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ABSTRACT implementation and the robustness of the proposed approach
ection 5 illustrates the performances obtained by siradlat

A new approach to the design of a zero-crossings estimatio periments and it is followed by final conclusions.

algorithm is proposed. The approach uses elementary-diffe
ential algebraic operations in the frequency domain fouacc
rate derivative estimation. Such estimates are composed of 2. PROPOSED APPROACH
iterated integrals of noisy observed signal. A detectgni,
which is exactly equal to zero when there is no intersectio
between the observed signal and the real axis and is grea
than zero when a zero-crossing occurs, is obtained. Tdyjusti . . >
the theoretical analysis and to investigate the perforesot the observatiomy(t) = y(t) +n(t), wheren(t) is an additive

: : ise corruption, it is desirable to estimate the zerost
the developed method, simulated experiments are performel%%aﬂon. CFI)earIy bothy(t) and |y(t)| have the same Zr;gﬁ)_

crossing, moreover ity the first order derivative dfy(t)| is
1. INTRODUCTION not defined as shown in Fig. 2.

Given a piecewise continuous signal, the purpose of this pa-

per is to detect its zero-crossings and estimate their loca- n®
tions. The problem is especially challenging for applica- . *
tions requiring on-line detection: the main difficultieest

from corrupting noises which blur the zero-crossings, and *

the combined need of fast calculations for real-time imple-

mentation and of reliable detection. A large amount of lit- ao.ost
erature is devoted to these questions in fields such as sig- N

nal processing [1] [2] [3], industrial electronics [4] [Slyid
mechanics, speech processing [6] [7], biomedical engineer
ing, optics, neurophysiology, structural dynamics, comimu _.
cations, image processing, to name just a few. The use§f‘
the zero-crossing detection and calculation of the number
cycles that occur in a predetermined time interval is a smpl
and well-known methodology, especially in signal process-

rI,'he logic scheme of the proposed zero-crossings detector is
%?picted in Fig. 1. The piecewise smooth sigy(d), which
as a zero-crossing at=tg, is the input signal. Based on
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gure 1: Block diagram of the zero-crossing system detec-

ing [1]. The importance of the zero-crossings is well doc- BLEL
umented in [8] where the fruitful connection between zero-
crossing counts and time-invariant linear filtering is iste “or

gated. This connection leads to interesting propertiethier o 1
fast analysis of random signals. Moreover, the zero-cngssi /
counts in random signals and their filtered versions essen- 2f 1
tially constitute a domain which is equivalent to the spactr
domain. In this paper a new method to estimate the zero-
crossings of a generic signal is proposed. The main idea is
to create a function with no defined first order derivative and
the related discontinuity in the second order derivativine
zero-crossing points. These discontinuities can be éfedgt
detected by using reliable techniques of parameters estima
tion [9]. The paper is organized as follows. Section 2 de- 4 N R
scribes the proposed approach for zero-crossings espimati ' t

in Section 3 the main aspects of the algebraic identification

method and its application to the derivatives estimatian ar ) ] o
discussed; Section 4 contains some considerations atmut th Figure 2: First order derivative gy(t)|.

ly(t)|’




Even though the first order derivative [gft)| is not de-

a key point of this approach is to consider its second order

fined int = t5, from a numerical point of view, the second derivative int = 1, for each fixedr > 0, as a single param-
order derivative of the functioly(t)| presents a positive peak eter to be estimated from a noisy observation of the signal.

around the zero-crossirng(see Fig. 3).
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Figure 3: Second order derivative [gft)|.

