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Abstract

Shape From Shading is known to be an ill-posed prob-
lem. We show in this paper that e model the problem
in a different way than it is usually donmore precisely by
taking into account thé=r? attenuation term of the illu-
mination, Shape From Shading beconcesnpletely well-
posed Thus the shading allows to recover (almost) any  Figure 1. Example of Shape From Shading ambiguities:
surface from only one image (of this surface) without any  the crater illusion [20]. We see two craters, a small and a
additional data (in particular, without the knowledge of the ~ big one. We can turn these craters into volcanoes (although

heights of the solution at the local intensity “minima”, con- upside down) if we imagine the light source to be at the
trary to [6, 23, 8, 25, 12]) and without regularity assump- bottom of the picture rather than at the top. This image is
tions (contrary to [17, 10], for example). More precisely, actually that of a pair of ash cones in the Hawaiian Island,
we formulate the problem as that of solvingnew Partial not that of a pair of craters.

Differential Equation (PDE), we developcamplete mathe- _ ) _ ) )
matical studyof this equation and we design a npvovably ~ Shadowing of an object, seen from a single viewpoint re-
Convergent numerical methoaina”y’ we present results of veals its exact 3D structure. This is the “Bas-relief Amb|gu-

andrealimages. in this paper that all the parameters of the light source, the

surface re ectance and the camera are known. Neverthe-
less this knowledge is not suf cient to get rid of some con-
. cave/convex ambiguities. In effect, even with completely
1. Introduction and related work controled experimental conditions, the classical SFS meth-
ods are hampered by this kind of dif culties, e.g. see
Shape from shading (SFS) has been a central problen{16, 25, 23]. For example, let us focus on the “Eikonal”
in the eld of computer vision from the early days on. The framework used in [25]. Rouy and Tourin assume that the
problem is to compute the three-dimensional shape of a surcamera performs an orthographic projection of the scene,
face from one image of that surface. It is well known that that the surface is Lambertian and that the light source is at
this problem is ill-posed. In particular a number of articles in nity in the direction of the optical axis of the camera. In
show that the solution is not unique [19, 16, 25, 3, 23]. This this situation, a concave/convex duality clearly appears. For
problem has often been illustrated by such concave/convexexample, the surfaces represented in Figures 2-a),2-b) and
ambiguities as the one displayed in Figure 1. In this gure, 2-c) yield the same images. The surfaces in b) and c¢) have
the ambiguity is due to a change in the estimation of the pa-been obtained from the surfaces a) by applying horizontal
rameters of the illumination. In fact this kind of ambiguity symmetries. Today, this concave/convex ambiguity is well
can be generalized: in [3], Belhumeur and colleagues proveunderstood. It is due to the existence of singular pdjnts
that when the illumination directidnand the Lambertian  see [25]. The presence of the singular points is due to the
re ectance (albedo) of the surface are unknown, then the modeling. In particular it is due to the fact that the authors
same image can be obtained by a continuous family of sur-

faces. In other words, they show that neither shading nor  2the singular points are the pixels of the image corresponding to points
of the surface such that the surface normal coincides with the light direc-
1In the case of a distant light source. tion. These points have maximal brightness.




assume that the scene is illuminated by a light source lo-2. Modeling of the SFS problem

cated at in nity (or to the fact that they neglect ther?

attenuation term in the brigthness equation, see the remark |n this section, we recall the image formation process. To
of section 2). This ambiguity holds even when the light do this, we will follow a light ray from the optical system to
source direction does not coincide with the camera axis. Itthe light source. For more details we refer to [9].

happens in the orthographic SFS [25, 6] as well as in the  The image brightness (assumed to be equal to the image

perspective SFS [23] problem. For a complete and genericirradianceE;) is substantially proportional to the surface
study, the reader can referto [23]. Neverthel@sspntra- radiancé L:

diction with all these results, we prove in this paper that the Ei = 1L ¢; (1)
SFS problem can be well-poségkistence and uniqueness
of the solution). Not surprisingly, this result is obtained by
considering a more realistic image formation model.

where the parametér depends on some intrinsic parame-
ters of the camera (such as the diameter of the lens, the fo-
cal length, etc...). Next we assume that the scene is il-
luminated by a single point light source and that there are
not interre ections. In this case, the relationship between
the radiance. s of a point of the surfacewith the surface
normal (at this point) and the light source direction is de-

a) b) | o) scribed by the Bi-directional Re ectance Distribution Func-
tion (BRDF), see [9], which is constant forlaambertian

Figure 2. The concave/convex duality in the Eikonal surface: L. = ®E ) 5

framework: The surfaces a), b) and c) all yield the same ST oy, (2)

image. where®is the albedo anH is the irradiance of the surface.

