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Abstract: In this paper we address the problem of geometric video projector calibration using a markerless planar surface

(wall) and a partially calibrated camera. Instead of using control points to infer the camera-wall orientation,

we find such relation by efficiently sampling the hemisphere of possible orientations. This process is so fast

that even the focal of the camera can be estimated during the sampling process. Hence, physical grids and full

knowledge of camera parameters are no longer necessary to calibrate a video projector.

1 INTRODUCTION

With the recent advances in projection display, video

projectors (VP) are becoming the devices of choice

for active reconstruction systems. Such systems like

Structured Light (?) and Photometric Stereo (?; ?) use

VP to alleviate the difficult task of establishing point

correspondences. However, even if active systems can

solve the matching problem, calibrated VP are still re-

quired. In fact, a calibrated projector is required to tri-

angulate points in a camera-projector structured light

system, or to estimate the projector’s orientation when

the latter is used as an illuminant device for a photo-

metric stereo system.

Since a video projector is often modeled as an in-

verse camera, it is natural to calibrate it as part of a

structured light system rather than as a stand alone

device. In order to simplify the calibration process, a

planar surface is often used as a projection surface on

which features or codified patterns are projected. The

projector can be calibrated as a regular camera, except

for the fact that a regular accessory camera must be

used to see the projector patterns. The way patterns

are codified and the projection surface orientation is

estimated will distinguish the various calibration me-

thods from each other.

In (?), a VP projects patterns on a plane moun-

ted on a mechanically controlled platform. Thus, the

orientation and position of the projection plane is

known and is used to calibrate the structured light

system using conventional camera calibration tech-

niques.

Other approaches use a calibrated camera and a

planar calibration chessboard attached to the projec-

tion surface (?; ?).

For convenience and because the projection sur-

face is usually planar, we will refer to it as the wall.

The attached chessboard is used to infer the orienta-

tion and the position of the wall w.r.t the camera. This

relation is then exploited, along with the images of the

projected patterns to estimate the intrinsic parameters

of the projector.

In order to measure the 3D position of the projec-

ted features, (?) estimates the homography between

the attached chessboard and the camera. This allows

the computation of the extrinsic parameters of the ca-

mera. It is important to mention that the camera must

be fully calibrated in this case. With at least three dif-

ferent orientations, a set of 3D-2D correspondences

can be obtained and then used to estimate the VP para-

meters with standard plane-based calibration methods

(?; ?). We refer to this method as Direct Linear Cali-

bration (DLC). To increase accuracy of the DLC, a

printed planar target with circular markers is used in

(?), to calibrate the camera as well as the projector.

In (?), a structured light system is calibrated wi-

thout using a camera. This is made possible by em-

bedding light sensors in the target surface. Gray-



coded binary patterns are then projected to estimate

the sensor locations and prewarp the image to accura-

tely fit the physical features of the projection surface.

The VP parameters are not explicitly estimated but the

method could easily be extended for that purpose.

In this paper, a new projector calibration method

is introduced. The proposed method does not require

a physical calibration board nor a full knowledge of

the camera parameters.

We overcome the problem of determining the

camera-wall homography Hw→c by exploring the

space of all acceptable homographies and consider

the one that minimizes the reprojection error (see

Figure.1). Since Hw→c depends only on the orienta-

tion between the camera and the wall, the space of

acceptable homographies can be parameterized with

only 2 angles : the elevation and the azimuth angles

that define the normal vector at the wall.

FIG. 1: The homography wall-camera is defined by the
orientation of the wall.

Finding the normal of the wall consists then in

sampling the space of orientations on a unit sphere.

For each orientation sample, a DLC is performed and

we select the homography that minimizes the repro-

jection errors in the images. It is worth mentioning

that our DLC implementation differs slightly from the

one used in (?) as explained in the next section.

Our proposed method is fully automatic, fast and

produces excellent results as shown in our experi-

ments. We also show that when the camera is not

fully calibrated, projector calibration is still tractable.

This is done by making the common assumptions that

the pixels are square and that the center of projection

coincides with the image center (?). Thus, the only

unknown camera parameter left to estimate is the fo-

cal length, which is estimated by sampling.

