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Fast Marching Method for Generic Shape from Shading

Emmanuel Prados and Stefano Soatto

Dept. of Computer Science, University of California, Los Angeles, CA 90095, USA

Abstract. We develop a fast numerical method to approximate the solutions of
a wide class of equations associated to the Shape From Shading problem. Our
method, which is based on the control theory and the interfaces propagation, is
an extension of the “Fast Marching Method” (FMM) [30,25]. In particular our
method extends the FMM to some equations for which the solution is not sys-
tematically decreasing along the optimal trajectories. We apply with success our
one-pass method to the Shape From Shading equations which are involved by the
most relevant and recent modelings [22,21] and which cannot be handled by the
most recent extensions of the FMM [26,8].

1 Introduction

The Shape From Shading (SFS) problem is to compute the three-dimensional shape of a
surface from a single black and white image of that surface. The field was pioneered by
Horn who was the first to pose the problem as that of finding the solution of a nonlinear
first-order partial differential equation (PDE) called the brightness equation [11]. The
first explicit PDE considered in this field is the Eikonal equation

|∇u| = r(x), ∀x ∈ Ω (1)

(modeling based on a single far frontal light source and orthographic camera). Ω is an
open subset of R

2 which represents the image domain, e.g., the rectangle ]0, X [×]0, Y [.
r : Ω → R is a non-negative function directly related to the brightness image. From
the work of Horn [11], a number of explicit PDEs corresponding to different model-
ings have been developed and studied [15,24,27,20,6]. By introducing the “generic”
SFS equation Hg(x, ∇u(x)) = 0, ∀x ∈ Ω (Hg being described below), Prados and
Faugeras [22,21] have recently unified a number of these explicit equations and thus
their associated models. The associated “generic” SFS Hamiltonian is defined by

Hg(x, p) = κx

√
|Dx Rxp + vx|2 + K2

x + wx · p + cx, (2)

where κx, Kx, µx, νx, cx,vx,wx depend on the chosen modeling, see [22,17]. For ex-
ample, the classical Rouy/Tourin Hamiltonian [24]

HR/T (x, p) = I(x)
√

1 + |∇u|2 + l · ∇u − γ (3)

(orthographic camera + single far light source) is a particular case of the generic SFS
Hamiltonian Hg; L = (l, γ) represents the direction of the light source; I(x) is the
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brightness of the image at pixel x. Here, let us remark that HR/T (x, 0) = I(x) − γ can
be strictly negative.

In addition to the modeling, Prados and Faugeras [17,21] have also unified a number
of theoretical results and of SFS numerical methods based on PDEs. Nevertheless they
just consider iterative methods. Also, the iterative methods suffer of some optimality
weaknesses since they use alternating raster scans similarly as the ones proposed [9,29].
In this paper, we get rid of these weaknesses by proposing a single pass method based
on front propagation and Fast Marching techniques.

The single pass methods related to front propagation like the level set method
[16] and Fast Marching Methods [25] have already been applied to the SFS problem
[12,25,13,31,28] (see [5,25] and references therein for other applications). In particu-
lar, Sethian [25] was the first who applies the “Fast Marching Method”for solving the
SFS problem. This first work deals only with the simplest version of the SFS problem
associated to the Eikonal equation (1) (orthographic camera; single, far and front light
source). Recently, Kimmel and Sethian [13] have proposed an adaptation of this initial
algorithm in order to deal with far oblique light source. This upgraded method seems
very delicate, requires a change of variable and does not seems adaptable to more gen-
eral modelings. Roughly speaking, most of the authors [13,28,6] use various techniques
(e.g. changes of variables, introductions of new unknowns) in order to get back to the
Eikonal equation and then to use the initial tools developed by Sethian. As opposed to
[28], Yuen et al. [31] propose a real adaptation of the FMMs to the perspective SFS
problem. Nevertheless, this work is reduced to frontal light source, also in that case
the subjacent cost function is non negative. Contrary to all the previous work, the fast
method we propose in this paper allows to solve in one-pass the main PDEs associated
to the most recent, realistic and relevant modelings of the SFS literature. In particular,
it allows to solve all the SFS equations collected in [22,21] (many of which have cost
functions of arbitrary sign). It is completely generic and contrary for example to [13],
we do not need any change of variables.

