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ABSTRACT

A new approach to the design of a zero-crossings estimation
algorithm is proposed. The approach uses elementary differ-
ential algebraic operations in the frequency domain for accu-
rate derivative estimation. Such estimates are composed of
iterated integrals of noisy observed signal. A detector-signal,
which is exactly equal to zero when there is no intersection
between the observed signal and the real axis and is greater
than zero when a zero-crossing occurs, is obtained. To justify
the theoretical analysis and to investigate the performances of
the developed method, simulated experiments are performed.

1. INTRODUCTION

Given a piecewise continuous signal, the purpose of this pa-
per is to detect its zero-crossings and estimate their loca-
tions. The problem is especially challenging for applica-
tions requiring on-line detection: the main difficulties stem
from corrupting noises which blur the zero-crossings, and
the combined need of fast calculations for real-time imple-
mentation and of reliable detection. A large amount of lit-
erature is devoted to these questions in fields such as sig-
nal processing [1] [2] [3], industrial electronics [4] [5],fluid
mechanics, speech processing [6] [7], biomedical engineer-
ing, optics, neurophysiology, structural dynamics, communi-
cations, image processing, to name just a few. The use of
the zero-crossing detection and calculation of the number of
cycles that occur in a predetermined time interval is a simple
and well-known methodology, especially in signal process-
ing [1]. The importance of the zero-crossings is well doc-
umented in [8] where the fruitful connection between zero-
crossing counts and time-invariant linear filtering is investi-
gated. This connection leads to interesting properties forthe
fast analysis of random signals. Moreover, the zero-crossing
counts in random signals and their filtered versions essen-
tially constitute a domain which is equivalent to the spectral
domain. In this paper a new method to estimate the zero-
crossings of a generic signal is proposed. The main idea is
to create a function with no defined first order derivative and
the related discontinuity in the second order derivative inthe
zero-crossing points. These discontinuities can be effectively
detected by using reliable techniques of parameters estima-
tion [9]. The paper is organized as follows. Section 2 de-
scribes the proposed approach for zero-crossings estimation;
in Section 3 the main aspects of the algebraic identification
method and its application to the derivatives estimation are
discussed; Section 4 contains some considerations about the

implementation and the robustness of the proposed approach;
Section 5 illustrates the performances obtained by simulated
experiments and it is followed by final conclusions.

2. PROPOSED APPROACH

The logic scheme of the proposed zero-crossings detector is
depicted in Fig. 1. The piecewise smooth signaly(t), which
has a zero-crossing att = ts, is the input signal. Based on
the observationyn(t) = y(t)+n(t), wheren(t) is an additive
noise corruption, it is desirable to estimate the zero-crossing
location. Clearly bothy(t) and |y(t)| have the same zero-
crossing, moreover ints the first order derivative of|y(t)| is
not defined as shown in Fig. 2.
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Figure 1: Block diagram of the zero-crossing system detec-
tor.
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Figure 2: First order derivative of|y(t)|.



Even though the first order derivative of|y(t)| is not de-
fined in t = ts, from a numerical point of view, the second
order derivative of the function|y(t)| presents a positive peak
around the zero-crossingts (see Fig. 3).
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Figure 3: Second order derivative of|y(t)|.

The proposed scheme is capable to obtain a detector-
signal, namelyd(t), which is exactly equal to zero when
there is no intersection with real axis and is greater than zero
when there is a zero-crossing. The idea is to compute the
second order derivative of the signals

y1(t) =
|yn(t)|+yn(t)

2
, (1)

and

y2(t) =
|yn(t)|−yn(t)

2
, (2)

denoted asd1(t) and d2(t) respectively. Let us ignore the
noise for a moment and suppose, without loss of generality,
thaty(t−s ) < 0, y(t+s ) > 0; in this case the signalsy1(t) and
y2(t) become respectively

y1(t) =

{

0, t ≤ ts,
y(t), t > ts,

y2(t) =

{

−y(t), t < ts,
0, t ≥ ts.

Therefore signalsd1(t) andd2(t) assume the following
expressions

d1(t)=

{

0, t ∈ [0, ts),
d2y(t)

dt2
, t > ts,

d2(t)=

{

−d2y(t)
dt2

, t ∈ [0, ts),
0, t > ts,

and the detector signal defined as

d(t) = d1(t)d2(t) (3)

has a peak in the instantt = ts and is zero fort 6= ts.

