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Results on hypergraph planarity
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Abstract. Using the notion of planarity and drawing for hypergraphs introduced
respectively by Johnson and Pollak [9] and Mäkinen [14], we show in this paper
that any hypergraph having less than nine hyperedges is vertex-planar and can be
drawn in the edge standard and in the subset standard without edge crossing.
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1 Introduction

Hypergraphs can be viewed as generalizations of graphs: a hypergraph is an ordered
pair (V, E) where V is a set of vertices and E is a set of hyperedges, each hyperedge
being a subset of V .
Drawings of hypergraphs are used in various contexts as, for example, vlsi design [1],
databases [6, 4, 3] and information visualization [8]. Obtaining ”good looking” layouts
of hypergraphs becomes an important point in information visualization where read-
able cartographies may constitute an useful help to access huge sets of documents. In
this context, we want to create Euler-like diagrams to represent the interconnections of
a collection of semantic fields (cf. [19, 17] for a more detailed description of our pur-
pose). As the number of hyperedges corresponds to the number of semantic fields, we
need to study the existence of planar hypergraphs layouts with respect to the number of
hyperedges.
In this paper, we study the following problem:
what is the maximum number of hyperedges a hypergraph can contain to ensure that it
has a planar representation ?
After having described in section 1.1 the existing graphical representations for hyper-
graphs, we show in section 1.2 the equivalence between the notions of vertex-planarity
and planar drawing in edge standard for hypergraphs. Finally, we prove in section 2 that
any hypergraph having less than nine hyperedges is vertex planar.

1.1 Graphical representation of hypergraphs

Several graphical representations have been introduced for hypergraphs (see figure 1
for an example):
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Fig. 1. The hypergraph H = (V, E) with V = {a, b, c, d, e, f, g, h, i} and E=
{{a, b, c, f}, {c, d, e}, {e, f, i}, {f, g, h}, {b, c, h}} is drawn in the subset standard (A) and in
the edge standard (B). A vertex-based Venn diagram representing H is drawn in (C). The hyper-
graph H is Zykov-planar and its representation is drawn in (D).

– Zykov, as described in [9], considers that a hypergraph is planar when it can be
represented by the faces of a planar map, the vertices belonging to the boundaries of
the faces (cf. [7] for a study on the minimal non planar hypergraphs using Zykov’s
definition of planarity).

– Johnson and Pollak [9] introduce two notions of planarity for hypergraphs, based on
dual generalizations of Venn diagrams: the edge-planarity and the vertex-planarity.
They show that the general problem of determining whether a hypergraph is (vertex-
/ edge-) planar is NP-complete (other complexity results related to vertex-planarity
and hypergraphs can be found in [1]). Let us recall the definition of vertex-planarity
[9]:
”Given a hypergraph H = (V, E), a vertex-based Venn diagram representing H

consists of a planar graph G, an embedding M of G into the plane, and a one-to-
one map from the set V of vertices of H to the set of faces of M , such that for each
hyperedge e ∈ E , the union of the faces corresponding to vertices in e comprises a
region of the plane whose interior is connected. A hypergraph is said vertex-planar
if there is a vertex-based Venn diagram that represents it.”
As noticed in [15, 12, 16, 5], the name Venn corresponds to diagrams containing 2n

regions when H has n hyperedges. The vertex-based Venn diagrams defined are
similar to the extended Euler diagrams introduced in [18, 19].

– Mäkinen [14] introduces two types of drawings for hypergraphs: for “the edge stan-
dard”, the vertices belonging to a same hyperedge are connected together (in [10]
an implementation of a edge standard drawing method is described); for the ”subset
standard”, hyperedges are represented by planar regions bounded by curves (see [2]
for a description of a drawing system based on this definition).

In fact, the notion of Zykov-planarity and vertex-planarity can be considered as a gen-
eralization of the planarity’s notion for graphs because we have [9]: a graph G is planar
in the ordinary sense if and only if it is vertex-planar (resp. Zykov-planar) when viewed
as a hypergraph. Then, as the graph K3,3 is the non planar graph having the smallest
number of edges, which is equal to nine, we know that there is at least one non vertex-
planar hypergraph having nine hyperedges (we use the notations of [13] for K3,3 and
K5 and Kuratowski’s theorem [11]).
Thus, as we want to know the lower bound n on the number of hyperedges such that
the following assertion is true:

“all the hypergraphs having at most n hyperedges are vertex-planar”.

