N

N
N

HAL

open science

Automatic negotiated integration of services in pervasive

environments
Noha Ibrahim, Frédéric Le Mouél, Stéphane Frénot

» To cite this version:

Noha Ibrahim, Frédéric Le Mouél, Stéphane Frénot. Automatic negotiated integration of services in
pervasive environments. Proceedings of the Middleware for Web Services Workshop (MWS’2005) in
conjunction with the 9th International IEEE Enterprise Distributed Object Computing Conference
(EDOC’2005), Sep 2005, Enschede, Netherlands. pp.2. inria-00394952

HAL 1d: inria-00394952
https://inria.hal.science/inria-00394952
Submitted on 12 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00394952
https://hal.archives-ouvertes.fr

Automatic negotiated integration of services in pervasive environments

Noha Ibrahim, Frédéric Le Mouél and Stéphane Frénot

INRIA ARES, CITI Lab., INSA Lyon
21 Avenue Jean Capelle
F-69621 Villeurbanne Cedex, France
{noha.ibrahim, frederic.le-mouel, stephane.frenot} @insa-lyon.fr

Abstract

The development of many highly dynamic environments,
like pervasive environments, modified the behavior of users
and consequently, their expectations from systems and
applications used in these environments. Thus, a user
equipped with a laptop can connect to different places, and,
each time, like to use his applications integrating the func-
tionalities offered by the physically or logically close envi-
ronment.

In this article, we offer the architecture of a system of au-
tomatic negotiated integration of services. This integration
introduces the elements of decision of the integration (ne-
gotiation, automatisation) and an interface Integrable
making possible the application of different techniques
of integration (parameterization, downloading/uploading -
deployment, composition, weaving).

Key words: distributed systems, pervasive environment,
integration, components / services, negotiation, automatisa-
tion.

1. Introduction

The development of many highly dynamic environ-
ments, like pervasive environment [19], modifies the at-
titudes of applications and their way to react with them.
Devices tend to be more and more tiny and even invisi-
ble. These devices are either mobile and/or embedded in
almost any type of imaginable objects such appliances and
various consumer goods [18]. In these environments, appli-
cations would like to, whenever it is possible/needed inte-
grate the services offered by the local environment. In par-
ticular, if no single service can satisfy the functionality re-
quired by the application, there should be a possibility to
combine existing services together in order to fulfill the re-
quest. Because of the pervasive nature of the environment,

this integration should better be automatic leaving to the ap-
plication the opportunity to focus on using services rather
than analysing how or when to integrate them. This trend
has triggered a considerable number of research efforts on
the integration of services. Nowadays, services are not ca-
pable of integrating automatically in existing systems, with-
out the need of complicated processes; hence, the objective
is to create an environment with automatic, smart and cus-
tomizable integration of services. This one introduces the
elements of decision of the integration (automatisation, ne-
gotiation) and an interface Integrable making possible
the application of different techniques of integration (para-
meterization, downloading-uploading/deployment, compo-
sition, weaving).

In section 2, we begin by examining closely-related
fields of integrating services in a pervasive environment. In
section 3, several scenarii illustrate how the integration of
services facilitates everyday life. In section 4, we define the
integration such as we conceive it, we list the properties it
respects and we introduce the architecture of our system.
Section 5 concludes and introduces future works.

2. Related Work

Three major domains of object oriented programming
lean over the concept of integration: the Component-Based
Software Engineering (CBSE) [7], the Aspect-Oriented
Programming (AOP) [9] and the Service-Oriented Pro-
gramming (SOP) [1]. Each of these domains has several de-
finitions and techniques of integration according to the dif-
ferent existent platforms. Pervasive environments become
more and more a target domain for this type of program-
ming and the integration of services takes a new sense.
Different types of models based on components as
EJBs [13], CORBA Component Model [22], Fractal [2]
and Web services [8] allow the interaction between distant
components. The integration of components in these differ-
ent models is often reduced to the deployment and/or the