More generally, the most recent work on “Fast Marching Methods” only allows to
solve equations of type

H(x, ∇u(x)) = 0 ∀x ∈ Ω, (4)

such that H(x, 0) = 0 (with H convex with respect to ∇u). Here, we relax this key
assumption which is strongly related to the causality principle (see Section 3).

2 Control Formulation of the Problem

In this section we reformulate the problem using tools from control theory. The reader
unfamiliar with these tools can refer to the comprehensive book [1]. First, we use the
Legendre transform [14] to rewrite equation (4) as: ∀ x ∈ Ω,

sup
a∈A

{−f(x, a) · ∇u(x) − l(x, a)} = 0. (5)
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The functions l and f are respectively called the cost function and the dynamics;
a ∈ A is an admissible value of the control. For example, we can rewrite the generic
SFS Hamiltonian Hg as such a supremum with

f(x, a) = − [ κxRT
x DxRx.a + wx ],

l(x, a) = − [ Kxκx

√
1 − |a|2 + κx(RT

x vx) · a + cx ]

with A the closed unit ball of R
2; RT

x being the matrix transpose of Rx; see [17,22]
for all details. This kind of equation must be complemented by boundary conditions in
order to be well posed. We therefore add the following constraints:

u(x) = ϕ(x) ∀x ∈ T , (6)

u(x) = +∞ ∀x ∈ ∂Ω \ T , (7)

where the target T is a nonempty closed subset of Ω and ϕ : T → R defines a boundary
condition of Dirichlet type. Also equations (5) and (4) are now considered on Ω \ T
instead of Ω. Let V be the value function

V (x) = inf
α∈A

�� τx(α)

0
l(yx(τ, α), α(τ ))dτ + ϕ(yx(τx(α), α))

�
. (8)

A is the set of the admissible controls (a set of the measurable functions of t ∈ [0, +∞[
with value in A, the latter being a closed bounded subset of R

M ). yx(., α) is a trajectory
controlled by α starting from x; this is the solution of the dynamical system y′(τ) =
f(y(τ), α(τ)), τ > 0, y(0) = x; τx(α) is the smallest time τ such that yx(τ) reaches1

T ∪ ∂Ω. It is well known [14,1] that V is the unique viscosity solution2 of equation
(5)-(6)-(7) and that V verifies the dynamical programming principle [14,1].

Finally, we denote α∗
x, τ∗

x and y∗
x the optimal control, the optimal time and the

optimal trajectory associated to (8) (i.e. for which the inf of (8) is reached).
For example, in the particular case of the Eikonal equation (1), the optimal trajecto-

ries correspond to the gradient lines. Nevertheless, as shown in [26], this is not true for
any equation (∇u(x) �= y∗

x
′(0) = f(x, α∗

x(0))).

3 Approximation Scheme and Causality

For simplicity, in this paper we deal with a regular mesh. For an extension to the ir-
regular meshes we refer the reader to [17,23]. The reader unfamiliar with the notion
of approximation schemes can refer to [2]. Let us just recall that, following [2], an
approximation scheme is a functional equation of the form

S(ρ, x, u(x), u) = 0 ∀x ∈ Ω,

which “approximates” the considered PDE. S is defined on M × Ω × R × B(Ω) into R,
M =

�
R

+�N and ρ = (h1, ..., hN ) ∈ M defines the size of the mesh that is used in the

1 For notations simplicity, we extend ϕ on T ∪∂Ω, and we define ϕ(x) = +∞, ∀x ∈ ∂Ω \T .
2 More accurately, we must consider the notion of “Singular Discontinuous Viscosity Solutions”

(SDVS) of (5)-(6)-(7) instead of the classical notion of viscosity solutions [17].
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corresponding numerical algorithms. B(D) is the space of bounded functions defined
on a set D. In order to obtain a consistent scheme, the function S is obtained by approx-
imating ∇u by finite differences and then by substituting ∇u by its approximation in
the initial equation. The main property allowing to ensure the convergence of the com-
puted numerical solution toward the viscosity solution [7,14,1,17] is the monotonicity
of the scheme (i.e. the function u �→ S(ρ, x, t, u) is nonincreasing) [2].

