
HAL Id: inria-00389836
https://hal.inria.fr/inria-00389836

Submitted on 29 May 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interaction between MPI and TCP in grids
Ludovic Hablot, Olivier Glück, Jean-Christophe Mignot, Romaric Guillier,

Sébastien Soudan, Pascale Vicat-Blanc Primet

To cite this version:
Ludovic Hablot, Olivier Glück, Jean-Christophe Mignot, Romaric Guillier, Sébastien Soudan, et al..
Interaction between MPI and TCP in grids. [Research Report] RR-6945, INRIA. 2008, pp.26. �inria-
00389836�

https://hal.inria.fr/inria-00389836
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

6
9

4
5

--
F

R
+

E
N

G

Thème NUM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Interaction between MPI and TCP in grids

Ludovic Hablot, LIP — Olivier Glück, LIP, UCBL — Jean-Christophe Mignot, LIP, CNRS —

Romaric Guillier, INRIA — Sébastien Soudan, LIP — Pascale Primet, INRIA

N° 6945

Mai 2008

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Interaction between MPI and TCP in grids

Ludovic Hablot, LIP, Olivier Glück, LIP, UCBL, Jean-Christophe Mignot,

LIP, CNRS,

Romaric Guillier, INRIA, Sébastien Soudan, LIP, Pascale Primet, INRIA

Thème NUM — Systèmes numériques
Projet RESO

Rapport de recherche n° 6945 — Mai 2008 — 23 pages

Abstract:

As MPI applications are more and more resource consuming, they need to be
executed on grids. The communications on the WAN interconnecting clusters mostly
use TCP which suffers from WAN features: high latency, sharing between users,
bandwidth smaller than the aggregate bandwidth of the nodes.

In this report, we first study the interaction between MPI and TCP on grids.
We show why the nature of MPI traffic raises problems while using TCP on WAN
links. TCP’s loss detection and congestion control mechanism can both slow down
the application.

Then, we propose MPI5000, a transparent applicative layer between MPI and
TCP, using proxies to improve the execution of MPI applications on a grid. Proxies
aim at splitting TCP connections in order to detect losses faster and avoid to return
in a slowstart phase after an idle time.

Finally, we test our layer on Grid’5000, the French research grid, using MPICH2.
The results on the NPB (NAS Parallel Benchmarks) validate our architecture that
reduces the number of idle timeout and the number of long-distance retransmissions
for certain benchmarks, namely BT, SP and LU benchmarks. Using MPI5000, these
applications can decrease their execution time by 35%, 28%, and, 15% respectively.

Key-words: MPI, TCP, Grid’5000, proxies, TCP Split, MPI5000

This text is also available as a research report of the Laboratoire de l’Informatique du Paral-

lélisme http://www.ens-lyon.fr/LIP.

Interaction entre MPI et TCP dans les réseaux de grille

Résumé : Comme les applications parallèles telles que les applications MPI né-
cessitent, il devient nécessaire de les exécuter sur des grilles. Cependant, les com-
munications sur le WAN qui interconnecte les clusters de la grille souffrent des
caractèristiques intrinsèques du WAN et de l’utilisation de TCP comme protocole
de transport : latence élevée, réseau partagé, bande passante inférieure à la bande
passante aggregée des noeuds.

Dans ce rapport, nous étudions dans un premier temps, l’interaction entre MPI
et TCP sur les grilles de calcul. Nous montrons que la nature même du trafic MPI
pose problème à TCP sur les liens WAN. Les mécanismes de détection d’erreur et
de contrôle de congestion de TCP sont à même de ralentir l’application.

Ensuite, nous présentons, MPI5000, une architecture à base de proxys placée de
manière transparente entre la couche MPI et la couche TCP, qui permet d’améliorer
l’execution d’application MPI sur une grille. Les proxys permettent de diviser les
connections TCP afin de détecter les pertes plus rapidement et d’éviter de retourner
dans le slowstart après une phase d’inactivité.

Enfin, nous présentons les résultats de nos expériences avec MPICH2 sur Grid5000,
la grille de recherche française. Les résultats sur les NPB (Nas Parallel Benchmarks)
valident notre approche qui permet de réduire le nombre de retour en slowstart et
le nombre de retransmissions pour certains benchmarks tels que BT, SP, et LU. En
utilisant MPI5000, ces applications diminuent leur temps d’exécution de respective-
ment 35%, 28% et 15%.

Mots-clés : MPI, TCP, Grid’5000, proxys, TCP Split, MPI5000

Interaction between MPI and TCP in grids 3

1 Introduction

This paper deals with the execution of parallel applications on grid platforms. Many
parallel applications are written with the MPI (Message Passing Interface) library.
MPI[19] is a standard that defines communication primitives for parallel applica-
tions. It includes both point to point (MPI Send, MPI Recv ...) and collective
communication functions (like MPI Gather, MPI Alltoall...). While applications
are well executed on clusters, as they are more and more resource-consuming, they
need to be efficiently executed on grids. Many implementations are available for the
grid like MPICH2 [9], OpenMPI [6] or MPICH-G2 [20] even if they need tuning to
be efficiently executed with TCP in a grid [11].