parameterization of these components. However, these in-
tegrations are not perfectly adapted to pervasive environ-
ments and they do not take into account the change of con-
text at the time of execution or the deployment of compo-
nents. In these models, the definition of new components is
rather difficult during execution, so the integration of com-
ponents is often predefined beforehand. The development
of pervasive environments throws a certain number of new
challenges for component programming based, especially
concerning taking into account mobility, context awareness
and adaptability. Moléne and AeDEn [12] projects offer an
approach consisting of an adaptive distribution of applica-
tions allowing to use the resources of the environment dy-
namically to palliate the insufficiency of the resources of the
mobile. AURA [6] project proposes a model of program-
ming based on task. In this model, tasks are seen as being
a composition of several components. AURA interprets the
physical context of the user and can thus discover and com-
pose components to fulfill a task.

Aspect-Oriented programming allows to establish trans-
verse concerns (aspects) independent ones of the others and
to combine them (the weaving) later to produce final appli-
cation. Aspect] [10], Fac [14] and [5] are models based
on aspect, applying the weaving of aspect as method of in-
tegration. Recent works were fulfilled on adaptation seen
as an aspect in pervasive environments [16]. By using the
aspects of Aspect], the system modularizes three essential
faces of adaptation in pervasive environments: management
of the devices present in context, management of their con-
tents, as well as the adaptation of devices to the change of
context.

In the terminology of Service-Oriented programming, the
integration of service is often reduced to a composition of
service. Nowadays, researches aim at developing an archi-
tecture which allows the composition of service by using a
logical reasoning given by the languages of description of
service as DAML [20], Universal Description, Discovery
and Integration (UDDI) and Web Service Description Lan-
guage (WSDL) [21]. These languages define standard ways
for service discovery, description and invocation (message
passing). SWORD [15] is a developer toolkit for building
composite web service. It does not deploy the emerging ser-
vice description standards such as WSDL and DAML-S,
instead, it uses rule-based plan generation, it specifies the
web services by using Entity-Relation model. Many cur-
rent service composition platforms have been designed with
the inherent assumption that the services are resident in the
fixed network infrastructure and running on a relatively sta-
ble platform. Few have tried to consider alternate design
approaches of service composition systems for pervasive
environments. A distributed broker-based service compo-
sition protocol for pervasive environments [4] proposes a
model adapted for pervasive computing, but it focuses only

on the composition aspect of integration. For each compos-
ite request, the protocol elects a Broker from within a set
of nodes. The request source delegates the responsibility of
composition (i.e. discovery, integration and execution) to
the elected broker. The main protocol, based on the com-
position and the integration, is seen to be a part of the pro-
tocol of composition. Scooby [17] a middleware for ser-
vice composition in pervasive computing, proposes a sys-
tem which provides a solution based on the use of bind-
ing variables utilising late and lazy dynamic binding, along
with the supporting service composition language in which
users can formally specify their policies based on event no-
tification messaging system.

3. Scenarii

To specify our contribution compared to related works,
we offer different scenarii corresponding to situations of
common life. These scenarii put the emphasis on the im-
portance of physical and/or logical context as well as on
variations affecting this context, the processes of negotia-
tion between services and various methods of integration.

3.1. Scenario 1: acquisition and personalization of
services

Max, an architect, wants to accomplish a video of one
of his models. Equipped with his PDA, he enters a studio
of production of video clip. The studio has a camera and
movie maker software. The PDA integrates the software of
the video camera automatically as soon as Max enters the
studio. Max begins taking the shots he needs of his model.
He can command the camera by using a familiar interface
installed on his PDA. He doesn’t need to know how the
camera works! The PDA integrates the driver of the cam-
era and weaves it with the interface software that Max al-
ways uses. Then, Max uses the movie maker software that
the PDA integrated to create his video clip. The PDA com-
poses the movie maker software with the driver of the cam-
era proposing then a new service that enables Max to take
shots and create the sequence of the video clip. This new
service, initially not offered by environment is now avail-
able on Max’s PDA. It has a life of one week during which
Max can use it in every visit to the studio. Once it outdates
its length, this service will be expire and be uninstalled au-
tomatically from the PDA.