Finally, the irradianceées of the surface point is given by

The results shown in some recent SFS surveys, e.g., [28](868 [9D): COSLk
in the traditional framework, i.e. Lambertian surface + light Es= 1o 2“’ 3)
source at in nity + orthographic projection, are quite unsat- ) ) ) -r , ,
isfactory, even with very simple synthetic images verifying wherel g is th? intensity of the light source|s t.he d|§tance
the modeling hypotheses. Some authors have attempted tgetween the light source and the surface point,jarisl the ,
improve the applicability of the SFS methods by modeling angle petween the object surface normal and the direction
the physics of the problem in a more realistic manner. For t© the light source. _ _ o
example, Lee and Kuo [13] consider some non-Lambertian  C©Mbining (1), (2) and (3), the brightness image is given
cases and several authors [13, 27, 23, 26, 4] amongst othPY" cosL
ers, take into account the perspective effect. Nevertheless, Ei=% zp' ; (4)
we feel that this work is in a sense premature since they ex- ) ) r
pand upon an ill-posed problem without changing its status. Where¥is a constant coef cient related to the parameters
We show in this paper how a simple change in the model- of the imaging system, the intensity of the light source and
ing of the problem can make the SFS problem well-posed th€ albedo of the surface.

(modulo some weak prior on the behaviour of the solution gomark:
near the image boundary). face, the variations of the brightness of the image is essentially
In detail, we assume that the camera is a pinhole and that due to those OtOSM and we can assume thais constant. In

the light source is located at the optical center. Nevertheless, this case, the brightness image is% {s a constant coef cient)
contrary to [23, 22], we do not neglect ther? attenuation
term (see section 2). As proved in section 4, this “new” term
makes the problem better posed. In particular, the notion
of singular points disappears as well as the concave/conve
duality.

After having derived anew explicit equatiorfor this
modeling (sections 2 and 3), we perforntamplete the-
oretical studyof this equation (section 4). We then design
a newprovably convergent algorithrallowing to compute
numerical solutions of the problem (section 5). Finally, we
demonstrate the practical relevance of our new SFS metho
by displaying some experimental results (section 6). 3i.e. the radiance of the surface in the direction of the viewer.

If the light source is located far enough from the sur-

Ei = ¥ cosy: (5)

Contrary to most of the other classical SFS methods
)iwhich model the problem with far point light source and
aorthographic projectio, in this paper we model the cam-
era as gpinhole and we assume that the scene is illumi-
nated by a point light sourdecated at the optical center
Note that, this modeling is quite relevant for many applica-
tions. In effect, it approximately corresponds to the situa-
c}ion encountered in some medical protocols like endoscopy




[14, 22], and to the situation encountered when we use a4. Shape from Shading can be a completely
simple camera equiped with a ash [22]. well-posed problem!

3. Mathematical formulation of the SFS prob-  4.1. Related work

lem
To our knowledge, only Okatani and Deguchi [14], and
In this section, we formulate the SFS problem as that of Prados and Faugeras [23, 22] deal with the model consid-

solving a Partial Differential Equation (PDE). We describe €r€d here (pinhole camera and light source at the optical
an explicit equation arising from equation (4) and we detail center).
the associated Hamiltonians. In [14], Okatani and Deguchi do not formalize the prob-

