Identification of an Optimal Derivatives Approximation by Variational Data Assimilation

Eugene Kazantsev 1
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Variational data assimilation technique applied to identification of optimal approximations of derivatives near boundary is discussed in frames of one-dimensional wave equation. Simplicity of the equation and of its numerical scheme allows us to discuss in detail as the development of the adjoint model and assimilation results. It is shown what kind of errors can be corrected by this control and how these errors are corrected. This study is carried out in view of using this control to identify optimal numerical schemes in coastal regions of ocean models.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2010, 229 (2), pp.256-275. 〈10.1016/j.jcp.2009.09.018〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00388884
Contributeur : Eugene Kazantsev <>
Soumis le : mercredi 27 mai 2009 - 16:38:24
Dernière modification le : mercredi 11 avril 2018 - 01:58:17
Document(s) archivé(s) le : jeudi 10 juin 2010 - 20:00:46

Fichiers

assimbc1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Eugene Kazantsev. Identification of an Optimal Derivatives Approximation by Variational Data Assimilation. Journal of Computational Physics, Elsevier, 2010, 229 (2), pp.256-275. 〈10.1016/j.jcp.2009.09.018〉. 〈inria-00388884〉

Partager

Métriques

Consultations de la notice

381

Téléchargements de fichiers

174