3.2. Scenario 2: broadcasting of individual ser-
vices

Julia logs on to a cyber game, virtual space, through her
laptop from her work. She logs on very often during her
breaks to play her favorite car racing game with the users

present in the virtual space. The uniqueness of this game is
that every user can provide a personalized part of his vir-
tual space (his virtual home, his virtual car) to other play-
ers. Julia offers a special service of a set of virtual tracks
(mountains, snow, beach). Julia can also use services of-
fered by other players such as sets of virtual race cars com-
patible with each track. the virtual environment is therefore
totally formed of the composition of the individual environ-
ments of the players. Julia must attend a meeting and stops
playing. She disconnects from the virtual space and leaves
to the virtual space the task to arrange and take in charge
her unexpected departure. The private services which were
downloaded from Julia’s laptop are taken away of the space
and the environment must find alternatives to continue of-
fering the players the public services of Julia.

3.3. Scenario 3: automatic and negotiated discov-
ery of services

Pierre, a PhD student, enters the university library,
equipped with his numerical badge, Dbag. Automatically a
process of identification is established between Dbag and
the environment of the library. Dbag authenticates itself
into the environment. Pierre needs to attend an audio-visual
course displayed in the library. The Dbag negotiates with
the environment the availabilities. The environment pro-
poses an adequate media service after analysing the high
bandwidth (384Kbits/s) present at the moment. The Dbag
integrates the service and notifies Pierre that he can begin
to watch the course. Suddenly, the bandwidth drops and the
integrated service can no longer support the media course.
Again a negotiation is established between the Dbag and the
environment which searches for other alternatives to con-
tinue the service rather than stopping it. The environment
proposes to the Dbag another service that enables Pierre to
watch the media in lower quality preserving the sound qual-
ity of the media and agrees with the Dbag to notify it when
the previous service is available so it can switch back to it.

4. Integration

To answer these scenarii’s needs, we give in this section
the definition of integration as well as its properties as it ap-
plies to our research. We will explain, later, the architecture
of our system. Service, the core of our system is defined as
the instantiation of a specific model of component. Then we
discuss how the system architecture applies to the scenarii
defined in section 3. Finally, the Middleware layer we of-
fer, is represented with its essential services: service of de-
cision, service of negotiation and service of integration.

4.1. Definition

Integration is the process of incorporating a service or a
set of services so that they can work together and provide a
new service [3]. Integration must be independent from any
software technics. We consider that services are gathered in
the middleware layer. The middleware layer is situated be-
tween the application layer and the system layer. It resides
on every host, terminal and devices present in the environ-
ment. The application layer uses the services of the middle-
ware and the services of the middleware rest on the system
layer which provides the management of the hardware, the
network and connectivity.

4.2. Properties

We will be particularly interested in four properties for
the integration [11]. The three first ones apply in a gen-
eral way to integration, and the last comes from needs ex-
pressed in pervasive environments:

Genericity: Integration must be used by all sorts of appli-
cations requiring the integration of services within its own
services, or desiring to upload its services in any environ-
ment.

Reversibility: pervasive environment is an always change-
able, extremely dynamic environment. Integration must be
reversible to allow deleting services previously integrated if
these are not accessible any more.

Lifetime cycle: The integration must be set for a certain
time. It must have a life cycle to represent its existence and
its evolution in time. A service resulting from integration,
can therefore last a certain time span and disappear once at-
tained its cycle.

Context-awareness: integration must fit to the variations of
context. These variations can be hardware as well as soft-
ware.

4.3. System architecture

First of all we begin by modeling context and service,
and then we represent the essential services present in our
Middleware layer as well as their interactions. Finally, the
different techniques of integration are defined.

4.3.1. Requirements : Context Model. Context plays
a very important role in integration in pervasive environ-
ments. We define context by three characteristics: its con-
tents, its attachment and its range. The content of a context
is all the services present at a certain moment in the con-
text. Context must be tied to an entity and must have a cer-
tain range. The entity, to which a context can be tied, can be
a physical entity as a room or a logical entity as a service.
The range of context can also be physical as a geographi-
cal distance, or logical as though to apply to a class of ser-

vices.

