ǫ0c similar to the case 1 by reversing the roles of q and q′.

Let us define ǫ0 = ǫ0aǫ0bǫ
0
c . Notice that the clock values are identical in the first and the last

configuration of ǫ0. This implies that we can infinitely repeat the previous reasoning in order
to obtain an infinite execution ǫ = ǫ0ǫ1 . . . which satisfies:

• No correct processor is infinitely often enabled without executing a rule (since q and q′

execute a rule infinitely often and others processors are chosen in function of their last
execution of a rule, that implies that an infinitely often enabled processor executes a rule
in a finite time). This execution verifies a strongly fair scheduling.

• The clock value of pr+1 is never modified (whereas d(p0, pr+1) = r + 1).

This execution contradicts the liveness property of A, which implies the result. �

4 A protocol for chains and rings

In the following we consider some possibility results related to the asynchronous unison on chains
and rings (networks with a degree inferior to 3).

In this section, we propose an (1, 0)−ftss algorithm for AU under a locally central strongly
fair daemon for chains and rings. The proposed algorithm is both minimal and priority.

4.1 Algorithm description

Each processor checks if it is ”locally synchronized”, i.e. if the drift between its clock value and
the clock values of its neighbors does not exceed 1.

If a processor is ”locally synchronized”, it modifies its clock value in a finite time in order
to preserve this property. If a processor is not synchronized with at least one of its neighbors,
it makes a correction in a finite time in order to correct its clock value. More precisely, each
processor p has only one variable: its clock denoted by Hp. At each step, every processor p
computes a set of possible clock values, i.e. the set of clock values which have a drift of at most

2In this case, q
′ was already enabled in the last configuration of ǫ

0

a
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Figure 7: An example of execution of UFT SS on a chain with no crash (the numbers represent
clock values and squared processors in γi executed the indicated rule during the step γi −→ γi+1).

1 with respect to all neighbors of p (note that computing this set relies only on the clock values
of p’s neighbors, but not on the one of p). This set is denoted by Inter(Np).

Then, the following cases may appear:

• |Inter(Np)| = 0: p has two neighbors and the drift between their clock values is strictly
greater than 2. In this case, p is enabled to take the average value between these two clock
values if its clock does not have yet this value.

• |Inter(Np)| = 1: p has two neighbors and the drift between their clock values is exactly
2. In this case, p is enabled to take the average value between these two clock values if its
clock does not have yet this value.

• |Inter(Np)| ≥ 2: p has one neighbor or the drift between the clock values of its two
neighbors is strictly less than 2. In this case, p is enabled to modify its clock value as
follows: if Hp + 1 ∈ Inter(Np), then Hp is modified to Hp + 1, otherwise Hp is modified
to min{Inter(Np)}.

Note that our correction rules use the average instead of maximum or minimum (which are
frequently used in the literature, see e.g. [9, 11, 12, 22]) in order to not favors the clock value
of a particular neighbor. That is, the chosen neighbor may be crashed and prevent the system
to reach the synchronization.

The detailed description of our solution is proposed in Algorithm 1. In order to better
understand our algorithm Figures from 7 to 10 propose some toy examples.

4.2 Correction Proof roadmap

In this section, we present the key ideas in order to prove the correctness of our algorithm.
First, we introduce some useful notations:

Notation 1 Let p be a processor. If q denotes one of its neighbors, we denote the other neighbor
by q̄ (if this neighbor exists).
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Figure 10: An example of execution of UFT SS on a ring with a crash (the numbers represent
clock values, the double circles represent crashed processors and squared processors in γi executed
the indicated rule during the step γi −→ γi+1).

Algorithm 1 (UFT SS): AU (minimal and priority) (1, 0)-ftss.

Data:
- Np: set of neighbors of p.

Variable:
- Hp: natural integer representing the clock of the processor.

Macros:

- For A ⊆ N and a ∈ N, next(A, a) =

{

a + 1 if a + 1 ∈ A

min{A} otherwise
.

- For q ∈ Np, poss(q) =

{

{Hq − 1,Hq,Hq + 1} if Hq 6= 0

{Hq,Hq + 1} otherwise
.

- Inter(Np) =
⋂

q∈Np

poss(q).

