L. A. Bastidas, H. Gupta, S. Sorooshian, W. Shuttleworth, Y. et al., Sensitivity Analysis of a Land Surface Scheme using W. Castaings et al.: Adjoint sensitivity analysis and parameter estimation Belanger, E. and Vincent, A.: Data assimilation (4D-VAR) to forecast flood in shallow-waters with sediment erosion, J. Hydrol, vol.300, pp.114-125, 2005.

A. Bennett, Inverse Methods in Physical Oceanography, Cambridge Monographs on Mechanics and Applied Mathematics, 1992.
DOI : 10.1017/CBO9780511600807

K. Beven and A. Binley, The future of distributed models: Model calibration and uncertainty prediction, Hydrological Processes, vol.28, issue.3, pp.279-298, 1992.
DOI : 10.1002/hyp.3360060305

F. Bouyssel, V. Cassé, and J. Pailleux, Variational surface analysis from screen level atmospheric parameters, Tellus A, p.453, 1999.

R. Buizza and T. N. Palmer, The Singular-Vector Structure of the Atmospheric Global Circulation, Journal of the Atmospheric Sciences, vol.52, issue.9, pp.1434-1456, 1995.
DOI : 10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2

D. Cacuci, Sensitivity theory for nonlinear systems. I. Nonlinear functional analysis approach, Journal of Mathematical Physics, vol.22, issue.12, pp.2794-2802, 1981.
DOI : 10.1063/1.525186

D. Cacuci, Sensitivity theory for nonlinear systems. II. Extensions to additional classes of responses, Journal of Mathematical Physics, vol.22, issue.12, pp.2803-2812, 1981.
DOI : 10.1063/1.524870

U. Callies, A. Rhodin, and D. P. Eppel, A case study on variational soil moisture analysis from atmospheric observations, Journal of Hydrology, vol.212, issue.213, pp.212-213, 1998.
DOI : 10.1016/S0022-1694(98)00204-2

J. Calvet, J. Noilhan, and P. Bessemoulin, Retrieving the Root-Zone Soil Moisture from Surface Soil Moisture or Temperature Estimates: A Feasibility Study Based on Field Measurements, Journal of Applied Meteorology, vol.37, issue.4
DOI : 10.1175/1520-0450(1998)037<0371:RTRZSM>2.0.CO;2

J. Carrera and S. Neuman, Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 2. Uniqueness, Stability, and Solution Algorithms, Water Resources Research, vol.16, issue.4, pp.211-227, 1986.
DOI : 10.1029/WR022i002p00211

G. Chavent, R. E. Goodson, and M. Polis, Identification of functional parameter in partial differential equations, in: Identification of Parameters in Distributed Systems, pp.31-48, 1974.

F. Clément, N. Khvoenkova, A. Cartalade, and P. Montarnal, Analyse de sensibilité et estimation de paramètres de transport pour uné equation de diffusion, approche parétatpar´parétat adjoint, INRIA- Rocquencourt, Projet ESTIME, 2004.

R. Cukier, H. Levine, and K. Shuler, Nonlinear sensitivity analysis of multiparameter model systems, Journal of Computational Physics, vol.26, issue.1, pp.1-42, 1978.
DOI : 10.1016/0021-9991(78)90097-9

J. Doherty and J. H. Randall, Two statistics for evaluating parameter identifiability and error reduction, Journal of Hydrology, vol.366, issue.1-4, pp.1-4, 2009.
DOI : 10.1016/j.jhydrol.2008.12.018

Q. Duan, S. Sorooshian, and V. Gupta, Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resources Research, vol.27, issue.9, pp.1015-1031, 1992.
DOI : 10.1029/91WR02985

S. Durbiano, Vecteurs caractéristiques de modèles océaniques pour la réduction d'ordre en assimilation de données, 2001.

V. Estupina-borrell, D. Dartus, and R. Ababou, Flash flood modeling with the MARINE hydrological distributed model, Hydrology and Earth System Sciences Discussions, vol.3, issue.6, pp.3397-3438, 2006.
DOI : 10.5194/hessd-3-3397-2006