In most of the FMMs the gradient ∇u is discretized by

∇u(x) 	 t − u(x + sihiei)
−sihi

Above, t corresponds to u(x); we replace u(x) by t in order to emphasize that this is
the update value. (e1, .., en) is the canonical basis; ∀i, si ∈ {±1}. With the exception
of the recent work [26], the simplex {x, x + s1h1e1, ..., x + snhnen} (in practice the
sign vector (s1, .., sn)) is chosen in such a way that “it contains −∇u”, i.e. such that

∀i = 1..n, si is the opposite of the sign of [∇u]i. (9)

In the Eikonal case, the control formulation of equation (1) is supa∈B(0,1){a ·∇u(x)−
r(x)} = 0 and the optimal control is always ax = ∇u(x)

|∇u(x)| . Thus the scheme

Seiko(ρ, x, t, u) =
���� t − u(x + sihiei)

−sihi

����− r(x)

= sup
a∈B(0,1)

�
a ·
�

t − u(x + sihiei)
−sihi

�
− r(x)

	
, (10)

where si defined by (9), is clearly monotonic. Nevertheless, this is generally false for
any equation of the form (4). In effect, in the general case, the scheme

Sc(ρ, x, t, u) = H

�
x,

�
t − u(x + sihiei)

−sihi

��

= sup
a∈A

{−f(x, a) ·
�

t − u(x + sihiei)
−sihi

�
− l(x, a)} (11)

with si defined by (9), is not monotonic anymore as soon as there exists i ∈ [1..n]
s.t. sign[f(x, ax)]i �= si (= −sign[∇u]i), where ax is the optimal a of (11) [t being
the root of Sc(ρ, x, t, u) = 0]. For obtaining a monotonic scheme, we must change the
choice of the simplex (i.e. the choice of the si). In fact, we must choose the simplex
with respect to the dynamics of the optimal control (and not to the gradient). If we
define si(x, a) = signfi(x, a), the scheme3

S(ρ, x, t, u) = sup
a∈A

{−f(x, a) ·
�

t − u(x + si(x, a)hiei)
−si(x, a)hi

�
− l(x, a)} (12)

is naturally monotonic, and the “good” one. In other words, this scheme is obtained
from (4) by using only the backward and forward approximations of the partial deriv-
atives and by choosing the good one according to the dynamic of the optimal control.

3 Scheme already suggested by Prados and Faugeras [20,17].
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Because of space limitations we omit the details of the implementation of this scheme
and refer the reader to [23,17]. Let us just note here that the approximation scheme
proposed by Sethian and Vladimirsky is different from the one presented here: [26] is
based on the use of more simplexes than those contained in the immediate neighbors
of the considered site, unlike the scheme (12). Moreover, our scheme is consistent (see
[17]).

Our scheme suggests then that the reconstruction must follow (track) the optimal
trajectories, if we want to be able to recover the viscosity solution with a one-pass al-
gorithm. Sethian and Vladimirsky [26] demonstrate this fundamental aspect intuitively
and experimentally. As opposed to the first work [30,25] in which the causality was
directly related to the gradient lines, in [26] the causality property is based on optimal
trajectories. Nevertheless, Sethian and Vladimirsky’s causality is based on the fact that
the solution is strictly decreasing along the optimal trajectories. This property is verified
for the equations considered in [26]

sup
a∈A

−f(x, a)a · ∇u − 1 = 0, ∀x ∈ Ω, (13)

since for these equations the cost function is l(x, a) = 1 > 0. Nevertheless, for any
equation of type (4) such that the cost function l takes some negative values, this
monotonicity property does not hold: the solution can arbitrary and alternatively in-
crease and decrease along the optimal trajectories. Also, in the general case the causality
property used by Sethian and Vladimirsky [26] does not apply.

Finally, let us emphasize that as it was shown in [17], most of the Shape From
Shading equations have generally cost functions of arbitrary sign. This is the case
for example for the classical Rouy/Tourin Hamiltonian HR/T (where, lR/T (x, a) =
I(x)

√
1 + |a|2 − γ) and for the perspective SFS Hamiltonian Hpers

P/F [20] which fit in
the class of Hamiltonians given by equation (4).

In the following, we slightly reinterpret the FMMs; we generalize and weaken the
principle of causality. Later on we propose a new practical causality property which
extends the one used by [26] to any equation of type (4).