Rules:
/* Normal rule */
(N) :: |Inter(Np)| ≥ 2 −→ Hp := next (Inter(Np),Hp)
/* Correction rules */

(C1) :: (|Inter(Np)| = 0) ∧

(

Hp 6=

⌈

P

q∈Np

Hq

|Np|

⌉)

∧

(

Hp 6=

⌊

P

q∈Np

Hq

|Np|

⌋)

−→ Hp :=

⌊

P

q∈Np

Hq

|Np|

⌋

(C2) :: (Inter(Np) = {h}) ∧ (Hp 6= h) −→ Hp := h
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Notation 2 We denote the value of Hp for a processor p in a configuration γi by (Hp)
γi .

We denote the value of Inter(Np) for a processor p in a configuration γi by (Inter(Np))
γi .

In order to prove that UFT SS is a (1, 0)-ftss algorithm for AU under a locally central
strongly fair daemon on a chain and on a ring (see Proposition 11), we prove in the sequel the
following properties:

1. UFT SS is a self-stabilizing algorithm for AU under a locally central strongly fair daemon
on a chain (Proposition 7).

2. UFT SS is a self-stabilizing algorithm for AU under a locally central strongly fair daemon
on a chain even if one processor is crashed in the initial configuration (Proposition 8).

3. UFT SS is a self-stabilizing algorithm for AU under a locally central strongly fair daemon
on a ring (Proposition 9).

4. UFT SS is a self-stabilizing algorithm for AU under a locally central strongly fair daemon
on a ring even if one processor is crashed in the initial configuration (Proposition 10).

The proof of each of these 4 propositions is deduced from 3 lemmas as follows:

1. Firstly, we prove that UFT SS verifies the closure of the safety of UAU under the con-
sidered hypothesis (i.e. if there exists a configuration γ such that γ ∈ Γ1, then every
configuration γ′ reachable from γ verify: γ′ ∈ Γ1, see respectively Lemma 5, 11, 14, and
20).

The idea of the proof is as follows: we first prove that only the normal rule is enabled in a
such configuration and then, we show that this rule respects the ”locally synchronization”
property.

2. Secondly, we prove that UFT SS verifies liveness of UAU under the considered hypothesis
in every execution starting from a legitimate configuration (i.e. every (correct) processor
increments infinitely often its clock, see respectively Lemma 7, 12, 16, and 21).

This proof is done in the following way: we first show that every (correct) processor
executes infinitely often the normal rule in every execution starting from a configuration
γ ∈ Γ1 and then, we show that if a processor executes infinitely often the normal rule, it
increments its clock in a finite time.

3. Finally, we prove that UFT SS converges to a legitimate configuration of UAU under the
considered hypothesis in every execution (i.e. there exists a configuration γ ∈ Γ1 in every
execution, see respectively Lemma 10, 13, 19, and 22).

In order to complete the proof we studying a potential function.

4.3 Proof on a chain

In this section, we assume that our algorithm is executed on a chain under a strongly fair locally
central daemon. In the following we prove that UFT SS is a FTSS UAU (that implies that it
is a FTSS AU) under these assumptions.. The proof contains two major steps:

- First, we prove that our algorithm is self-stabilizing.
- Second, we prove that our algorithm is self-stabilizing even if the initial configuration

contains a crashed processor.
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4.3.1 Proof of self-stabilization

In this section, ǫ = γ0, γ1 . . . denotes an execution of UFT SS in which there is no crash.
Firstly, we are going to prove the closure of our algorithm.

Lemma 5 If there exists i ≥ 0 such that γi ∈ Γ1, then γi+1 ∈ Γ1.

Proof. Assume that there exists i ≥ 0 such that γi ∈ Γ1. This implies that ∀p ∈ V,
(Inter(Np))

γi 6= ∅ and then the rule (C1) is not enabled in γi. Assume rule (C2) is enabled in
γi. This implies that (Inter(Np))

γi = {h} and that (Hp)
γi 6= h. Then, we have γi /∈ Γ1 (since

if (Hp)
γi 6= h, then the following holds: ∃q ∈ Np, | (Hp)

γi − (Hq)
γi | ≥ 2). This contradiction

allows us to conclude that the enabled processors in γi are only enabled for rule (N).
Let p be a processor which executes a rule during the step γi → γi+1. Since the dae-

mon is locally central, neighbors of p do not execute a rule during this step (their clock
values remain identical). Assume the following holds: ∃q ∈ Np, | (Hp)

γi+1 − (Hq)
γi+1 | ≥ 2.