Let - be an open subset 2. - represents the image lem with explicit PDEs (in particular equation (8)), and the
domain, e.g., the rectang]®; X [E]0; Y [gAs in [22], we  associated Hamiltoniart$e . Let us emphasize that stating

represent the scene by a surf&éez S(x);.x 2- the problem as that of solving PDEs is a fundamental pre-
which can be explicitly parameterized by using the func- jiminary step for a theoretical study, for example for proving
tionS:- ! R®denedbyS(x) = % (x;if): the uniqueness of the solution. Also, Okatani and Deguchi

do not address at all the theoretical question of existence
and uniqueness of a solution. They only propose a humer-
ical method based on the propagation of the iso-distance
fu (x) _ contours, turning the static equation (4) into an evolution
X+ fz equation.
In [23, 22], Prados and Faugeras deal with equation (5)
Fory 2 R3, we denoté. (y) the unit vector representing the  but not with equation (4). They neglect ther? term. By
light source direction at the poiyt Here we assume that simplifying the modeling, they hope to simplify the prob-
thelight source is located at the ochaénter, so the vector lem. On the contrary, they make it more complex. In effect,
L(S(x)) isequalto: L(S(x))=1= jxj2+ f2(j x;f): as explained in [23] in this context the problem becomes
Next we assume that the surfaceLismbertian. If we ill-posed. Due to the existence of the singular points, the
denotd (x) = EL(/AX) , the brightness equation (4) becoies  uniqueness of the solution does not hold. To get around this
dif culty, Prados and colleagues [23] characterize a max-
imal solution by using sophisticated mathematical tools.
They propose a viscosity method which does not necessar-
ily require boundary data, in the sense that they able to com-
Since cosl; is the dot product L(S(x)) ¢j28<(;i and pute a solutiohjust by xing the height of the solution at
r = fu (x); we obtain from (6) the following PDE: one singular point. Nevertheless, even if they obtain excel-
D lent numerical results with real images containing a single
[f2jr ujz+(r uex)?]1=Q(x)2+ u2 ., _ singular point [22], they are unable to recover a surface con-
u i ut=0() taining several local “minima” such as the ones in gure 3-I
p - without additional data ( they need to know the values of
whereQ(x) = * f2=(jxj> + £2). Let us assume that the hq go|ytion at all the local “minima”).
surfacesS is V|§|ble (i.e. in front of the optical center); Aware of the major role played by the singular points,
conse_queptl}u IS nonnegative _(see [22]). We can _there- Oliensis and Dupuis [17] and Kimmel and Bruckstein [10]
fore simplify equation (7) by using the change of variables " X
v = In(u): propose some glo_bal meth(_)ds (based on the nature of
these particular points) allowing to recover sosraooth
el 20 J(X)p f2jr v(x)j2 + (1 v(x) ¢X)2 + Q(x)2=0: and constrained surfade@n the case where these surfaces
®) exist). In [15], Okatani and Deguchi use the isophotes of
whereJ (x) = ') is a positive function. To this equation, the image for classifying part of the singular points. They

f > 0 denotes the focal length. For such a surf&ea
normal vectom (x) at the pointS(x) is given by:

fu (x)

nx)= frux)i X+ 2

X; ru(x) ¢x +

| (x) = 023” : 6)

I (x)f 2

we associate t%(lé)amiltonian also suggest how to use the informations they obtain for
D improving the global methods of Dupuis and Oliensis [17]
He(gu;p)= i e 2"+ J(x) f2jpj2 +(pex)2+ Q(x)2: and of Kimmel and Bruckstein [10]. Note that although the

papers [17, 10, 15] are based on an orthographic camera

4The two columns of the JacobidlS (x) are tangent vectors 18 at

the pointS(x). Their cross-product is a normal vector. “Which can be different from the original surface.
5We assume that all the parameters of the camera, of the light source  8They consideiC2 surfaces with second order derivatives satisfying
and of the surface are known. Therfét@and sad (x) are known. some properties: for example, Kimmel and Bruckstein [10] consider sur-

6Note: in equation (6)r u andu depend orx faces represented by Morse functions (with non-degenerate Hessians).



and a single distant light source, the work therein can eas-our SFS equation, the notion of state constraints is roughly

ily be extended to the more realistic modeling of [22] by equivalent to ti(x) increases wher tends to@ "°. Let

using the tools developed in [23]. Nevertheless in practice us emphasize that this constraint is in fact not a strong one

(because of noise, of errors on the parameters and of incorsince for example, the condition is satis ed as soon as the

rect modeling) the SFS equations such as those considerednage to be processed contains an object of interest in front

in [17, 10, 15, 22] (and more generally such as those de-of a background.