The rest of this paper is organized as follows. Sec-

tion 3 presents our variant of the direct linear calibra-

tion for a projector. Section 4 details our orientation

sampling calibration (OSC) using only a (partially ca-

librated) camera and a marker-less projection plane.

Section 5 presents the results of our calibration

method, followed by a discussion of limitations and

future work in Section 6.

2 Video Projector Model

We model the video projector as an inverse ca-

mera. Therefore, we intend to compute the intrinsic

and extrinsic parameters. Without loss of generality,

we consider in this paper a 4 parameters projector mo-

del, namely : the focal length, the aspect ratio and the

principal point. Thus, the projector matrix Kp is defi-

ned as :

Kp =





ρ f 0 cx

0 f cy

0 0 1





The extrinsic parameters that describe the ith pro-

jector pose are the usual rotation matrix R
i and the

translation vector ti.

3 Direct Linear Calibration

In this section, we review the details of the Direct Li-

near Calibration for projectors. This method is used

as a reference for our benchmark test. As opposed to

(?), the variant presented here is strictly based on ho-

mographies and does not require a calibrated camera.

If a static camera observes a planar surface (or a

wall), a homography is induced between the latter and

the camera image plane. This linear mapping (Hw→c)

relates a point Pw on the wall to a point Pc in the ca-

mera image as follows :

Pc ∼ Hw→c ·Pw (1)



Where∼ denotes equality up to a scale. Details on

homography estimation can be found in (?).

The video projector is used afterward to project

patterns while it is moved to various positions and

orientations. For a given projector pose i, correspon-

dences are established between the camera and the

VP, leading to a homography H
i
c→p. A point Pi

c in the

image i is mapped into the projector as :

Pi
p ∼ Hc→p ·P

i
c (2)

Combining Eq.1 an Eq.2, a point Pw on the wall is

mapped into the ith projector as :

Pi
p ∼ H

i
c→p ·Hw→c

︸ ︷︷ ︸

Hi
w→p

·Pw (3)

On the other hand, Pi
p and Pw are related through

a perspective projection as :

Pi
p ∼ Kp ·

[
Ri

1Ri
2ti

]
·Pw (4)

Where Kp, Ri
1,2 and ti are respectively the projec-

tor intrinsic parameters, the two first vectors of the ro-

tation matrix R
i, and the translation vector. From Eq.3

and Eq.4, a relation between H
i
w→p and the extrinsic

parameters of the projector is derived as follows :

K−1
p ·H

i
w→p ∼

[
Ri

1Ri
2ti

]
(5)

With at least two different orientations, one can

solve for K
−1
p by exploiting the orthonormal property

of the rotation matrix as explained in (?).

4 Orientation Sampling Calibration

In this section we give the details of our proposed

video projector calibration method. As discussed ear-

lier, the justification for using an attached calibration

rig to the wall is to infer the homography wall-camera

in order to estimate the 3D coordinates of the projec-

ted features. We propose to estimate this wall-camera

relation by exploring the space of all possible orien-

tations since only the orientation of the wall w.r.t the

camera matters and not its position.

Another way to look at this orientation space is to

consider all vectors lying on a unit hemisphere placed

on the wall, as depicted on Figure 1.

The calibration process can be outlined in three

main steps :

– Pick a direction on the hemisphere.

– Compute the corresponding homography.

– Use the homography to perform a DLC calibra-

tion (Section 3).

The above steps are repeated for all possible direc-

tions and the direction that minimizes the reprojection

errors is selected as the correct plane orientation. The

first two steps are detailed in the next subsections. The

third one is straightforward from section 3.

4.1 Sampling a Hemisphere

The problem of exploring the set of possible orien-

tations is dependent on the problem of generating uni-

formly distributed samples on the unit sphere (hemis-

phere in our case).