Grids are a pool of computing resources like nodes or data servers connected
together. But from an MPI application’s point of view, they should be seen as an
interconnection of clusters by a wide area network (WAN). As this WAN is shared
by all grid users, applications must take care of concurrent traffic and fairly share the
network. This is usually achieved by TCP. WAN bandwidth is usually much smaller
than required to prevent congestion if all the nodes of one site send data to another
site. It is consequently a bottleneck for the application. In the WAN, the latency
is high and thus, costly. The impact of latency can be reduced by avoiding long-
distance communications either by doing placement of processes[8] or by providing
optimized algorithms for collectives operations (in MagPIe [14] or MPICH-G2 [12]).
However, if we are using TCP, the time to detect a loss or repair it, depends on
RTT (Round Trip Time) and is therefore more costly on a WAN than on a LAN.
Splitting TCP connections can solve this problem [15].

To take these problems into account, we put forward MPI5000, a communica-
tion layer between the application (MPI for example) and TCP that can be used
automatically and transparently. The idea is to introduce proxies at the LAN/WAN
interface in order to:

• give the application the knowledge that the grid is an interconnection of clus-
ters.

• implement the TCP split. Each end-to-end TCP connection (LAN-WAN-
LAN) is replaced by 3 connections: LAN-LAN, WAN-WAN, LAN-LAN.

• take decisions and implement optimizations on proxies: bandwidth reserva-
tion between proxies, communication scheduling, parallel long-distance con-
nections, use of a modified TCP.

RR n° 6945

4 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

This report studies the advantages of TCP splitting for MPI applications executed
on a grid and presents our architecture.

The rest of the report is organized as follows. Section 2 explains what problems
are raised by using TCP for MPI communications on long-distance links. Then,
Section 3 introduces the advantages of our approach and some implementation de-
tails. Section 4 presents the evaluation of MPI5000 on the french research grid,
Grid’5000[4]. Section 5 discusses about related work. Finally, we conclude and give
some future researches we will work on in Section 6.

2 Grids, MPI, and TCP: interaction overview

MPI applications alternate communication and computation phases. When a com-
putation phase is finished, the application waits for new data to compute. MPI
applications communicate with small to medium message size (usually less than
1 MB) and generate a bursty traffic [22]. These bursts are likely to fill the network
equipment queues and generate losses and retransmissions. This ultimately increases
the application completion time as the execution flow is usually waiting for the next
message to continue its execution.

As explained in the introduction, in grids, losses and retransmissions at TCP
level are even more costly due to the high latency, the sharing of the WAN, and
the bottleneck at the WAN/LAN interface. In this section, we first present TCP
features that have an impact on MPI performances. Then, we analyze how it can
raised problems for these applications. Finally, we will point out what should be
improved for a more efficient execution of MPI applications on grids.

2.1 TCP features

TCP is a reliable protocol that aims at sharing a link fairly between many connec-
tions. In grids, using TCP on a the WAN guarantees a statistical fair bandwidth
sharing between all applications. We now detail two TCP mechanisms that impact
MPI applications: error control and congestion control.

• Error control: This mechanism guarantees loss detection and retransmission.
TCP stores the packets in a buffer until they are acknowledged (ACK) by the
receiver. If the packet is lost, TCP retransmits it. Figure 1 illustrates the two
cases of loss detection:

– Case 1: TCP waits for 3 duplicate ACKs (DupACKs) of segment 1 to
retransmit the lost segment 2 by activating the FastRetransmit algorithm.

INRIA

Interaction between MPI and TCP in grids 5

3 DupACK

FastRetransmit

1 2 3 4 2A1 A1A1 3 4

11 A11 1212
C

a
se

1
C

a
se

2

S1

R1

≃ RTT

S1

R1

RTO

Figure 1: TCP behavior in case of loss

If there is enough segment to transmit after the loss, the rough estimate
for the time before retransmission is one RTT (between 10ms to 100ms).

– Case 2: if there is nothing to transmit after the loss of message 12, it
is necessary to wait for a timeout (RTO) before retransmitting it. This
RTO is function of RTT and is much larger than the RTT (usually 200 ms

+ RTT in Linux)). MPI applications are highly penalized in this case.

RTO

Time

C
o
n
g
es

ti
o
n

w
in

d
o
w

si
ze

idle

slowstart slowstart

loss

loss

loss

Figure 2: Evolution of TCP congestion window

• Congestion control: This mechanism aims at sending a controlled amount
of data, in order to balance the charge between all connections and avoid
congestion. TCP uses a congestion window that determines the amount of
data that can be sent at the same time on a link. Figure 2 show the evolution
of the congestion window. In order to determine the available bandwidth of
a link, TCP first uses a slowstart mechanism. The congestion window is first
set at two packets and increases every ACK reception exponentially until a

RR n° 6945

6 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

loss occurs. Then, in steady state mode, this window increases linearly. When
a loss occurs (detected either by three duplicate ACKs or a Timeout), the
congestion window decreases. Finally, after an idle time (nothing is sent on a
connection for a long time), TCP enters a slowstart phase again.

2.2 Problems using MPI over TCP on grids

As the WAN link is shared by the application and the LAN/WAN interface is a bot-
tleneck, most losses occur while communicating on the WAN. Since the reception of
DupACKs depends on RTT, a loss on the WAN takes a longer time to be detected
than on a LAN. In MPI applications, the case 2 of Figure 2 mainly occurs because
MPI uses a message paradigm to communicate and consequently sends a small num-
ber of successive TCP segments, in contrast with a file transfer for example.

