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Stäubli Robotics

Faverges, France 74210
Email: matthieu.guilbert@inrialpes.fr

Pierre-Brice Wieber
INRIA Rhône Alpes
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Abstract

We propose here to deal with the optimization of velocity profiles of manipulator robots with a minimum time criterion
subject to thermal constraints. This paper deals with the real impact of thermal limitations on optimal velocity profiles and the
methods to calculate the corresponding optimal trajectories. We first calculate analytically the optimal solution in a simple case in
order to verify the validity of the numerical algorithm and also to present a general methodology to calculate optimal trajectories
in robotics using results from the theory of calculus of variations and not from the theory of optimal control. We derive then a
numerical algorithm based on the discretization of the time law through an interpolation with non uniform cubic splines. This
algorithm shows robust and efficient convergence properties and the trajectories thus generated were executed successfully on a
Stäubli Rx90.
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Optimal Trajectory Generation for Manipulator
Robots under Thermal Constraints

I. INTRODUCTION

The programming of industrial robots is generally based
on the operator’s experience, regardless of the system’s ex-
act dynamics or relevant optimization criteria. Due to the
complexity of robots and manufacturing systems, even highly
qualified operators can only reach a limited level of efficiency.
A better exploitation of the performances of robots integrated
in manufacturing systems can only be achieved then by using
computer aided optimization methods. Works on trajectory
optimization usually focus on generating trajectories with
minimum time or minimum energy criteria subject to the
actuators’ limitations. These limitations are often maximum
authorized velocity, acceleration or torque as in the references
[1] [2] [3] [4] [5]. These limitations don’t really reflect all the
real limitations of a robot which are also overheating, wearing
and breaking. We propose here to deal with the optimization
of velocity profiles with a minimum time criterion subject
to thermal constraints. After deriving a thermal model of
a Stäubli robot in section II, we calculate analytically the
corresponding optimal profile in a simple case in section III,
then we derive a numerical algorithm to deal with the general
case in section IV. Numerical results of this algorithm are
compared then in section V to the analytical solution, and
tested on a real industrial robot.

II. TEMPERATURE PREDICTION FOR ROBOTIC SYSTEMS

Minimizing the duration of robotic applications usually
induces stonger demands on the mechanical and electrical
parts. Wearing and overheating are some of the classical
consequences of these demands, and we will focus here on the
increase of temperature. Since a high temperature can cause
damages, this increase of temperature must be controlled and
since the rise of temperature is a slow phenomenon (it can
take more than 5 hours to stabilize), sensors can’t be used
to measure the stabilized temperature, reason why we need a
thermal model to predict it. Since most robotic applications
are cyclic, it is possible to derive a model which predicts the
stabilized temperature corresponding to a given cycle once
this cycle is known. To predict this temperature, the reference
[6] proposes to take into account the loss by Joule effect in
the motors. Only the reference [7] takes into account both
the loss of the motors and the loss in the mechanical parts of
actuators. Heat tranfers between gears, motors, and other parts
of the robot can be described by conduction, convection and
radiation phenomena [8], but in practice, these three transfer
modes are simultaneous and not easy to separate: their study
is therefore often empirical.

A thermal model will be derived in section II-A which only
takes into account the conduction phenomenon (this is the

major heat transfer in our system), then the validity of the
model will be tested in section II-B.

A. Thermal model of the system

In order to predict the temperature of the robot, we will
predict in fact the temperature at different points considered
to be representative of the system, from a thermal point of
view. Moreover, in an industrial robot, the articulations are
often enclosed in casings, there exist therefore strong thermal
coupling between actuators. Specifically, we will identify our
model on a Stäubli Rx90 in which the actuators are enclosed
by pairs. Six heat sources can be distinguished then, 3 by
actuator:

(

∆T1

∆T2

)

= A

(

I1

I2

)

+ B

(

V1

V2

)

+

(

γ1

γ2

)

(1)

with ∆Tj the elevation of temperature of the representative
point j, A and B two constant matrices which represent the
thermal resistances in the different materials, γ1 and γ2 two
constant vectors representing the constant loss of the coils in
the brakes, I1 and I2 representing the loss by Joule effect
of the coils depending on the consumed current, V1 and V2

representing the loss due to friction in the gears depending on
the velocity, with:

Ij =
1

tf

∫ tf

0

ij(t)
2dt, and Vj =

1

tf

∫ tf

0

vj(t)
2dt

where ij(t) is the current load and vj(t) is the rotation velocity
of the motor.