URL : https://hal.archives-ouvertes.fr/hal-00330793

M. Ghil and P. Malanotte-rizzoli, Data Assimilation in Meteorology and Oceanography, Adv. Geophys, vol.33, pp.141-226, 1991.
DOI : 10.1016/S0065-2687(08)60442-2

A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, in: Frontiers in Appl, Math., SIAM, vol.19, 2000.
DOI : 10.1137/1.9780898717761

V. Gupta and H. Sorooshian, The Automatic Calibration of Conceptual Catchment Models Using Derivative-Based Optimization Algorithms, Water Resources Research, vol.10, issue.1, pp.473-485, 1985.
DOI : 10.1029/WR021i004p00473

C. Hall and D. Cacuci, Physical Interpretation of the Adjoint Functions for Sensitivity Analysis of Atmospheric Models, Journal of the Atmospheric Sciences, vol.40, issue.10, pp.2537-2546, 1983.
DOI : 10.1175/1520-0469(1983)040<2537:PIOTAF>2.0.CO;2

J. Hall, S. Tarantola, P. Bates, and M. Horritt, Distributed Sensitivity Analysis of Flood Inundation Model Calibration, Journal of Hydraulic Engineering, vol.131, issue.2, pp.117-126, 2005.
DOI : 10.1061/(ASCE)0733-9429(2005)131:2(117)

P. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, Numerical Aspects of Linear Inversion, SIAM, 1998.
DOI : 10.1137/1.9780898719697

L. Hascoët and V. Pascual, TAPENADE 2.1 user's guide, Institut National de Recherche en Informatique et en Automatique (INRIA), 2004.

J. C. Helton, Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal, Reliability Engineering & System Safety, vol.42, issue.2-3, pp.327-367, 1993.
DOI : 10.1016/0951-8320(93)90097-I

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.
DOI : 10.1016/0951-8320(96)00002-6

M. Honnorat, J. Monnier, X. Lai, L. Dimet, and F. , Variational data assimilation for 2D fluvial hydraulics simulation, CMWR XVI-Computational Methods for Water Ressources, 2006.

G. Hornberger and R. Spear, An approach to the preliminary analysis of environmental systems, J. Environ. Manage.t, vol.12, pp.7-18, 1981.

R. Ibbit, O. Donnell, and T. , Designing conceptual catchment models for automatic fitting methods, pp.462-475, 1971.

P. Johnston and D. Pilgrim, Parameter optimization for watershed models, Water Resources Research, vol.16, issue.1, pp.477-486, 1976.
DOI : 10.1029/WR012i003p00477

A. Kanso, G. Chebbo, and B. Tassin, Application of MCMC???GSA model calibration method to urban runoff quality modeling, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.1398-1405, 2006.
DOI : 10.1016/j.ress.2005.11.051

D. Kavetski, G. Kuczera, and S. W. Franks, Calibration of conceptual hydrological models revisited: 2. Improving optimisation and analysis, Journal of Hydrology, vol.320, issue.1-2, pp.187-201, 2006.
DOI : 10.1016/j.jhydrol.2005.07.013

G. Kuczera and E. Parent, Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm, Journal of Hydrology, vol.211, issue.1-4, pp.69-85, 1998.
DOI : 10.1016/S0022-1694(98)00198-X

L. Dimet, F. Talagrand, and O. , Variational algorithms for analysis and assimilation of meteorogical observations, Tellus A, pp.97-110, 1986.