By construction of rule (N), (Hp)
γi+1 ∈ (Inter(Np))

γi . By construction, (Inter(Np))
γi ⊆

{(Hq)
γi − 1, (Hq)

γi , (Hq)
γi + 1}. It follows that ∀q ∈ Np, | (Hp)

γi+1 − (Hq)
γi+1 | < 2 for each

processor p which executes a rule (since ∀q ∈ Np, (Hq)
γi = (Hq)

γi+1). Overall, γi+1 ∈ Γ1. �

Secondly, we prove the liveness of our algorithm.

Lemma 6 ∀γ0 ∈ Γ1, ∀p ∈ V, p executes the rule (N) in a finite time in any execution starting
from γ0.

Proof. Let γ ∈ Γ1. Following Lemma 5, the only enabled rule is (N). We prove this property
by induction. To this end, we define the following property (where p denotes a processor):
(Pd) : If d is the distance between p and the nearest end of the chain, then p executes the rule
(N) in a finite time in any execution starting from γ0.

Initialization (d = 0): For all γ′, configurations contained in an execution starting from γ0, p

is enabled for rule (N) since (Inter(Np))
γ′

⊇ {(Hq)
γ′

, (Hq)
γ′

+ 1} where q denotes the
only neighbor of p. Since the daemon is strongly fair, p executes a rule in a finite time.

Induction (d > 0): Assume (Pd−1) is true. Denote q the neighbor of p which is on the half-
chain starting with p which realize d. Assume by absurd that p is never enabled for rule
(N) in an execution ǫ starting from γ0 ∈ Γ1. This implies that, for each configuration γ′

which is contained in ǫ, we have | (Inter(Np))
γ′

| = 1 (since if | (Inter(Np))
γ′

| = 0, then
γ′ /∈ Γ1). Let us study the following cases:

Case 1: q̄ never executes a rule in ǫ.

It follows that: ∀γ′ ∈ ǫ, (Hq)
γ′

= (Hq̄)
γ′

+ 2 or (Hq)
γ′

= (Hq̄)
γ′

− 2. By construction

of (Inter(Nq))
γ′

and of rule (N), the clock of q can not move from a value to the
other in a step (recall that only rule (N) can be enabled for q since γ′ ∈ Γ1 by lemma
5), this implies that q never executes the rule (N), which contradicts (Pd−1).

Case 2: q̄ executes a rule in a finite time in ǫ.
Let γ → γ′ be the first step in which q̄ executes the rule (N). It is known that, for
any γ ∈ Γ1:

| (Inter(Np))
γ | = 1 ⇒











(Hq̄)
γ

= ((Hp)
γ − 1) ∧ (Hq)

γ
= ((Hp)

γ
+ 1) (A)

or

(Hq̄)
γ

= ((Hp)
γ

+ 1) ∧ (Hq)
γ

= ((Hp)
γ − 1) (B)
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Let us study the following cases:

Case 2.1: (A) is true in γ and (B) is true in γ′. The clock move of q̄ is in contra-
diction with the construction of macro next.

Case 2.2: (B) is true in γ and (A) is true in γ′. The clock move of q is in contra-
diction with the construction of macro next.

This proves that case 2 is absurd.

Since the two cases are absurd, we can conclude that p is enabled for rule (N) in a finite
time in every execution starting from a configuration γ ∈ Γ1. Since the daemon is strongly
fair, we can say that p executes rule (N) in a finite time in every execution starting from
γ0. Consequently (Pd) is true.

�

The above property implies that ∀γ0 ∈ Γ1, ∀p ∈ V, p executes the rule (N) infinitely often
in every execution starting from γ0.

Lemma 7 If γ ∈ Γ1, then any processor increments its clock in a finite time in any execution
starting from γ.

Proof. Assume by contradiction that there exists a processor p and an execution ǫ starting
from γ0 ∈ Γ1 such that p never increments its clock in ǫ.

Let be α = (Hp)
γ0 . By Lemma 6, p executes infinitely often (N). But, it never incre-

ments, that implies that next((Inter(Np))
γ

, (Hp)
γ
) = min{(Inter(Np)

γ
)} at each execution

of a rule by p (in a configuration γ). Since ∀γ ∈ Γ1, ∀q ∈ Np, | (Hp)
γ − (Hq)

γ | < 2 and
∀q ∈ Np, (Inter(Np))

γ ⊆ {(Hq)
γ − 1, (Hq)

γ
, (Hq)

γ
+1}, we have: min{(Inter(Np))

γ} ≤ (Hp)
γ
.