We already know that n is lower than nine.
We show in this paper that n is equal to eight, i.e. that all the hypergraphs having at most



eight hyperedges are vertex-planar. This is made by a constructive proof in section 2.
Let us first of all compare the notions of vertex-planarity and planar drawing in the edge
standard for hypergraphs.

1.2 Vertex-planarity and drawing in the edge standard

Let H = (V, E) be a hypergraph, with the set of vertices V and the set of hyperedges
E . Following Mäkinen, we define an equivalence relation r on V by:
vrv′ if and only if for each edge e in E , v ∈ e if and only if v′ ∈ e.
Then the condensation of H is the hypergraph H ′ = (V ′, E ′) in which V ′ contains
a vertex v′ for each equivalence class of V w.r.t. r and E ′ has an edge e′ with vertex
v′ ∈ V ′ if and only if the corresponding edge e in E contains v′ (cf. figure 2).

Fig. 2. A hypergraph and its condensation.

One can notice that the condensation of H is vertex-planar if and only if H is vertex-
planar. Then, we will work with the condensation of H instead of hypergraphs H in the
rest of the paper.

Remark 1. According to Mäkinen’s definition, a drawing of H in the edge standard
is strictly constrained by the fact that a hyperedge is represented by a path of edges
connecting all its vertices together. Then, when H is vertex-planar, the adjacency graph
of the regions forming the vertex-based Venn diagram representing H is a drawing of
H in the edge standard. Conversely, when H has a planar drawing in the edge standard,
a vertex based Venn diagram representing H can be build (cf. figure 3 (B) and (C) for
an example). Thus, the two notions: “H is vertex-planar” and “H has a planar drawing
in edge standard” are equivalent.

More formally, we say that a graph G = (V, E) is a representation of H = (V, E) in the
edge standard when it satisfies: ∀e ∈ E , the subgraph of G induced by e is connected.
By extension, a graph G′ = (V ′, E′), where V ′ ⊂ V , is a representation of H restricted
to V ′ in the edge standard if ∀e ∈ E , the subgraph of G induced by e∩V ′ is connected.
Then we can say that “H has a planar drawing in edge standard” or “H is vertex-
planar” when there exists a planar graph G = (V, E) which is a representation of
H = (V, E) in the edge standard.

2 The constructive proof

To show that a hypergraph H = (V, E) having less than nine hyperedges is vertex pla-
nar, we will show how to build a planar representation of H in the edge standard.
Let H = (V, E), v be a vertex of V and W a subset of V . We note: e(v) the subset of E



formed by the hyperedges containing v; ne(v) the number of hyperedges of E contain-
ing v; e(W ) the set of hyperedges of E containing at least a vertex of W ; eu(v, W ) the
subset of e(v) for which v is the unique vertex in W , and eu(W ) =

⋃
v∈W eu(v, W ).

Given H = (V, E), the condensation of a hypergraph having n < 9 hyperedges, to
show how to build a planar graph representation of H in the edge standard, we proceed
as follows:

1. we first choose a subset V0 of V such that:
(i) any hyperedge of E has a vertex in V0

(ii) V0 has a minimal number of vertices
(iii) V0 is maximal w.r.t. the relation � : W � W ′ if the ordered list (ne(v))v∈W

is greater than the ordered list (ne(v
′))v′∈W ′ for the lexicographic order.

(cf. example 1 for an illustration of those properties)
2. a planar representation of H restricted to V0 in the edge standard, G0 = (V0, E0),

is built.
The properties of V0 and the planarity of G0 are studied in section 2.1.

3. V \V0 is partitioned into k sets of vertices V1,...,Vk such that v ∈ Vi when i is the
minimum number of edges to be inserted in G0 = (V0, E0) to obtain a representa-
tion of H restricted to V0 ∪ {v} in the edge standard.
The construction of the partition of V \V0 is described in section 2.2.

4. a planar representation of H in the edge standard is built by inserting progressively
the vertices of Vk,Vk−1, ..., V1 in G0.
This is the subject of section 2.3.

2.1 Properties of V0

In the following, H = (V, E) is the condensation of a hypergraph having less than nine
hyperedges and V0 is a subset of V satisfying (i),(ii) and (iii).
As V0 has a minimal number of vertices, we have:

Lemma 1. eu(V0) contains at least card(V0) elements. and card(V0) ≤ card(E).