B. Identification and validation of the model

To identify the constants in this model for a given robot,
100 different trajectories have been executed on this robot with
different current and velocity mean values (Ij and Vj ). For
each trajectory, the stabilized temperature is measured after 6
hours of execution. The parameters can be identified then with
a least squares procedure. The reliability of the model can
be evaluated by studying the error prediction of this model
and by calculating the confidence intervals of the identified
parameters.

The general tendancy of the prediction error can be seen
in figure 1 to show non-linear behaviours for low currents
and velocities. This obviously means that not all the physical
phenomena have been modeled in equation (1). However
despite the empirical design of this model, it gives good
predictions with a mean error of 5%.

Confidence intervals of the thermal resistances appearing in
the matrices A and B have also been calculated. Statistically
speaking, we are 95% sure that the parameters are in the
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Fig. 1. Left: Prediction error according to I1, I2, V1, V2. Right: Confidence
intervals of the elements of the matrix A and B

intervals represented in figure 1. Since the intervals don’t cross
the zero axis, all the identified parameters appear to have an
influence on the predicted temperature, so all of them need to
be present in equation (1).

III. TRAJECTORY OPTIMIZATION: ANALYTICAL SOLUTION
IN A SIMPLE CASE

A. Definition of the problem

t(s)
0

1

0

-1

rad/s2 Acceleration

5 10 15 0 t(s)

rad/s Velocity

5 10 15

5

Fig. 2. Acceleration and velocity for a BANG-zero-BANG optimal trajectory

Minimum time control problems in robotics are classi-
caly solved with the help of BANG-BANG or BANG-zero-
BANG solutions [9]. Such solutions appear when bounds
are expressed on the control variables. Figure 2 shows such
an optimal solution when bounds are expressed on the ac-
celeration and the velocity. They can be derived with the
help of the Maximum Principle of Pontryagin [9], and they
present jumps of the control variables from one bound to
another, what explains their name. In our case, the bounds
are not directly expressed on the control variables but on the
temperature, therefore such profiles are not correct answers
to our problem. To find an analytical solution when the
bounds are expressed on the temperature, we consider a simple
movement of a horizontal axis of our robot. By consequence,
the system’s dynamics presents no gravity effects, a constant
inertia, no centrifugal and coriolis forces, what leads to the
simple dynamic model:

Γ = Jq̈ + Fv q̇ + Fs (2)

where Γ is the articular torque, q̈ the acceleration, q̇ the
velocity, J the inertia of the whole system and Fv and Fs

the viscous and Coulomb friction (a constant here since we
will consider a trajectory where the sign of the velocity does
not change). In terms of function to minimize and constraints,
the problem we need to solve here is:

min tf =

∫ tf

0

1 dt (3)

subject to:

1

tf

∫ tf

0

a(Jq̈ + Fv q̇ + Fs)
2 + b q̇2 dt = Tmax − c (4)
∫ tf

0

q̇ dt = qf − q0 (5)

with q0 and qf the initial and final position of the axis, a, b,
c the constants of the thermal model (always strictly positive)
and Tmax the maximal authorized temperature. Note that the
constraint (4) is an equality instead of an inequality since we
consider that it will be an active constraint for this trajectory.