The proposed scheme is capable to obtain a detectoy-
signal, namelyd(t), which is exactly equal to zero when
there is no intersection with real axis and is greater thao ze

A pointwise derivative estimation therefore follows by yar
ing T. The main aspect of the algebraic parameter estimation
is to operate in the operational calculus domain [11], [12],
[13], where an extensive use of differential eliminatiown @n
series of algebraic manipulations yield, back in the time do
main, an explicit expression for the estimate of the second
order derivative irt = T as an integral operator of the noisy
observation within a short time intenval, 7+ T]. Let us con-
sider the estimation of? (t), the second order derivative of a
smooth signak(t) defined on an interval € R = [0, +).
Assume thax(t) is analytic on# so that it is possible to con-
sider the approximation of the signdt) with a second order

polynomial
X(t) ~ ag + agt + agt?. (4)

By considering classic operational calculus operators,
x(t) can be rewritten as

2
x(s)=%+§+g. 5)

Multiply both sides of (5) bys, the following expression

S°X(S) = apS® + a15+ 2a;. (6)

when there is a zero-crossing. The idea is to compute the Taking the derivative of both sides of (6) with respect to

second order derivative of the signals

_ [Yn(t)| +yn(t)

ya(t) B S 1)

and

_ [Yn(t)| —yn(t)

yalt) = DRI @

s, one and two times respectively, expressions (7) and (8) are
obtained

32X(s) + s3d);(ss) = 2aps+ay, (7)
6SX(s) + Gszdﬁis) +53d20>|<s§s) = 2ag (8)

The coefficientsy, a; anday are obtained via the trian-

denoted ash (t) andda(t) respectively. Let us ignore the gular system of Egs. (6)-(8). Derivative operations in time
noise for a moment and suppose, without loss of generalitglomain are avoided by multiplying both sides of Egs. (6)-(8)

thaty(ts) < 0, y(t&") > 0; in this case the signajg (t) and
y2(t) become respectively

07 t S tS) _ _y(t)7
y), t>t, 2O= { 0,

Therefore signalsl; (t) andd;(t) assume the following
expressions

t <t
t >t

ya(t) = {

0, t € [O,ts), V(S S
di(t) = 2 — di2 E[ 7t5)7
) { Y >t 2 { 0, " tst
and the detector signal defined as
d(t) = da(t)d(t) ®3)

has a peak in the instant=ts and is zero fot # ts.

3. NUMERICAL DIFFERENTIATION: A SHORT
SUMMARY

Derivative estimation of noisy time signals is a longstaigdi
difficult ill-posed problem. Here the numerical differemti

y s ", n> 3. To express such equations back in the time
domain, let us recall that for a given signét), and a posi-

tive integera, the time domain analog &f(s) = é%u (s)

is the iterated integral, of order, of (—1)PtPu(t). Using the
Cauchy formula, this leads to a single integral

1

o= (al)!./(:(t —H -1 EPuE)dE. (9)

The corresponding iterated time integrals are low pass
filters which attenuate the corrupting noises. A quite short
time window is sufficient for obtaining accurate valuesgf
a; anday. The extension to polynomial functions of higher
degree is straightforward. For the second order derivative
estimation, assume that the second order polynomial be the
truncated Taylor expansion around a given time instaahd
apply the previous computations to obtain the coefficeent
Resetting and utilizing sliding time window, an estimatafn
the derivative at any sampled time instant can be performed.
Note also that unstructured noises, which can be considered
as high frequency perturbations, are attenuated by the iter
ated integrals, which are simple examples of low-pass fil-
ters. Of course it is possible to estimate all the coeffisient

tion problem is dealt with the algebraic parameter estimaa;, i = 0,1, 2, simultaneously. However, not only the coef-
tion initially presented in [9], [10]. Given a smooth signal ficientsg;, i = 0,1 are not necessary for the estimation of



x?(t), but also simultaneous estimation is more sensitive to ~ Since the noisy signaks(t) = x(t) 4+ n(t) is available
noise and numerical computation errors. In the proposed aphen, after a change of variable to reduce the estimatien-int
proach, all the terma;, i = 0,1 are consequently considered val from [0, T] to [0, 1], the estimations oy anday, namely
as undesired perturbations to annihilate. To this aim i sufd; anda; respectively, are computed as

fices to find a differential operator, i.e.

|
S AlS)gg A ECH,

finite

M= (10)

satisfying

MX(s) = p(9)ae, (11)
for some rational functiop(s) € C(s). Such a linear differ-
ential operator, called annihilator for a,, obviously exists
and is not unique. It is also clear that to each annihil&pr

there is a unique(s) € C(s) such that (11) holds. In this
casell andp(s) are saidassociated

Lemma 1l The linear differential operatarl = NM1Mg, where
Mg = d%§‘+1, k= 0,1, is an annihilator of a associated to

the functiono(s) = %.