scribed in [23]) do not have smooth solutions! Also, these  In order to prove the uniqueness of the solution with state

global methods are quite disappointing when applied to realconstraints, we have the theorem

images. . Theorem 1 Let- be bounded and smooth enotylandH :
Opposite to all the previous work [25, 23, 22,17,10,15] . ¢ R¢ R? 71 R continuous. If the hypotheséd1)-(H2) and

which are hampered by the existence of the singular points,the boundary hypothes¢si3)-(H4) (described below) hold, then
let us stress thahe notion of singular points does not make equationH (x; u(x);r u(x)) =0, 8x 2 - , with state constraints

any sense as soon as we do not neglectlthé attenua- on@ has a unique (discontinuous) viscosity solutioran
tion term As a consequence the dif culties described above 11,4 hypotheses (H1), (H2), (H3) and (H4) ag® < R <
completely disappear. +1 ,there existsng (t) ! Owhent! Os.t.

(HH U p) i HEGV;p), °r(Ui Vv),8x2 - (°r > 0);
(H2)jH(x;u;p)i H(y;u;p)j - mr(jxi yj(1+jpj)).8xy 2 -;

The results presented in this section are based on the nol 2 R? being a neighborhood @ ,
tion of (discontinuous) viscosity solutions of the Hamilton{H3)jH (cu;p) i HOGu;q)j- me(jpi ), forallx 2 j;
Jacobi PDEs. Let us recall that the viscosity solutions atel4) H (x;u;p) i +1 uniformly with respectta 2 | andp
solutions in a weak sense and that the classical (differen- Pt
tiable) solutions are particular viscosity solutions. For more
details about this notion of weak solutions, we refer the foralli R v u- Randp;q2 R*. _
reader to [1]. For an intuitive approach connected to com- e can prov¥ that Theorem 1 applies to the SFS Hamil-
puter vision, see for example [23] and references therein. fonianHe as soon as the brightness imdges differen-

Since the CCD sensors have nite size, we assumethat tiable and veri es: there exist > 0andM s.t.+- I (x) -
is bounded In this case, it is well known that the Hamilton- M andjr I(x)j - M. These assumptions are reasonable
Jacobi equations of the forf (x; u(x):r u(x)) = 0 , 8x 2 because with our modeling the brightness image is bound_ed
- (and therefore our new SFS equation (8)) do not have and t_here are no bla(_:k shadows. Hence the SES equation
a unique viscosity solution [1]. Nevertheless, for ensuring (8) With state constraints on the boundary of the image has
the uniqueness, it is suf cient to adétate constraintson a unique wsco_sny solution. T_herefore, if the actual surface
the boundary of the image. Yet, in [23] (but also implicitly, Producing the image roughly increases whegets close to
in [6]) it is shown that the idea of state contraints provides a e boundary of the image, then we are able to characterize
more convenient notion of boundary condition than Dirich- &nd recover itwithout any boundary data! Let us emphasize
let's or Neumann's. The “state contraint” is a boundary con- that this uniqueness result and the correspondence of the

4.2. Well-posedness of the SFS problem

in all compact subset @R?;

dition which is reduced to solution with the actual surface hold even when the actual
surface has several local minima on In particular, we do
HOGux);r u(x)), 0 on@ ; not need to impose constraints at the singular p&ints

other words the concave/convex ambiguities linked to the
in the viscosity sense (see for example [1]). This constraint presence of the singularities completely disappear.
corresponds to the Dirichlet's conditions

_ 5. A provably convergent numerical method
8x2@; u(x)="'(x) with' (x)=+1

. . . . : In [14], Okatani and Deguchi describe a numerical
in the viscosity sense. One may see adding state constraints ; .

: ; ) .~ method based on the propagation of the equal-distance con-
to a PDE as a way of choosing the largest viscosity solution.

The interest of the notion of state constraints is twofolds: 1) :%L:]rst.h/gs ggi?kﬁt:r']n;,g?uﬁxn;ehgtilg;ogéze Eék%r;?el ; qSuS;/e
in contrast with the Dirichlet and Neumann boundary con- - (hey 9 q prop

ditions, the state constraints do not require any‘ija)afor 10A more rigorous description of this constraint is detailed in our tech-
nical report [24]. Because of space, we cannot develop it here.