This is a minimization problem subject to isoperimetric
constraints in which the end point is not fixed [10]. Lagrange
multipliers λ1 and λ2 need to be introduced and we want to
find the saddle points of:

∫ tf

0

(

1 +
λ1

tf
(a(Jq̈ + Fv q̇ + Fs)

2 + bq̇2) + λ2q̇

)

dt (6)

With:

F (t, q̇, q̈) = 1 +
λ1

tf
(a(Jq̈ + Fv q̇ + Fs)

2 + bq̇2) + λ2q̇,

the necessary condition in this case is the Euler-Lagrange
differential equation:

∂F (t, q̇, q̈)

∂q̇
− d

dt

(

∂F (t, q̇, q̈)

∂q̈

)

= 0 (7)

with boundary conditions:
{

q̇(0) = 0,

q̇(tf ) = 0.
(8)

Since tf is not fixed, the following transversality condition
must hold:

F (0) − q̈(0)
∂F

∂q̈
(0) = 0. (9)

B. Calculation of the optimal velocity profile

The first step to calculate the optimal velocity profile is to
solve the Euler-Lagrange equation (7) which becomes after
several calculations:
−2λ1aJ2

tf

...
q +

2λ1(aF 2
v + b)

tf
q̇ +

2aλ1FsFv

tf
+ λ2 = 0 (10)

or in another way
...
q − rq̇ = C(λ1, λ2) (11)

with r =
aF 2

v + b

aJ2
and C(λ1, λ2) =

FsFv

J2
+

λ2

2aλ1J2
.

Note that if λ1 = 0, the Euler-Lagrange equation (10)
gives λ2 = 0, and the problem (6) degenerates: we can fairly
consider therefore that λ1 is different from zero.

Integrating the equation (11) leads to solutions of the form:

q̇(t) = ζ sinh(
√

r t) + ν cosh(
√

r t) − C(λ1, λ2)

r
. (12)
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Now, the constants ζ, ν, λ1, λ2 and tf can be determined
with the boundary conditions (8), the constraints (4)-(5) and
the transversality condition (9). In fact, we don’t need to
calculate the Lagrange multipliers λ1 and λ2 explicitely, and
determining ζ, ν and C is enough to define the optimal
solution:

ζ(tf ) = (qf − qi)

√
r(cosh(

√
r tf ) − 1)

−2 cosh(
√

r tf ) + 2 + tf
√

r sinh(
√

r tf )
,

ν(tf ) = −(qf − qi)

√
r sinh(

√
r tf )

−2 cosh(
√

r tf ) + 2 + tf
√

r sinh(
√

r tf )
,

C(tf ) = rν.
(13)

Note that these constants are defined with respect to the
final time tf which is computed by solving numerically the
constraint (4).

The figure 3 shows such an optimal velocity profile on a
Stäubli Rx90 for a movement of its first axis from −2.26 rad
to +2.26 rad. After solving the equation (4), we find tf =
1.38s. Since the jerk appears in the necessary condition (11),
the acceleration is continuous and differentiable everywhere,
what helps to avoid vibrations. Note that the velocity on
the boundaries of the trajectory can be fixed at will through
the boundary conditions (8), but the acceleration on these
boundaries is unfortunately imposed by the shape of the
solution.
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Fig. 3. Optimal velocity and acceleration profiles

IV. TRAJECTORY OPTIMIZATION: NUMERICAL SOLUTION
IN THE GENERAL CASE

In the general case the simple dynamics (2) of the previous
section turns into [11]:

Γ = M(q)q̈ + N(q, q̇)q̇ + G(q) + H(q̇) = f(q, q̇, q̈), (14)

with M(q) the inertia matrix, N(q, q̇) the matrix of centrifugal
and coriolis effects, G(q) the gravity effects and H(q̇) the
friction. This dynamics is much more complex than the pre-
vious one and an analytical solution to this general trajectory
optimization problem might be out of reach. We are going
therefore to look for a numerical solution.

The problem of trajectory generation is generally considered
in robotics as a problem of optimal control where the state
equation is in the form:

q̈ = F (q, q̇, Γ). (15)

Expressing the dynamics of the system in this form implicitely
introduces then the idea to solve this dynamics in order to

obtain the trajectory (q(.), q̇(.)) for a given command Γ(.). The
gradient of the cost function needs therefore to be calculated
with adjoint variables methods [12]. There exist then two
general classes of methods to solve this kind of problem
[13] [14]: indirect methods based on the application of the
Maximum Principle of Pontryagin (using adjoint equations),
generally considered to be very precise but very sensitive to
initial conditions, and direct methods based on the discretiza-
tion of both the trajectory (q(.), q̇(.)) and the command Γ(.)
(without using adjoint equations), leading to a classical non
linear optimization problem and considered to be less precise
but less sensitive to initial conditions.

