
HAL Id: inria-00381941
https://hal.inria.fr/inria-00381941v2

Submitted on 18 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimistic Mandatory Access Control Model for
Distributed Collaborative Editors

Abdessamad Imine, Asma Cherif, Michaël Rusinowitch

To cite this version:
Abdessamad Imine, Asma Cherif, Michaël Rusinowitch. An Optimistic Mandatory Access Control
Model for Distributed Collaborative Editors. [Research Report] RR-6939, INRIA. 2009, pp.20. <inria-
00381941v2>

https://hal.inria.fr/inria-00381941v2
https://hal.archives-ouvertes.fr


IS
S

N
 0

24
9-

63
99

ap por t  
de  r ech er ch e 

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
69

39
--

F
R

+
E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

An Optimistic Mandatory Access Control Model
for Distributed Collaborative Editors

Abdessamad Imine and Asma Cherif and Michaël Rusinowitch

N° 6939

February 2009





Unité de recherche INRIA Lorraine
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

An Optimistic Mandatory Access Control Model
for Distributed Collaborative Editors

Abdessamad Imine∗ and Asma Cherif† and Michaël Rusinowitch‡
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Abstract: Distributed Collaborative Editors (DCE) provide computersupport for modifying si-
multaneously shared documents, such as articles, wiki pages and programming source code, by
dispersed users. Controlling access in such systems is still a challenging problem, as they need
dynamic access changes and low latency access to shared documents. In this paper, we propose a
Mandatory Access Control (MAC) based on replicating the shared document and its authorization
policy at the local memory of each user. To deal with latency and dynamic access changes, we use
an optimistic access control technique where enforcement of authorizations is retroactive. We show
that naive coordination between updates of both copies can create security hole on the shared docu-
ment by permitting illegal modification, or rejecting legalmodification. Finally, we present a novel
framework for managing authorizations in collaborative editing work which may be deployed easily
on P2P networks.

Key-words: Access Control, Optimistic Replication, Distributed Collaborative Editors.

∗ INRIA Nancy Grand Est & Univ. Nancy 2, UMR 7503 (imine@loria.fr).
† INRIA Nancy Grand Est & Univ. Nancy 2, UMR 7503 (cheriasm@loria.fr).
‡ INRIA Nancy Grand Est, UMR 7503 (rusi@loria.fr).



Modèle Optimiste de Contr̂ole d’Accès Obligatoire pour les
Editeurs Collaboratifs

Résuḿe : Les éditeurs collaboratifs fournissent un support logiciel pour la modification simultanée
des documents partagés, comme des articles, des pages wikiet du code source des programmes,
par des utilisateurs dispersés géographiquement. Le contrôle d’accès dans de tels systèmes demeure
toujours un challenge difficile, car ils nécessitent des accès dynamiques ainsi qu’une faible latence
pour accéder aux documents partagés. Dans ce rapport, nous proposons un contrôle d’accès
obligatoire qui se base sur la réplication du document partagé ainsi que sa politique d’accès.
Pour traiter des problèmes de la latence et les accès dynamiques, nous utilisons une technique
de contrôle d’accès optimiste où l’exécution des autorisations est rétroactive. Nous montrons
qu’une coordination naı̈ve entre les mises à jour des deux copies peut causer des failles de sécurité
en permettant des modifications illégales ou en rejetant des modifications légales. Enfin, nous
présentons un nouvel environnement pour la gestion des autorisations dans des éditeurs collaboratifs
qui peut être facilement déployé sur des réseaux P2P.

Mots-clés : Contrôle d’accès, Réplication Optimiste, Editeurs Collaboratifs.
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4 A. Imine et al.

1 Introduction

Distributed Collaborative Editors (DCE) belong to a particular class of distributed systems that en-
ables several and dispersed users to form a group for editingdocuments (e.g. Google Docs). To
ensure data availability, the shared documents are replicated on the site of each participating user.
Each user modifies locally his copy and then sends this updateto other users.

DCE are distributed systems that have to consider human interactions. So, they are characterised
by the following requirements: (i)High local responsiveness: the system has to be as responsive as
its single-user editors [3, 15, 16]; (ii)High concurrency: the users must be able to concurrently and
freely modify any part of the shared document at any time [3, 15]; (iii) Consistency: the users must
eventually see a converged view of all copies [3,15] in orderto support WYSIWIS (What You See Is
What I See) principle; (iv)Decentralized coordination: all concurrent updates must be synchronized
in decentralized fashion in order to avoid a single point of failure; (v)Scalability: a group must be
dynamic in the sense that users may join or leave the group at any time.

Motivations. One of the most challenging problem in DCE is balancing the computing goals of
collaboration and access control to shared information [17]. Indeed interaction in collaborative
editors is aimed at making shared document available to all who need it, whereas access control
seeks to ensure this availability only to users with proper authorization. Moreover, the requirements
of DCE include high responsiveness of local updates. However, when adding an access control layer,
high responsiveness is lost because every update must be granted by some authorization coming
from a distant user (as a central server). The major problem of latency in access control-based
collaborative editors is due to using one shared data-structure containing access rights that is stored
on a central server. So controlling access consists in locking this data-structure and verifying whether
this access is valid. Furthermore, unlike traditional single-user models, collaborative applications
have to allow for dynamic change of access rights, as users can join and leave the group in an ad-hoc
manner.