Uniform sphere sampling strategies can be ran-

dom or deterministic (?). The first class are based on

random parameters generation, followed by an accep-

tance/rejection step depending on whether the sample

is or not on the sphere. Deterministic methods pro-

duce valid samples on a unit sphere from uniformly

distributed parameters, such method include (but not

limited to) quaternion sampling (?), normal-deviate

methods (?) and methods based on Archimedes theo-

rem (?). We chose to use the latter method for its sim-

plicity and efficiency. As the name suggests, this me-

thod is based on Archimedes theorem on the sphere

and cylinder which states that the area of a sphere

equals the area of every right circular cylinder circum-

scribed about the sphere excluding the bases. This ar-

gument leads naturally to a simple sphere sampling

algorithm based on cylinder sampling (?). Uniformly

sampling a cylinder can be done by uniformly choo-

sing an orientation θi ∈ [0,π] (we call it azimuth)

to obtain a directed vector d(θi,0) (See Figure.2).

After that, a height hi is uniformly chosen in the

range [−1,1]. The resulting vector, noted di(θi,hi), is

axially projected on the unit sphere. According to the

above theorem, if a point is uniformly chosen on a

cylinder, its inverse axial projection will be uniformly

distributed on the sphere as well, see (?) for further

details.

In our case, we only need to sample the hemis-

phere facing the camera. Thus the span of the points

that must be visited is limited to the range [−1,+1]×
[0,π].

4.2 Homography From an Orientation

Sample

The homography wall-camera H
i
w→c induced by a

wall whose normal is a direction di (as defined in the

previous subsection), is defined by :

H
i
w→c ∼ Kcam.

[
Ri

1Ri
2t

]
(6)

Where Kcam, Ri
1, Ri

2 and t are respectively the in-

trinsic camera matrix, the first two vectors of the ro-



FIG. 2: Orientation space sampling.

tation corresponding to the direction di, and the trans-

lation vector. Without loss of generality and for the

sake of simplicity, we fix the projection of the origin

of the wall P0
w = (0,0)T into the camera at the image

center. With this convention, the translation vector t

simplifies to (0,0,1)T.

The rotation matrix R
i is computed via Rodrigues

formula, which requires a rotation axis and a rota-

tion angle. The rotation axis is simply the result of

the cross product between di and the vector (0,0,1)T

whereas the rotation angle αi is obtained from the dot

product of the same vectors :

αi = cos−1
(

di
T
· (0,0,1)T

)

(7)

4.3 Complete Algorithm

We are now ready to give the complete algo-

rithm of our video projector calibration. We assume

the existence of two supporting functions, ReprojEr-

ror that returns a reprojection error for a given pro-

jector parameters and DLC a function that estimate

the projector parameters using the DLC method (see

Section.3).

Algorithm 1: Orientation Sampling Calibration

Data: H
k
c→p, the k camera-projector

homographies and Kcam Camera intrinsic

matrix (optional).

foreach (hi,θi)∈[−1,1]×[−π/2,π/2] do
Estimate direction di(θi,hi) (sec.4.1)

if Kcam is undef then
Initialize elements of Kcam using image

center and fi

end

Estimate H
i
w→c from di and fi (sec.4.2)

foreach H
k
c→p do

H
k
w→p = H

k
c→p ·H

i
w→c

end

K
i
pro j ← DLC(Hk

c→p) (sec.3)

Error← ReprojError(Ki
pro j)

if Error < BestError then

Kpro j ← K
i
pro j

BestError← Error

end

end

return Projector calibration matrix Kpro j

5 EXPERIMENTS

We have evaluated the proposed calibration me-

thod with both a calibrated and an uncalibrated ca-

meras. The results were also compared to the DLC

method. The evaluation platform consists of a Mit-

subishi pocket projector of 800× 600 pixels resolu-

tion and a digital camera (Nikon D50). A 50mm lens

was used on the camera and the resolution was set

to 1500× 1000. The calibration of the camera using

the Matlab toolbox gave the following intrinsic matrix

Kcam :

Kcam =





3176.3115 0 790.6186

0 3172.4809 495.3829

0 0 1





To include the DLC algorithm in our benchmark,

the camera was mounted on a tripod and was first re-

gistered to the wall using an attached printed chess-

board. Images of projected chessboard using the vi-

deo projector under several orientations were then ac-

quired using the camera. We took precaution to re-

move the attached chessboard form the wall before

acquiring the projector images to avoid overlaps bet-

ween the projected patterns and the rigidly attached

pattern.



