C. Andrieu and E. Moulines, On the ergodicity properties of some adaptive MCMC algorithms, The Annals of Applied Probability, vol.16, issue.3, pp.1462-1505, 2006.
DOI : 10.1214/105051606000000286

Y. Atchadé and G. Fort, Limit theorems for some adaptive MCMC algorithms with subgeometric kernels, 2008.

Y. F. Atchadé and J. S. Rosenthal, On adaptive Markov chain Monte Carlo algorithms, Bernoulli, vol.11, issue.5, pp.815-828, 2005.
DOI : 10.3150/bj/1130077595

Y. Bai, G. O. Roberts, and J. S. Rosenthal, On the Containment Condition for Adaptive Markov Chain Monte Carlo Algorithms, 2008.

R. Douc, E. Moulines, and J. S. Rosenthal, Quantitative bounds on convergence of time-inhomogeneous Markov chains, The Annals of Applied Probability, vol.14, issue.4, pp.1643-1665, 2002.
DOI : 10.1214/105051604000000620

A. E. Gelfand and A. F. Smith, Sampling-Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association, vol.4, issue.410, pp.398-409, 1990.
DOI : 10.1080/01621459.1986.10478240

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images, IEEE Trans. on pattern analysis and machine intelligence, vol.6, pp.721-741, 1984.

H. Haario, E. Saksman, and E. J. Tamminen, An Adaptive Metropolis Algorithm, Bernoulli, vol.7, issue.2, pp.223-242, 2001.
DOI : 10.2307/3318737

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, issue.1, pp.97-109, 1970.
DOI : 10.1093/biomet/57.1.97

G. L. Jones and J. P. Hobert, Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo, Statistical Science, vol.16, issue.4, pp.312-334, 2001.
DOI : 10.1214/ss/1015346317

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1091, 1953.
DOI : 10.1063/1.1699114

G. O. Roberts and J. S. Rosenthal, Examples of Adaptive MCMC, Journal of Computational and Graphical Statistics, vol.18, issue.2, 2006.
DOI : 10.1198/jcgs.2009.06134

J. S. Rosenthal, Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo, Journal of the American Statistical Association, vol.3, issue.430, pp.558-566, 1995.
DOI : 10.1080/01621459.1987.10478458

J. S. Rosenthal, Analysis of the Gibbs sampler for a model related to James-Stein estimators, Statistics and Computing, vol.22, issue.350, pp.269-275, 1996.
DOI : 10.1007/BF00140871

J. S. Rosenthal, Quantitative Convergence Rates of Markov Chains: A Simple Account, Electronic Communications in Probability, vol.7, issue.0, pp.123-128, 2002.
DOI : 10.1214/ECP.v7-1054

J. S. Rosenthal and M. Applet, Adaptive Disponiblè a : http ://probability, Markov chains for exploring posterior distributions, 1994.