Contributions. To overcome the latency problem, we propose to replicate theaccess data-structure
on every site. Thus, a user will own two copies: the shared document and the access data-structure.
It is clear that this replication enable users to gain performance since when they want to manipulate
(read or update) the shared document, this manipulation will be granted or denied by controlling
only the local copy of the access data-structure. As DCE haveto allow for dynamic change of access
rights, it is possible to achieve this goal when duplicatingaccess rights. To do that, we propose a
Mandatory Access Control model (MAC) [11], in the sense thatonly one user, calledadministrator,
can modify the shared access data-structure. Thus, updateslocally generated by the administrator
are then broadcast to other users. We choose dynamic access changes initiated by one user in order
to avoid the occurrence and the resolution of conflict changes.

The shared document’s updates and the access data-structure’s updates are applied in different
orders at different user sites. The absence of safe coordination between these different updates may
cause security holes (i.e. permitting illegal updates or rejecting legal updates on the shared docu-
ment). Inspired by theoptimistic securityconcept introduced in [8], we propose an optimistic ap-
proach that tolerates momentary violation of access rightsbut then ensures the copies to be restored
in valid states with respect to the stabilized access control policy.

INRIA
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Outline of the paper. This paper is organized as follows: Section II discusses related work. Section
III presents the ingredients of our collaboration model. InSection IV, we investigate the issues raised
by replicating the shared document and its access data-structure. Section V presents our concurrency
control algorithm for managing MAC-based collaborative editing sessions. Section VI describes our
prototype and its evaluation on experiments. Section VII summarizes our contributions and sketch
future works.

2 Related Works

A survey on access control for collaborative systems can be found in [17]. We only recall some
representative approaches and their shortcomings. A collaborative environment has to manage the
frequent changing of access rights by users. Access ControlLists (ACL) and Capability Lists (CL)
cannot support very well dynamic change of permissions. Hence, the administrator of collaborative
environments often sets stricter permissions, as multipleusers with varying levels of privileges will
try to access shared resources [13]. Role Based Access Control (RBAC) [12] overcomes some
problems with dynamic change of rights. RBAC has the notion of a session which is a per-user
abstraction [5]. However, the ”session” concept also prevents a dynamic reassignment of roles since
the user roles cannot be changed within a single session. Users have to authenticate again to obtain
new roles. Spatial Access Control (SAC) has been proposed tosolve this problem of role migration
within a session [2]. Instead of splitting users into groupsas in RBAC, SAC divides the collaborative
environment into abstract spaces. However, SAC implementation needs prior knowledge of the
practice used in some collaborative system, in order to produce a set of rules that are generic enough
to match most of the daily access patterns. Every access needs to check the underlying access data-
structures; this requires locking data-structures and reduces collaborative work performance.

The majority of works on replicating authorization policies appears in database area [10, 1, 18].
For maintaining authorization consistency, these works generally rely on concurrency control tech-
niques that are suitable for database systems. As outlined in [3], these techniques are inappropriate
for DCE. Nevertheless, [10] is related to our work as it employs an optimistic approach. Indeed,
changes in authorizations can arrive in different order at different sites. Unlike our MAC approach,
conflict authorizations may appear as updates are initiatedby several sites.

3 Our Collaboration Model

We give here the ingredients of our model.

3.1 Shared Data Object

It is known that collaborative editors manipulate share objects that admit a linear structure [3,14,16].
This structure can be modelled by thelist abstract data type. The type of the list elements is a
parameter that can be instantiated by each needed type. For instance, an element may be regarded
as a character, a paragraph, a page, an XML node, etc. In [16],it has been shown that this linear

RR n° 6939



6 A. Imine et al.

structure can be easily extended to a range of multimedia documents, such as MicroSoft Word© and
PowerPoint© documents.

Definition 3.1 [Cooperative Operations]. The shared document state can be altered by the follow-
ing set ofcooperative operations: (i) Ins(p,e) where p is the insertion position, e the element to be
added at position p; (ii) Del(p,e) which deletes the element e at position p; (iii) U p(p,e,e′) which
replaces the element e at position p by the new element e′. �

It is clear that combinations of these operations enable us to define more complex ones, such as
cut/copy and paste, that are intensively used in professional text editors.

3.2 Shared Policy Object

We consider an access control model based onauthorization policies. An authorization policy spec-
ifies the operations a user can execute on a shared document. Three sets are used for specifying
authorization policies, namely:

1. S is the set ofsubjects. A subject can be a user or a group of users.

2. O is the set ofobjects. An object can be the whole shared document, an element or a group of
elements of this shared document.