However, it may be an error to express the dynamics (14)
as in equation (15): with dynamics expressed as in (14) the
problem of trajectory generation appears directly as a problem
of calculus of variations. The dynamics (14) can be directly
integrated in the different constraints of our problem which
becomes then:

min
(q,q̇)

tf

1

tf

∫ tf

0

(Af(q, q̇, q̈)2 + Bq̇2) dt + γ + Tamb − Tmax ≤ 0.

There are two ways of solving this problem: it is possible
to calculate the optimality conditions similarly to what we’ve
done in the previous section, but that may lead to set of com-
plex non-linear ordinary differential equations with boundary
conditions that may not be easy to solve. Another way is to
consider a discrete approximation of the trajectory q(t):

q̃(t) = S(p, t) (16)
˙̃q(t) = Ṡ(p, t) (17)
¨̃q(t) = S̈(p, t) (18)

with S an interpolation function at least of class C2, and p

the parameters of the interpolation. The dynamics (14) takes
then the following form:

Γ̃(t) = f(S(p, t), Ṡ(p, t), S̈(p, t), t) = f̃(p, t) (19)

Discretizing the trajectory q(t) has several advantages: a
small number of discretization parameters (the same ones for
q, q̇, q̈ and Γ), a finite dimensional problem implying a simpler
calculation of the gradients, and the use of improved non-
linear optimization algorithms such as Sequential Quadratic
Programs (SQP) which are presently the most efficient algo-
rithms for such problems. Note that similar choices have been
tested in [13] with good results.

A. Definition of the optimization problem

We are not interested here in optimizing the geometric path
of the trajectory and we focus rather on the optimization of the
velocity profile of the trajectory along a specified geometric
path. The first step consists therefore in defining the curvilinear
abscissa λ : [0, tf ] → [0, 1] (also called the time law) and the
geometry function Q : [0, 1] → R

6 which transforms this
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curvilinear abscissa into an articular position, both functions
being at least of class C2 such that:

q(.) = Q(λ(.)) (20)

q̇(.) =
dQ

dλ
(λ(.))λ̇(.) (21)

q̈(.) =
d2Q

dλ2
(λ(.))λ̇2(.) +

dQ

dλ
(λ(.))λ̈(.) (22)

The second step consists in discretizing this curvilinear ab-
scissa: there exist various techniques of discretization but the
most usual are polynomial splines [13] [5] [2] [15]. Since the
time law must be at least of class C2, we will use cubic splines
and more precisely we will compute them here as in [2]. The
spline is defined as shown in figure 4, with λ(ti) = Λi for
1 ≤ i ≤ n, t1 = 0 and Λ1 = 0, tn = tf and Λn = 1.
Since tn = tf is variable whereas Λn = 1 is fixed, we will
consider that all the {ti}(1≤i≤n) are variable whereas all the
{Λi}(1≤i≤n) are fixed, leading to a non-uniform spline.

t

λ

tn = tfti

Λi

t3t2

Λ3
Λ2

t1 = 0
Λ1 = 0

Λn = 1

Fig. 4. Discrete time law

Following [2], our strategy to define this cubic spline is to
impose the continuity of the velocity and the acceleration at
the nodes ti, and to fix the velocity on the boundaries. We use
the intermediate variables {Λ̈i}(1≤i≤n) to fix the acceleration
at each knot. Each of the cubic polynomials λj(t) = λ(t) for
t ∈ [tj , tj+1] constituting the spline can be written in terms of
the Λ̈j and the hj :

λj(t) =
(tj+1 − t)3

6hj

Λ̈j +
(t − tj)

3

6hj

Λ̈j+1

+

(

Λj+1

hj

− hjΛ̈j+1

6

)

(t − ti) +

(

Λj

hj

− hjΛ̈j

6

)

(ti+1 − t).

The continuity of the velocity is satisfied then by solving a
linear system that leads to the computation of the {Λ̈i}(1≤i≤n):

C(h)Λ̈ = d(h) (23)
with:

C(h) =

0

B

B

B

B

B

B

B

@

2h1 h1 0
h1 2(h1 + h2) h2

. . .
. . .