Proposition 1. When card(E) < 9, there is a planar representation of H restricted to
V0 in the edge standard;

Proof. The complete graph Kcard(V0) on V0 is a representation of H restricted to V0

in the edge standard. Let G0 = (V0, E0) be a subgraph of Kcard(V0), with minimal
number of edges, and being a representation of H restricted to V0 in the edge standard.
We have the following cases to consider:
− card(V0) ≤ 4. G0 = (V0, E0) and is planar because we need at least 5 vertices to
build a non planar graph.
− card(V0) ≥ 5. By definition, we have card(eu(V0)) ≥ 5 then at most 3 hyper-
edges have to be represented by a path in G0. As G0 is minimal in number of edges
among the representations of H restricted to V0 in the edge standard, it cannot contains
any subdivision of K5. When card(V0) ≥ 6, only 2 hyperedges have to be represented
by a path in G0, thus G0 cannot contain a subdivision of K3,3. ut

In the rest of the paper, G0 = (V0, E0) denotes a planar representation of H restricted
to V0 in the edge standard.



2.2 The partition of V \V0

Once a subset V0 of V satisfying (i), (ii) and (iii) is chosen, a partition of V \V0 is made,
classifying the vertices v of V \V0 with respect to the number of edges necessary to ex-
tend V0 to V0∪{v} while keeping the property of being a representation of H restricted
to V0 ∪ {v} in the edge standard. More precisely:
V is partitioned into k + 1 sets of vertices V0,...,Vk. Each Vi, with i > 0 is such that
v ∈ Vi if and only if i is the minimum number of edges to be inserted in G0 = (V0, E0)
to obtain a representation of H restricted to V0 ∪{v} in the edge standard. These edges
connect v and vertices of V0. In the following, Wi(v) = {w1, ..., wt} denotes a mini-
mum subset of V0 such that its vertices can be connected to v to form a representation
of H restricted to V0 ∪ {v} in the edge standard. We have: card(Wi(v)) = i.

Example 1 Consider the two hypergraphs (cf. figure 3):
• For the hypergraph of figure 1, we have E = {e1, ..., e5} with e1 = {a, b, c, f}, e2 =
{c, d, e}, e3 = {e, f, i}, e4 = {f, g, h} and e5 = {b, c, h}. Then e(a) = {e1}, e(b) =
{e1, e5}, e(c) = {e1, e2, e5}, e(d) = {e2}, e(e) = {e2, e3}, e(f) = {e1, e3, e4},
e(g) = {e4} and e(h) = {e4, e5}. The set of vertices V is partitioned into three sets:
V0 = {c, f}, V1 = {a, b, d, g, i} and V2 = {e, h} (case A of figure 3).
• Suppose H = (V, E) with V = {a, b, c, d, e, f, g, h} and E = {e1, ..., e8} with e1 =
{a, f, i}, e2 = {b, g}, e3 = {c, h}, e4 = {d, i}, e5 = {a, b, e}, e6 = {b, c, f, h}, e7 =
{c, d, e, g} and e8 = {a, g}. We have e(a) = {e1, e5, e8}, e(b) = {e2, e5, e6}, e(c) =
{e3, e6, e7}, e(d) = {e4, e7}, e(e) = {e7, e5}, e(f) = {e1, e6}, e(g) = {e2, e5, e8},
e(h) = {e3, e6} and e(i) = {e1, e4}. The sets of vertices W = {a, b, c, d} and W ′ =
{a, g, c, i} both satisfy (i), (ii) and (iii): the ordered list of the (ne(v))v∈W and the
ordered list of the (ne(v

′))v′∈W ′ are both equal to (3, 3, 3, 2). The set W ′′ = {a, g, h, i}
satisfies (i) and (ii) but not (iii) because the ordered list of the (ne(v

′′))v′′∈W ′′ is equal
to (3, 3, 2, 2) which is lower than the others for the lexicographic order. Let us take
V0 = {a, b, c, d}. Then V1 = {h}, V2 = {e, f, i} and V3 = {g}. Two different subsets
of V0 can be connected to f with a minimal number of vertices: W2(f) can be equal to
{a, b} or to {a, c}.
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Fig. 3. The graph G0 and the partition of V into V0, ..., Vk for the two hypergraphs of example 1.
The dashed lines connect vertices of Vi, i > 0, with vertices of V0 according to E . The solid lines
represent the graph G0. in (A), V0 contains two vertices and G0 contains one edge connecting
them. In (B), three edges connect the four vertices of V0. In (C), a vertex-based Venn diagram
representing the second hypergraph is drawn.

