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Asymptotic properties of the residuals process
for stationary marked Gibbs point processes

J.-F. Coeurjolly

Sagag Team, Laboratory Jean Kuntzmann/ CNRS,
BSHM, 1251 Av. Centrale, Grenoble Cedex 09 (France)

Résumé

Dans le contexte des processus ponctuels spatiaux, la notion de résidus a été proposée très récemment par
Baddeley et al. (2005). Elle fournit un outil de diagnostic très riche pour juger de la qualité d’ajustement d’un
modèle paramétrique de processus ponctuel. Ces résidus sont une extension de ceux définis en dimension
un pour des processus de comptage et sont basés sur des versions empiriques des deux termes apparaissant
dans la célèbre Formule de Georgii-Nguyen-Zeissin. Cet exposé présentera les propriétés asymptotiques du
processus des résidus pour des processus ponctuels marqués de Gibbs stationaires. En particulier, nous
obtenons la consistance et la normalité asymptotique pour une large classe de résidus, incluant notamment
ceux définis dans Baddeley et al. (2005) et partiellement étudiés dans Baddeley et al. (2008) (résidus bruts,
résidus inversés, résidus de Pearson). Nous généralisons ce résultat pour proposer un test d’adéquation basé
sur des estimations fonctionnelles de la fonction d’espace vide qui caractérise mieux la distribution d’un
processus ponctuel spatial qu’un seul type de résidus.

Abstract

In the context of spatial point processes, the notion of residuals has been proposed very recently by Baddeley
et al. (2005). It provides a very rich diagnostic tool to investigate the quality of adjustment of a parametric
spatial point process. Residuals are an extension of the ones available in one dimension for counting processes
and are based on empirical versions of both terms appearing in the well-known Georgii-Nguyen-Zeissin
Formula. This talk focuses on asymptotic properties of the residuals process for stationary marked Gibbs
point processes. In particular, the consistency and the asymptotic normality are obtained for a wide class of
residuals including the classical ones proposed by Baddeley et al. (2005) and partially studied by Baddeley
et al. (2008) (raw residuals, inverse residuals, Pearson residuals). We also generalize this result for defining
a goodness-of-fit test for these processes based on functionals estimations of the empty space function which
better characterizes the distribution of a spatial point process rather than one type of residuals.

1 Background, examples and definitions

Let us start with some general notation on point processes. The data consist in a countable
subset ϕ = {xm1

1 , . . . , xmn

n } (where n is not fixed), called a configuration of marked points
(xi ∈ R

2 (for the sake of simplicity) are location and mi ∈ M are marks). The state space
will de denoted by S = R

2 ×▼. Let λ2 denote the Lebesgue measure on R
2, λ♠ the

probability mark measure and let µ := λ2 ⊗ λ♠. Finally denote by ϕΛ := ϕ ∩ (Λ ∩ M),
Λ ⊂ R

2 realization of the variable ΦΛ.
The (marked) Poisson point process constitutes the reference model for spatial point

processes and is related to the notion of independence. The realization of a Gibbs point
process is the realization of some variable with conditional density (conditionnally on
some fixed outside configuration ϕo) with respect to the Poisson process expressed as

f
ΦΛc=ϕo

Λc

ΦΛ
(ϕΛ) ∝ exp (−V (ϕΛ|ϕ

o
Λc))
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where V (ϕΛ|ϕ
o
Λc) := V (ϕΛ ∪ ϕo

Λc) − V (ϕo
Λc) measures the energy to insert the configu-

ration ϕΛ into ϕo
Λc . In the rest of the paper, the framework is restricted to stationary

marked Gibbs point processes based on energy function V (ϕ; θ), invariant by translation
and parametrized in an exponential form by some θ ∈ Θ where Θ is some compact set of
R

p (p ≥ 1), i.e.

V (ϕ; θ) := θTv(ϕ), where v(ϕ) = (v1(ϕ), . . . , vp(ϕ)).

Models may be defined by defining through the local energy to insert a marked point xm

into the configuration ϕ

V (xm|ϕ; θ) := V (ϕ ∪ {xm}; θ) − V (ϕ; θ) = θTv (xm|ϕ) .

Let us cite some well-known examples :

• Multi-type Poisson point process : M = {1, . . . ,M}

V (ϕ; θ) =
M∑

m=1

θm|ϕm|, V (xm|ϕ; θ) = θm.

• Multi-type Strauss point process : M = {1, . . . ,M}

V (ϕ; θ) =
M∑

m=1

θm
1 |ϕm| +

M∑

m=1

θm
2

∑

{xm,ym}∈P2(ϕ)

1[Dm

1
,Dm

2
](||y − x||).

Alternatively

V (xm|ϕ; θ) =
M∑

m=1

θm
1 +

M∑

m=1

θm
2

∑

ym∈ϕ

1[Dm

1
,Dm

2
](||y − x||).

This process is defined for θm
2 ≥ 0 and Dm

1 = 0 (inhibition assumption) or when
θm
2 ∈ R and Dm

1 = δ > 0 (hard-core assumption).