Service model we consider a service to be an instantia-
tion of a component. As shown in the figure 1, a compo-
nent includes a dependency manifest described by an Ar-
chitecture Description Language (ADL), classes and static
context. It also publishes interfaces, requested and provided
ones and special interface of integration. Integrable in-
terface provides the possibility of inserting a service easily
in group of services according to the most adapted context.
During the instantiation, Manifest is instantiated in bind-
ings between services in Middleware. Classes are instanti-
ated in objects and the present static context in the compo-
nent becomes dynamic at the time of instantiation.

Inteqgrable
R I
o]

Required}_ m Given |_
‘memj_ %‘mm -

+

1L

Static Instantiation Dy narnic

Context Context

Component Service
Model Model

Figure 1. Component and service model

4.3.2. Middleware Layer. The middleware (Figure 2)
contains essential services of integration of our system
within the IntegServ service. A detailed presenta-
tion of these services is given below. The System Layer
communicates with the discovery service in the
Middleware. The system informs this service of any
change in the context and the latter brings them back
to the context manager service. The service
binder allows services uploaded and downloaded in en-
vironment to register, and also allows taking away the ser-
vices which are not available any more in environment.

4.3.3. Interactions between services. The IntegServ
service of the Middleware is itself the integration of
several essential services which interact together. The in-
tegration process is as follows. First of all, the decision
service interacts with the context manager to know the
state of the context. The context manager service
informs the decision service of the state of con-
text and the decision service can work out a strat-

Application
-
i T
Middleware H Technical 4 H Megociation H
integrgtion rmanager
arvice sapuice
_ H—= i .
1 _lr'+ Decision H H Life cycle H
Sruice 1 sarvice THAn=g S
binder ! seryice
T !
r-H Comtest [-! IntegSery
| rnanag e SErVICE
! saryice
(I g o o e ey AN
L :
H Ciscovery H-:
Service
System

Figure 2. Middleware architecture

egy of integration with the present services. If more than
one strategy is found, the decision service evalu-
ates all strategies and proposes the best one for execution.
Once the strategy defined, the decision service in-
teracts with the technical integration service
which carries out the orders of the latter. If a change in con-
text occurs, the context manager service alerts
the decision service which interacts with the 1ife
cycle manager and the negotiation manager
service to adapt integration to the changes of context.

4.3.4. Manager services of integration.

Decision service : The capacity of decision of our architec-
ture is provided by the decision service. This ser-
vice can take decisions and adapt automatically to the vari-
ations of context. The decision service uses strate-
gies to decide the proper integration to apply. These strate-
gies should be made based on the up to date informa-
tion due to the pervasive nature of the environment. The
decision service proposes also other types of in-
tegration. Semi-automatic integration is jointly decided
by the context and the decision serwvice. The upon
request integration is performed at the request of one
of the services to the decision service. The to
be confirmed integration can not be realized unless the
decision service confirms integration to the ser-
vices. The decision service decides also which tech-
nology of integration is to be used and which are the ser-
vices to be integrated. It chooses these services by analyz-
ing their capacities to form a new service. The decision
service is reactive, it can react to the variations of con-
text and adapt to them. It is also proactive, it can initiate
a decision of integration independently of any variations in
context.

Negotiation service : Negotiation is provided by the
negotiation service. This service implements a
Negotiable interface provided to other services so that
they can come to an agreement on terms and conditions of
their integration. It occurs when certain services requested
for integration are not available, or when context changes
and requires a re-analysis of integration. It offers an alter-
native to the primary integration decided before. Negotia-
tion is made according to contracts.