3. R is the set ofaccess rights. Each right is associated with an operation that user can perform
on shared document. Thus, we consider the right of reading anelement (rR), inserting an
element (iR), deleting an element (rD) and updating an element (rU ).

Definition 3.2 [Policy]. A policy is a function that maps a set of subjects and a set of objects toa set
of signed rights. We denote this function by P: P (S)×P (O)→ P (R)×{+,−}, whereP (S), P (O)
andP (R) are the power sets of subjects, objects and rights respectively. The sign “+” represents a
right attributionand the sign “−” represents a rightrevocation. �

We represent a policyP as an indexed list of authorizations. Each authorizationPi is a quadruple
〈Si ,Oi ,Ri ,ωi〉 whereSi ⊆ S, Oi ⊆ O, Ri ⊆ R andωi ∈ {−,+}. An authorization is saidpositive
(resp.negative) whenω = + (resp.ω = −). Negative authorizations are just used to accelerate the
checking process. We use a first-match semantics: when an operation o is generated, the system
checkso against its authorizations one by one, starting from the first authorization and stopping
when it reaches the first authorizationl that matcheso. If no matching authorizations are found,o is
rejected.

Definition 3.3 [Administrative Operations]. The state of a policy is represented by a triple〈P,S,O〉
where P is the list of authorizations. The administrator canalter the state policy by the following set
of administrative operations: (i) AddUser/DelUser to add/remove a user in S; (ii) AddOb j/DelOb j
to add/remove an object in O; (iii) AddAuth(p, l)/DelAuth(p, l) to add/remove authorization l at
position p. An administrative operation r is calledrestrictiveiff r = AddAuth(p, l) and l is negative
or r = DelAuth(p, l). �

INRIA
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3.3 Collaboration Protocol

In our collaboration protocol, we consider that a user maintains two copies: the shared document
and its access policy object. Each group consists of one administrator and several users. Only
administrator can specify authorizations in the policy object. It can also modify directly the shared
documents. As for users, they only modify the shared document with respect to the local policy
object. Our collaboration protocol proceeds as follows:

1. When a user manipulates the local copy of the shared document by generating a cooperative
operation, this operation will be granted or denied by only checking the local copy of the
policy object.

2. Once granted and executed, the local operations are then broadcast to the other users. A user
has to check whether or not the remote operations are authorized by its local policy object
before executing them.

3. When an administrator modifies its local policy object by adding or removing authorizations,
he sends these modifications to the other users in order to update their local copies. Note that
the administrator site does not coordinate concurrent cooperative operations.

We assume that messages are sent via secure and reliable communication network, and users are
identified and authenticated by the administrator in order to associate correctly access to these users.

4 Consistency and Security Issues

The replication of the shared document and the policy objectis twofold beneficial: firstly it ensures
the availability of the shared document, and secondly it allows for flexibility in access rights check-
ing. However, this replication may create violation of access rights which may fail to meet one of
the most important requirements of DEC, the consistency of the shared document’s copies. Indeed,
the cooperative and administrative operations are performed in different orders on different copies
of the shared document and the policy object.

In the following, we investigate the issues raised by the useof the collaboration protocol de-
scribed in Section 3.3 and we informally present our solutions to address these issues.

4.1 Out-of-order Execution of Cooperative Operations

What happens if cooperative operations arrive in arbitraryorders even with stable policy object?
Consider the scenario in Figure 1.(a) where two users work ona shared document represented by
a sequence of characters and they have the same policy object(they are authorized to insert and
delete characters). These characters are addressed from 1 to the end of the document. Initially, both
copies hold the string “efecte”. User 1 executes operationo1 = Ins(2, f ) to insert the character ‘f’
at position 2. Concurrently, user 2 performso2 = Del(6,e) to delete the character ‘e’ at position 6.
Wheno1 is received and executed on site 2, it produces the expected string “effect”. But, at site 1,o2

does not take into account thatop1 has been executed before it and it produces the string “effece”.

RR n° 6939



8 A. Imine et al.

The result at site 1 is different from the result of site 2 and it apparently violates the intention ofo2

since the last character ‘e’, which was intended to be deleted, is still present in the final string.

site 1
“efecte”

site 2
“efecte”

o1 = Ins(2, f )

&&LLLLLLLLLLL
o2 = Del(6,e)

rrrrr

yyrrrrr“effecte” “efect”

Del(6,e) Ins(2, f )

“effece” “effect”

(a) Incorrect integration.

site 1
“efecte”

site 2
“efecte”

o1 = Ins(2, f )

''PPPPPPPPPPPPP
o2 = Del(6,e)

nnnnnn

wwnnnnnn“effecte” “efect”

IT (o2,o1) = Del(7,e) Ins(2, f )

“effect” “effect”

(a) Correct integration.