The congestion window limits the amount of data that can be send in the same
time. If the congestion window is not large enough, an MPI message can not be sent
in one time but have to wait for ACKs to make this window increase and finish its
sends. Due to the RTT, this is costly on high latency links. Moreover, as slowstart
is activated again after an idle time, if an MPI application computes longer than the
idle timeout, it will suffer from the reactivation of the slowstart mechanism.

2.3 Focus on designing long-distance MPI architecture

As shown previously, we can sort the problems in two groups:

• Due to latency, on the grid, the application waits longer for DupACKs and for
the increase of the TCP congestion window.

• Due to MPI application communication profile, there are many RTO and many
idle time.

Application DupACK RTO Idle timeout

BT 1 0 5668

FT 275 20 905

LU 1 0 760

Table 1: Sum of DupACK, RTO, and Idle timeout while executing the NPB in a
grid.

Table 1 show some clue on these problems. It present the sum of DupAck, RTO
and Idle timeout that occur on long-distance connections while executing BT, FT

INRIA

Interaction between MPI and TCP in grids 7

and LU from the the NPB[3] (NAS Parallel Benchmark) suite. The experiments are
performed on two clusters of 8 nodes, interconnected by a 1 Gbps link. The figures
were obtain with Web100 as described in Section 4.1. DupAck and RTO occur only
in FT while the three applications are impacted by idle timeout.

In order to solve some of these problems, we put forward in the next section an
architecture based on LAN/WAN proxies that enables to split TCP connections,
and therefore, on the WAN: to reduce the number of idle timeout, and to faster
detect and reduce losses.

3 MPI5000 layer

In order to control and improve MPI communications on grids, we propose MPI5000,
a transparent layer to execute MPI applications on grids using proxies. It can be
used with any MPI implementation by loading the MPI5000 library (i.e. set the
environment LD PRELOAD variable) and launching the MPI5000 daemons (i.e.
proxies).

3.1 Overview of MPI5000

WAN

N1.2

N1.1

N2.1

N2.2

P1.1.1

G1 G2

P1.1.0

P2.2.0

P2.1.0

P1.2.0

Figure 3: Long distance communications with proxies

Figure 3 illustrates how MPI5000 splits the TCP connections. The dashed red
lines on the figure represent the connections without MPI5000 while the plain green
lines represent the MPI5000 connections. Each LAN-WAN-LAN connection is re-
placed by three connections LAN-LAN, WAN-WAN, and LAN-LAN. Ns,n is the
node n of site s. Ps,n,p is the process p executed on node n of site s. Gs is the proxy

RR n° 6945

8 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

of site s. Each process is connected to the proxy of its site and proxies are connected
together.

Proxies allow both to react faster in case of congestion and to change MPI’s
bursty traffic into longer flows on long-distance links.

The advantages of our solution are the following and shown on Figure 4 in which
we use the notation previously mentionned. P1.1.0 and P1.2.0 are sender processes
from the first site, G1 and G2 are proxies from site 1 and site 2 respectively. P2.1.0

and P2.2.0 are receiver processes, situated on site 2. Gray color represents the WAN.
Black or blue arrows represent different connections. Green arrows represent WAN-
WAN connections using MPI5000.

• Loss occurs on the LAN (due to a alltoall for example): In case 1 of Figure 4,
congestion occurs on a LAN instead of a WAN. Without proxies, if packet 2
is lost, sender P1.1.0 waits for three duplicate ACKs generated by packets 3, 4,
and 5 and sent by P2.1.0, before it knows that the packet is lost and retransmits
it. The DupACKs arrive after a long-distance RTT (RTTw). With proxies,
the sender P1.1.0, also waits for three DupACKs but it is G1 that retransmits
it. It takes only a local RTT (RTTl).

In case 2a, proxies transform a RTO in DupACKs. P1.1.0 sends two messages:
the first message is composed of packets 2 and 3 and is sent to P2.1.0, packets
2’ and 3’ contain the second message sent to P2.2.0. Without proxies if packet
2 is lost and packet 3 is the last packet of a message, P1.1.0 will receive only
one DupAck and wait for a timeout before retransmitting it. On the contrary,
if we use proxies, packets 4 and 5 use the same connection as packets 2 and 3.
They contribute to send the DupACKs necessary to do a retransmission that
is done by P2.1.0 after a local RTT (RTTl).

• Loss occurs on the WAN (due to cross traffic): in case 2b, P1.1.0 sends packets
2 and 3 to P2.1.0 while P1.2.0 sends packets 2’ and 3’ to P2.2.0. Packet 2 is lost.
In the normal case, P1.1.0 waits for a timeout before retransmitting packet
2. With proxies, however, at the reception of packets 2’ and 3’, G2 sends a
DupACK. P1.1.0 retransmits packet 2 only after a long-distance RTT (RTTw).

MPI5000 aims at avoiding timeout on long-distance and local links. It also
retransmits DupACKs faster. Therefore, it reduces the waiting time of MPI appli-
cations and improve global performances.