9The Dirichlet (respectively, Neumann) boundary conditions require ! Theorem 4.6 of [1]- “smooth enough” means 2 W21 .
the knowledge of the values of the solution (respectively, of its normal 12 We detail completely the proof in our technical report [24].
derivative) on the boundary of the image. In the SFS problem such data is 3Let us recall that the notion of singular points does not have sense in
rarely available. this setup!




it by using a level-set method [18]. Although the method of whereA is the closed unit ball oR? (f .(x; a) andl.(x; a)
Okatani and Deguchi is rigorous, it suffers from an impor- are detailed in our technical report [24], because of space).
tant drawback because it requiresiaitial equal-distance ~ Following [23], we thus approximate c (X; r u(x)) by:
contour. The consequences are twofolds. First, it decreases

the applicability of the method since such data (initial equal-  He (X r u(x)) ¥

distgnce contour and height of this contour) are usyally not x Ui u(x+ si(ca)hil) . )
available. Second because these data, when available, aréiP (i fi(x;a) s (xa)h i le(x;a)
noisy, they in fact may perturb the reconstruction! This =t ©)

comes in contrast with our approach where the character-
ization of the solutiqn (and therefo_re its computation) does \ heref {(x;a) is thei™ componant of ¢(x; a) ands; (x; a)
not require any additional data! This also shows the interestjs jts sign. Thus, we obtain the approximation:
of the theoretical analyses such as those presented in sec-
tion 4. He Ocu(x)ir u(x)) % j € 240 4

We next propose a new numerical method. Contrary to s
[14], it does not require any datéin particular, it does not  gyp (i fi(xa) u(x) i u(x+si(x;a)hit) i le(xa)
require an initial equal-distance contour). Moreover, our a2A i Si(x;a)hi
method isprovably convergentWe prove that our approxi- (10)
mation scheme istable, consisterdand thatheir solutions
converge toward the unique viscosity solutmirthe prob-
lem. We then prove that the numerical solutions computed
by our iterative algorithm converge toward the solutions of
our scheme. Let us note that Okatani and Deguchi do not

)

By multiplying (10) by a ctitious time increment ¢,(x) >
0 and by addingu(x) andj u(x) we obtain the scheme
S(%; x; Ux); u) =0 with S de ned by:

S(¥xtu) =t ¢oé?

even consider such questions whose practical importance ( I
should not be underestimated because, for example, they al- . o x ifi(x;a)j
. . . +sup i 1 ¢¢ ——= u(x)
low to certify algorithms, to guarantee their robustness and a2 A o1 hi
to describe their limitations. . . ) ) )
x ifi(x;a)j 1
i¢e 7h-, uix+ si(x;a)hik )i ¢¢k(xa)  (11)
5.1. A new approximation scheme i=1 '

In this section, we propose a nite difference approxi-
mation scheme. The reader unfamiliar with the notion of 5 1 5 Stability of our approximation schemes
approximation schemes can refer to [2]. Let us just recall

that, following [2], an approximation scheme is a functional D€ nition: ~ We say that a schenis stable if for all xed
equation of the form mesh sizé.it has solutions and if all the solutions are

bounded independently ¥f{see [2]).

S xUx)u)=0  8x2-; For proving the stability of our scheme, we require mainly
which “approximates” the considered PDS.is de ned to ensure the monotonicity of the scheme (i.e. the function
ONME - £REB(@ intoR, M = R" £ R* and u 7! S(¥;x;t; u) is nonincreasing) and that the function

%= (hy;hy) 2 M de nes the size of the mesh that is [ 7' S(*zX U is nondecrleési.ng. . _
used in the corresponding numerical algorithrBg(D) is Here, the functiort 7! S(¥%;x;t;U) is obviously nonde-

the space of bounded functions de ned on aBet creasing. But the function 7! S(%2; x; t; U) is not monoto-
nous for any¢ ¢(x). In order to satisfy this condition, we
5.1.1 Design of the approximation scheme choose .
. . . P
Let us consider the functiod ¢ : - £ R? 7! R? given by: ¢ox)= A ifitcag)ji=h
P
He(x;p) = J(X) f2jpj2+(pex)2+ Q(x)2: ) .
c(xp) () JpE+ (p )%+ Q) where ag is the optimal contrdf' of (9). We can then
We therefore have prove® the stability of our scheme:
He(x;u;p) = j & 2 + He(x;p): Proposition 1 If there existt and M such that8x 2 -,

As Prados and Faugeras in [23], we can prove that 0<% 1(x)- M,then the schem@is stable.