Figure 1: Serialization of concurrent cooperative operations

To maintain consistency of the shared document, even thoughthe policy object remains un-
changed, we use the Operational Transformation (OT) approach which has been proposed in [3].
In general, it consists of application-dependent transformation algorithm, calledIT , such that for
every possible pair of concurrent operations, the application programmer has to specify how to in-
tegrate these operations regardless of reception order. InFigure 1.(b), we illustrate the effect ofIT
on the previous example. At site 1,o2 needs to be transformed in order to include the effects ofo1:
o′2 = IT ((Del(6,e), Ins(2, f )) = Del(7,e). The deletion position ofo2 is incremented becauseo1

has inserted a character at position 1, which is before the character deleted byo2. It should be noted
that OT enables us to ensure the consistency forany numberof concurrent operations which can be
executed inarbitrary order [9,7] (i.e. no global order is necessary).

For managing collaborative editing work in a decentralizedand scalable fashion, we reuse an
OT-based framework that is not presented here due to space limit. For more details seee.g. [4]. Our
objective here is to develop on the top of this framework a security layer for controlling access to the
shared documents.

4.2 Out-of-order Execution of Cooperative and Administrative Operations

Performing cooperative and administrative operations in different orders at every user site may in-
evitably lead to security holes. To underline these issues we will present in the following three
scenarios.

First scenario:Consider a group composed of an administratoradmand two standard userss1 and
s2. Initially, the three sites have the same shared document “abc” and the same policy object where
s1 is authorized to insert characters (see Figure 2). Suppose thatadmrevokes the insertion right ofs1

and sends this administrative operation tos1 ands2 so that it is applied on their local policy copies.
Concurrentlys1 executes a cooperative operationIns(1,x) to derive the state “xabc” as it is granted
by its local policy. Whenadm receives thes1’s operation, it will be ignored (as it is not granted

INRIA



An Optimistic Mandatory Access Control Model for Distributed Collaborative Editors 9

by theadm’s local policy) and then the final state still remain “abc”. As s2 receives thes1’s insert
operation before its revocation, he gets the state “xabc” that will be unchanged even after having
executed the revocation operation. We are in presence of data inconsistency (the state ofadm is
different from the state ofs1 ands2) even though the policy object is same in all sites.

adm
“abc”

s1
“abc”

s2
“abc”

revoke insertion
right to s1

��:
::

::
::

::
::

::
::

::
:

%%LLLLLLLLLLLLLLLLLLLLLLLLLL
Ins(1,x)

((RRRRRRRRR

{{xx
xx

xx
xx

xx
xx

xx
x

“xabc” Accepted

Ignored “xabc”

revoke insertion
right to s1

revoke insertion
right to s1

“abc” “xabc” “xabc”

Figure 2: Divergence caused by introducing administrativeoperations

The new policy object is not uniformly enforced among all sites because of the out-of-order
execution of administrative and cooperative operations. Thus, security holes may be created. For
instance some sites can accept cooperative operations thatare illegal with respect to the new policy
(e.g.sitess1 ands2).

As our objective is to deploy such DCE in a P2P environment, the solution based on enforcing a
total order between both operations is discarded as it wouldrequire a central server. Achieving this
objective raises a critical question: how the enforcement of the new policy is performed with respect
to concurrent cooperative operations? It should be noted that this enforcement may be delayed by
either the latency of the network or malicious users.

To solve this problem, we apply the principles of optimisticsecurity [8] in such a way that the
enforcement of the new policy may be retroactive with respect to concurrent cooperative operations.
In this case, only illegal operations are undone. For instance, in Figure 2,Ins(1,x) should be undone
in s1 ands2 after the execution of the revocation.

Second scenario:Suppose now that we use some technique to detect concurrencyrelations between
administrative and cooperative operations. In the scenario of Figure 3, three users see initially the
same document “abc” and they use the same policy objectP =< {s2},{doc},{rD},+ >. Firstly,
adm revokes the deletion right tos2 by removing an authorization fromP (P becomes empty).
Concurrently,s2 performsDel(1,a) to obtain the state “bc”. Once the revocation arrives ats2, it
updates the local policy copy and it enforces the new policy by undoingDel(1,a) and restoring the
state to “abc”.

RR n° 6939



10 A. Imine et al.

How to integrate the remote operationDel(1,a) at adm and s1? Before to execute this op-
eration, if we check it directly against the local policy atadm, it will be rejected (the policy is
empty). After a while of receiving and ignoring operationDel(1,a), admdecides to grant once
again the deletion right tos2. At s1, the execution of both administrative operations leads to
P =< {s2},{doc},{rD},+ >. Before to executeDel(1,a), if we check it directly with respect
to the local policy ofs1 then it will be granted and its execution will lead to data inconsistency.

This security hole comes from the fact that the generation context ofDel(1,a) (the local policy
on which it was checked) ats2 is different from the current execution context atadmands1 (due to
preceding executions of concurrent administrative operations).

adm
“abc”

s1
“abc”

s2
“abc”

Revoke deletion tos2

++VVVVVVVVVV

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSS Del(1,a)

qqccccccccccccccccccccccccccccc

����
��

��
��

��
��

��
��

��
��

��
��

��
��

Ignored Revoke deletion tos2 “bc”

Allow deletion tos2
Revoke deletion tos2

undo(Del(1,a))

Allow deletion tos2

--[[[[[[[[[[[[[[[[[[[[

44iiiiiiiiiii
abc

Accepted Allow deletion tos2

“abc” “bc” “abc”

Figure 3: Necessity of admin Log.