4 Update Ordering for “Single Pass” Method

4.1 Related Work and Basic Ideas

For the moment, let us assume that we know the optimal trajectories y∗
x. We can then

recover directly the solution of equation (5)-(6)-(7) by going back up these curves:

V (x) =
� τx(α∗

x)

0
l(y∗

x(τ ), α∗
x(τ ))dτ + ϕ(y∗

x(τx(α∗
x))). (14)

Then from the numerical point of view, we can reconstruct the solution by a direct in-
tegration along the optimal trajectories. This idea corresponds roughly to the method
of characteristic strips introduced in the Shape from Shading literature by Horn [10]
for solving the Eikonal equation. In this work, the knowledge of the optimal trajecto-
ries was implicitly replaced by Neumann conditions. For removing some “resticking”
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problems and for improving the stability of the method, we can go back up all the opti-
mal trajectories simultaneously and not separately. More precisely, the idea is then the
following. We assume that the solution is known inside a closed curve Ct (t ≥ 0) which
propagates along the optimal trajectories. Basically, the curves Ct must verify: for all x
in Ω, the optimal trajectory y∗

x always intersects the curve Ct, but only once for each
t ≥ 0. Moreover, if t1 < t2 then Ωt1 ⊂ Ωt2 (where Ωt is the open subset such that
∂Ωt = Ct). This idea corresponds exactly to the one introduced by Bruckstein [3] for
solving the Eikonal SFS problem. To alleviate some instability and topological prob-
lems [16], the best way is then to use the “level set” method introduced by Osher and
Sethian [16] or Fast Marching techniques [25].

4.2 Curve Propagations and Associated Costs

Now, we assume that we do not know the optimal trajectories. This is usually the case
in most of the applications, in particular in Shape From Shading. In this case, we must
reconstruct simultaneously the solution u and the curves Ct. In this way, we are sure
that the updates of the values of the solution propagate in the same way as the optimal
trajectories. The idea is then the following: let us assume that we already know Ct and
the values of the solution on Ωt. Now, if we want to compute the values of the solution
u on Ωt+dt, we need to compute explicitly these values, but also we need to compute
the new curve Ct+dt. In order to practically handle the curves Ct, we define them as the
level sets (i.e. the isocontours) of a “cost” C(x) defined on Ω into R. For example, in
the basic “Fast Marching Method” for the Eikonal equation [30,25], the chosen cost C
is equal to u. Also, the curves Ct correspond to the isocontours of the solutions. In other
respects, in a sense the function z̃ introduced in [13] could be consider as such a cost,
(nevertheless let us note that z̃ does not depend on x but on x̃ [which himself depends
on x and u(x)]; see [13]).

In order to reach our goal, let us remind an important (but too many times neglected)
difficulty encountered when we deal with equations of type (5)-(6)-(7): the optimal
trajectories y∗

x and the solution V significantly depend on the set Ω. Therefore, in the
sequel, when it is relevant, we indicate the associated set by specifying it by an index
as follow: α∗

x = α∗
x(Ω), y∗

x = y∗
x(Ω), τ∗

x = τ∗
x(Ω), V = VΩ .

Finally, to be completely rigorous, if the optimal trajectories depend on the set on which
we work, then the curves Ct and their associated cost C must also depend on it. Also, we
will use the same type of notations as above for the cost C (nevertheless, in the sequel
we use the notations Ct and Ωt associated with the iso-curves only in reference to Ω
and equation (5)-(6)-(7)).

The above remark is mainly motivated by the following idea. First, let us remind
that we do not know the cost CΩ on Ω \ Ct (since this is equivalent to knowing all the
propagating closed curves). Moreover, it seems reasonable to assume that we are not
able to directly compute CΩ even on a very close neighborhood N of Ωt (N ⊂ Ω).
In effect, any point x ∈ N \ Ωt (even if it is extremely close to Ct) can have an
optimal trajectory y∗

x(Ω) which goes away very far from Ct before coming back to it.
Nevertheless it is reasonable to assume that we are able to compute (an approximation
of) CN on a close neighborhood N of Ωt (let us remind that CN is the cost associated
to the equation (5N )-(6N )-(7N )).
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For example in [26], the neighborhood N (considered above) corresponds with the
set of the “Considered” points. In the classical methods, the cost C corresponds with
the solution of the considered equation. Also, the values V (x) computed for all the
“Considered” points x are (numerical approximation of) the cost CN (x).
Later on, from the knowledge of the cost CN on the neighborhood N of Ωt, we would
like to find Ct+dt such that Ct ⊂ Ct+dt ⊂ N . Also, if the costs verify the hypotheses