Z. Li, I. Navon, and M. Y. Hussaini, Analysis of the singular vectors of the full-physics Florida, pp.560-574, 2005.

J. Lions, Optimal control of systems governed by partial differential equations, 1968.
DOI : 10.1007/978-3-642-65024-6

H. Madsen, Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives, Advances in Water Resources, vol.26, issue.2, pp.205-216, 2003.
DOI : 10.1016/S0309-1708(02)00092-1

J. Mahfouf, Analysis of Soil Moisture from Near-Surface Parameters: A Feasibility Study, Journal of Applied Meteorology, vol.30, issue.11, pp.1534-1547, 1991.
DOI : 10.1175/1520-0450(1991)030<1534:AOSMFN>2.0.CO;2

E. Marchand, F. Clément, J. E. Roberts, and G. Pépin, Deterministic sensitivity analysis for a model for flow in porous media, Advances in Water Resources, vol.31, issue.8, pp.31-1025, 2008.
DOI : 10.1016/j.advwatres.2008.04.004

URL : https://hal.archives-ouvertes.fr/inria-00271986

S. Margulis and D. Entekhabi, A Coupled Land Surface???Boundary Layer Model and Its Adjoint, Journal of Hydrometeorology, vol.2, issue.3, pp.274-296, 2001.
DOI : 10.1175/1525-7541(2001)002<0274:ACLSBL>2.0.CO;2

R. Mccuen, Component sensitivity: A tool for the analysis of complex water resource systems, Water Resources Research, vol.3, issue.6, pp.243-247, 1973.
DOI : 10.1029/WR009i001p00243

R. Mccuen, The role of sensitivity analysis in hydrologic modeling, Journal of Hydrology, vol.18, issue.1, pp.37-53, 1973.
DOI : 10.1016/0022-1694(73)90024-3

C. Moore and J. Doherty, The cost of uniqueness in groundwater model calibration, Advances in Water Resources, vol.29, issue.4, pp.605-623, 2006.
DOI : 10.1016/j.advwatres.2005.07.003

C. Moore and J. Doherty, Role of the calibration process in reducing model predictive error, Water Resources Research, vol.36, issue.8, pp.10-1029, 2006.
DOI : 10.1029/2004WR003501

I. Navon, Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography, Dynamics of Atmospheres and Oceans, vol.27, issue.1-4, pp.55-79, 1998.
DOI : 10.1016/S0377-0265(97)00032-8

P. Ngnepieba, L. Dimet, F. Boukong, A. Nguetseng, and G. , Inverse problem formulation for parameters determination using the adjoint method, ARIMA Journal ? Revue Africaine de la Recherche in Informatique et Mathématiques Appliquées, vol.1, pp.127-157, 2002.

M. Piasecki and N. Katopodes, Control of Contaminant Releases in Rivers. I: Adjoint Sensitivity Analysis, Journal of Hydraulic Engineering, vol.123, issue.6, pp.486-492, 1997.
DOI : 10.1061/(ASCE)0733-9429(1997)123:6(486)

L. B. Rall, Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer Science, vol.120, 1981.
DOI : 10.1007/3-540-10861-0

J. Refsgaard, Parameterisation, calibration and validation of distributed hydrological models, Journal of Hydrology, vol.198, issue.1-4, pp.69-97, 1997.
DOI : 10.1016/S0022-1694(96)03329-X

R. Reichle, D. Entekhabi, and D. Mclaughlin, Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach, Water Resources Research, vol.4, issue.4, pp.2353-2364, 2001.
DOI : 10.1029/2001WR000475

A. Saltelli, K. Chan, and E. Scott, Sensitivity analysis, Wiley series in probability and statistics, 2000.

A. Sei and W. Symes, A note on consistency and adjointness for numerical schemes, 1995.

D. Seo, V. Koren, C. , and N. , Real-Time Variational Assimilation of Hydrologic and Hydrometeorological Data into Operational Hydrologic Forecasting, Journal of Hydrometeorology, vol.4, issue.3, pp.627-641, 2003.
DOI : 10.1175/1525-7541(2003)004<0627:RVAOHA>2.0.CO;2

D. Seo, V. Koren, C. , and N. , Real-time assimilation of radarbased precipitation data and streamflow observations into a distributed hydrologic model, Proceedings of Symposium HS03 held during IUGG2003 at Sapporo, pp.138-142, 2003.