Because of the minimality of V0 and the definition of the Vi, we have:

Lemma 2. (1) if v is a vertex of Vi, i > 0, e(v) contains at least i hyperedges of
eu(Wi(v)).



(2) Vi is empty when i > card(V0)
(3) Vi is empty when i > card(E) − card(V0)

2.3 Extension of G0

Remark 2. Suppose that G′ is a planar representation of H restricted to V ′ = V0 ∪ W

in the edge standard, where W is a subset of V \V0.
- a vertex v of V1 is inserted in G′ by adding an edge to obtain a graph G′′, a

representation of H restricted to V ′ ∪ {v} in the edge standard. As v is connected to
only one vertex and G′ is planar, G′′ is also planar. Thus any insertion of a vertex of V1

can be made without breaking the planarity.
Without loss of generality, we will suppose in the rest of the paper that any vertex of
V is included in at least two hyperedges of E . As a consequence, vertices of V0 are
included in at least two hyperedges of E .

- a vertex v of of V2 is inserted in G′ by adding two edges joining v with two
vertices w1 and w2 of V0. If (w1, w2) is an edge of G′, this insertion leads to a planar
representation of H restricted to V ′ ∪ {v} in the edge standard. In the other cases, we
must show that the edge (w1, w2) does not break the planarity while being inserted into
G′.

Considering the cardinalities of E and of V0, we have the following cases to consider to
show that the insertion of vertices of V \V0 leads to a planar representation of H in the
edge standard:

card(V0) V \ V0

card(E) = 8 card(E) = 7 card(E) = 6 card(E) = 5 card(E) = 4 card(E) = 3

1 V1 V1 V1 V1 V1 V1

2 V1 ∪ V2 V1 ∪ V2 V1 ∪ V2 V1 ∪ V2 V1 ∪ V2 V1

3 V1 ∪ ...V3 V1 ∪ ...V3 V1 ∪ ..V3 V1 ∪ V2 V1 ∅
4 V1 ∪ ...V4 V1 ∪ ...V3 V1 ∪ V2 V1 ∅ ∅
5 V1 ∪ ...V3 V1 ∪ V2 V1 ∅ ∅ ∅
6 V1 ∪ V2 V1 ∅ ∅ ∅ ∅
7 V1 ∅ ∅ ∅ ∅ ∅

Remark 3. Only the cases written in bold letters have to be examined precisely. The
other cases are solved as follows:
- When card(V0) = 2, all the vertices v of V2 are inserted in G0 by adding two edges
joining v with the two vertices of V0 without breaking the planarity of the resulting
graph.
- When card(E) − card(V0) = 2, two hyperedges e′ and e′′ of E contain several
vertices of V0 and card(V0) hyperedges of E contain only one vertex of V0. Then G0 is
composed of at most two paths connecting the vertices of V0 belonging to e′ (resp. e′′).
As V0 has a minimal number of vertices, a vertex of V2 cannot belong to more than one
hyperedge of eu(V0) and then it must belong to either e′ or e′′. Thus the insertions of
vertices of V2 correspond to insertions of edges between vertices of e′ and vertices of e′′

in G0. These insertions can be made without breaking the planarity of G0 (cf. figure 4).

Let us now study how vertices of V3 can be inserted in G0. Using the fact that card(E) <

9 and that a vertex of Vi is included in at least i hyperedges of E , we have:



e’
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Fig. 4. When card(E) − card(V0) = 2, edges corresponding to insertion of vertices of V2 in-
cluded in e′ (resp. e′′) are drawn in dashed (resp. solid) lines.

Lemma 3. V3 contains at most two vertices v and v′ which are not both included in a
same hyperedge of E .