14.e. thea in A for which the maximum of (9) is reached.

He(x:p) = Salzjafi fe(xia) epi le(x;a)g 15 Details of proofs can be found in our technical report [24] or in [21].



5.1.3 Convergence toward the viscosity solutions

By construction, our scheme (11) is consistent (following
[2]) with the SFS equation (8) as soon as the brightness im-
agel is Lipschitz continuous. So, using the stability and

the monotonicity of our scheme and the uniqueness of the

solution of the SFS equation (8), it follows directly from [2]
that the solutions of our approximation scheme (11) con-
verge towards the unique viscosity solution of equation (8)
when the mesh size vanisi&sThis result also provésthe
existence of the viscosity solution of equation (8).

5.2. A numerical algorithm

We now describe aiterative algorithmthat computes
an approximation of the solutions of the scheme (11) for
all xed ¥%2= (hy;hy). We denote, fok 2 Z2, xi
(kih1;kohy), andQ = fk 2 Z? sit. xx 2 - g. We call
“pixel” a point xi in - . Since- is bounded; therefore the
number of pixels is nite. The following algorithm com-
putes for allk 2 Q a sequence of approximatiok' of

u(Xg):

Algorithm:
1. Initialisation (n = 0): 8k 2 Q; U2 = uo(Xk);
2. Choice of a pixeky and modi cation (step + 1) of
U2 we chooseJ"*! such that

%
Ut = U if 16k

S(¥2%; Ug ™ UM) = 0;

3. Choose the next pixelx (using alternating raster
scans [5]) and go back to 2.

i ¢
If ug(x) = j %In I (x)f 2 then we can proveé that step 2
of the algorithm has always a unique solution and that the
computed numerical solutions converge (wimeh +1 )
toward the solutions of the schemBetails about the im-
plementation of the algorithm can be found in our technical
report [24].

6. Experimental results

In all the experiments that follow, we have not used any
additional data and have not xed the value of the solution
at any point.

Our algorithm being iterative, it requires stopping
criterior'3 We have chosen to stop the iterations when
@ar kel i URj - s wherecard(Q) is the
number of pixels (in practice, we have xexi= 10/ 10).

In the results displayed in the sequel, corresponds to the
number of iterations required for reaching this threshold.

6.1. Experiments with synthetic images

In Figure 3, we show the original object (groundtruth) in
a), the input image obtained from the original object in b)
and the reconstructed surface in c).

Let us recall that one of the most signi cant improve-
ments of our method is that it can recover surfaces con-
taining several local mimima without any additional data
contrary to the other propagation/PDE's methods (e.g.,
[8, 25, 6, 11, 12, 23]) which require the knowledge of the
values of the solution at the points of the local minima or
which require stronger boundary conditions. We have rst
tested our algorithm with images synthetized from surfaces
containingseveral local mimimae.g., the eld of bumps
diplayed in the rst row of Figure 3. As can be seen, the
result is completely satisfying. The second row of Figure
3 displays the result of our algorithm from an image of the
classical Mozart's face [28]. In [23], Prados and Faugeras
need to x the height of the singular point on the nose for
obtaining a relatively satisfying solution. Here without any
information, we obtain a quite satisfying result.

In order to test the ability of our algorithm to deal with
discontinuous images and nonsmooth surfaces, we have ap-
plied it to synthetic images generated by shapes containing
(decreasing and increasing) edges. Experimentally, we have
noticed that the reconstructions are visually perfect when
the local maxim& are smooth (see our technical report [24]
for more numerical examples...). The third row of Figure 3
shows an example of reconstruction of a surface containing
edges and crisp maxima. In this case, the reconstruction is
satisfying (but not perfect). Let us note that the global meth-
ods of Dupuis and Oliensis [17] and of Kimmel and Bruck-
stein [10] are unable to deal with such nonsmooth surfaces.