V. Singh, Kinematic wave modelling in water resources: a historical perspective, Hydrological Processes, vol.30, issue.4, pp.671-706, 2001.
DOI : 10.1002/hyp.99

Z. Sirkes and E. Tziperman, Finite difference of adjoint or adjoint of finite difference?, Mon. Weather rev, pp.5-40, 1997.

I. Sobol-', Sensitivity analysis for non-linear mathematical models, Mathematical Modeling & Computational Experiment, vol.1, pp.407-414, 1993.

N. Sun and W. Yeh, Coupled inverse problems in groundwater modeling: 1. Sensitivity analysis and parameter identification, Water Resources Research, vol.16, issue.4, pp.2507-2525, 1990.
DOI : 10.1029/WR026i010p02507

Y. Tang, P. Reed, K. Van-werkhoven, and T. Wagener, Advancing the identification and evaluation of distributed rainfall-runoff models using global sensitivity analysis, Water Resources Research, vol.39, issue.8, pp.10-1029, 2007.
DOI : 10.1029/2006WR005813

Y. Tang, P. Reed, T. Wagener, and K. Van-werkhoven, Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation, Hydrol. Earth Syst. Sci, vol.11793, issue.11, pp.793-817, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00305053

A. N. Tikhononv and V. Y. Arsenin, Solutions of Ill-posed Problems, 1977.

M. J. Tonkin and J. Doherty, A hybrid regularized inversion methodology for highly parametrized environmental models, Water Resour. Res, pp.10-1029, 2005.

K. Van-werkhoven, T. Wagener, P. Reed, and Y. Tang, Characterization of watershed model behavior across a hydroclimatic gradient, Water Resources Research, vol.17, issue.2, pp.10-1029, 2008.
DOI : 10.1029/2007WR006271

K. Van-werkhoven, T. Wagener, P. Reed, and Y. Tang, Rainfall characteristics define the value of streamflow observations for distributed watershed model identification, Geophysical Research Letters, vol.6, issue.3, pp.10-1029, 2008.
DOI : 10.1029/2008GL034162

J. A. Vrugt, W. Bouten, H. V. Gupta, and S. Sorooshian, Toward improved identifiability of hydrologic model parameters: The information content of experimental data, Water Resources Research, vol.27, issue.1, pp.131210-1029, 2002.
DOI : 10.1029/2001WR001118

J. A. Vrugt, H. V. Gupta, L. A. Bastidas, W. Bouten, and S. Sorooshian, Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resources Research, vol.3, issue.4, pp.121410-1029, 2003.
DOI : 10.1029/2002WR001746

J. A. Vrugt, H. V. Gupta, W. Bouten, and S. Sorooshian, A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resources Research, vol.5, issue.1, pp.10-1029, 1201.
DOI : 10.1029/2002WR001642

T. Wagener, N. Mcintyre, M. J. Lees, H. S. Wheater, and H. V. Gupta, Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis, Hydrological Processes, vol.23, issue.2, pp.455-476, 2003.
DOI : 10.1002/hyp.1135

L. White, B. Vieux, D. Armand, L. Dimet, and F. , Estimation of optimal parameters for a surface hydrology model, Advances in Water Resources, vol.26, issue.3, pp.337-348, 2003.
DOI : 10.1016/S0309-1708(02)00189-6

P. Yapo, H. Gupta, and S. Sorooshian, Multi-objective global optimization for hydrologic models, Journal of Hydrology, vol.204, issue.1-4, pp.83-97, 1997.
DOI : 10.1016/S0022-1694(97)00107-8

S. Yatheendradas, T. Wagener, H. Gupta, C. Unkrich, D. Goodrich et al., Understanding uncertainty in distributed flash flood forecasting for semiarid regions, Water Resources Research, vol.98, issue.4, pp.10-1029, 2008.
DOI : 10.1029/2007WR005940

X. Zou, I. M. Navon, S. , and J. , Variational data Assimilation with Moist Threshold Processes using the NMC Spectral Model, Tellus A, pp.370-387, 1993.