Remark 4. When two vertices v and v′ of V3 are both linked to W3(v) = {w1, w2, w3}
and when the face defined by W3(v) do not contain any edge in G0, if there exists i in
{1, 2, 3} with e(v) ∩ eu(wi, W3(v)) = e(v′) ∩ eu(wi, W3(v)) then these vertices can
be inserted inside the face defined by W3(v) without edge crossing (cf figure 5 (A)).
- v is inserted inside the face (w1, w2, w3) by adding three edges.
- by adding the edges (v, v′), (w2, v

′) and (w3, v
′), we obtain a planar representation of

H restricted to V0 ∪ {v, v′} in the edge standard.
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Fig. 5. The insertion is made by adding the dashed edges. A: insertion of v and v′ inside the face
(w1, w2, w3). B: when V0 = {w1, w2, w3}, the insertion of v, v′ and v′′ can be made either
inside or outside the face (w1, w2, w3).

Proposition 2. When card(V0) = 3 and card(E) < 9, the insertions of vertices of
V \V0 in G0 lead to a planar representation of H in the edge standard.

Proof. Vertices of V3 are inserted as follows (cf figure 5 (B)):
- a vertex v of V3 is inserted inside the face (w1, w2, w3) by adding three edges.
- if a vertex v′ of V3, is such that for any i = 1, 2, 3, e(v) ∩ eu(wi, W3(v)) 6= e(v′) ∩
eu(wi, W3(v)), then v′ is inserted outside the face defined by V0 by adding three edges.
- if v has been inserted inside (w1, w2, w3) and v′ inserted outside (w1, w2, w3), then, as
V0 has a minimum number of vertices and card(E) < 9, any other vertex v ′′ of V3 must
satisfy : there exists wi in V0 such that either eu(wi, V0) ∩ e(v) = eu(wi, V0) ∩ e(v′′)
or eu(wi, V0)∩ e(v′) = eu(wi, V0)∩ e(v′′). Then v” is inserted as described in remark
4.
We proceed similarly for the other vertices of V3 and obtain a planar representation of
H restricted to V0 ∪ V3 in the edge standard.
Vertices of V2 are inserted by adding paths along the edges of the triangle defined by
the three vertices of V0. The resulting graph is a planar representation of H in the edge
standard. ut



Now, to prove that any hypergraph having less than 9 hyperedges has a planar represen-
tation in the edge standard, we have the following cases to consider:

- card(V0) = 4 and card(E) = 7 or 8.
- card(V0) = 5 and card(E) = 8.

Proposition 3. When card(V0) = 4 and card(E) < 9, the insertions of vertices of
V \V0 in G0 lead to a planar representation of H in the edge standard.

Proof. Let us consider the two cases separately:
-A- When card(E) = 7, we first prove that V4 is empty and that the vertices of V3

can always be inserted inside the faces defined by W3(v). Then, as K4 is planar, the
resulting graph will be a planar representation of H in the edge standard.
V4 is empty: suppose that v is a vertex of V4, then v belongs to at least four hyperedges
of eu(V0). As V0 satisfies (iii), V0 contains a vertex v0 which belongs to at least four
hyperedges. There is only one hyperedge of E which contains both v and v0. Then the
set {v, v0} satisfies (i) and contains only two vertices which contradicts the hypothesis
on V0.
If V3 contains two vertices v and v′ associated to W3(v) = {w1, w2, w3} and such that
for any i = 1, 2, 3, e(v) ∩ eu(wi, W3(v)) 6= e(v′) ∩ eu(wi, W3(v)), then at most one
hyperedge e of E does not contain v or v′. Let v0 be a vertex of V0 belonging to e.
then the set {v, v′, v0} satisfies (i) and contains only three vertices which contradicts
the hypothesis on V0.
-B- When card(E) = 8, V4 may not be empty.
-B-1. Suppose V4 contains a vertex v4.
We will show that the insertion of v4 in G0 leads to a planar representation of H re-
stricted to V0 ∪ {v4} in the edge standard and that the insertion of vertices of V \(V0 ∪
{v4}) can be made by adding at most two edges to this graph.
When v4 is a vertex of V4, four hyperedges of eu(V0) contains v. Suppose that there
is a vertex v0 in V0 such that card(eu(v0, V0)) = 1. If v0 belongs to 4 hyperedges,
then there is v′

0 in V0 such that {v4, v0, v
′

0} satisfies (i) and contains only three vertices
which contradicts the hypothesis on V0.
Otherwise, V ′ = {v4} ∪ V0\{v0} satisfies (i), (ii) and is such that V ′ � V0 which
contradicts the hypothesis on V0.
Thus when V4 contains a vertex v4, card(eu(v, V0)) = 2 for any vertex v of V0 and G0

does not contain any edge. v4 is inserted in G0 by adding four edges and the resulting
graph is planar.
Let v be a vertex of V \(V0 ∪ {v4}). Suppose that there are two hyperedges e and e′ of
E which contain v but not v4. Let v1 and v2 be two vertices of V0 included neither in
e nor in e′. Then V ′ = {v1, v2, v, v4} satisfies (i), (ii) and is such that V ′ � V0 which
contradicts the hypothesis on V0.
Thus the vertices of V \(V0 ∪ {v4}) can be inserted by adding two edges connecting v4

and a vertex of V0 which leads to a planar graph.