3. NUMERICAL DIFFERENTIATION: A SHORT
SUMMARY

Derivative estimation of noisy time signals is a longstanding
difficult ill-posed problem. Here the numerical differentia-
tion problem is dealt with the algebraic parameter estima-
tion initially presented in [9], [10]. Given a smooth signal,

a key point of this approach is to consider its second order
derivative int = τ, for each fixedτ ≥ 0, as a single param-
eter to be estimated from a noisy observation of the signal.
A pointwise derivative estimation therefore follows by vary-
ing τ. The main aspect of the algebraic parameter estimation
is to operate in the operational calculus domain [11], [12],
[13], where an extensive use of differential elimination and a
series of algebraic manipulations yield, back in the time do-
main, an explicit expression for the estimate of the second
order derivative int = τ as an integral operator of the noisy
observation within a short time interval[τ,τ +T]. Let us con-
sider the estimation ofx(2)(t), the second order derivative of a
smooth signalx(t) defined on an intervalI ∈R+ = [0,+∞).
Assume thatx(t) is analytic onI so that it is possible to con-
sider the approximation of the signalx(t) with a second order
polynomial

x(t) ≈ a0 +a1t +a2t
2. (4)

By considering classic operational calculus operators,
x(t) can be rewritten as

X(s) =
a0

s
+

a1

s2 +
2a2

s3 . (5)

Multiply both sides of (5) bys3, the following expression
holds:

s3X(s) = a0s2 +a1s+2a2. (6)

Taking the derivative of both sides of (6) with respect to
s, one and two times respectively, expressions (7) and (8) are
obtained

3s2X(s)+s3 dX(s)
ds

= 2a0s+a1, (7)

6sX(s)+6s2 dX(s)
ds

+s3 d2X(s)
ds2 = 2a0. (8)

The coefficientsa0, a1 anda2 are obtained via the trian-
gular system of Eqs. (6)-(8). Derivative operations in time
domain are avoided by multiplying both sides of Eqs. (6)-(8)
by s−n, n ≥ 3. To express such equations back in the time
domain, let us recall that for a given signalu(t), and a posi-

tive integerα, the time domain analog ofV(s) = 1
sα

dβ

dsβ U(s)

is the iterated integral, of orderα, of (−1)β tβ u(t). Using the
Cauchy formula, this leads to a single integral

v(t) =
1

(α −1)!

∫ t

0
(t −ξ )α−1(−1)β ξ β u(ξ )dξ . (9)

The corresponding iterated time integrals are low pass
filters which attenuate the corrupting noises. A quite short
time window is sufficient for obtaining accurate values ofa0,
a1 anda2. The extension to polynomial functions of higher
degree is straightforward. For the second order derivative
estimation, assume that the second order polynomial be the
truncated Taylor expansion around a given time instantτ, and
apply the previous computations to obtain the coefficienta2.
Resetting and utilizing sliding time window, an estimationof
the derivative at any sampled time instant can be performed.
Note also that unstructured noises, which can be considered
as high frequency perturbations, are attenuated by the iter-
ated integrals, which are simple examples of low-pass fil-
ters. Of course it is possible to estimate all the coefficients
ai , i = 0,1,2, simultaneously. However, not only the coef-
ficients ai , i = 0,1 are not necessary for the estimation of



x(2)(t), but also simultaneous estimation is more sensitive to
noise and numerical computation errors. In the proposed ap-
proach, all the termsai , i = 0,1 are consequently considered
as undesired perturbations to annihilate. To this aim it suf-
fices to find a differential operator, i.e.

Π = ∑
finite

ρl (s)
dl

dsl , ρl (s) ∈ C(s), (10)

satisfying
ΠX(s) = ρ(s)a2, (11)

for some rational functionρ(s) ∈ C(s). Such a linear differ-
ential operator, called anannihilator for a2, obviously exists
and is not unique. It is also clear that to each annihilatorΠ,
there is a uniqueρ(s) ∈ C(s) such that (11) holds. In this
caseΠ andρ(s) are saidassociated.

Lemma 1 The linear differential operatorΠ = Π1Π0, where
Πk = d

dss
k+1, k = 0,1, is an annihilator of a2 associated to

the functionρ(s) = 4
s2 .

Proof. Applying the operatorΠ0 to (5) it is easy to obtain
that

Π0X(s) = −a1

s2 −4
a2

s3 . (12)

Finally

Π1Π0Y(s) =
d
ds

[

s2Π0Y(s)
]

=
4a2

s2 , (13)

from which the proof follows.
According to Lemma 1 it is easy to verify that the follow-

ing relation holds:

2sX(s)+4s2 dX(s)
ds

+s3 d2X(s)
ds2 = 4

a2

s2 . (14)

To eliminate the time derivations, which can amplify the
noise effects on the signalx(t), Eq. (14) is divided bys4

thus introducing at least an integral effect on each term which
contains the signalx(t):

2
X(s)
s3 +4

dX(s)
ds

s2 +

d2X(s)
ds2

s
= 4

a2

s6 . (15)

Therefore, Eq. (15) can be expressed in time domain as:

a2 = 30

∫ T
0

[

(T −ξ )2−4(T −ξ )ξ +ξ 2
]

x(ξ )

T5 dξ , (16)

whereT denotes the estimation time.
In the same way, considering the termsai , i = 0,2 as

undesired perturbations to annihilate, the following lemma
gives an annihilator ofa1.