INRIA

In
tera

ctio
n

betw
een

M
P
I

a
n
d

T
C

P
in

grid
s

9

3 43 5 24 A1A1 2

Case 2aCase 1 Case 2b

2 3 4 5

11 2 2A1 A1 3*A1

1 A1 3*A1 2

LAN

LAN

WAN

3 222 A1 32 A1A1 A2’ A3’3’2’

3’2’ A3’A2’

3 421 A1A1A1 1 2

LAN−WAN−LAN

A11

G2

G1

P1.1.0

RTTw

P2.1.0

P1.2.0
RTTl RTTl

W
it

h
o
u
t

M
P

I5
0
0
0

W
it

h
M

P
I5

0
0
0

P2.2.0

P1.2.0

P1.1.0

P2.1.0

RTO

P2.2.0

RTORTTw

Figure 4: Comparison of TCP without and with proxies.

R
R

n
°

6
9
4
5

10 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

Our architecture also has an impact on the congestion window. Indeed, proxies
help to keep the congestion window closer to the real available bandwidth because
they transmit more data than a single process and thus probe the network more
regularly. If an application has communication phases longer than the idle timeout
but all processes do not communicate synchronously, the proxies help to not go back
in slowstart phase because other processes keep the congestion window open.

3.2 MPI5000 implementation

MPI5000

IP

L1/L2

TCP

proxy
MPI5000MPI

IP

TCP

L1/L2

MPI5000
library

MPI

MPI5000

IP

L1/L2

TCP

proxy
MPI5000

LAN LAN

WAN

IP

TCP

L1/L2

MPI5000
library

N1.1 G1 G2
N2.1

Figure 5: MPI5000 architecture

As shown on Figure 5, MPI5000 is based on two components: a library on node
and a daemon program on proxies. The dashed red lines represent the data path
from one node to another without MPI5000 while the plain green lines represent it
with MPI5000.

In order to route messages between nodes and proxies, we add a header to the
MPI message (shown on Figure 6). The header contains a flag that identifies the
message type (data or connection), the destination’s id, the size of the MPI message
and the source’s id. An id is described using three numbers: s, the site’s number,
n, the node’s number and p, the process’s number on the node.

3.2.1 MPI5000 library

The library is placed below MPI and can be used with few modifications to the usual
MPI execution procedure The mpirun command line is modified in order to call the
MPI5000 library (for example env LD PRELOAD in mpich). The MPI5000 library

INRIA

Interaction between MPI and TCP in grids 11

MPI message

MPI message

MPI message

Len

1B2B1B 1B2B1B4B

src
n ps

TCP TCP header

MPI

MPI’5000

1B

MPI5000 header

13B

y zx
dest

flag

Figure 6: MPI5000 header

intercepts functions of socket API (bind, accept, connect, write/v, read/v,

close) – in other words, we force the MPI program to call our library’s functions
instead of libc’s – and adapt them to MPI5000’s architecture. With this mechanism,
we are able to use our layer with any MPI implementation. On a bind() the library
connects the node to the proxy. When a connect() is intercepted, the library creates
a message with the connection flag set and sends it to the proxy. On a accept(),

it just waits to the adequate connect().

3.2.2 MPI5000 proxies

The second component of MPI5000 is the proxies. For the moment, they are
launched manually but it could be done automatically. The proxies just wait for
data and forward it to either another proxy or to local nodes, using the information
included in the header. If the connection flag is set, the proxy establishes the con-
nection to the matching node in order to free the pending accept(). Once this is
done, this connection is closed and only the connection to the proxy remains.

4 Experimental evaluation

This section evaluates the architecture described in previous section and based on
the advantages discussed in Section 2.

4.1 Experimental testbed

Our experiments are conducted on Grid’5000[4], which links nine sites in France,
having from 5 ms to 21 ms of RTT. Sites are connected by a dedicated WAN oper-
ated by RENATER at 1 or 10 Gbps. This architecture provides researchers a full

RR n° 6945

12 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

Bordeaux

WAN

18.2 ms of RTT

n AMD Opteron 2218 2.6 GHz

1 Gbps

1 Gbps

Nancy

n AMD Opteron L5420 2.5 GHz

1 Gbps

1 Gbps

n nodes

P

1 Gbps

R1

1 Gbps

1 Gbps

n nodes
PR2

PRn

PN1

PN2

PNn

Figure 7: Experimental testbed

reconfigurability feature to dynamically deploy and configure any OS on any host.
This feature allows them to have administrator rights, to change TCP parameters
for instance. Figure 7 shows the experimental testbed used. Bordeaux’s nodes are
AMD Opteron 2218 2.6 GHz. Nancy’s nodes are AMD Opteron 5420 2.5 GHz con-
nected to the switch by a 1 Gbps Ethernet card. Nancy’s and Bordeaux’s switches
are HP ProCurve 3400cl and HP ProCurve 5406zl respectively. The kernel scheduler
frequency is set to 1000Hz. Bordeaux and Nancy are connected by a 1 Gbps link,
with 18.2ms of RTT. n, the number of nodes used within a cluster depends of the
experiment (1 in case of pingpong, 8 in the NPB case).

TCP uses BIC congestion control, with SACK. In order to reset TCP values
(buffer sizes, congestion window...) between two experiments, we disable the save of
metrics feature. TCP default receive’s and send’s buffer sizes are set to 4 MB which
correspond to bandwith delay product (BDP, as advised in [24]).