-B-2. Suppose V4 is empty.
Let us examine the insertion of vertices of V3:
• If all the vertices of V3 can be inserted inside the faces defined by K4 without edge
crossing then, as K4 is planar, the resulting graph will be planar.
• Otherwise, suppose that the two vertices v and v′ of V3 are both associated to
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Fig. 6. When card(V0) = 4, card(E) = 8 and vertices v and v′ are both associated to
{w1, w2, w3}. The path v0, w2 is replaced by one of the two paths v0, v

′ or v0, v.

W3(v) = {w1, w2, w3} and are such that ∀i = 1, ..., 3, eu(wi, W3(v)) ∩ e(v) 6=
eu(wi, W3(v)) ∩ e(v′). Then, six hyperedges of E contain either v or v′. Thus using
the fact that card(E) < 9, that v and v′ belong to V3 and the hypothesis satisfied by V0,
we have (cf. figure 6 for an example):

(a) ∀i = 1, 2, 3, eu(wi, W3(v)) = {ei, e
′

i}, with v included in ei and v′ in e′i, and
there is a hyperedge ec in E which contains the three vertices w1, w2 and w3.

(b) the vertex v0 of V0\W3(v) has only one hyperedge in eu(v0, V0); v0 is not
included in ec and cannot be included in both ei and e′i for i = 1, 2, 3.

We insert v inside the face defined by W3(v) and v′ outside this face. This leads
to a planar graph G′. Then one of the three edges joining v0 with the wi, for example
the edge (w2, v0) cannot be drawn without edge crossing in G′, as in figure 6. Thus to
insert the other vertices of V3 and the vertices of V2 in G′ without edge crossing, we
replace the paths joining v0 to w2 by either a path joining v0 to v or a path joining v0 to
v′ (this can always be done because e2 and e′2 cannot both contain v0). These insertions
lead to a planar representation of H in the edge standard. ut

The following remark will be used in the proof of proposition 4.

Remark 5. Let v be a vertex of V \V0 included in e1 ∩ e2 where {e1} = eu(v1, V0)
{e2} = eu(v2, V0) with v1 and v2 two distinct vertices of V0. Then we have:

1. E contains a hyperedge e1,2 of such that e1,2 ∩ V0 = {v1, v2}, otherwise V0 could
be replaced by (V0\{v1, v2}) ∪ {v}.

2. Consequently, the edge (v1, v2) belongs to G0. Then, if v belongs to V2, it can be
inserted in G0 without breaking the planarity.

3. Moreover, when v belongs to V3 and card(V0) = 5, we have:
(a) v1 and v2 must be included in more than two hyperedges of E , otherwise V0

would not be maximal w.r.t. the relation �.
(b) Consequently, if v is included in a hyperedge e of E\eu(V0), then E\eu(V0)

must contain at least three hyperedges.



Because of (a), at least two hyperedges of E\eu(V0) are used for v1 and v2 and
they are distinct from e.

(c) if v is included in a hyperedge of eu(v0, V0) with v0 ∈ V0\{v1, v2}, then v0

must be such that card(eu(v0, V0)) > 1.
Otherwise, using point 1 of this remark, six hyperedges are necessary for v1, v2

and v0 (ei for each eu(vi, V0) and ei,j for each couple (vi, vj)). Then when
card(V0) = 5, three other hyperedges are needed for the two vertices of
V0\{v0, v1, v2}, which is impossible when card(E) < 9.

Proposition 4. When card(V0) = 5 and card(E) = 8 the insertions of vertices of
V \V0 in G0 lead to a planar representation of H in the edge standard.