Lemma 2 The linear differential operatorΠ = Π1Π0, where
Πk = d

dss
2k+1, k = 0,1, is an annihilator of a1 associated to

the functionρ(s) = −1.

By considering Lemma 2 it follows that

a1 = −24
∫ T

0

[

3
2(T −ξ )2−5(T −ξ )ξ +ξ 2

]

x(ξ )dξ
T4 . (17)

Since the noisy signalxn(t) = x(t) + n(t) is available
then, after a change of variable to reduce the estimation inter-
val from [0,T] to [0,1], the estimations ofa1 anda2, namely
â1 andâ2 respectively, are computed as

â1 = −12

∫ 1
0

[

15ξ 2−16ξ +3
]

xn(Tξ )

T
dξ , (18)

â2 = 30

∫ 1
0

[

6ξ 2−6ξ +1
]

xn(Tξ )

T2 dξ . (19)

4. DETECTOR SYNTHESIS AND
IMPLEMENTATION

To implement the detector signald(t), a moving window of
length T is used. The samples of the current window are
then used to compute the value ofd1 andd2 referred to its
end-point. In this section it is shown that, when a peak is
detected ind(t), the correspondingt being the mid-point of
the analyzing window is declared to be the zero-crossing lo-
cation. Let us consider, for example, the signaly1(t). The
same approach can be used for the signaly2(t).

According to the previous assumptions,y1(t) is equal to
zero from 0 tots, if ts is the position of the zero-crossing.
Suppose also that in the interval[ts,T], with T sufficiently
small, such a signal can be approximated with a second or-
der polynomial which, obviously, must have the same zero-
crossing ints

y1(t) ≈ a(t − ts)
2 +b(t − ts). (20)

Note that, by Eq. (4),a2 = a anda1 = b−2ats.
Let op[y1(t)] be the operator consisting in the computa-

tion of a2 for the signaly1(t), i.e.

op[y1(t)] =
(T − ts)2

[

15bt2s +a(T − ts)(T2 +3Tts+6t2
s )
]

T5 .

(21)
Eq. (21) represents the value of the operator int = T

as function ofts. To find the position of the maximum of
op[y1(t)], corresponding to the peak which is desirable to
detect, the stationary points ofop[y1(t)] are needed. Such
points can be computed as solutions of the following equa-
tion

∂op[y1(t)]
∂ ts

= 0→ ts(T − ts)

[

(T − ts)ts−
b
a
(T −2ts)

]

= 0.

(22)
Therefore two stationary points are int = ts andt = T.

The others are solutions of

(T − ts)ts+K(T −2ts) = 0, (23)

whereK = −b
a. As the value ofK increases, which means

thata decreases, one roots tends tot = T
2 while the other one

is outside the interval[0,T], as it can be easily observed by
the root-locus in Fig. 4 [14].

Since

∂ 2op[y1(t)]

∂ t2
s

=− 30
T5

[

2ats(T
2−3Tts+2t2

s )−b(T2−6Tts+6t2
s )
]

,

(24)
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Figure 4: Roots-locus of (23).

then

lim
ts→0

∂ 2op[y1(t)]
∂ t2

s
=

30b
T3 ,

lim
ts→T

∂ 2op[y1(t)]
∂ t2

s
=

30b
T3 ,

lim
ts→ T

2

∂ 2op[y1(t)]
∂ t2

s
= −15b

T3 .

and the functionop[y1(t)] presents a positive peak int = T
of amplitude

Apeak= lim
ts→ T

2

op(ρ) =
a
2

+
15b
16T

(25)

when the function has a zero-crossing fort = T
2 , i.e. there is

a delay in the identification of the zero-crossing of aboutT
2

seconds.

Remark 1 The analysis based on a local quadratic approx-
imation of the signal indicates the possibility of a bias (i.e.
ts 6= T/2) if the quadratic coefficient is not small enough re-
spect to the linear one. This drawback can be overcome by
an appropriate choice of the window length, i.e. T should
be sufficiently small to have a linear approximation of the
signal.