• Area interaction point process : ▼ = {0}, R > 0

V (ϕ; θ) = θ1|ϕ| + θ2 |∪x∈ϕB(x, R)| ,

where B(x, R) is the ball centered at x with radius R.

Concerning such models, the first statistical challenge is to estimate the true value of
the parameter vector (θ⋆ assumed to be in Θ̊). This may be done via the maximisation
of the likelihood (MLE) or the pseudo-likelihood (MPLE). The last one is an excellent
alternative to the MLE since it avoids the computation of the normalizing constant which
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is particularly costly (see the next section for an accurate definition and Billiot, Coeurjolly
and Drouilhet (2008) for asymptotic results). Once you have estimated the parameter
vector of interest, the second challenge is to quantify the quality of adjusment of the
model to data. Baddeley et al. (2005) defined a large class of such measures based on the
well-known Georgii-Nguyen-Zeissin Formula, expressed here for stationary marked Gibbs
point processes

Theorem 1 (Georgii-Nguyen-Zeissin Formula) For any function h(·, θ) : Ωf → R

such that the following quantities are finite

E
(
h

(
0M |Φ; θ⋆

)
e−V (0M |Φ;θ⋆)

)
= E

(
h

(
0Mf |Φ \ 0M ; θ⋆

))
(1)

where for any θ ∈ Θ, (m, ϕ) ∈ ▼ × Ωf , h(xm|ϕ; θ) := h(ϕ ∪ xm; θ) − h(ϕ; θ) and where
M ∼ λ♠

Now define the innovations and the residuals process based on empirical versions of both
terms appearing in (1).

Definition 1 For any bounded domain Λ, let us define

• Innovations process:

IΛ(ϕ; h, θ⋆) :=
1

|Λ|

∫

Λ×▼

h(xm|ϕ; θ⋆)e−V (xm|ϕ;θ⋆)µ(dxm) −
1

|Λ|

∑

xm∈ϕΛ

h(xm|ϕ \ xm; θ⋆),

• Residuals process: let θ̂n(ϕ) be an estimate of θ⋆ based on ϕΛ

RΛ(ϕ; h) :=
1

|Λ|

∫

Λ×▼

h(xm|ϕ; θ̂n(ϕ))e−V (xm|ϕ;bθn(ϕ))µ(dxm)−
1

|Λ|

∑

xm∈ϕΛ

h(xm|ϕ\xm; θ̂n(ϕ))

Clearly, the last notion is the most interesting as a practical point of view. Let us describe
the main examples considered by Baddeley et al. (2005) (in the context of stationary point
processes).

1. h(xm|ϕ, θ) = 1: raw innovations and residuals

2. h(xm|ϕ, θ) = eV (xm|ϕ;θ): inverse innovations and residuals.

3. h(xm|ϕ, θ) = eV (xm|ϕ;θ)/2: Pearson innovations and residuals.

In particular, one may note that the raw residuals is a difference of two estimates of the
intensity of the point process : the first one is a parametric one and depends on the model
while the second one is a non parametric one (since it equals to |ϕΛ|/|Λ|).
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2 Asymptotic results of the residuals process

In order to present asymptotic results, let us first consider general assumptions, denoted
by [Mod], on our models:

1. [Mod:S] Stability of the local energy : ∃K ≥ 0, ∀(m, ϕ) ∈ M × Ωf

V (0m|ϕ; θ) ≥ −K.

2. [Mod:L] Locality of the local energy : ∃D ≥ 0, ∀(m, ϕ) ∈ M × Ωf

V (0m|ϕ; θ) = V
(
0m|ϕB(0,D); θ

)
.

3. [Mod:I] Integrability : ∃κ
(sup)
i ≥ 0, ki ∈ N, ∀(m, ϕ) ∈ M × Ωf

vi(0
m|ϕ) ≤ κ

(sup)
i |ϕB(0,D)|

ki , i = 1, . . . , p.

4. [Mod:Id] Identifiability condition:: for all θ ∈ Θ \ θ⋆,

P
(
V

(
0M |Φ; θ

)
6= V

(
0M |Φ; θ⋆

))
> 0

The assumptions [Mod:S] and [Mod:L] are quite well-known in the context of Gibbs
point processes. In particular, they ensure the existence of stationary measures. These
assumptions include a very large class of known parametric models of marked point pro-
cesses : Poisson process, multi-type Poisson process, multi-strauss marked point process,
Strauss-disc type process, Geyer’s triplet point process, Area interaction point process,. . . .
It also include many models where the interaction is no more measured on the complete
graph (P2(ϕ)) but on some more structured one such as the k-nearest neighbour graph
or the Delaunay graph (e.g. [3]). Some of these models are known under the names of
Ord’s model where the energy depends the area of Voronöı cells.

In the rest of the paper, the data is assumed to be observed in the domain Λn ⊕ D∨

(where D∨ ≥ D), where the domain Λn = [−n, n]2 (for the sake of simplicity). Moreover,
the estimate appearing in the definition of the residuals will be the maximum pseudo-
likelihood estimate, i.e.

