J. M. Ball, On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations, Journal of Differential Equations, vol.27, issue.2, pp.224-265, 1978.
DOI : 10.1016/0022-0396(78)90032-3

M. Bisi and L. Desvillettes, From Reactive Boltzmann Equations to Reaction???Diffusion Systems, Journal of Statistical Physics, vol.26, issue.2-4, pp.881-912, 2006.
DOI : 10.1007/s10955-005-8075-x

H. Brezis, Analyse fonctionnelle, Théorie et applications. Collection Mathématiques Appliquées pour la Ma??triseMa??trise. Masson, 1983.

L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the navier-stokes equations, Communications on Pure and Applied Mathematics, vol.8, issue.6, pp.771-831, 1982.
DOI : 10.1002/cpa.3160350604

L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Annals of Math

J. Collet, F. Golse, T. Goudon, and F. , Some modelling issues in the theory of fragmentation-coagulation systems, Communications in Mathematical Sciences, vol.2, issue.5, pp.35-54, 2004.
DOI : 10.4310/CMS.2004.v2.n5.a3

E. and D. Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat, vol.3, issue.3, pp.25-43, 1957.

L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction???diffusion equations, Journal of Mathematical Analysis and Applications, vol.319, issue.1, pp.157-176, 2006.
DOI : 10.1016/j.jmaa.2005.07.003

L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds, Revista Matem??tica Iberoamericana
DOI : 10.4171/RMI/541

L. Desvillettes, K. Fellner, M. Pierre, and J. Vovelle, About global existence for quadratic systems of reaction-diffusion, J. Advanced Nonlinear Studies, vol.7, issue.3, pp.491-511, 2007.

P. Erdi and J. Tóth, Mathematical models of chemical reactions. Nonlinear Science: Theory and Applications, 1989.

H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, 1969.

W. Feng, Coupled system of reaction-diffusion equations and applications in carrier facilitated diffusion, Nonlinear Analysis: Theory, Methods & Applications, vol.17, issue.3, pp.285-311, 1991.
DOI : 10.1016/0362-546X(91)90052-3

P. C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomath, vol.28, 1979.
DOI : 10.1007/978-3-642-93111-6

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Communications on Pure and Applied Mathematics, vol.38, issue.3, pp.297-319, 1985.
DOI : 10.1002/cpa.3160380304

O. A. Ladyzenskaia, V. A. Solonnikov, and N. N. Uralceva, Linear and quasi-linear equations of parabolic type, Transl. Math. Monographs. AMS, vol.23, 1968.

F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Communications on Pure and Applied Mathematics, vol.51, issue.3, pp.241-257, 1998.
DOI : 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A

A. Mellet and A. Vasseur, L p estimates for quantities advected by a compressible flow, J. Math Anal. Appl

J. Morgan, Global Existence for Semilinear Parabolic Systems, SIAM Journal on Mathematical Analysis, vol.20, issue.5, pp.1128-1144, 1989.
DOI : 10.1137/0520075

J. Morgan, Global existence for semilinear parabolic systems via Lyapunov type methods, Lecture Notes in Math, vol.XII, issue.8, pp.117-121, 1987.
DOI : 10.1016/0362-546X(77)90036-0

J. Morgan, Boundedness and Decay Results for Reaction-Diffusion Systems, SIAM Journal on Mathematical Analysis, vol.21, issue.5, pp.1172-1189, 1990.
DOI : 10.1137/0521064

J. Morgan, On a question of blow-up for semilinear parabolic systems, Differential Integral Equations, vol.3, issue.5, pp.973-978, 1990.

J. Morgan and S. Waggonner, Global existence for a class of quasilinear reaction-diffusion systems, Commun. Appl. Anal, vol.8, issue.2, pp.153-166, 2004.

J. D. Murray, Mathematical biology, 2003.

M. Pierre, Weak solutions and supersolutions in $ L^1 $ for reaction-diffusion systems, Journal of Evolution Equations, vol.3, issue.1, pp.153-168, 2003.
DOI : 10.1007/s000280300007

M. Pierre and D. Schmitt, Blowup in Reaction-Diffusion Systems with Dissipation of Mass, SIAM Review, vol.42, issue.1, pp.93-106, 2000.
DOI : 10.1137/S0036144599359735

URL : https://hal.archives-ouvertes.fr/inria-00074038

M. Pierre and R. Texier-picard, Global existence for degenerate quadratic reaction???diffusion systems, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.5
DOI : 10.1016/j.anihpc.2008.06.003

URL : https://hal.archives-ouvertes.fr/hal-00279859

F. Rothe, Global solutions of reaction?diffusion systems, Lecture Notes in Math, vol.1072, 1984.
DOI : 10.1007/BFb0099278

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific Journal of Mathematics, vol.66, issue.2, pp.535-552, 1976.
DOI : 10.2140/pjm.1976.66.535

V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Communications in Mathematical Physics, vol.63, issue.2, pp.55-97, 1977.
DOI : 10.1007/BF01626512

L. W. Somathilake and J. M. Peiris, Global solutions of a strongly coupled reaction-diffusion system with different diffusion coefficients, Journal of Applied Mathematics, vol.2005, issue.1, pp.23-36, 2005.
DOI : 10.1155/JAM.2005.23

E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, issue.30, 1970.

A. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations, Nonlinear Differential Equations and Applications NoDEA, vol.14, issue.5-6, pp.5-6753, 2007.
DOI : 10.1007/s00030-007-6001-4

C. Villani, Hypocoercive diffusion operators, Proceedings of the International Congress of Mathematicians, 2006.
DOI : 10.4171/022-3/25

F. B. Weissler, AnL??? blow-up estimate for a nonlinear heat equation, Communications on Pure and Applied Mathematics, vol.29, issue.3, pp.291-295, 1985.
DOI : 10.1002/cpa.3160380303