Intuitively, our solution consists in capturing the causalrelations between cooperative operations
and the policy copies on which they are generated. In other words, every local policy copy maintains
a monotonically increasing counter that is incremented by every administrative operation performed
on this copy. If each granted cooperative operation is associated with the local counter of the policy
object at the time of its creation, then we can correctly integrate it in every remote site. However,
when the cooperative operation’s counter is less than the policy copy’s counter of another site then
this operation need to be checked with respect to preceding concurrent administrative operations
before its execution. Therefore, we propose in our model to store administrative operations in a
log at every site in order to validate the remote cooperativeoperations at appropriate context. For
instance, in Figure 2, we can deduce thatDel(1,a) will be ignored ats1 by simply checking it against
the first revocation.

Third scenario:Using the above solution, the administrative operations will be totally ordered as
only administrator modifies the policy object and we associate to every version of this object a
monotonically increasing counter.

INRIA
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Consider the scenario illustrated in Figure 4 wheres1 is initially authorized to insert any charac-
ter. Whenadmrevokes the insertion right tos1, he has already seen the effect of thes1’s insertion.
If s2 receives the revocation before the insertion, he will ignore this insertion as it is checked against
the revocation. It is clear that the insertion may be delayedat s2 either by the latency of the network
or by a malicious user. We observe that there is a causal relation atadmbetween the insertion and the
revocation. This causal relation is not respected ats2 and the out-of-execution of operations creates
a security hole ass2 rejects a legal insertion.

adm
“abc”

s1
“abc”

s2
“abc”

Ins(1,x)

��8
88

88
88

88
88

88
88

88
88

8

vvmmmmmmmmm

Accepted “xabc”
revoke insertion

right to s2

“xabc”

revoke insertion
right to s2

''OOOOOO

66llllllllllllllllllll

Ignored

revoke insertion
right to s2

“xabc” “xabc” “abc”

Figure 4: Validation of operations

Before it is received at the administrator site, we considera cooperative operation as tentative.
So, our solution consists of an additional administrative operation that doesn’t modify the policy
object but increments the local counter. This operation validates each received and accepted cooper-
ative operation at the administrator site. Consequently, every administrative operation is concurrent
to all tentative operations. The policy modifications done after the validation of a cooperative oper-
ation are executed after this operation in all sites, as administrative operations are totally ordered.

In case of our scenario in Figure 4, the revocation received at s2 will not be executed until the
validation of the insertion is received. This avoids blocking legal operations and data divergence.

5 Concurrency Control Algorithm

Now we formally present the different components of our algorithm. We also give its asymptotic
time complexity.

RR n° 6939



12 A. Imine et al.

5.1 Cooperative and Administrative Requests

We define acooperative request qas a tuple(c, r,a,o,v, f ) where: (i)c is the identity of the collab-
orator site (or the user) issuing the request. (ii)r is its serial number (note that the concatenation of
q.c andq.r is defined as the request identity ofq). (iii) a is the identity of the preceding cooperative
request1. If a is null then the request does not depend on any other request. (iv)o is the cooperative
operation (see Definition 3.1) to be executed on the shared state. (v)v is the number version of the
policy copy on which the operation is granted. (vi)f is the kind of cooperative (tentative, valid or
invalid). We consider three kinds of cooperative requests:

1. tentative: when an operation is locally accepted, it is stored as a request waiting for validation
from the administrator.

2. valid : it is generated by a given site and validated by the local policy of the administrator.

3. invalid : this means that it is not confirmed by the receiver local policy. It is then stored in the
log and flagged in order to memorize its reception.

To detect causal dependency and concurrent relations between cooperative requests, we use a
technique proposed in [4] which allows for dynamic groups asit is independentof the number of
users (unlike to vector timestamp-based technique [3]). This technique builds a dependency tree
where each requestq has only to store inq.a the request identity whose it directly depends on. For
more details, see [4].

We consider anadministrative request ras the tripler = (id,o,v) where: (i)id is the identity of
the administrator; (ii)o is the administrative operation (see Definition 3.3); (iii)v is the last version
number of the policy object. As only administrator specifiesauthorizations in the policy object, the
administrative requests are totally ordered. Indeed, eachpolicy copy maintains a monotonically in-
creasing counter that is stored (in the version componentv) and incremented by every administrative
operation performed on this copy.

As seen in Section 4, it is crucial to correctly deal with the out-of-order execution between co-
operative and administrative requests in order to avoid thesecurity holes. Letq andr be cooperative
and administrative requests respectively: (i)q depends causally onr iff q.v > r.v, i.e. qalready has
seen the effect ofr; (ii) if q is tentative then it is concurrent tor, i.e. the administrator has not yet
seen the effect ofq when it generatesr.