Proof. We have: V \V0 = V1 ∪ V2 ∪ V3. We will prove that the insertion of vertices
of V \V0 leads to a planar representation of H in the edge standard considering the
number N of hyperedges of E\eu(V0). Because of the cardinality of E and V0, we have
3 ≥ N > 0.
- case A- Only one hyperedge e of E contains several vertices of V0.
There are at least one vertex v0 such that card(eu(v0, V0)) > 1, and three vertices of
V0, v1, v2 and v3, such that card(eu(vi, V0)) = 1 and vi belongs to e for i = 1, 2, 3.

- Suppose v0 is the unique vertex of V0 satisfying card(eu(v0, V0)) > 1. Then V3

is empty, otherwise this would contradict the fact that V0 has a minimum number of
vertices (cf. figure 7(A)).

- Suppose V0 contains another vertex v′

0 such that card(eu(v′0, V0)) > 1. Then,
to satisfy the minimality condition of V0, the vertices of V3 must be included in e, in
one hyperedge of eu(v0, V0) and in one hyperedge of eu(v′0, V0). These vertices can be
inserted inside the face defined by (v0, v

′

0, v1) as done in remark 4 (cf. figure 7(B)).
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Fig. 7. When card(V0) = 5, card(E) = 8 and only one hyperedge e of E contains several
vertices of V0. The paths corresponding to potential insertions of elements of V2 and V3 are
drawn in dashed lines. In this figure, the positions of the vertices of V2 and V3 w.r.t. e are not
significant.

Consider now the subgraph G′

0 of G0 restricted to the set of vertices {v1, v2, v3}. As
G0 is minimal in number of edges and e is the unique hyperedge containing v1, v2 and
v3, G′

0 does not contain a K3. Using remark 5, a vertex v of V2 cannot be such that
W2(v) = {vi, vj} with i, j ∈ {1, 2, 3}. As the elements of V3, if they exist, are inserted
inside the face defined by (v0, v

′

0, v1) , the insertion of vertices of V \V0 in G′

0 cannot
create a subdivision of K3. Thus, the insertions of vertices of V \V0 in G0 do not create
a subdivision of K5, as illustrated in figure 7 (A) et (B).



- case B - Two hyperedges e and e′ of E contain several vertices of V0.
Then exactly one vertex v0 of V0 is such that eu(v0, V0) = {e0, e

′

0}.
Let us examine the vertices of V3.

- If a vertex v of V3 is included in the hyperedge e1 s.t. {e1} = eu(v1, V0). As V0

must be maximal w.r.t. the relation �, v1 must be included in e and in e′. Then as v

belongs to V3, v must be included in e2, {e2} = eu(v2, V0) with v2 6= v1 and in one
hyperedge of eu(v0, V0), because of point c of remark 5.3. Thus we have the following
configuration: e(v0) = {e0, e

′

0} or e(v0) = {e0, e
′

0, e
′}, e(vi) = {ei, e, e

′} for i = 1, 2
and e(vi) = {ei, e

′} for i = 3, 4, and v is inserted inside the face (v0v1v2), as illustrated
in figure 8 (A).

- Otherwise, V3 may contain vertices that must be included in e, in e′ and in one of
the hyperedges of eu(v0, V0). They can be inserted in a unique face, following remark 4
and we have the configuration of figure 8 (B).
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Fig. 8. When card(V0) = 5, card(E) = 8 and two hyperedges, e and e′, of E contains several
vertices of V0. The paths corresponding to potential insertions of elements of V2 and V3 are drawn
in dashed lines. In this figure, the positions of the vertices of V2 and V3 w.r.t. e and e′ are not
significant.

Consider now the subgraph G′

0 of G0 restricted to V0\{v0}. As G0 is minimal in num-
ber of edges and there are only two hyperedges e and e′ containing several vertices of
V0\{v0}, G′

0 does not contain a K4.
As noticed in remark 5 .2, a vertex of V2 belonging to two hyperedges of eu(V0)\eu(v0, V0)
can be inserted in G0 along an existing edge of G0. The other vertices of V2 associated
to vertices of V0\{v0} belong to at least one hyperedge of {e, e′} and can be inserted
as described in figure 4 without creating a subdivision of K4. Thus the insertion of the
vertices of V \V0 can be done without creating a subdivision of K5 (as illustrated in
figure 8 (A) and (B)). Please, notice that to simplify the drawing, multiple insertions
between two vertices have been represented only once in those figures.
- case C- Three hyperedges e, e′ and e′′ of E contain several vertices of V0.
As card(V0) = 5, we can remark that:

- any vertex of V0 belongs to exactly one hyperedge of eu(V0). Then using point c
of remark 5.3, a vertex v of V3 cannot contain three hyperedges of eu(V0).