(H1) CW(x) is decreasing along the optimal trajectories y∗
x(W), i.e. : for all x and

τ > 0 (small enough) CW(y∗
x(W)(τ)) ≤ CW(x),

(H2) it is decreasing with respect to W , i.e.:
if Ω1 ⊂ Ω2, then CΩ1(x) ≥ CΩ2(x),

(H3) let x1 ∈ Ω1 ⊂ Ω2. If y∗
x1(Ω2)(.) stays in Ω1 then CΩ2(x1) = CΩ1(x1),

then we have the following

Proposition 1. Let us assume that the hypotheses (H1), (H2) and (H3) hold. Let Ct+dt

be such that Ct ⊂ Ct+dt ⊂ N . Therefore for all x in Ωt+dt,

CΩ(x) = CN (x).

In other words, CN coincide with CΩ on Ωt+dt.

Proof. Let x in Ωt+dt. By the hypothesis (H1), the optimal trajectory y∗
x(Ω) stays in

Ωt+dt. We then apply the hypothesis (H3) with Ω1 = Ωt+dt and Ω2 = Ω. We have
therefore CΩ(x) = CΩt+dt

(x). Since we have Ct+dt ⊂ N ⊂ Ω, then by the hypothesis
(H2), CΩ(x) = CΩt+dt

(x) = CN (x). 
�
Now, let us consider the problem from the discret point of view. We assume that the

set Ω is “covered” by a grid of points. We divide the set of the grid points into three
classes (as for the classical “Fast Marching Methods” [26]): Accepted A, Considered
C, Far F. The Accepted points are the ones in Ωt (i.e. inside Ct); we therefore suppose
that we already know the values of the solution for all the grid points in A. The set of
Considered points C is the set of the adjacent points to the Accepted points. The union
C ∪ A is the discrete version of the neighborhood N of Ωt. The set of the Far points
corresponds to the other points of the grid.

Let us remind that we know the values of the solution of (5)-(6)-(7) on Ωt and that
we want to compute the ones on Ωt+dt. Also, this requires the preliminary computa-
tion of the new curve Ct+dt. From the practical and discrete point of view, we want
to extend Ωt to Ωt+dt in such a way that Ωt+dt \ Ωt contains a single point of the
grid. This is therefore equivalent to finding the point x0 of C which has the lowest cost
CΩ (CΩ(x0) = minx∈C CΩ(x)) and then we transfer it to the set of Accepted points A
(which is then enlarged). Also, if the costs C verify the hypotheses (H1), (H2) and (H3),
then the following proposition allows to find this point x0 (assuming that we know the
costs CN (x) for all x in N ).

Proposition 2. Let us assume that the costs C verify (H1), (H2) and (H3). The point
x0 ∈ C which has the smallest cost CΩ(x0) is the point x of C which has the smallest
cost CN (x); Also, CΩ(x0) = CN (x0).

Proof. Let x0 be the point in C which has the less cost CΩ(x0). Let Ct+dt be the
level set of the cost CΩ associated to the value CΩ(x0). Since Ct ⊂ Ct+dt ⊂ N , By
Proposition 1 we have CΩ(x0) = CN (x0).
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Let x be any point in C. By hypothesis (H2), we have CN (x) ≥ CΩ(x). By definition
of x0, we have CΩ(x) ≥ CΩ(x0). Therefore, CN (x) ≥ CN (x0). 
�

Thus if (H1), (H2) and (H3) hold, then from the numerical point of view, for extending
Ωt to Ωt+dt, we have just to compute the costs CN (x) for all x in the C and to search
the point x0 in C which has the smallest cost CN .

4.3 Proposed Costs

At this stage, let us remind that the method we propose here needs the explicit com-
putations of some approximations of the cost C and of the solution V . Since our final
objective is only to compute some approximations of V , the computations of the ap-
proximations CN can appear useless and expensive, and so decrease the interest of the
method. It seems therefore reasonable and quite relevant to search and use some costs
CW which are directly related to the values of the solution VW , as in the Eikonal case
and the classical FMMs.