Proof. Applying the operatoFlg to (5) it is easy to obtain
that

Hox(s)ff%f4§. (12)
Finally
MaMoY(s) = dis (LMoY (9)] = 4;2, (13)

from which the proof follows.m
According to Lemma 1 itis easy to verify that the follow-
ing relation holds:

dxX(s) N 53d2X(s)

_a2
ds d< =4

$?

2sX(s) + 48 (14)

To eliminate the time derivations, which can amplify the

noise effects on the signalt), Eq. (14) is divided bys*
thus introducing at least an integral effect on each ternchvhi
contains the signad(t):

d2X(s)
ds

dX(s)
+4-8 4
S

X(s)
s?

a

2 2436.

(15)

Therefore, Eq. (15) can be expressed in time domain as:doply; (t)]

Jo [(T—&2 4T —&)E+Ex(&)
T5

whereT denotes the estimation time.

In the same way, considering the terms i = 0,2 as
undesired perturbations to annihilate, the following leanm
gives an annihilator od;.

a, =30 dé, (16)

Lemma 2 The linear differential operatarl =11, where
My = £+ k=0,1, is an annihilator of a associated to
the functionp(s) = —1.

By considering Lemma 2 it follows that

24y [3(T - &% —5(T - §)& + &2 x(&)dE

a; = T4

. @7

5 712f01 [1552—1€;E +3]%(T8) |

£, (18
[ [682 — 6 + 1] xa(TE)

a = 30: T2

de. (19)

4. DETECTOR SYNTHESISAND
IMPLEMENTATION

To implement the detector signd{t), a moving window of
length T is used. The samples of the current window are
then used to compute the value df and d, referred to its
end-point. In this section it is shown that, when a peak is
detected ird(t), the correspondingbeing the mid-point of
the analyzing window is declared to be the zero-crossing lo-
cation. Let us consider, for example, the sigpgk). The
same approach can be used for the sigpd).

According to the previous assumptions(t) is equal to
zero from O tot, if ts is the position of the zero-crossing.
Suppose also that in the intervitd, T], with T sufficiently
small, such a signal can be approximated with a second or-
der polynomial which, obviously, must have the same zero-
crossing intg

yi(t) = alt —ts)*+ b(t —ts). (20)

Note that, by Eq. (4)a, = aanda; = b— 2ats.

Let op[ys(t)] be the operator consisting in the computa-
tion of a, for the signaly(t), i.e.

(T —t5)? [150t2 + a(T —t5) (T2 + 3Tts+ 6t2)]
T5

oplya(t)]

(21)
Eq. (21) represents the value of the operatot #a T

as function ofts. To find the position of the maximum of

oplys(t)], corresponding to the peak which is desirable to

detect, the stationary points of[yi(t)] are needed. Such

points can be computed as solutions of the following equa-
tion

br_a9| =0

a
(22)
Therefore two stationary points aretin=ts andt = T.
The others are solutions of

dts = O — ts(T — ts) (T — ts)ts

(T —te)ts +K(T —2t5) =0, (23)
whereK = fg. As the value oK increases, which means

thata decreases, one roots tends t@% while the other one

is outside the intervdlD, T], as it can be easily observed by
the root-locus in Fig. 4 [14].

Since
0%0ply1 (t)] 30 2 2 2 2
—or =75 [ZatS(T —3Tte+22) — b(T —6Tts+6ts)},

(24)



Figure 4: Roots-locus of (23).

then
jim 070P(t)] _ 300
-0 02 T3’
jim 920Pba(D)] _ 30
ts—T dtg T3 ’
2
im oph;l(t)] _ =2
] Ot T

and the functioroplys(t)] presents a positive peakin=T
of amplitude

915b

=2 167 (25)

Apeak= IimT op(p)
ts— 3
when the function has a zero-crossingtfef % i.e. thereis

a delay in the identification of the zero-crossing of abéut
seconds.