Assume that there exists γ ∈ Γ1 such that min{(Inter(Np))
γ} = (Hp)

γ
. This implies that

there exists q ∈ Np such that (Hq)
γ = (Hp)

γ + 1.
If q̄ does not exist or if (Hq̄)

γ ∈ {(Hp)
γ

, (Hp)
γ

+ 1}, then (Hp)
γ

+ 1 ∈ (Inter(Np))
γ
. This

contradicts next((Inter(Np))
γ

, (Hp)
γ
) = min{(Inter(Np)

γ
)}. We deduce that q̄ exists and that

(Hq̄)
γ

= (Hp)
γ − 1. This implies that (N) is not enabled for p.

We can deduce that, if rule (N) is executed by a processor p in a configuration γ, then
min{(Inter(Np))

γ} < (Hp)
γ . We can now state that, in at most α executions of p, Hp = 0.

The next execution of p increments its clock value, which contradicts the assumption on of p
and the construction of ǫ. Then, we obtain the announced result. �

In the following we prove the convergence of our algorithm.
Let γ ∈ Γ, we define the following notations:

∀e = {p, q} ∈ E, ω(e, γ) = | (Hp)
γ − (Hq)

γ |
∀p ∈ V, ̟(p, γ) = max

e∈E/p∈e
{ω(e, γ)}

∀i ∈ N, p(i, γ) = |{e ∈ E/ω(e, γ) = i}|

Consider the following potential function:

P :

{

Γ −→ N∞

γ 7−→ (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(2, γ)) with k = max
e∈E

{ω(e, γ)}

We compare two values of P by lexicographic order. The following properties are verified:

∀γ ∈ Γ, P (γ) ≥ (. . . 0, 0)
∀γ ∈ Γ, γ ∈ Γ1 ⇔ P (γ) = (. . . , 0, 0)

∀γ ∈ Γ, γ ∈ Γ \ Γ1 ⇔ P (γ) > (. . . , 0, 0)
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Lemma 8 If γ ∈ Γ \ Γ1, then every step γ → γ′ which contains the execution of a rule by a
processor p such that ̟(p) ≥ 2 verifies P (γ′) < P (γ).

Proof. Let γ ∈ Γ \ Γ1. Let γ → γ′ be a step which contains the execution of a rule by a
processor p such that ̟(p) ≥ 2 and γ ∈ Γ \ Γ1. Since the daemon is locally central, neighbors
of p do not modify their clocks during this step. Consider the following cases:

Case 1: p’s degree equals 1.
Let q be its only neighbor and j = ω({p, q}, γ) = | (Hp)

γ − (Hq)
γ |. (Inter(Np))

γ
=

{(Hq)
γ −1, (Hq)

γ
, (Hq)

γ
+1}. It follows that p executed rule (N). So, we have | (Hp)

γ′

−

(Hq)
γ′

| ≤ 1. Then: ̟({p, q}, γ′) ≤ 1 and :

P (γ) = (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(j, γ), . . . , p(2, γ))
P (γ′) = (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(j, γ) − 1, . . . , p(2, γ))

And then: P (γ′) < P (γ).

Case 2: p’s degree equals 2.
Let q be the neighbor of p such that ω({p, q}, γ) = ̟(p, γ) ≥ 2 and denote j = ω({p, q̄}, γ) ≤
̟(p, γ), e = {p, q} and ē = {p, q̄}. Consider the following cases:

Case 2.1: p executed the rule (N) during the step γ → γ′.
By construction of (Inter(Np))

γ
, we have ω(e, γ′) ≤ 1 and ω(ē, γ′) ≤ 1. Then:

P (γ) = (. . . , 0, 0, p(k, γ), p(k − 1, γ), . . . , p(̟(p, γ), γ), . . . , p(j, γ), . . . , p(2, γ))
P (γ′) = (. . . , 0, p(k, γ), . . . , p(̟(p, γ), γ) − 1, . . . , p(j, γ) − 1, . . . , p(2, γ))

And then: P (γ′) < P (γ).

Case 2.2: p executed the rule (C2) during the step γ → γ′.
This case is similar to the case 2.1.

Case 2.3: p executed the rule (C1) during the step γ → γ′.
Let us study the following cases:

Case 2.3.1: We have: (Hq)
γ

< (Hq̄)
γ
.