5.2 Control Procedure

In our approach, a group consists of one administrator site and N user sites (whereN is variable in
time) starting a collaboration session from the same initial document stateD0. Each site stores all
cooperative requests in logH and administrative requests (AddAuthandDelAuth) in a logL. Our
concurrency control procedure is given in Algorithm 1. It should be noted that Algorithm 1 is mainly
based on framework proposed in [4]. This framework relies on(i) using OT approach [3] in order
to execute cooperative requests in any order; (ii) using a particular class of logs, calledcanonical,
where insertion requests are stored before deletion requests in order to ensure data convergence.

1According to the dependency relation described in [4].
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1: Main:
2: INITIALIZATION

3: while not aborteddo
4: if there is an inputo then
5: if o is cooperativethen
6: GENERATE COOP REQUEST

7: else if i = adminthen
8: GENERATE ADMIN REQUEST

9: end if
10: else
11: RECEIVE REQUEST

12: RECEIVE COOP REQUEST

13: RECEIVE ADMIN REQUEST

14: end if
15: end while

16: INITIALIZATION :
17: D← D0 {Actual state of the site}
18: s← Identification of local site
19: version← 0 {Initial Version of local site}
20: H← [] {Cooperative log}
21: L← [] {Administrative log}
22: F ← [] {Cooperative requests buffer}
23: Q← [] {Administrative requests buffer}
24: compteurCoopOp← 0

25: RECEIVE REQUEST:
26: if there is a cooperative requestq from a networkthen
27: F ← F +q
28: end if
29: if there is an administrative requestr from a networkthen
30: Q←Q+ r
31: end if

Algorithm 1: Control Concurrency Algorithm at the i-th site

Generation of local cooperative request.In Algorithm 2, when an operationo is locally generated,
it is first checked against the local policy object (i.e. using boolean function CHECK LOCAL). If
it is granted locally, it is immediately executed on its generation state (i.e. Do(o,D) computes
the resulting state when executing operationo on stateD). Once the requestq is formed, it is
considered either as valid when the issuer is the administrator or otherwise as tentative. Function
COMPUTEBF(q,L) is called to detect insideH whether or notq is causally dependent on precedent
cooperative request. Integratingq after H may result in not canonical log. To transform[H;q] in
canonical form, we use function CANONIZE. Finally, the requestq′ (the result of COMPUTEBF) is
propagated to all sites in order to be executed on other copies of the shared document. For more
details on functions COMPUTEBF and CANONIZE, see [4].

Reception of cooperative request.Each site has the use of queueF to store the remote requests
coming from other sites. Requestq generated on sitei is added toF when it arrives at sitej (with
i 6= j). In Algorithm 3, to preserve the causality dependency withrespect to precedent administrative
requests and precedent cooperative requests,q is extracted from the queue when it iscausally-ready
(i.e. q.v≤ versionand the precedent cooperative requests ofq have been already integrated on site
j). Using function CHECK REMOTE(q,L), q is checked against the administrative logL to verify
whether or notq is granted. Ifq is received by the administrator then it is validated and a validation
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1: GENERATE COOP REQUEST:
2: if CHECK LOCAL(o) then
3: D← Do(o,D)
4: compteurCoopOp← compteurCoopOp+1
5: if i = adminthen
6: q← (s,compteurCoopOp,o,null,Valid,version)
7: else
8: q← (s,compteurCoopOp,o,null,Tentative,version)
9: end if
10: q′←COMPUTEBF(q,H)
11: H← CANONIZE(q′ ,H)
12: broadcastq′;
13: end if

Algorithm 2: Cooperative request generation at a sites

request is generated in order to broadcast it to other sites.Next, function COMPUTEFF(q,L) is called
in order to compute the transformed formq′ to be executed on current stateD. This function is given
in [4]. Finally, the transformed form ofq, namelyq′, is executed on the current state and function
CANONIZE is called in order to turn again[H;q′] in canonical form.

Generation and Reception of administrative request.In Algorithm 4, the policy copy maintains
a version counter that is incremented by the request generated by the administrator and performed
on this copy. This request is next broadcast to other users for enforcing the new policy. When the
received requestr is causally ready (i.e. r.v = version+ 1 and if r is a validation of a cooperative
requestq then this one has been already executed on this site), it is extracted fromQ. If r.o is
AddAuthor DelAuth: (i) it is performed on the the policy copy; and, (ii) it undoes the tentative
cooperative request that are no longer granted by the new policy. However, if r is a validation of
cooperative requestq then it setsq to valid.