. . .
hn−2 2(hn−2 + hn−1) hn−1

0 hn−1 2hn−1

1

C

C

C

C

C

C

C

A

d(h) =























6
(

Λ2−Λ1

h1
− v1

)

6
(

Λ3−Λ2

h2
− Λ2−Λ1

h1

)

...
6
(

Λn−Λn−1

hn−1
− Λn−1−Λn−2

hn−2

)

6
(

vn − Λn−Λn−1

hn

)























with hi = ti+1 − ti the time intervals between knots,
and h = (h1, h2, ..., hn−1)

T the new set of parameters for
the optimization procedure. After solving the linear system
(23), the spline is totally determined by the {Λj}1≤j≤n, the
velocity on the boundaries v1 and vn and the time intervals
{hi}1≤i≤n−1. Note that the matrix C is non singular here since
it is diagonally dominant, and there are efficient numerical
methods to invert such tridiagonal matrices.

Now, the cost function can be simply expressed by a linear

function of the parameters, tf =

n−1
∑

i=1

hi. The thermal model

(1) leads to the following constraint:

A

tf

∫ tf

0

Γ2(t) dt +
B

tf

∫ tf

0

q̇2(t) dt + γ + Tamb − Tmax ≤ 0,

(24)
with Tamb the ambiant temperature and Tmax the maximal
authorized temperature. The integral temperature constraint
(24) can be estimated then with a trapezoidal approximation,
precise enough in our case as we will see in the next section:

1

2tf

n−1
∑

j=0

(A(Γ(tj)
2 + Γ(tj+1)

2)hj

+B
(

q̇(tj)
2 + q̇(tj+1)

2
)

hj) + γ + Tamb − Tmax ≤ 0.
(25)

B. Optimization algorithm

The original trajectory optimization problem has been trans-
formed into a minimization of a linear function subject to
non linear constraints. Newton methods such as Sequential
Quadratic Programming (SQP) are presently the most efficient
ones to solve this kind of problem [16]. These methods need
the gradients of both the cost function and the constraints. The
gradients can be calculated numerically with finite differences
methods, but that severely impedes the convergence of the
SQP. Symbolic or automatic differentiation methods [17] can
be used also, but in our problem the geometric path is fixed
and the dynamics (14) can be formulated very simply as [4]
[3] [18]:

Γ = m(λ)λ̈ + c(λ)λ̇2 + f(λ̇) + g(λ) (26)

where m, c, g and f are vectors which respectively represents
inertias, centrifugal and coriolis effects, gravity and friction.
Since the constraints are evaluated at points {Λj}1≤j≤n which
don’t depend on the variables {hi}1≤i≤n−1, the gradient of the
dynamic model is:

∂Γj

∂hk

= m(Λj)
∂Λ̈j

∂hk

+ 2 c(Λj)
∂Λ̇j

∂hk

Λ̇j +
∂f

∂hk

(Λ̇j) (27)

Since we suppose that we optimize trajectories where the
velocity has always the same sign, we can rely on a simple
expression of the gradient of the Coulomb and viscous friction:

∂f

∂hk

(Λ̇j) = Fv

dQ

dλ

∂Λ̇j

∂hk

(28)
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The calculation of the gradient of the dynamic model amounts

then to calculating ∂Λ̇j

∂hk

and ∂Λ̈j

∂hk

, what is trivial here through
equation (23).

The last important point is the initialization of the opti-
mization process: to help its convergence, we must choose a
first iterate as close as possible to the optimal solution and
satisfying the constraints. From a practical point of view, we
generate a BANG-BANG profile, and we use a dichotomy
technique to improve the first iterate by testing the constraints.
The duration of the movement is stretched if any constraint is
violated, compressed otherwise.

V. NUMERICAL AND EXPERIMENTAL TESTS OF THE
OPTIMAL TRAJECTORY GENERATOR

To validate the numerical algorithm presented in the previ-
ous section, we have chosen to apply it to the same geometric
path as in section III, a movement of the first axis of a
Stäubli Rx90 from −2.26 rad to +2.26 rad. To solve the non-
linear optimization problem, we use the Feasible Sequential
Quadratic Programming (FSQP) algorithm [19].