θ̂n(ϕ) = θ̂MPLE
n (ϕ) := argmaxθ∈ΘLPLΛn

(ϕ; θ)

where the log-pseudo likelihood on the domain Λn, LPLΛn
(ϕ; θ) is defined by

LPLΛ (ϕ; θ) = −

∫

Λ×▼

e−V (xm|ϕ;θ)µ(dxm) −
∑

xm∈ϕΛ

V (xm|ϕ \ xm; θ) ,

see Billiot, Coeurjolly and Drouilhet (2008) for more details and asymptotic results (con-
sistency and asymptotic normality). Finally, consider the following assumptions denoted
by [H] and related to the analysing function h:
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1. h(·; θ) looks like V (·; θ) (invariance by translation, locality).

2. Assume that for all (m, ϕ) ∈ ▼× Ωf , h(0m|ϕ; ·) is differentiable for θ ∈ V(θ⋆) and
assume that for j = 1, . . . , p and for all θ ∈ V(θ⋆)

E
(
|h(0M |Φ; θ)|3e−V (0M |Φ;θ)

)
<+∞ and E

(∣∣∣∣
∂h

∂θj

(0M |Φ; θ)

∣∣∣∣ e−V (0M |Φ;θ)
)

<+∞.

Now we are ready to present our main result concerning the innovations and the residuals
processes

Theorem 2 Under the assumptions [Mod] and [H] and under the true model,

(i) for Pθ⋆−a.e. ϕ, IΛn
(ϕ; h, θ⋆) and RΛn

(ϕ; h) converge towards 0, as n → +∞.

(ii) the following convergences hold in distribution, as n → +∞

|Λn|
1/2 IΛn

(Φ; h, θ⋆) → N



0,
∑

i∈B(0,⌈D⌉)

E (I∆0
(Φ; h, θ⋆)I∆i

(Φ; h, θ⋆))





|Λn|
1/2 RΛn

(Φ; h) → N



0,
∑

i∈B(0,⌈D⌉)

E (W∆0
(Φ; h, θ⋆)W∆i

(Φ; h, θ⋆))





where

W∆i
(ϕ; h, θ⋆) := I∆i

(ϕ; h, θ⋆) + U(2)(θ⋆)−1LPL
(1)
∆i

(ϕ; θ⋆)
T
Z(h; θ⋆).

∆i is the unit square centered at i, LPL
(1)
∆i

(ϕ; θ⋆) is the gradient vector of LPL∆i
(ϕ; θ)

(evaluated in θ⋆), U(2)(θ⋆) and Z(h; θ⋆) are defined for j, k = 1, . . . , p by

(U(2)(θ⋆))j,k = E(vj(0
M |Φ)vk(0

M |Φ)e−V (0M |Φ;θ⋆))

Zj(h; θ⋆) := E(vj(0
M |Φ)h(0M |Φ)e−V (0M |Φ;θ⋆)).

3 Applications to the empty space function

Definition 2 (Empty space function) The empty space function F is the distribution
of the distance from the origin (or another fixed point) to the nearest point in Φ, i.e.

F (r) = P (Φ ∩ B(0, r) 6= ∅)
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It is known that the F function characterizes better the distribution of the spatial point
process rather than one type of residuals. What is interesting in the approach developped
in the previous section is that by taking the function

hr(x
m|ϕ, θ) := 1[0,r](d(xm, ϕ)eV (xm|ϕ;θ) = h̃(r)

then the residuals RΛn
(ϕ; h̃(r)) corresponds to a different of two estimations of the empty

space function at distance r fixed (the first one is non parametric (since it equals to
|Λn|

−1
∫

Λ×▼
1[0,r](d(xm, ϕ)µ(dxm))) while the second one is parametric).

Corollary 1 Under the assumptions of Theorem 2 then for all (r1, . . . , rd)
T ∈ (]0, +∞[)d,

we have the following convergence in distribution as n → +∞

|Λn|
1/2

(
RΛn

(Φ; h̃(r1)), . . . , RΛn
(Φ; h̃(rd))

)T

→ (G(r1; θ
⋆), . . . , G(rd; θ

⋆))T ,

where G(·; θ⋆) is a Gaussian process with covariance structure given, for r, s > 0, by

Cov (G(r; θ⋆), G(s; θ⋆)) =
∑

i∈B(0,⌈D⌉)

E (W∆0
(Φ; h(r), θ⋆)W∆i

(Φ; h(s), θ⋆))

Hence, one can construct an asymptotic test based (for example) on the following result:
choose r1, . . . , rd > 0 then the following convergence in distribution holds as n → +∞

|Λn|
d∑

i=1

RΛn
(Φ; h̃(ri))

2 →
d∑

i=1

G(ri; θ
⋆)2.

Note that in the different previous results, it is possible to tabulate the different distri-
butions via Monte-Carlo experiments. A perspective of this work is to investigate the
previous results in a simulation study and in practice. As a theoretical point of view, a
perspective could be to obtain a weak convergence instead a finite-dimensional one.
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