By hypothesis, we know that ω(e, γ) ≥ ω(ē, γ) and then:

(Hp)
γ ≥

(Hq)
γ + (Hq̄)

γ

2

1) Assume that (Hp)
γ > (Hq̄)

γ +
(Hq)γ+(Hq̄)γ

2 .
We can say that:

ω(e, γ) > (Hq̄)
γ − (Hq)

γ
+

(Hq)γ+(Hq̄)γ

2

ω(e, γ′) =
⌊

(Hq)γ+(Hq̄)γ

2

⌋

Then: ω(e, γ′) < ω(e, γ).
On the other hand,

ω(ē, γ) >
(Hq)γ+(Hq̄)γ

2

ω(ē, γ′) = (Hq̄)
γ −

⌊

(Hq)γ+(Hq̄)γ

2

⌋
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Then: ω(ē, γ′) ≤ ω(ē, γ).
In conclusion, we have: P (γ′) < P (γ).

2) Assume that (Hp)
γ ≤ (Hq̄)

γ
+

(Hq)γ+(Hq̄)γ

2 .
We have then:

ω(e, γ) >
(Hq)γ+(Hq̄)γ

2

ω(e, γ′) =
⌊

(Hq)γ+(Hq̄)γ

2

⌋

Then: ω(e, γ′) < ω(e, γ).
In contrast, we have that: ω(ē, γ′) ≥ ω(ē, γ). But we can say that ω(ē, γ′) <

ω(e, γ) (obvious if (Hp)
γ > (Hq̄)

γ , due to the fact that (Hp)
γ >

⌈

(Hq)γ+(Hq̄)γ

2

⌉

in

the contrary case).
In conclusion, we have: P (γ′) < P (γ).

Case 2.3.2: We have (Hq)
γ

> (Hq̄)
γ
.

This case is similar to the case 2.3.1 when we permute q and q̄.

That proves the result. �

Lemma 9 If γ0 ∈ Γ\Γ1, then every execution starting from γ0 contains the execution of a rule
by a processor p such that ̟(p, γ0) ≥ 2.

Proof. Let γ0 ∈ Γ \ Γ1. We reason by absurd. Assume that there exists an execution
ǫ = γ0γ1 . . . starting from γ0 which contains no execution of a rule by processors p verifying
̟(p, γ0) ≥ 2.

In a first time, assume that one of the end p of the chain verify: ̟(p, γ0) ≥ 2. Denote q
the only neighbor of p. If q is activated during ǫ, we obtain a contradiction (since ̟(q, γ0) ≥
̟(p, γ0) ≥ 2). If q is not activated during ǫ, we obtain that ∀i ∈ N, (Inter(Np))

γi = {(Hq)
γ0 −

1, (Hq)
γ0 , (Hq)

γ0 + 1}, p is so always enabled for rule (N). Since the daemon is strongly fair, p
executes a rule in a finite time, that is contradictory. We can deduce that the two ends of the
chain verifies: ̟(p, γ0) < 2.

Under a strongly fair daemon, the only way for a processor to never execute a rule is to
be never enabled from a given configuration. Here, we assume that all processors p verifying
̟(p, γ0) ≥ 2 never execute a rule, that implies that the network verify:

∃k ∈ N, ∀j ≥ k, ∀p ∈ V/̟(p, γ0) ≥ 2,















(Inter(Np))
γj = ∅

and

(Hp)
γj ∈

{⌈

(Hq)γj +(Hq̄)γj

2

⌉

,
⌊

(Hq)γj +(Hq̄)γj

2

⌋}

Number processors of the chain from p1 to pn. Let i be the smallest integer such that
̟(pi, γk) ≥ 2 (remark that, by hypothesis, pi+1 never execute a rule, that implies that its clock
value never changes). All these constraints allows us to say:











(

Hpi−1

)γk = (Hpi
)
γk + 1 ∧

(

Hpi+1

)γk = (Hpi
)
γk − 2 (A)

or
(

Hpi−1

)γk = (Hpi
)
γk − 1 ∧

(

Hpi+1

)γk = (Hpi
)
γk + 2 (B)

By a reasoning similar to these of the proof of Lemma 7, we can prove that all processors
between p0 and pi−1 executes infinitely often the rule (N) in every execution starting from γk
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even if pi never execute a rule (this is the case by hypothesis). By a reasoning similar to these
of the proof of Lemma 7, we can state that Hpi−1

not remains constant. The construction of

Inter(Npi−1
) implies that

(

Inter(Npi−1
)
)γj ⊆ {(Hpi

)
γk −1, (Hpi

)
γk , (Hpi

)
γk +1} for each j ≥ k

(since Hpi
does not change by hypothesis).