We use a kernel 2.6.28.7 with the Web100[17] 2.5.23 patch applied. Web100
instruments the code of the TCP kernel stack in order to give a view of the TCP
behavior. Almost all useful values of a TCP connection like the congestion window
size, the number of DupACK, the number of RTO, the RTT, etc... are logged. Each
variable is updated continously but we pick up values every only 10 ms.

Cross traffic generation: During some experiments (specified later), we add cross
traffic on the long distance link. This cross traffic is carried out with two iperf TCP
flows at 1 Gbps on four extra nodes. One flow is sending from one Nancy’s node

INRIA

Interaction between MPI and TCP in grids 13

to a Bordeaux’s node, another is going the opposite way on different nodes. This
traffic congest the long-distance link between Bordeaux and Nancy.

4.2 Proxies impact on a simple pingpong

In this section, we measure the overhead due to the proxies on the execution of
simple MPI pingpong.

MPICH2 MPI5000 Overhead

Latency (µs) 9114 9255 141 µs (1.5%)

Bandwidth (Mbps) 840 785 15%

Table 2: MPI latency and bandwidth between the two clusters.

As shown in Table 2, latency is increased by 141 µs for 1 B messages. The
overhead of one proxy is the sum of the time from the switch to the proxy and the
time to the crossing of TCP stacks. For each proxy, we add four extra copies, from
the card to the TCP buffer, from the TCP buffer to the proxy application and the
same backwards. While executing a simple pingpong between two nodes of the same
cluster, the number of copies and the RTT are equal to the overhead introduced
by proxies. Doing this experiment, the round-trip latency is 142µs on the LAN,
which is similar to the overhead previously mentionned. Bandwidth decreased from
840 Mbps to 785 Mbps for 33 MB messages, about 15%. Indeed, a higher message
size, increases the overhead to do extra copies.

4.3 Performances on NPB

The next experiments use the Nas Parallel Benchmark (NPB[3]) to show the per-
formance of MPI5000. The NPB are a set of eight programs (BT, CG, EP, FT, IS,
LU, MG and SP) that have been designed to compare performances of supercom-
puters but are now also used to compare MPI implementations. The NPB give a
good panel of the different parallel applications that could be executed on a cluster
or a grid. Table 3 summarizes the long-distance communication features of NPB
2.4 for B class problem on 16 nodes. We obtain these figures by logging each TCP
write size during one NPB execution. We do not care about EP because it mostly
computes and does few communications. FT uses the primitive MPI Alltoall and IS
uses MPI Allreduce and MPI Alltoallv.

RR n° 6945

14 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

Comm. Quantity Long-distance writes: Number of Execution time

type of data Size and quantity long-d. conn. on a cluster

BT P. to Point 2.8 GB 9648 writes of 26 kB 32 151 s

+ 16112 w. of 160 kB

CG P. to Point 2.37 GB 15800 writes of 150 kB 8 52 s

FT Collective 5.9 GB 600 writes < 200 B 240 s

+ 2816 writes > 2 MB

IS Collective 0.74 GB 1151 writes < 400 B + 240 10 s

0.5 MB < 1400 w. < 0.6 MB

LU P. to Point 0.62 GB 200000 writes of 1 kB 8 72 s

+ 2000 w. of 200kB

MG P. to Point 0.19 GB 8842 * diff. sizes B 24 6 s

from 40 B to 135 k

SP P. to Point 5.1 GB 45 kB<19248 writes<54 kB 32 183 s

+ 100 kB<32112 w.<160 kB

Table 3: NPB communication features on long-distance with MPICH.

4.3.1 Overhead of MPI5000 on big messages

We run each NPB three times and take the mean execution time. The Figure 8
shows the relative execution time between MPICH2 and MPICH2 with MPI5000
of each NPB. FT and IS show very bad performances with our layer. As shown in
Table 3, FT and IS use collective operations of big size. The overhead of the copies
in MPI5000 proxies is important on big messages, especially when it is collective
communications because all messages are sent synchronously. For example, we run
a alltoall of 2 MB on 16 nodes with and without MPI5000. The resulting relative
completion time is 2.74 which is similar to the time observed for FT on Figure8
(2.86). The same observation can be done with IS, but message sizes are smaller,
and so is the overhead. Thus, if the proxies can not forward data fast enough, their
overhead is high.

4.3.2 Impact on idle timeout

The number of congestion signals (DupACK and RTO) are obtained thanks to the
Web100 patch. Table 4 shows the number of time the congestion window size is
decreased without loss signal i.e. the number of idle timeout we have measured with
and without MPI5000 in the NPB. The figures for MPICH2 without MPI5000 are
a mean on all long-distance connections while for MPICH2 with MPI5000 they are
taken on the proxy long-distance connection. All NAS show a smaller number of
idle timeout with MPI5000.