Example 1. In [26], Sethian and Vladimirsky consider equations of type (13), i.e. some
equations (5) with f(x, a) = f(x, a)a and l(x, a) = 1. So the viscosity solution
V of (13) (complemented by some adequate boundary conditions) is V (x) = τ∗

x +
ϕ(y∗

x(τ∗
x )). Thus, if the boundary condition ϕ imposed on T is a constant function

(ϕ(x) = c ∈ R for all x in T ) then V (x) = τ∗
x + c. In this case, it is therefore ju-

dicious and reasonable to choose CW(x) = τ∗
x (W). VW and the CW are thus directly

related; Consequently the curves Ct correspond with the isocontours of the solution of
(13). Also, the costs CW verify trivially the hypotheses (H1), (H2) and (H3).

In the particular case considered by Sethian and Vladimirsky [26] (Example 1), the
cost directly related to the values of the solution is trivial. Nevertheless in the general
case, in particular for HJB equations with a cost fonction l(x, a) depending on a or with
an arbitrary sign, we need to work a little more.

Let us remind that generally the isocontours of the solution cannot play the role of
the curves Ct since the values of the solution u are not decreasing along the optimal
trajectories (i.e. for all x, the function t �→ u(y∗

x(t)) is not decreasing). A second ba-
sic idea could be to choose systematically the cost C(x) = τ∗

x since this cost verifies
naturally the hypotheses (H1), (H2) and (H3). Nevertheless, computing this cost can be
very difficult, and generally, it is really not related with the solution u of the considered
equation. In order to define an adequate cost in the general case, let us introduce the
following definitions.

Let ψ be a subsolution of (4), i.e.

H(x, ψ(x)) ≤ 0, ∀x ∈ Ω.

In [17], Prados and Faugeras describe the subsolutions of the main classical SFS equa-
tions. For example, for the classical Rouy/Tourin Hamiltonian HR/T (equation (3))
ψ(x) = − 1

γ l · x is subsolution.

Let Z(x) be the multivalued map [4] on Ω defined as:

Z(x) = {p ∈ R
N : H(x, p) ≤ 0}.



328 E. Prados and S. Soatto

Let δ : Ω × R
N → R be the support function [4] of the set Z̃(x) = Z(x) − ∇ψ(x),

i.e.:
δ(x, p) = max{pq : q ∈ Z̃(x)}.

Finally, for all x1, x2 in W, let us denote

LW (x1, x2) = inf
ξ∈Ξx1,x2

�� 1

0
δ(ξ(t),−ξ̇(t))dt

	
(15)

where Ξx1,x2 is the set of ξ(t) ∈ W 1,∞([0, 1], W) s.t. ξ(0) = x1 and ξ(1) = x2.
A complete study and description on these notions can be found in [17,4,19,18]. In
particular, in [17], it is proved that

V (x) = ψ(x) + min{LΩ\T (x, z) + ϕ(z) − ψ(z) | z ∈ T }. (16)

is the unique Singular Discontinuous Viscosity Solution (SDVS) of (5)-(6)-(7), see
[17]. Let us emphasize here that δ(., .) and so LW are non-negative. Also LW(x, z) is
a semi-distance.

These results and notations in hand, we can now define an appropriate cost for our
“generic” HJB equation:

CW (x) = LW(x, z∗x),
where z∗x is the optimal z of (16). This cost is trivially decreasing along the optimal tra-
jectories and it verifies naturally the assumptions (H1)-(H2)-(H3). Finally, if the bound-
ary condition ϕ verifies “ϕ − ψ is constant on the target T ” then the viscosity solution
VW is directly related to CW : it coincides with CW + ψ (up to the addition of a con-
stant). Also, the isocontour of the cost C(x), and so Ct, corresponds with the isocontour
of the V − ψ.

5 Proposed Algorithm

The grid points are divided into the three classes (as in the basic “Fast Marching
Method”): Accepted A, Considered C, Far F (see above). ψ is a subsolution of H(x,
∇u) = 0 as defined in Section 4.3. U defined on the whole grid is the approximation of
the solution of equation (5)-(6)-(7). Ũ defined on the Considered points is the approx-
imation of the solution of equation (5N )-(6N )-(7N ), where N is the neighborhood
associated to A ∪ C.