In the case of noisy signals, as it will be shown by nu-
merical experiments in the next section, the method gives
satisfactory results, i.e. the zero-crossing is effectively de-
tected with a delay ofT/2. A demonstration approach of
this behavior is reported below. Suppose that
• a� b, i.e. the window lengthT is opportunely chosen in

order to have an acceptable linear approximation of the
signal;

• Prob{y1(t) 6= 0, t < ts} < ε.
With such hypothesis

y1(t) =

{

b(t − ts)+n(t), t ≥ ts,
0, t < ts.

(26)

To computeop[n(t)] starting from samples of white noise
n̂, let us consider the continuous signal

n(t) =
n−1

∑
k=0

n̂(kTc)e
− (t−kTc)2

2σ2 , (27)

with Tc = T/(n−1) andσ → 0.
In this case by using the above approach

∂
∂ ts

op[n(t)] =

30
T5 lim

σ→0

∂
∂ ts

∫ T

ts

[

(T −ξ )2−4(T −ξ )ξ +ξ 2]n(ξ )dξ =

(28)

− 30
T5

[

(T − ts)
2−4(T − ts)ts+ t2

s

]

n̂(ts). (29)

Therefore the stationary points ofop[y1(t)] are the solu-
tions of the following equation

ts(T − ts)(T −2ts)+K

(

ts−
3+

√
3

6
T

)(

ts−
3−

√
3

6
T

)

= 0,

(30)

with K = − n̂(ts)
b .
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Figure 5: Roots-locus of (30).

Fig. 5 shows the root-locus of Eq. (30) varyingK. As
it can be observed, for small values ofK, i.e. n̂ � b, the
zero-crossing remains localized inT2 . Moreover for reason-
able SNR, the error in the location of the zero-crossing is
approximatively bounded byT

2
√

3
.

5. NUMERICAL RESULTS

This section includes some numerical results that highlight
and point out the advantages and the strengths of the pro-
posed method, in particular it will be devoted to simulated
experiments on several signals having a zero-crossing in the
interval[0,4]. For each signal one hundred experiments have
been performed adding a zero-mean gaussian white-noise. In
all the experiments the SNR, measured in decibels as the log-
arithm of the average power of the signal’s samples and the
noise’s samples, over the time of the experiment, is equal to
40dB; the sampling time isTs = 4× 10−4. The goodness
of the proposed method will be measured in terms of the
mean value and the variance of the error ˆe between the true
zero-crossing and the estimated one. The proposed method,
namely (FCJ), is compared with a zero-crossing detection
method by interpolation [1], [15], [16], namely (ZCI). The
ZCI implementation identifies two points of the signal: the
first just before the positive going zero-crossing and the sec-
ond just after the same zero-crossing. The hypothesis is that



the shape of the signal is very close the straight line near the
zero-crossing. The true zero-crossing is then computed by
linear interpolation between these two points. Table 1 re-
sumes the results obtained in the performed experiments.

Test function FCJ / ZCI
µ(ê) σ(ê)

sin(tπ/3+π/7) −2.24×10−4 1.62×10−5

9.70×10−3 1.16×10−5

5−
√

t3 +5 1.10×10−3 2.37×10−5

1.43×10−2 1.76×10−5

1− t +sin(3t) 1.49×10−4 5.50×10−6

5.90×10−3 6.77×10−6

Table 1: Mean and variance of the index ˆeover 100 tests.

A severe test for the zero-crossing methods is when the
signal is tangent to the real axis. In this case noise affecting
the signal could create false zero-crossings. For example the
signaly(t) = sin(2t)cos(t) is tangent to the real axis int =
π/2 and has a zero-crossing int = π. Interpolation based
methods fail to estimate zero-crossings while the proposed
one is able to correctly detect zero-crossing as it is shown in
Fig. 6.
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Figure 6: Test functiony(t) = sin(2t)cos(t) and the detector
signal.

6. CONCLUSIONS

A method for estimating the zero-crossings instants of a sam-
pled signal using algebraic derivative approach in the fre-
quency domain was presented. This method provides a de-
tector signal which is equal to zero when the signal has no in-
tersection with real axis and has a peak when a zero-crossing
occurs. The main idea was to numerically compute the sec-
ond order derivative of two signals, built on the available one,
which have a discontinuity in the zero-crossing instant. Ac-
cording to a local polynomial model of the signal, the second
order derivative was estimated by the iterated integrals ofthe
signal, which behave as low pass filter and mitigate the noise
effects. The analysis of the estimator in terms of error on the
zero-crossing was discussed. Numerical comparisons with
other techniques show a quite satisfactory performance of the
proposed method. It seems to be a promising technique for

the detection of zero-crossing rates and locations since itis
also able to discriminate false zero-crossings, for example in
case of signal tangent to the real axis, and true ones.
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