INRIA

Interaction between MPI and TCP in grids 15

 0

 0.5

 1

 1.5

 2

 2.5

 3

BT CG FT IS LU MG SP

R
el

at
iv

e
co

m
p

le
ti

o
n

 t
im

e

MPICH2
MPICH2 with MPI5000

Figure 8: Relative performance of NPB normalized to MPICH2

RR n° 6945

16 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

MPICH2 MPICH2
NAS without MPI5000 with MPI5000

BT 331 323

CG 725 427

LU 185 179

MG 73 70

SP 487 426

Table 4: Number of idle timeouts in the NPB with and without MPI5000

MPICH2 without MPI5000 MPICH2 with MPI5000

Execution time Execution time Execution time
NAS (s) without slowstart (s)

after idle (s)

BT 204 171 147

CG 122 122 116

LU 66 71 74

MG 11 11 14

SP 242 203 221

Table 5: Comparison of NPB execution time with and without slowstart after idle

In order to confirm these results, we disable the slowstart after idle TCP feature
(an option in linux). The results are shown in Table 5. CG, LU and MG with
the slowstart disabled show a similar completion time with or without the slowstart
after idle. Thus, reducing the number of idle timeout can not improve performance.
However, in BT and SP, disabling slowstart after idle improve completion time.
These results confirm that MPI5000 reduces the number of idle timeouts.

4.3.3 Impact on RTO and DupACK

The previous experiments do not explain the impact of MPI5000 on CG, LU and
MG. Moreover, the Web100 results on these NPB show that there is no loss signals
(neither duplicate ACK or RTO). In order to see what can MPI5000 improve un-
der congestion conditions, we add cross-traffic, generated as previously described in
Section 4.1.

The Figure 9 show that BT, LU, and, SP benefit from MPI5000 in case of cross-
traffic. However, CG decrease its performance compare to the case without cross

INRIA

Interaction between MPI and TCP in grids 17

 0

 0.5

 1

 1.5

 2

 2.5

 3

BT CG LU MG SP

R
el

at
iv

e
co

m
p

le
ti

o
n

 t
im

e

MPICH2
MPICH2 with MPI5000

Figure 9: Relative completion time of NPB normalized to MPICH2 with cross-traffic

RR n° 6945

18 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

MPICH2 MPI5000

Distant Local Distant
NAS DupAck RTOs DupAck RTOs DupAck RTOs

BT 757 56 4 1 320 1

LU 327 232 0 0 174 41

MG 94 53 7 0 48 4

SP 1409 778 8 0 667 131

Table 6: DupACK and RTO with and without MPI5000 in case of cross-traffic

traffic. This is probably due to a congestion window that is not increased fast enough
but further investigation is needed on this point.

The Table 6 shows the number of congestion signals with and without MPI5000
in case of cross-traffic. In the MPI5000’s case, local refers to connections from nodes
to proxies and distant to the connection between the proxies.

BT, LU, MG and SP results show that MPI5000 delete a lot oflong distance
RTO and DupACKs. However, congestion on MG is not high enough to overlap the
overhead introduced by proxies. Its relative completion time is reduced compare to
the case without cross-traffic. SP is even better in this case than without cross-traffic
and shows an improving completion time by 35%.

5 Related work

Many MPI implementations are available for grids. While some of them manage
heterogeneity of interconnects, others like MPICH2[9] or GridMPI[18] also propose
optimized collective operations to communicate efficiently between clusters. For
example in MPICH2, the MPI Gather implementation packs all messages from a
cluster in one (depending of message size) to send it over a long-distance link. Other
work try to optimize task placement to avoid long distance communications [8].
However, this approach needs to know the communication scheme of the application.

As previously explained, MPI traffic is mainly composed of bursts. Some mecha-
nisms like pacing ([2] and [23]) have been proposed to avoid these bursts by spacing
packets, thus reducing the number of retransmissions. The pacing mechanism con-
sists in introducing a delay between packets in order to avoid them to be dropped
by switches. MPI5000 behaves like pacing in smoothing TCP long-distance traffic.

Other authors propose to use proxies to improve performance like in [5]. The
same mechanism, called TCP splitting [15] is used in wireless networks. It aims at

INRIA

Interaction between MPI and TCP in grids 19

putting an interface between a lossy link like satellite or wireless connection and
improve TCP performance. We show in this report that it is also useful for wired
connections. In [25], the authors propose a layer named Logistical Session Layer or
LSL between the application and TCP that use some depots on a network path to
buffer packet and improve performance. Our work follows a similar approach – their
depots are substituted by gateways –, but we specifically focus on MPI applications
and their interaction with TCP.

GridMPI’s developpers proposed a similar mechanism of proxies using the IMPI
protocol to communicate between nodes and proxies [26]. The main purpose of their
implementation is to communicate between private clusters. MetaMPICH[21] aims
at managing heterogeneity of node communication interfaces and put proxies at the
WAN/LAN interface. However, both GridMPI and MetaMPICH proxies are part of
the implementation and can not be used with another one. PACX-MPI[7] also use
proxies to managed heterogeneity. Their implementation is placed above both MPI
and TCP. Therefore, it can not split TCP connections as presented in this article.

SOCKS[16] is a protocol to communicate between a client and a server via a
proxy. Tsocks[1], a transparent SOCKS proxying library, uses the same system of
hijacking libc calls than MPI5000. We could have modified it to adapt it to our
architecture. However, we would have to implements a SOCKS proxy calling another
SOCKS proxy. Moreover, as SOCKS use IP to forward data, we would have lost the
site, node and process information necessary to reduce the number of connections.