1: RECEIVE COOP REQUEST(q):
2: if q is causally readythen
3: F ← F−q
4: if (CHECK REMOTE(q,L)) then
5: if i = admthen
6: q. f ← valid
7: r← GENERATE ADMIN REQUEST(Validate(q))
8: end if
9: else
10: q. f ← invalid
11: end if
12: q′ ← COMPUTEFF (q,H)
13: D← Do(q′,D)
14: CANONIZE(q′ ,H)
15: end if

Algorithm 3: Cooperative request reception by a sites

Asymptotic Time Complexities. Let Hdu be all deletion/update requestsH. In the worst
case, when cooperative requestq is an insertion and it has no dependency insideH (see [4]):
(i) functions COMPUTEFF(q,H) and COMPUTEBF(q,H) have the same complexity,O(|H|), and;
(ii) the complexity of function CANONIZE(q,H) is O(|Hdu|). Hence, the complexity of GENER-
ATE COOP REQUEST is O(|H|+ |Hdu|+ |Prv|) = O(2∗ |H|+ |Prv|) (with Prv is the list of autho-
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1: GENERATE ADMIN REQUEST:
2: version← version+1
3: apply modification to the policy
4: r← (admin,version,o)
5: broadcastr;

6: RECEIVE ADMIN REQUEST(r):
7: if r is causally readythen
8: Q←Q− r
9: if (r.o is an AddAuth or DelAuth)then
10: apply modification to policy
11: if r is restrictivethen
12: H← UNDO(q,H) for all tentative requestq concerned by the requestr
13: end if
14: else
15: j←GetIndex(r.q) {to determine the index of the cooperative request to validate it}
16: H [ j]. f ← valid
17: end if
18: version← version+1
19: end if

Algorithm 4: Generation and reception of administrative request

rizations at versionv), and the complexity of RECEIVE COOP REQUEST is O(|L|+ |H|+ |Hdu|) =
O(|L|+2∗|H|) (whereL is the administrative log). Consequently, our concurrencycontrol algorithm
is not expensive and scale well as all functions have a linearbehaviour.

However, to enforce the new authorization policy we have used the function UNDO(q,H). The
complexity of this function isO(|H|2) when allH ’s requests are tentative and they should be undone
by requestr. Practically, UNDO is not expensive if we assume that the transmission time of requests
is very short. In this case, the most of tentative requests will be validated by the administrator and
there will be fewer requests to undo between two version of the policy object.

5.3 Illustrative Example

To highlight the feature of our concurrency control algorithm, we present a slightly complicated
scenario in Figure 5, where the solid (dotted) arrows describe the integration order (validation of
tentative requests). We have an administratoradmand two userss1 ands2 starting the collaboration
with the initial stateD0 = ‘‘abc” and the initial policy version (v0

i = v0) characterized by the policy
P0

i =< (All ,Doc,{iR,dR, rR,uR},+) > (for i = adm,1,2). The notationsAll andDocdesignate the
set of all users and the whole document respectively. Initially, the cooperative and administrative
logs of each site are empty (H0

i = L0
i = [] for i = adm,1,2).

They generate three concurrent cooperative requests respectively: q0.o = Ins(2,y), q1.o =
Del(2,b) andq2.o = Ins(3,x). After integratingq0, q1 andq2, s1 generatesq3.o = Del(1,a). As
for s2, it generatesq4.o = Del(1,a) after the integration ofq1 andq2. Finally admgenerates the
administrative requestr.o = AddAuth(1,(s1,Doc,dR,−)). At the end of the collaboration, the three
sites will converge to the final state ”ayc”.

We describe the integration of our requests in three steps:
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adm
“abc”

s1
“abc”

s2
“abc”

q0.o = Ins(2,y)

''PPPPPPPPPPPPPPPPPPP

$$IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
q1.o = Del(2,b)

zzuuuuuuuuuuuuuuuuuuuuuu

))SSSSSSSSSSS
q2.o = Ins(3,x)

uukkkkkkkkkkk

qqdddddddddddddddddddddddddddd

//

--

//

--

r.o = AddAuth((s1,Doc,dR,−))

--ZZZZZZZZZZZZZZZZZZZZZZZZZ

''PPPPPPPPPPPPPPPPPPP
q3.o = Del(1,a)

ssggggggggggggggg

$$IIIIIIIIIIIIII
q4.o = Del(2,x)

sshhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

uukkkkkkkkkkk

//

--“ayc” “ayc” “ayc”

Figure 5: Collaboration scenario between an administratorand two sites.

Step 1.At adm, the execution ofq0 producesD1
0 = ”aybc” and H1

0 = [q0]. Whenq2 andq1 arrive,
they are transformed by COMPUTEFF(). This results inD3

0 = ayxcandH3
0 = [q0;q′2;q′1] with q′2.o=

Ins(4,x) andq′1.o = Del(4,b). These requests are validated and sent tos1 ands2.
At s1, the execution ofq1 givesD1

1 = ”ac” and H1
1 = [q1]. Once received and granted by the

local policy, q2 and q0 are transformed and the obtained log is twice modified by CANONIZE()
as insertions must appear before deletions. We getD3

1 = ”ayxc” and H3
1 = [q2;q0;q′1] with q′1.o =

Del(3,b). Executingq2 andq1 at s2 producesD2
2 = ”axc” andH2

2 = [q2;q1].
The sitesadm, s1 ands2 generater, q3 andq4 respectively. They are propagated as follows.