In order to demonstrate the applicability of our method,
we have shown the stability of our algorithm with respect
to three types of errors: 1) image intensity errors due to
uniformly distributed white noise; 2) errors on the gamma
factor; 3) incorrect estimation of the focal lendttof the
camera. Let us note that we can prvihat the errors on
the ¥ parametér’ simply involve changes of scale. Fig-
ure 4 shows the results obtained from images Fig.3-11-b) of
Mozart's face distorted bpixel noise gamma corrections
albedo errorsand withwrong focal length In addition to
the accumulation effect, let us note that the errors imposed
are quite large. Surprisingly, the algorithm produces rela-
tively satisfying results given the large difference between
the original image and the input images. In other respects,
in practice with real images, tHeght source is never lo-
cated exactly at the optical centeFor a camera equiped

16 The maxima of the visualized surface correspond approximately to
the minima of depth modulation. The surface is below the optical center.

7Errors made on the parameters of the imaging system and the intensity
of the light source.



Results for an image
of a surface with several local minima:

\ ‘t‘\ d) 20"

Figure 5. Surfaces reconstructed from the images syn-
thetized with light source located &0cm to the left and
20cm above of the optical center (height of fase25 cm,
distance of the face to the optical cente®©0cm) .

I-a) I-b) I-c)

“eld of bumps™ f = 23mm, size= 400 £ 400pixels:n, © 70: with a ash, the light source is located at several centimeters

from the optical center. Figure 5 shows the robustness of our
method to this kind of errors: it shows the reconstruction
obtained from images of Mozart's face synthesized with the
light source located &tOcm to the left and20cm above of

the optical center. For more experiments see [24] or [21].

6.2. Experimental results on real images

II-a) We have tested our new algorithm on a small database of

Mozarts face: f =25mm, size= 250 £ 250pixels;ns * 50; real images of faces verifying approximately our modeling
Results for an image containing discontinuities assumptions. This database is available online and partly

displayed in Figure 6. For all these images, the size of the
pixels is estimated t@:018 £ 0:018mm? (the images size is
512£ 384); the focal length i%$:8mm. In these tests we have
xed *® %,= 1000 and we do not have made gamma correc-
tion. Our modeling of the problem assumes that the scene
is lambertian and the albedo is constant. Because of eyes,
for example, this hypothesis does not hold. To reduce the
l-a) 111-b) ll-c) effects of this fault, we have painted them manudllyOn
f =23mm, size= 250 £ 250pixels;ns ' 85; the right of each image, the Figure 6 shows the surface re-
constructed from itafter having inpainted the eyesh et us men-
a) original surface (groundtruth); b) image obtained from the tion that the number of iterations required for recovering the
original surface a): c) surface reconstructed from the image b). syrfaces of Figure 6 is less th&80. For more details, see
[24, 21]. Let us emphasize again that contrary té%ate
other PDESs methodgvhich are based on the classical modeling of
SFS, for example [8, 25, 6, 23]; and contrary to [14ln the exper-
iments presented here, besides the intensity image, we do
not use additional data except the intrinsic parameters of the
camerafocal length and size of pixelsj=or example, contrary to
[22] in which also deals with real images of a faces, we do
not need to x the height of the singular point on the nose

< anymore.
a) b) <) d)
a) image of Fig.3-11-b) distorted by nois8 N R = 4:04), gamma .
distortion ¢ = 2) and albedo distortion¥ = 1:2%); b) surface 7. Conclusion
reconstructed from image a) with a wrong focal length parameter

f- =15mm (the correct one i6 = 25mm). The main dif culties encountered by the previous SFS

¢) distorted image withSNR =3:36, ° =05, % =0:8% work are due to the ill-posedness of the problem. Here,
d) surface reconstructed from c) with = 45mm.

Figure 3. Examples of results with synthetic images.

18The errors on th&parameter just involve changes of scale.

Figure 4. Results for the image of Mozart's face distorted 18This step can done automatically for example by matching the image
by pixel noise, by gamma distortions, by albedo errors, and  to a model image already segmented; see for example [7].
with a wrong focal length parameter. 20with the exceptions of the global methods [17, 10] which require im-

portant regularity assumptions which are generally not avalaible in prac-
tice...



Figure 6. Examples of reconstructions from real images of faces.
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