Some other protocols have been proposed to avoid drawbacks of TCP on grids.
UDT [10] is a protocol based on UDP, to share more efficiently than TCP the band-
width between a small number of sources doing bulk transfers. The flow control is
done using a rate control, a window control, and a bandwidth estimation technique.
Our context is clearly different because messages are small and sent over a lot of con-
nections. However, their solution may be useful for the long-distance connections of
MPI5000. XCP [13] proposes to improve the detection of losses by providing active
switches. These switches warn the sender when they are dropping a packet due to a
congestion. Such an architecture could help to faster detect losses on long-distance
links but this architecture is not deployed yet.

6 Conclusion

The execution of MPI applications on grids faces new problems. Grids are an inter-
connection of clusters linked with a WAN. This network has a high latency where
the time to detect and repair losses is costly. The WAN is shared between all grid

RR n° 6945

20 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

users, and thus, the use of TCP is necessary to fairly share the bandwidth. Finally,
its bandwidth can be a bottleneck if a lot of nodes want to communicate on the
WAN at the time. To take these problems into account, we propose to put a proxy
at the LAN/WAN interface to: give the application a vision of the grid, split TCP
connections, take decisions on this proxy in order to better manage the long-distance
connections.

We first show in this report how MPI deals with TCP on grids. MPI waits for
messages to continue its execution. Thus, any delay in the reception can potentially
slowdown the execution. The loss detection of TCP error control, is done by the
reception of duplicate ACKs (which depends of RTT) or an RTO. TCP congestion
control is done by a congestion window that limits the message size sent in one time.

Then, we propose MPI5000, a transparent layer that alleviates TCP’s drawbacks
by adding proxies at the LAN/WAN interfaces. MPI5000 splits each TCP LAN-
WAN-LAN connections in three connections LAN-LAN, WAN-WAN and LAN-LAN.
This allows to detect losses faster: because the loss occurs on the WAN instead of
the LAN or because all the nodes use the same connection and contribute to avoid
RTOs. MPI5000 also helps to avoid the slowstart phase after an idle time (time
without communications on a link).

Finally, we test MPI5000 on the french research grid, Grid’5000. We show on
the execution on NPB that MPI5000 can increase performance. First, we have seen
that FT and IS suffer on MPI5000 because the cost of copies on gateways is too
important. Second, BT and SP benefit from the reduction of idle timeout. Third,
due to the few number of losses during the first experiments, we add cross-traffic on
the link to emulate a production grid with a lot of applications sharing the WAN. In
this case, BT, LU, and SP show improvements with MPI5000: the number of long-
distance DupACK and RTO is reduced and execution time decreases. In conclusion,
TCP split is a valid approach to execute MPI applications on grids and MPI5000
can improve performance if the messages are not too big which is not the case in
most of MPI applications.

In a future work, we will further investigate TCP’s behavior with MPI5000 in or-
der to better understand NPB performances, especially for CG. We will particularly
pay attention to the evolution of the congestion window in these cases. In order
to validate the transparent approach, we will execute MPI5000 with other MPI
implementations. In order to reduce the overhead, we could implement a kernel
version of the proxies to avoid two copies in user space. Finally, we will imple-
ment and evaluate the optimizations previously described: bandwidth reservation

INRIA

Interaction between MPI and TCP in grids 21

between proxies, communication scheduling, parallel long-distance connections, use
of a modified TCP.

References

[1] Tsocks, a transparent SOCKS proxying library.
http://tsocks.sourceforge.net/index.php.

[2] A. Aggarwal, S. Savage, and T. Anderson. Understanding the Performance of
TCP Pacing. IEEE INFOCOM, 3:1157–1165, 2000.

[3] D Bailey, E Barscz, J Barton, D Browning, R Carter, L Dagum, R Fatoohi,
S Fineberg, P Frederickson, T Lasinski, R Schreiber, H Simon, V Venkatakr-
ishnan, and S Weeratunga. The NAS Parallel Benchmarks. Technical Report
RNR-94-007, NASA Ames Research Center, Moffett Field, California, USA,
1994.

[4] Raphaël Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frédéric De-
sprez, Emmanuel Jeannot, Yvon Jégou, Stephane Lantéri, Julien Leduc, Nore-
dine Melab, Guillaume Mornet, Raymond Namyst, Pascale Primet, Benjamin
Quetier, Olivier Richard, El-Ghazali Talbi, and Touche Iréa. Grid’5000: a large
scale and highly reconfigurable experimental grid testbed. International Journal
of High Performance Computing Applications, 20(4):481–494, November 2006.
https://www.grid5000.fr/.

[5] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Performance
enhancing proxies intended to mitigate link-related degradations. RFC3135,
June 2001. http://www.isi.edu/in-notes/rfc3135.txt.

[6] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham,
and Timothy S. Woodall. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In Proceedings, 11th European PVM/MPI
Users’ Group Meeting, pages 97–104, Budapest, Hungary, September 2004.

[7] Edgar Gabriel, Michael Resch, and Roland Rühle. Implementing MPI with
optimized algorithms for metacomputing. In Proc. of the Third MPI Developer’s
and User’s Conference (MPIDC’99), pages 31–41, 1999.

RR n° 6945

https://www.grid5000.fr/

22 L. Hablot, O. Glück, J.C. Mignot, R. Guillier, S. Soudan, P. Primet

[8] S. Goteti and J. Subhlok. Communication pattern based node selection for
shared networks. pages 69–76, June 2003.