If we are in the case (A), we can deduce that Hpi−1
takes infinitely often the value (Hpi

)γk−1
or (Hpi

)
γk . We can see that pi is enabled by (N) and (C1) respectively. This contradicts the

construction of k (recall that pi is never enabled in ǫ from γk).
If we are in the case (B), we can deduce that Hpi−1

takes infinitely often the value (Hpi
)
γk +1

or (Hpi
)
γk . We can see that pi is enabled by (N) and (C1) respectively. This contradicts the

construction of k (recall that pi is never enabled in ǫ from γk).
This finishes the proof. �

Lemma 10 There exists i ≥ 0 such that γi ∈ Γ1.

Proof. The result follows directly from Lemmas 8 and 9. �

Finally, we can conclude:

Proposition 7 UFT SS is a self-stabilizing AU under a locally central strongly fair daemon.

Proof. Lemmas 5, 7, and 10 allows us to say that UFT SS is a self-stabilizing UAU under
a locally central strongly fair daemon. Then, we can deduce the result. �

4.3.2 Proof of self-stabilization in spite of a crash

In this section, ǫ = γ0, γ1 . . . denotes an execution of UFT SS such that a processor c is crashed
in γ0.

Firstly, we are going to prove the closure of our algorithm under these assumptions.

Lemma 11 If there exists i ≥ 0 such that γi ∈ Γ1, then γi+1 ∈ Γ1.

Proof. We can repeat the reasoning of Lemma 5 since the fact that a processor is crashed or
not does not modify the proof. �

Secondly, we are going to prove the liveness of our algorithm under these assumptions.

Lemma 12 If γ0 ∈ Γ1, then every processor p 6= c increments its clock in a finite time in ǫ.

Proof. We repeat the reasoning of Lemma 7 taking in account a processor p ∈ V ∗.
In order to prove the property of Lemma 6, we take d as the distance between p and the end

e of the chain which verifies: no processor between p and e is crashed. This implies that the
processor q is not crashed. The case in which q̄ is crashed appear in the case 1 of the induction.

We can repeat the reasoning of the proof of Lemma 7 since the fact that a processor is
crashed or not does not modify the proof. �

Now, we are going to prove the convergence of our algorithm under these assumptions.

Lemma 13 There exists i ≥ 0 such that γi ∈ Γ1.

Proof. We repeat the reasoning of Lemma 10 taking in account a processor p ∈ V ∗.
We can repeat the reasoning of the proof of the property of Lemma 8 since the fact that a

processor is crashed or not does not modify the proof.
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In order to prove the property of Lemma 9, we take a numbering of processors which ensure
the following property: no processor between p0 and pi (including) is crashed. It is always
possible to choose such numbering since there exists at least one edge e such that ω(e, γk) ≥ 2
by hypothesis, that implies that there exists at least two processors p such that ̟(p, γk) ≥ 2,
that allows us to choose one which is not crashed. The case in which pi+1 is crashed does not
modify the proof since we assumed that this processor never execute a rule. �

Finally, we can conclude:

Proposition 8 UFT SS is a self-stabilizing AU under a locally central strongly fair daemon
even if a processor is crashed in the initial configuration.

Proof. Lemmas 11, 12, and 13 allows us to say that UFT SS is a self-stabilizing UAU under
a locally central strongly fair daemon even if a processor is crashed in the initial configuration.
Then, we can deduce the result. �

4.4 Proof on a ring

In this section, we assume that our algorithm is executed on a ring under a strongly fair locally
central daemon. In fact, we are going to show that UFT SS is a FTSS UAU (that implies that
it is a FTSS AU) under these assumptions.. The proof contains two major steps:

- Firstly, we show that our algorithm is self-stabilizing under these assumptions.
- Secondly, we show that our algorithm is self-stabilizing even if the initial configuration

contains a crashed processor under these assumptions.

4.4.1 Proof of self-stabilization

In this section, ǫ = γ0, γ1 . . . denotes an execution of UFT SS in which there is no crash.
Firstly, we are going to prove the closure of our algorithm under these assumptions.

Lemma 14 If there exists i ≥ 0 such that γi ∈ Γ1, then γi+1 ∈ Γ1.

Proof. We can repeat the reasoning of the proof of Lemma 5 since the topology of the
network has no impact on the proof. �

Secondly, we are going to prove the liveness of our algorithm under these assumptions.

Lemma 15 ∀γ0 ∈ Γ1, ∀p ∈ V, p executes rule (N) in a finite time in every execution starting
from γ0.