- there is at least one vertex of V0 included in at least two hyperedges of {e, e′, e′′}.
Then v must be included in at least one hyperedge e0 with {e0} = eu(v0, V0).
As V0 is maximal w.r.t. the relation �, v0 must be included in two hyperedges e and e′

of E\eu(V0). Then v necessarily belongs to e′′, e0 and e1 with e∩ V0 = {v0, v1}. Thus
V0 must be such that: e(v0) = {e0, e, e

′}, e(v1) = {e1, e, e
′}, {e2, e

′′} ∈ e(v2) and



e ∩ V0 = {v0, v1}.
Suppose that e′′ contains exactly two vertices v2 and v3 of V0 distinct from v0 and v1.
V3 could contain a second vertex v′ included in e2, e3 and e but, in this case, V0 would
not be minimal because e({v, v′, v4}) = e(V0).
Consequently, V3 contains at most one vertex v that is inserted inside the face (v0v1v2)
(cf. figure 9(A)).
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Fig. 9. When card(V0) = 5, card(E) = 8 and three hyperedges e, e′ and e′′ of E contains
several vertices of V0. The paths corresponding to potential insertions of elements of V2 and V3

are drawn in dashed lines. In this figure, the positions of the vertices of V2 and V3 w.r.t. e, e′ and
e′′ are not significant.

Let us now examine the vertices of V2. As previously, we suppose that v0 and v2 are
vertices of V0 respectively included in {e, e′} and in e′′. A vertex v of V2 is:

- either included in two hyperedges of eu(V0). Following remark 5.2, v is inserted
along an existing edge of G0.

- either included in only one hyperedge of eu(V0). Suppose that v is included in
eu(v1, V0). Then v will be inserted by adding two edges between either v1 and v0 or
between v1 and v2.

- or included only in hyperedges of E\eu(V0). Then v will be inserted by adding
two edges between v2 and v0.
The paths created by these insertions join v0 or v2 with the other vertices of V0 or are
located along existing edges of G0, as shown in figure 9 (A) and (B). Then, the resulting
graph does not contain a subdivision of a K5. Finally, we obtain a planar representation
of H in the edge standard. ut

Then using remark 3, proposition 2, 3 and 4, we have:

Theorem 1. Any hypergraph having at most eight hyperedges is vertex-planar and has
a planar representation in the edge standard.

3 Conclusion

We have shown by a constructive proof that any hypergraph having less than nine hy-
peredges is vertex-planar and has a planar drawing in the edge standard.

The vertex-based Venn diagram representing a hypergraph H is an extended Euler dia-
gram (cf. [19]). The only difference with a planar drawing of H in the subset standard is
that a hyperedge is represented by several closed curves: one of the curves is the exter-
nal contour and the others are the internal contours. The internal contours are included



in the planar region bounded by the external contour and represent holes in this region.
The planar region defined by this set of curves is connected. Then, by adding curves
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c
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Fig. 10. The region corresponding to the hyperedge e in a vertex-based Venn diagram is trans-
formed into a region bounded by a curve.

connecting the external curve and the internal curves and opening the internal curves as
in figure 10, the vertex-based Venn diagram representing H can be easily transformed
into a planar drawing of H in the subset standard. Thus our method can also be used
to compute a planar drawing of any hypergraph having less than nine hyperedges in the
subset standard (cf. figure 11 for an example).
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Fig. 11. A drawing in the subset standard of the two hypergraphs of example 1, according to the
representation in the edge standard built with our method.

We are currently implementing a system computing a planar drawing in the edge stan-
dard, given a hypergraph having less than nine hyperedges. This work will be integrated
in a graphical user interface for digital library access [17].
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14. E. Mäkinen. How to draw a hypergraph. International Journal of Computer Mathematics,

34:177–185, 1990.
15. F. Ruskey. A survey of Venn diagrams. The electronic journal of combinatorics, March

2001.
16. S-J. Shin and O. Lemon. Diagrams. In Edward N. Zalta, editor, The Stanford Encyclopedia

of Philosophy. 2003. http://plato.stanford.edu/entries/diagrams/.
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