Remark 1 The analysis based on a local quadratic approx-

imation of the signal indicates the possibility of a bia® (i.

ts # T /2) if the quadratic coefficient is not small enough re-

3é(ble SNR, the error in the location of the zero-crossing is

spect to the linear one. This drawback can be overcome
an appropriate choice of the window length, i.e. T shoul

be sufficiently small to have a linear approximation of the

signal.

with T =T/(n—1) ando — 0.
In this case by using the above approach

7]
dftsop[n(t)] =
T
%J}Toaits_/t [(T—&)?— 4T —&)E+E&?n(&)dE =
S (28)
30 2 1
75 (T —ts)? — 4(T —te)ts +t5] A(ts). (29)

Therefore the stationary points ofjys(t)] are the solu-
tions of the following equation

3+43 3-V3
350) (o380 o

ts(T —ts)(T — 2ts) + K <t5 -

(30)
; __ Aty
with K = —=p>.
H K>0
—<—XO—<—>< -------- O—e----
' 0.21T T/2 0.79T T
H K<0
______ S LT o T VI
0.21T T/2 0.79T T

Figure 5: Roots-locus of (30).
Fig. 5 shows the root-locus of Eq. (30) varyikg As
it can be observed, for small values I§f i.e. 1 < b, the
zero-crossing remains localized 4n Moreover for reason-

approximatively bounded %

5. NUMERICAL RESULTS

In the case of noisy signals, as it will be shown by nu-_ o ) o
merical experiments in the next section, the method givedhis section includes some numerical results that highligh

satisfactory results, i.e. the zero-crossing is effebtivke-
tected with a delay off /2. A demonstration approach of
this behavior is reported below. Suppose that

and point out the advantages and the strengths of the pro-
posed method, in particular it will be devoted to simulated
experiments on several signals having a zero-crossingin th

order to have an acceptable linear approximation of th&een performed adding a zero-mean gaussian white-noise. In

signal,
o Prob{yi(t) #0,t <ts} <&.
With such hypothesis

- { g

tZts»

t<te (26)

To computeop[n(t)] starting from samples of white noise
A, let us consider the continuous signal

=}

-1
AKTe)e

(t—KTe)?
202

n(t) = , (27)

=)

all the experiments the SNR, measured in decibels as the log-
arithm of the average power of the signal’s samples and the
noise’s samples, over the time of the experiment, is equal to
40dB; the sampling time i35 = 4 x 107, The goodness

of the proposed method will be measured in terms of the
mean value and the variance of the emrdretween the true
zero-crossing and the estimated one. The proposed method,
namely ECJ), is compared with a zero-crossing detection
method by interpolation [1], [15], [16], namelZCl). The

ZCl implementation identifies two points of the signal: the
first just before the positive going zero-crossing and tlee se
ond just after the same zero-crossing. The hypothesists tha



the shape of the signal is very close the straight line near ththe detection of zero-crossing rates and locations sinise it
zero-crossing. The true zero-crossing is then computed bglso able to discriminate false zero-crossings, for exanmpl
linear interpolation between these two points. Table 1 reease of signal tangent to the real axis, and true ones.
sumes the results obtained in the performed experiments.

REFERENCES
Test function FCJ/ZClI
H(é o(é) [1] V. Friedman, “A Zero Crossing Algorithm for the Esti-
sintrr/3+m/7) | —224x10% 1.62x10° mation of the Frequency of a Single Sinusoid in White
970103 1.16x 105 Noise”, IEEE Trans. Signal Pro¢.42, 6, 1565-1569,
5 V%15 | 110x10°3 237x10° 1994, .
1.43%x 102 1.76x10°5 [2] S.M. Kay, and R. Sudhaker “A Zero Crossing-Based
1I—t+sin3) 149x10% 550x10° Spectrum Analyzer”|EEE Trans. on Acoustic, Speech,
5.90>< 10-3 6.77>< 10-6 and Sign. ProG.ASSP-34, 1, 96-104, 1986.