A. Numerical results

The numerical algorithm described in the previous section
converges to the solution showed in figure 5, with an optimal
time tf = 1.35s. We can observe that it is very close to
the analytical solution found in section III. The very small
difference between these two solutions can be identified to be
solely due to the discretization process (16)-(18). For the same
reason, the approximate computation in (25) of the constraint
(24) appears to slightly underestimate the limiting temperature
constraint in this specific case, allowing a faster solution here
than the truly optimal solution described in section III, with
only 1.35s of cycle time rather than 1.38s in section III.
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Fig. 5. Analytical (plain curve) and numerical (dashed curve) optimal profiles

More generally, this algorithm has been observed to con-
verge properly as soon as the constraints are satisfied from
the beginning of the optimization process, as soon as the first
iterate is a feasible point. This condition appeared to be of
great importance to obtain this convergence: the initialization
described at the end of section IV-B appears therefore to be a
key point for the robustness of the whole numerical algorithm.

B. Experimental results

The trajectory generated by the algorithm was executed on
an industrial Stäubli Rx90 robot with a CS8 controller without

0.0 0.4 0.8 1.2 1.6
−600

−400

−200

0

200

400

600

800
Γ(Nm)

Oscillations
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Fig. 6. Measured torque

filtering, in spite of the discontinuities of the acceleration at
the boundaries. The stabilized temperature measured after 6
hours reaches the prescribed limit with only 3% of error. Both
the dynamics and the models appear therefore to allow very
precise predictions. Note however that oscillations appear in
figure 6 which have not been predicted. These oscillations
are due to the discontinuities of the acceleration on the
boundaries that excite the vibration modes of the robot (fixing
the acceleration at the boundaries might solve this problem).

Fig. 7. Upright configuration on the left and flat configuration on the right
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Fig. 8. Evolution of the optimal cycle time with respect to different
temperature limits

A comparison between the BANG-BANG and the optimal
profiles has been realized for a minimum and a maximum
inertia configuration, respectively the upright and flat config-
urations illustrated in figure 7. This comparison led to the
following result:

Configuration Profile type Temperature Cycle Time
Flat BANG-BANG 106◦C 3.76s
Flat Optimal 97◦C 3.68s

Upright BANG-BANG 109◦C 3.05s
Upright Optimal 98◦C 2.98s

The optimal velocity profile appears to be 5% better than
the BANG-BANG one from the point of view of cycle time,
with a temperature increase lower by 8%. We can observe as
well in figure 8 that in the case of different temperature limits,
for a given cyclic movement, the optimal velocity profile
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always gives results from 5% to 10% better than the BANG-
BANG profile. It is obvious then that specifically optimizing
the trajectories of manipulator robots with respect to their
real physical limitations allows a superior usage of their real
capacities, with faster execution times together with a milder
management of these limitations.

VI. CONCLUSION

Trajectory optimization in robotics usually deals with con-
straints which don’t really reflect the true limitations of a
robot, maximal velocities and accelerations which have no
direct connection to overheating, for example. This paper
deals therefore with the real impact of thermal limitations
on optimal velocity profiles and the methods to calculate
the corresponding optimal trajectories. We first calculate an-
alytically the optimal solution in a simple case: more than
a way to verify the validity of the numerical algorithm,
this analytical calculation presents a general methodology
to calculate optimal trajectories in robotics. An important
point of section III is actually the use of results from the
theory of calculus of variations and not from the theory of
optimal control. The beginning of section IV discusses why
trajectory optimization in our case is better posed as a problem
of calculus of variations rather than a problem of optimal
control, what is the direct generalization of section III. After
this disussion we derive a numerical algorithm based on the
discretization of the time law through an interpolation with
non-uniform cubic splines. This algorithm has shown robust
and efficient convergence properties and the trajectories thus
generated were executed successfully on a Stäubli Rx90 with
a CS8 controller. It appeared then obviously that specifically
optimizing the trajectories of manipulator robots with respect
to their real physical limitations allows a superior usage of
their real capacities, with faster execution times together with
a milder management of these limitations.
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