Some images of the projected chessboard along

with detected features are depicted on Figure.3.

FIG. 3: Images of projected patterns and detected features.
The numbers and small red dots are added for illustration
only. The large dots in the 4 corners are part of the projected
pattern.

Notice the presence of colored dots on the chess-

board. Those were used to compute a rough estimate

of the homography (which will be refined) and to eli-

minate the orientation ambiguity of the chessboard

while assigning 3D coordinates to the detected fea-

tures.

Our benchmark includes a projector calibration

using the DLC method, the proposed method with

both a calibrated and an uncalibrated camera. In the

first case, we used the image of the attached checker

to infer the wall-camera homography and calibrated

as explained in Section.3. For the second method, we

used a multi-resolution strategy to sample the azimuth

angles and heights. The conditions of the third me-

thod were identical to the second one except that the

camera parameters were ignored and were estimated

as follows :

– The focal length estimation was included in

the sampling process. The sampling range was

[0,10000].
– The pixels are assumed square.

– The center of projection is assumed to coincides

with the image center.

TAB. 1: Projector calibration benchmark : Direct method,
Orientation sampling with a calibrated camera (Sampling-
C) and Orientation sampling with an uncalibrated camera
(Sampling-U).

Method fproj ρ cx cy estfcam Error Error B.A

Direct 1320.13 1.02 382.1 368 - 4.35 0.47

Sampling-C 1327.30 1.01 377.4 366 - 0.43 0.22

Sampling-U 1322.15 1.00 376 360 3108 0.16 0.09

The result of this benchmark is outlined on the

Table.1. The table provides the estimated parameters,

the reprojection errors in pixels (Error), and the er-

ror difference comparing before and after applying a

bundle adjustment refinement (Error B.A). Technical

and implementation details on the latter can be found

in (?).

The running times for a data set of 20 images on

an 1.5 Ghz computer are provided in Table.2.

TAB. 2: Execution time for Direct method, Sampling with
calibrated camera, and Sampling with uncalibrated camera.

Method Time (seconds)

Direct 0.18

Sampling-C 1.23

Sampling-U 6.2

From this test, we can see that our method, even

in the absence of camera parameters knowledge, out-

perform the Direct Linear Method at the expenses of a

higher running time. However, we are convinced that

the performance of our implementation could be fur-

ther improved by choosing a better multi-scale sam-

pling strategy. We also consider that not requiring a

printed chessboard attached to the wall is a major ad-

vantage, especially when the wall surface is large or

unaccessible.

A plot of the reprojection error in terms of

the orientation parameters h and α is provided in

Figure.4. We can clearly see that the function is very

well behaved and easy to minimize.

As a last test, we wanted to assess the stability of

the focal length estimate. We thus fixed the value of

the wall orientation at the value obtained in the first

experiment and varied the focal length. The plot of

the reprojection error as a function of the sampled fo-

cal length of the camera is shown on Figure.5. As we

can see the error function is smooth and convex, sug-

gesting that the lack of knowledge of the focal length

can easily be circumvented in practice.

6 CONCLUSION

In this paper we presented a new video projector ca-

libration method. Contrary to most methods, we sho-



FIG. 4: Reprojection error in terms of the orientation pa-
rameters h and α. The error computation does not include
bundle adjustment refinement

FIG. 5: Reprojection error in terms of the camera focal
length values (prior to bundle adjustment procedure). The
minimum is reached at 3034.4, the off-line camera calibra-
tion estimated a camera focal of 3176.

wed that a physical target attached to a projection sur-

face is not necessary to achieve an accurate projec-

tor calibration. We also suggest that full knowledge

of camera parameters is not strictly required and can

be relaxed into a set of commonly used assumptions

regarding the camera geometry. Very simple to im-

plement, the proposed method is fast and will handle

large projector-camera systems that were previously

impossible to calibrate due to the impractical chess-

board.
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