Hybrid Stochastic-Adversarial On-line Learning

Lazaric Alessandro 1 Rémi Munos 1
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal, Inria Lille - Nord Europe
Abstract : Most of the research in online learning focused either on the problem of adversarial classification (i.e., both inputs and labels are arbitrarily chosen by an adversary) or on the traditional supervised learning problem in which samples are indepen- dently generated from a fixed probability distribution. Nonetheless, in a number of domains the relationship between inputs and labels may be adversarial, whereas input instances are generated according to a constant distribution. This scenario can be formalized as an hybrid classification problem in which inputs are stochastic, while labels are adversarial. In this paper, we introduce this hybrid stochastic-adversarial classification problem, we propose an online learning algorithm for its so- lution, and we analyze its performance. In particular, we show that, given a hypothesis space H with finite VC dimension, it is possible to incrementally build a suitable finite set of hypotheses that can be used as input for an exponentially weighted forecaster achieving a cumulative regret of order O( n VC(H) log n) with overwhelming probability. Finally, we discuss extensions to multi-label classification, learning from experts and bandit set- tings with stochastic side information, and application to games.
Document type :
Journal articles
Complete list of metadatas

Cited literature [2 references]  Display  Hide  Download

https://hal.inria.fr/inria-00392524
Contributor : Rémi Munos <>
Submitted on : Monday, June 8, 2009 - 12:00:26 PM
Last modification on : Thursday, February 21, 2019 - 10:52:49 AM
Long-term archiving on : Friday, June 11, 2010 - 12:27:45 AM

File

estochad.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00392524, version 1

Collections

Citation

Lazaric Alessandro, Rémi Munos. Hybrid Stochastic-Adversarial On-line Learning. COLT, COLT, 2009. ⟨inria-00392524⟩

Share

Metrics

Record views

423

Files downloads

171