Step 2. At adm site, r is restrictive and it produces P1
0 =<

(s1,Doc,dR,−),(All ,Doc,{iR,dR, rR,uR},+) >, L1
0 = [r] andv1

0 = v0 + 1. Indeed, it revokes the
deletion right tos1.

At s1, the execution ofq3 after H3
1 results inD4

1 = ”yxc”. To broadcastq3 with a minimal
generation context, function COMPUTEBF() is called to detect causal dependency insideH3

1 . The
obtained log isH4

1 = [q2;q0;q′1,q3].
At s2, q4 is executed afterH2

2 and producesD3
2 = ”ac” H3

2 = [q2;q1;q4]. Using COMPUTEBF()
enables to detect thatq4 depends onq2, as q4 removes the character inserted byq2. When q0

arrives, its integration producesD4
2 = ”ayc” and H4

2 = [q2;q0;q′′1;q′′4] (with q′′1.o = Del(3,b) and
q′′4.o = Del(3,x)). This log is the result of CANONIZE().
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Step 3. At adm, whenq3 is checked againstL1
0 it is rejected but is stored in invalid formq∗3 which

has no effect on the local document state. The resulting log isH5
0 = [q0;q′2;q′1,q

∗
3]. Whenq4 arrives,

it is only transformed againstq′1 andq∗3 as it depends onq′2. This results inD6
0 = ”ayc” and H6

0 =
[q0;q′2;q′1,q

∗
3,q
′
4] with q′4.o = Del(3,x).

At s1, the integration ofq4 producesD5
1 = ”yc” andH5

1 = [q2;q0;q′1;q3;q4]. Integratingr results
in L1

1 = [r] andv1
1 = v0 + 1. Enforcing the new policy requires to undoq3 as it is a tentative (not

validated yet) request. The inverse ofq3, notedq3, is firstly generated withq3.o = Ins(1,a). Next,
q3 is transformed againstq4 giving q3

′ of which the execution results inD6
1 = “ayc′′. Finally the log

is modified toH6
1 = [q2;q0;q′1;q3;q3;q′4] whereq′4 is the form ofq4 as ifq3 hasn’t been executed.

At s2, the reception ofr results inL2
1 = [r] andv2

1 = v0 + 1. Requestq3 is invalidated (q3. f =
invalid) and stored in log without being executed. This results inH5

2 = [q2;q0;q′1;q4;q∗3].

6 Implementation and Evaluation

A prototype of DCE based on our optimistic MAC has been implemented in Java. It supports the
collaborative editing ofHTML pages and it is deployed on P2P JXTA platform (see Figure 6). In
our prototype, a user can create aHTML page from scratch by opening a new collaboration group.
Thus, he is the administrator of this group. Others users mayjoin the group to participate inHTML

page editing, as they may leave this group at any time. The administrator can dynamically add
and remove different authorizations for accessing to the shared document according the contribution
and the competence of users participating in the group. Using JXTA platform, users exchange their
operations in real-time in order to support WYSIWIS (What You See Is What I See) principle.

Experiments are necessary to understand what the asymptotic complexities mean when interac-
tive constraints are present in the system. For our evaluation performance, we consider the follow-
ing times: (i)t1 is the execution time ofGenerateCooprequest(); (ii) t2 is the execution time of
ReceiveCooprequest(). We assume that the transmission time between sites is negligible. In gen-
eral, it is established that the OT-based DCE must providet1+t2 < 100ms[6]. Both algorithms 2 and
3 call function CANONIZE, their performances are mostly determined by the percentage of insertion
requests inside the log. The management of the policy may affect the performance of the system
since, in Algorithms 2 and 3, we have to explore either the policy or the the administrative log which
are edited by the administrator. In our experiments we suppose that the policy is not optimized (i.e.
it contains authorization redundancies).

Figure 7 shows three experiments2 with different percentages of insertions inside logH. These
measurements reflects the timest1, t2 and their sum. The execution time falls within 100ms for all
|H| ≤ 5000 if H contains 0% INS,|H| ≤ 9000 if H contains 100% INS which is not achieved in
SDT and ABT algorithms [6].

2The experiments have been performed under Ubunto Linux kernel 2.6.24-19 with an Intel Pentium-4 2.60 GHz CPU and
768 Mo RAM.
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Figure 6: p2pEdit tool

7 Conclusion

In this paper, we have proposed a new framework for controlling access in collaborative editing
work. It is based on MAC and optimistic replication of the shared document and its authorization
policy. We have shown how naive coordination between updates of both copies may create security
holes. Finally, we have provided some performance evaluations to show the applicability of our
MAC model distributed collaborative editing.

In future work, we intend to investigate the impact of our work when using delegation of adminis-
trative requests between the group users. As the length of local (administrative and cooperative) logs
increases rapidly during collaboration sessions, we plan to address the garbage collection problem.
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Figure 7: Time processing of Insert Requests.
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