[9] William Gropp. MPICH2: A New Start for MPI Implementations. In Recent
Advances in PVM and MPI: 9th European PVM/MPI Users’ Group Meeting,
Linz, Austria, Oct. 2002.

[10] Yunhong Gu, Xinwei Hong, and Robert L. Grossman. Experiences in design
and implementation of a high performance transport protocol. In SC ’04: Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing, page 22, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[11] Ludovic Hablot, Olivier Glück, Jean-Christophe Mignot, Stéphane Genaud, and
Pascale Vicat-Blanc Primet. Comparison and tuning of MPI implementations
in a grid context. In In Proceedings of 2007 IEEE International Conference on
Cluster Computing (CLUSTER), pages 458–463, September 2007.

[12] Nicholas T. Karonis, Bronis R. de Supinski, Ian T. Foster, William Gropp, and
Ewing L. Lusk. A multilevel approach to topology-aware collective operations
in computational grids. CoRR, cs.DC/0206038, 2002.

[13] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high
bandwidth-delay product networks. In SIGCOMM ’02: Proceedings of the 2002
conference on Applications, technologies, architectures, and protocols for com-
puter communications, pages 89–102, New York, NY, USA, 2002. ACM.

[14] Thilo Kielmann, Rutger F.H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A.F.
Bhoedjang. MagPIe: MPI’s Collective Communication Operations for Clus-
tered Wide Area Systems. In Proc. Seventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP’99), pages 131–140,
Atlanta, GA

”
May 1999.

[15] S. Kopparty, S.V. Krishnamurthy, M. Faloutsos, and S.K. Tripathi. Split TCP
for mobile ad hoc networks. Global Telecommunications Conference, 2002.
GLOBECOM ’02. IEEE, 1:138–142, Nov. 2002.

[16] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS
Protocol Version 5. RFC 1928 (), 1996.

[17] M. Mathis, J Heffner, and R Reddy. Web100: Extended TCP Instrumenta-
tion for Research, Education and Diagnosis. ACM Computer Communications
Review, 33(3), July 2003.

INRIA

Interaction between MPI and TCP in grids 23

[18] M Matsuda, T Kudoh, Y Kodama, R Takano, and Y Ishikawa. Efficient MPI
Collective Operations for Clusters in Long-and-Fast Networks. In Proceedings
of Cluster06, Barcelona, Spain, Sept. 2006.

[19] MPI standard. http://www.mpi-forum.org/.

[20] I. Foster N. Karonis, B. Toonen. MPICH-G2: A Grid-Enabled Implementation
of the Message Passing Interface. Journal of Parallel and Distributed Comput-
ing, pages 551–563, 2003.

[21] Martin Poeppe, Silke Schuch, and Thomas Bemmerl. A message passing in-
terface library for inhomogeneous coupled clusters. In IPDPS ’03: Proceedings
of the 17th International Symposium on Parallel and Distributed Processing,
Washington, DC, USA, 2003. IEEE Computer Society.

[22] Alain J. Roy, Ian Foster, William Gropp, Brian Toonen, Nicholas Karonis, and
Volker Sander. MPICH-GQ: quality-of-service for message passing programs.
In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference on Su-
percomputing, page 19, Washington, DC, USA, 2000. IEEE Computer Society.

[23] Y.Kodama M.Matsuda H.Tezuka R.Takano, T.Kudoh and Y.Ishikawa. Design
and Evaluation of Precise Software Pacing Mechanisms for Fast Long-Distance
Networks. In 3rd Intl. Workshop on Protocols for Fast Long-Distance Networks,
2005.

[24] Jeffrey Semke, Jamshid Mahdavi, and Matthew Mathis. Automatic TCP buffer
tuning. In Proceedings of the ACM SIGCOMM ’98, pages 315–323, New York,
NY, USA, 1998. ACM Press.

[25] Martin Swany. Improving throughput for grid applications with network logis-
tics. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercom-
puting, page 23, Washington, DC, USA, 2004. IEEE Computer Society.

[26] Ryousei Takano, Motohiko Matsuda, Tomohiro Kudoh, Yuetsu Kodama, Fu-
mihiro Okazaki, Yutaka Ishikawa, and Yasufumi Yoshizawa. High Performance
Relay Mechanism for MPI Communication Libraries Run on Multiple Private
IP Address Clusters. pages 401–408, Los Alamitos, CA, USA, 2008. IEEE
Computer Society.

RR n° 6945

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	1 Introduction
	2 Grids, MPI, and TCP: interaction overview
	2.1 TCP features
	2.2 Problems using MPI over TCP on grids
	2.3 Focus on designing long-distance MPI architecture

	3 MPI5000 layer
	3.1 Overview of MPI5000
	3.2 MPI5000 implementation
	3.2.1 MPI5000 library
	3.2.2 MPI5000 proxies

	4 Experimental evaluation
	4.1 Experimental testbed
	4.2 Proxies impact on a simple pingpong
	4.3 Performances on NPB
	4.3.1 Overhead of MPI5000 on big messages
	4.3.2 Impact on idle timeout
	4.3.3 Impact on RTO and DupACK

	5 Related work
	6 Conclusion