[3] B.M. Sadler, and S.D. Casey, “Frequency estimation via

Table 1: Mean and variance of the indegrver 100 tests. sparse zero crossings,” IEEE Int. Conf. on Acoustic,
Speech and Signal Proc., ICAS2290-2993, 1996.

A severe test for the zero-crossing methods is when thet] O. Vainio, S.J. Ovaska, and M.oRg, “Adaptive Filter-

signal is tangent to the real axis. In this case noise affgcti ing Using Multiplicative General Parameters for Zero-
the signal could create false zero-crossings. For exarhplet  Crossing Detection”JEEE Trans. Ind. Electy. 50, 6,
signaly(t) = sin(2t) cogt) is tangent to the real axis in= 1340-1342, 2003.

/2 and has a zero-crossing tin= 71._Interpolation based [5] R. Weidenbtig, F.P. Dawson, and R. Bonert, “New Syn-
methods fail to estimate zero-crossings while the proposed  chronization Method for Thyristor Power Converters to
one is able to correctly detect zero-crossing as itis shawn i weak AC-Systems|EEE Trans. Ind. Electy40, 5, 505—
Fig. 6. 511, 1993.

[6] R.J. Niederjohn, “A Mathematical Formulation and
Comparison of Zero-Crossing Analysis Techniques
which have been Applied to Automatic Speech Recogni-
tion”, IEEE Trans. on Acoustic, Speech, and Sign. Rroc.
ASSP-23, 4, 373-380, 1975.

[7] R. W.A. Scarr, “Zero Crossings as a Means of Obtaining
Yo e as e Tas 5w s Spectral Information in Speech AnalysiSEEE Trans.
on Audio and ElectroacusticAU-16, 2, 247-255, 1968.

o ‘ ‘ ‘ ‘ ‘ ] [8] B. Kedem “Spectral Analysis and Discrimination by
Zero-Crossings”Proc. of the IEEE74, 11, 1477-1493,
.l 1986.

s00- ~ 1 [9] M. Fliess and H. Sira-Rafrez, “An algebraic framework
0 for linear identification” ESAIM: COCV Vol. 9, SMAI,
) o5 1 15 "me‘z(sec) 25 3 3s 4 2003.
[10] M. Mboup, “Parameter estimation for signals described
by differential equations”, Accepted for publication in
Figure 6: Test functioy(t) = sin(2t) cogt) and the detector Applicable Analysis2008.

signal. [11] J. Mikusiski, Operational Calculus Vol. 1, PWN
Varsovie & Oxford University Press, Oxford, 1983.

[12] J. Mikushnski, and T. K. BoehmeQperational Calcu-
6. CONCLUSIONS lus, Vol. 2, PWN Varsovie & Oxford University Press,

A method for estimating the zero-crossings instants of a sam Oxford, _1987- _
pled signal using algebraic derivative approach in the fref13] K. Yosida, Operational Calculus - A Theory of Hyper-
guency domain was presented. This method provides a de- functions Springer, New York, 1984.

tector s_ignal_which is e_qual to zero when the signal has no iq—14] K. Ogata,Modern Control EngineeringPrentice-Hall,
tersection with real axis and has a peak when a zero-crossing "1997.

occurs. The main idea was to numerically compute the Seq51 g \w, wall, “Simple Methods for Detecting zero Cross-
ond order derivative of two signals, built on the availabie o ing.“ in Proc. of The 29th Annual Conf. of the IEEE In-
which have a discontinuity in the zero-crossing instant: Ac duét Electr .Soc [ECONA77—2481 2'003

cording to a local polynomial model of the signal, the second i ’ ” o ' o .
order derivative was estimated by the iterated integralsef [16] G.E.Mog, and E.P. Ribeiro, “Zero Crossing Determina-
signal, which behave as low pass filter and mitigate the noise  fion by Linear Interpolation of Sampled Sinusoidal Sig-
effects. The analysis of the estimator in terms of error enth ~ nals,” iN IEEE/PES Transm. & Distr. Conf. & Expgs.
zero-crossing was discussed. Numerical comparisons with 799-802, 2004.

other technigues show a quite satisfactory performandeeof t

proposed method. It seems to be a promising technique for

1500