Algorithm 1.
1. Start with all the grid points in Far.
2. Move the grid points on the boundary ∂Ω and on the target T to the Accepted. For

all these points x ∈ T , put U(x) = ϕ(x), for the other points put U(x) = +∞.
3. Move all the grid points x ∈ Ω adjacent to the Accepted points into Considered

and for each of these points, evaluate Ũ(x) by using the update scheme (12).
4. Find the grid point x0 ∈ C with the smallest value Ũ(x) − ψ(x). Move x0 from

Considered to Accepted; Put U(x0) = Ũ(x0).
5. Move from Far into Considered, all the Far points which are adjacent to x0.
6. Re-evaluate Ũ by using the scheme (12), for all the Considered points adjacent x0.
7. If the set C is not empty, return to item 4.

The complete proof of the convergence of the computed numerical solution toward the
viscosity solution is postponed to a following paper.
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a) b) c) d)

Fig. 1. a) original surface (groundtruth); b) image synthesized from a); c) surface reconstructed
by using the classical causality; d) surface reconstructed by our algorithm

a) b) c)

Fig. 2. a) vertical section of Fig.1-c); b) vertical section of Fig.1-d); c) vertical section of the
surface reconstructed by the iterative algorithm after three complete iterations

6 Numerical Experiments

We have implemented our method for the generic SFS Hamiltonian Hg (2). As a con-
sequence our algorithm applies to any modeling considered in [21,22].

Because of space and since the contributions of this paper concern mainly some nu-
merical improvements, here we illustrate our results only with the classical Rouy/Tourin
Hamiltonian HR/T (3). We also only deal with synthetic images; more exactly with the
classical example of the Mozarts face [32]. Moreover as the theory suggests [19], in our
experiments we assume that we know and we use the values of the solutions at all its
local minima.

Mainly, the differences between our new method and the previous FMMs are two
fold. 1) We propose a new causality principle (the updating order is related to the level
sets of u − ψ instead of the ones of u; u being the solution of the considered equation).
2) We propose also to use an approximation scheme (already described in [17]) which
is different from the previous ones proposed in the FMM literature. Here, we focus on
the improvement due to the change of the causality. Figure 1 shows: a) the original sur-
face; b) the image synthesized from (a) with a single far light source (l = (−0.3, −0.3);
see page 320) and by using an orthographic projection; c) the surface reconstructed by
our algorithm [our scheme + our causality]; d) the surface reconstructed by using the
classical causality [our scheme + replacing ψ by 0]. Let us note that due to the black
shadows, we are not able to completely recover the original surface. Nevertheless, the
improvement involves by the change of the causality is quite visible. To better show the
differences between the surfaces 1-c) and 1-d), we display vertical sections of them in
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Figures 2-a) and 2-b). In Figure 2, the red curves represent the sections of the computed
approximations and the green curve is the section of the groundtruth. In other respects,
Figure 2-c) displays a vertical section of the surface reconstructed by the corresponding
iterative algorithm [22,17] after three complete alternating raster scans similar to those
used in [9,29]. In this example, the number of pixels considered is around 20200. With
our FMM method, the computation of the solution requires around 40500 updates. With
the iterative version, around 76000 updates are required for computing an approxima-
tion of the solution with an error of the same order of magnitude. About computational
time, our FMM method returns this result after 6 seconds (computer: Intel Celeron
1.5GHz; Let us note that we do not have tried to optimize our code yet). The iterative
version requires approximatively the same computational time (7 seconds). Many more
numerical results and qualitative and quantitative comparison tests can be found in our
forthcoming associated papers [23]. Also, we postpone to [23] the comparisons of the
results obtained with Prados and Faugeras’s scheme with those obtained with the other
ones.

7 Conclusion

In this article, we revisit the classical “Fast Marching Methods” [30,25,26,8] and we
extend them to a wide class of HJ equations. In particular, our method can deal with HJB
equations with arbitrary signs cost functions when the previous methods just deal with
positive cost functions. Also, in the cases where the solution does not decrease along the
optimal trajectories, we correct the causality property by using a subsolution. Finally,
our method is generic and it applies indifferently to all the SFS equations obtained by
the most recent and relevant modelings of this problem [17].
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