Proof. Let be γ0 ∈ Γ1 (we have seen in the proof of Lemma 5 that implies that only rule
(N) can be enabled). Assume that there exists a processorp and an execution ǫ = γ0, γ1 . . .
starting from γ0 such that p never execute a rule in ǫ. Since the daemon is strongly fair, that
implies that ∃k ∈ N, ∀j ≥ k, p is not enabled in γj

Since Processor p is not enabled, it verify: ∃q ∈ Np, (Hp)
γj = (Hq)

γj + 1 and (Hp)
γj =

(Hq̄)
γj − 1. Let i be the smallest integer greater than k such that the step γi → γi+1 contains

the execution of rule by at least one neighbor of p. Let us study the following cases:

Case 1: q and q̄ simultaneously execute a rule during the step γi → γi+1.
Since p is not enabled in γi+1 (by hypothesis) and that the execution of rule (N) always
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modifies the clock values (cf. proof of Lemma 7),we have:











(Hp)
γi = (Hq)

γi + 1 and (Hp)
γi = (Hq̄)

γi − 1

and

(Hp)
γi+1 = (Hq)

γi+1 − 1 and (Hp)
γi+1 = (Hq̄)

γi+1 + 1

The clock move of q̄ contradicts the construction of rule (N) and (Inter(Np))
γi . Therefore,

this case is impossible.

Case 2: Only q executes a rule during the step γi → γi+1.
By construction of rule (N), (Inter(Nq))

γi , and the fact that the execution of this rule
must change the clock value, we have: (Hq)

γi+1 ∈ {(Hp)
γi , (Hp)

γi − 1}. Processor p is
then enabled for rule (N) (since the clocks of p and q̄ have not changed by hypothesis).
This contradicts the construction of k. Therefore, this case is impossible.

Case 3: Only q̄ executes a rule during the step γi → γi+1.
This case is similar to case 2.

Case 4: Neither q nor q̄ executes a rule during the step γi → γi+1.
By the three previous contradiction, it is the only possible case.

We can deduce that ∀j ≥ k, q and q̄ do not execute a rule in γj , that implies that their
clock values remains constant from γk. If we repeat the previous reasoning, we obtain that it is
possible only if the second neighbor of q has a clock value equal to (Hp)

γk + 2 and if the second
neighbor of q̄ have a clock value equals to (Hp)

γk − 2, etc..
Since the ring has a finite length n, we obtain (following the same reasoning) there exists two

neighboring processors p1, p2 such that (Hp1
)
γk = (Hp)

γk + α and (Hp2
)
γk = (Hp)

γk − β (with
α and β integers greater or equal to 1 depending on the parity of n). Therefore, | (Hp1

)γk −
(Hp2

)
γk | = α + β ≥ 2. Then, we obtain that γk /∈ Γ1, which contradicts Lemma 14 and proves

the lemma. �

Lemma 16 If γ0 ∈ Γ1, then every processor increments its clock in a finite time in ǫ.

Proof. The proof is similar to these of Lemma 7 using Lemma 15 (instead of Lemma 6) since
the topology of the network has no impact on the proof. �

Now, we are going to prove the convergence of our algorithm under these assumptions.
In the following, we consider the potential function P previously defined and use similar

arguments as for the proof of Lemma 10.

Lemma 17 If γ ∈ Γ \ Γ1, then every step γ → γ′ which contains the execution of a rule of a
processor p such that ̟(p) ≥ 2 verifies P (γ′) < P (γ).

Proof. The proof is similar to the proof of Lemma 8 since the topology of the network has
no impact on the proof (note that the case 1 is impossible on a ring). �

Lemma 18 If γ0 ∈ Γ \ Γ1, then every execution starting from γ0 contains the execution of a
rule of a processor p such that ̟(p, γ0) ≥ 2.

Proof. Let γ0 ∈ Γ \ Γ1. Assume, by contradiction, that there exists an execution ǫ =
γ0γ1 . . . starting from γ0 which contains no execution of a rule by any processor p which verifies
̟(p, γ0) ≥ 2. Since the daemon is strongly fair, this implies that ∃k ∈ N, ∀j ≥ k, p is not
enabled in γj
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Let q be the neighbor of p verifying ω({p, q}, γk) = ̟(p, γk). By hypothesis, q never executes
a rule. Therefore, its clock value remains constant. Let us study the following cases:

Case 1: | (Hq)
γj − (Hq̄)

γj | ≤ 1
It follows that p is enabled for the rule (N) since | (Inter(Np))

γj | ≥ 2. This contradicts
the construction of k.

