Online Heuristic Selection in Constraint Programming

Abstract : This paper presents our first attempt to apply Support Vector Machines to the problem of automatically tuning CP search algorithms. More precisely, we exploit instances features to dynamically adapt the search strategy of a CP solver in order to more efficiently solve a given instance. In these preliminary results, adaptation is restricted to restart points, and the number of times the strategy changes is also restricted. We report very encouraging results where our adaptation outperforms what is currently considered as one of the state of the art dynamic variable selection strategy.
Type de document :
Autre publication
International Symposium on Combinatorial Search - 2009. 2009
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger
Contributeur : Alejandro Arbelaez <>
Soumis le : lundi 8 juin 2009 - 22:30:02
Dernière modification le : mardi 9 juin 2009 - 08:23:21
Document(s) archivé(s) le : lundi 15 octobre 2012 - 12:05:58


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00392752, version 1



Alejandro Arbelaez, Youssef Hamadi, Michèle Sebag. Online Heuristic Selection in Constraint Programming. International Symposium on Combinatorial Search - 2009. 2009. 〈inria-00392752〉



Consultations de la notice


Téléchargements de fichiers