Skip to Main content Skip to Navigation
Conference papers

An Agent Model Using Polychronous Networks

Julio Monteiro Philippe Caillou 1, 2 Marco Netto 3
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : In this paper, we present an agent model based on computation with polychronous groups on spiked neural networks, that is able to learn to return to known initial situations, without any guidance
Complete list of metadata
Contributor : Philippe Caillou <>
Submitted on : Tuesday, June 9, 2009 - 2:18:10 PM
Last modification on : Thursday, July 8, 2021 - 3:48:19 AM


  • HAL Id : inria-00393065, version 1



Julio Monteiro, Philippe Caillou, Marco Netto. An Agent Model Using Polychronous Networks. Colibri, Jul 2009, Bento Gonçalves, Brazil. pp.76-80. ⟨inria-00393065⟩



Record views