A. Aamodt and E. Plaza, Case-based reasoning: Foundational issues, methodological variations, and systems approaches, 1994.

D. Achlioptas, C. P. Gomes, H. A. Kautz, and B. Selman, Generating satisfiable problem instances, AAAI'00, 2000.

R. Akbani, S. Kwek, and N. Japkowicz, Applying Support Vector Machines to Imbalanced Datasets, ECML'04, 2004.
DOI : 10.1007/978-3-540-30115-8_7

F. Boussemart, F. Hemery, C. Lecoutre, S. , and L. , Boosting systematic search by weighting constraints, ECAI'04, 2004.

T. Carchrae and J. C. Beck, APPLYING MACHINE LEARNING TO LOW-KNOWLEDGE CONTROL OF OPTIMIZATION ALGORITHMS, Computational Intelligence, vol.15, issue.6, 2005.
DOI : 10.1287/ijoc.

C. Chang, L. , and C. , LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, 2001.
DOI : 10.1145/1961189.1961199

M. Correira and P. Barahona, On the efficiency of impact based heuristics, CP'08, 2008.

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines and other kernel-based learning methods, 2000.
DOI : 10.1017/CBO9780511801389

S. L. Epstein, E. C. Freuder, R. Wallace, A. Morozov, and B. Samuels, The Adaptive Constraint Engine, CP'02, 2002.
DOI : 10.1007/3-540-46135-3_35

S. Gelly and D. Silver, Combining online and offline knowledge in UCT, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.273-280, 2007.
DOI : 10.1145/1273496.1273531

URL : https://hal.archives-ouvertes.fr/inria-00164003

C. Gomes, B. Selman, and H. Kautz, Boosting combinatorial search through randomization, AAAI'98, 1998.

F. Hutter, Y. Hamadi, H. H. Hoos, and K. Leyton-brown, Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms, p.9, 2009.
DOI : 10.1007/11889205_17

J. E. Borrett, E. P. , W. , and N. R. , Adaptive Constraint Satisfaction: The Quickest First Principle, 1995.
DOI : 10.1007/978-3-642-01799-5_7

H. Larochelle and Y. Bengio, Classification using discriminative restricted Boltzmann machines, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.536-543, 2008.
DOI : 10.1145/1390156.1390224

O. 'mahony, E. Hebrard, E. Holland, A. Nugent, C. et al., Using case-based reasoning in an algorithm portfolio for constraint solving, 19th Conference on Artificial Intelligence and Cognitive Science, 2008.

J. Puget, Constraint Programming Next Challenge: Simplicity of Use, CP'04, 2004.
DOI : 10.1007/978-3-540-30201-8_2

P. Refalo, Impact-Based Search Strategies for Constraint Programming, CP'04, 2004.
DOI : 10.1007/978-3-540-30201-8_41

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

I. Rish and M. Brodie, Adaptive Diagnosis in Distributed Systems, IEEE Transactions on Neural Networks, vol.16, issue.5, pp.1088-1109, 2005.
DOI : 10.1109/TNN.2005.853423

H. Samulowitz and R. Memisevic, Learning to solve qbf, AAAI'07, 2007.

C. Schulte, Programming Constraint Services, 2002.
DOI : 10.1007/3-540-45945-6

M. Streeter, D. Golovin, and S. F. Smith, Combining multiple heuristcs online, AAAI'07, 2007.

V. Vapnik, The nature of statistical learning theory. Vapnik, V. 1998. The statistical learning theory, 1995.

I. H. Witten and E. Frank, Data Mining -Practical Machine Learning Tools and Techniques, 2005.

H. Wu and P. V. Beek, PORTFOLIOS WITH DEADLINES FOR BACKTRACKING SEARCH, International Journal on Artificial Intelligence Tools, vol.17, issue.05, 2008.
DOI : 10.1142/S0218213008004187