Case 2: | (Hq)
γj − (Hq̄)

γj | = 2
It follows that p is enabled for the rule (C1) since (Inter(Np))

γj = {h} and (Hp)
γj 6= h

(because ̟(p, γj) = ̟(p, γk) ≥ 2). This contradicts the construction of k.

Case 3: | (Hq)
γj − (Hq̄)

γj | ≥ 3
By the two previous contradictions, it is the only possible case. Since p is not enabled (by
hypothesis), we obtain that:

∀j ≥ k,















(Inter(Np))
γj = ∅

and

(Hp)
γj ∈

{⌈

(Hq)γj +(Hq̄)γj

2

⌉

,
⌊

(Hq)γj +(Hq̄)γj

2

⌋}

Since the clock values of p and q are constants by hypothesis, we can deduce that the one of
q̄ remains also constant (because, in the contrary case, p becomes enabled, that contradicts
the hypothesis). It follows: (Hq)

γj < (Hp)
γj < (Hq̄)

γj or (Hq)
γj > (Hp)

γj > (Hq̄)
γj .

Since this reasoning holds for every processor on the ring, we can always label the nodes of
any ring by p0, p1,. . . ,pn such that the following property is satisfied : Hp0

< Hp1
< . . . < Hpn

.
But, the previous reasoning for Processor Hp0

implies that we have: Hpn
< Hp0

< Hp1
. It

is impossible to satisfy simultaneously these two inequalities, that proves the result �

Lemma 19 There exists i ≥ 0 such that γi ∈ Γ1.

Proof. The result follows directly from Lemmas 17 and 18. �

Finally, we can conclude:

Proposition 9 UFT SS is a self-stabilizing AU under a locally central strongly fair daemon.

Proof. Lemmas 14, 16, and 19 lead to the conclusion that UFT SS is a self-stabilizing UAU
under a locally central strongly fair daemon.

�

4.4.2 Proof of self-stabilization in spite of a crash

In this section, ǫ = γ0, γ1 . . . denotes an execution of UFT SS such that a processor c is crashed
in γ0.

Firs, we prove the closure of our algorithm, then we prove the convergence property.

Lemma 20 If there exists i ≥ 0 such that γi ∈ Γ1, then γi+1 ∈ Γ1.

Proof. This proof is similar to the proof of Lemma 14 since the fact that a processor is
crashed or not does not modify the proof. �

Secondly, we are going to prove the liveness of our algorithm under these assumptions.
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Lemma 21 If γ0 ∈ Γ1, then every processor p 6= c increments its clock in a finite time in ǫ.

Proof. This proof is similar to the proof of Lemma 16. Note that the crash of a processor is
possible only for the case 4. �

In the following we prove the convergence of our algorithm.

Lemma 22 There exists i ≥ 0 such that γi ∈ Γ1.

Proof. This proof is similar to the proof of Lemma 19 since the fact that a processor is
crashed or not does not modify the proof. �

Finally, we can conclude:

Proposition 10 UFT SS is a self-stabilizing AU under a locally central strongly fair daemon
even if a processor is crashed in the initial configuration.

Proof. Lemmas 20, 21, and 22 allows us to say that UFT SS is a self-stabilizing UAU under
a locally central strongly fair daemon even if a processor is crashed in the initial configuration.
Then, we can deduce the result. �

4.5 Conclusion

We are now in position to state our final result:

Proposition 11 UFT SS is a (0, 1)-ftss AU on a chain or a ring under a locally central
strongly fair daemon.

Proof. This a direct consequence of Propositions 7, 8, 9, and 10. �

5 Conclusion

We presented the first study of FTSS protocols for dynamic tasks in asynchronous systems, and
showed the intrinsic problems that are induced by the wide range of faults that we address. The
combination of asynchrony and maintenance of liveness properties implies many impossibility
results, and the deterministic protocol that we provided for one of the few remaining cases is
optimal with respect to all impossibility results and containment measures.

There remains the open case of protocols that neither satisfy the minimality or the priority
properties (see Table 1). We conjecture that at least one of those properties is necessary for the
purpose of deterministic self-stabilization, yet none of those could be required for deterministic
weak stabilization [16] (weak stabilization is a weaker property than self-stabilization since
existence of execution reaching a legitimate configuration is guaranteed). As recent results [7]
hint that weak-stabilizing solutions could induce probabilistic self-stabilizing ones, this raises
the open question of the possibility of probabilistic FTSS for dynamic tasks in asynchronous
systems.
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