J. P. Airoldi and R. S. Hoffmann, Age variation in voles (Microtus californicus and Microtus ochrogaster ) and its significance for systematic studies. Occasional Papers of the Museum of the Natural History, pp.1-45, 1984.

G. Boente and L. Orellana, A Robust Approach to Common Principal Components, Statistics in Genetics and in the Environmental Sciences, p.117145, 2001.
DOI : 10.1007/978-3-0348-8326-9_9

B. Flury, Common Principal Components in K Groups, Journal of the American Statistical Association, vol.79, issue.388, pp.892-898, 1984.
DOI : 10.2307/2288721

B. Flury, Asymptotic Theory for Common Principal Component Analysis, The Annals of Statistics, vol.14, issue.2, pp.418-430, 1986.
DOI : 10.1214/aos/1176349930

B. Flury and H. , Multivariate Statistics: a practical approach, 1988.
DOI : 10.1007/978-94-009-1217-5

M. Hallin and D. Paindaveine, Semiparametrically efficient rank-based inference for shape. I. optimal rank-based tests for sphericity, The Annals of Statistics, vol.34, issue.6, pp.2707-2756, 2006.
DOI : 10.1214/009053606000000731

M. Hallin and D. Paindaveine, A General Method for Constructing Pseudo-Gaussian Tests, JOURNAL OF THE JAPAN STATISTICAL SOCIETY, vol.38, issue.1, pp.27-40, 2008.
DOI : 10.14490/jjss.38.27

M. Hallin, D. Paindaveine, and T. Verdebout, Pseudo-Gaussian tests for common principal components, 2009.

M. Hallin, D. Paindaveine, and T. Verdebout, Optimal rank-based testing for principal components, The Annals of Statistics, vol.38, issue.6, 2009.
DOI : 10.1214/10-AOS810

L. Cam, L. , and G. L. Yang, Asymptotics in Statistics, 2000.

D. Paindaveine, A canonical definition of shape, Statistics & Probability Letters, vol.78, issue.14, pp.2240-2247, 2008.
DOI : 10.1016/j.spl.2008.01.094

URL : https://hal.archives-ouvertes.fr/hal-00522552

A. Shapiro and M. W. Browne, Analysis of Covariance Structures under Elliptical Distributions, Journal of the American Statistical Association, vol.68, issue.400, pp.1092-1097, 1987.
DOI : 10.1080/01621459.1987.10478544

S. S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, The Annals of Mathematical Statistics, vol.9, issue.1, pp.60-62, 1938.
DOI : 10.1214/aoms/1177732360