Life cycle manager : Life cycle manager is in
charge of the life time of the integration. This service inter-
acts directly with the decision service. The integra-
tion initiated by the decision service can have, from
its creation, a life time, known and managed by the 1ife
cycle manager. Once this time expires, the 1ife
cycle manager informs the decision service which dis-
integrates this integration, and tries to react if necessary
with the context. The change of context can also have im-
pact on the life cycle of integration. In fact, if, for instance
one of the services of integration leaves the context, the
context manager service informsthe decision
service about it. The decision service interacts
withthe 1ife cycle manager to find a solution.

4.3.5. Methods of integration. The technical
integration service is the service which allows ap-
plying different methods of integration. It is part of the ba-
sic services and carries out the orders of the decision
service. These different methods can be applied one be-
fore the other and/or combined. They all have a set of
services as target.

Parametrization The parameterization of a service con-
cerns its context. It allows services to integrate with a new
context, or to fit to their context if this last one changes.
As shown in figure 3, only the context part is changed dur-
ing this technique of integration.

—
M (o [

|:| Changeabla
EMpriariiic
Carkests

Figure 3. Parametrization of services

Downloading/Uploading - Deployment Download-
ing/Uploading - deployment integrates a service by
downloading it or uploading it in a context. As shown fig-
ure 4 only bind part is changed in this integration.

|:| Changeabla

Crymarnic
Context

Figure 4. Downloading/Uploading - Deploy-
ment

Composition The composition of a set of services is a tech-
nology of integrating the services by connecting their
interfaces. The result of the composition of several ser-
vices is a service ready to be used by other services. As
shown in figure 5, the composed services can belong to dif-
ferent platforms; the important thing is that they all be-
long to the same context.

Machine 1 Machine 2

'_

high

Machine 3

o —
L.

Figure 5. Composition of services

Weaving The weaving of a set of services allows spread-
ing code in a transverse way in objects. As shown figure 6,
a service is weaved on a set of two services but only the ob-
jects of services are concerned.

4.3.6. Applying scenarii to the system. In this section we
will give a brief description of how to apply the scenarii
we defined in section 3 on our architecture defined above.
We will focus on the context, aspects of negotiation and the
strategies to choose the appropriate method of integration.

Scenario 1 In this scenario, the context is modeled as fol-
lows: the contents of the context are the services present
in the studio of production, this means the camera driver,
the movie maker software and the user display interface
on the PDA. This context is physically attached to the stu-

Ihilj;
I N 0 Lr

1RO 0 A0

Figure 6. Weaving of services

dio of production and the range of the context is the bor-
der of the studio. Two methods of integration are used, the
weaving and the composition of services. The decision
service upon the request of the PDA analyses the two
services to integrate. On one hand there is the camera,
on the other hand the interface command on the PDA,
the decision service decides to weave the interface
command with the camera so Max can use it. For the other
integration, the one which integrates the movie maker with
the camera the decision service decides to compose
them after analysing the output of the camera service and
the input of the movie maker and finding that they match.
This composition has, for instance, a life time of one week
and is controlled by the 1ife cycle manager. In this
scenario the aspect of negotiation is not very important due
to the fact that all needed services are available.

Scenario 2 Here the context is attached to a virtual entity
and is composed of the services offered by users present
in this virtual space. To take part of the context a service
must log in the virtual space and to quit the context it
must log out. When Julia decides to log out, her service,
a set of virtual tracks, is no longer available. The context
manager service informsthe decision service
of this departure and the decision service must ap-
ply its strategy to integrate other services to cover up the
departure of Julia’s service. The decision service
must at first interact with the 1ife cycle manager of
the no longer available integration. Then, the decision
service decides to integrate services from other play-
ers, Bob and Joe, to replace Julia’s service. Bob offers a
virtual platform providing the preliminary plans of race
tracks around the world and Joe offers the environments
and sceneries for these tracks. The combination of these
2 services will make up for Julia’s service absence. The

decision service chooses to integrate the services
offered by Bob and Jo, because by combining them the new
resulting service replaces Julia’s service.

Scenario 3 The context is formed by the set of services
present in the library. The context is attached to a physi-
cal entity as in scenario 1. This scenario shows exactly how
the process of negotiation works. If a service is no longer
available due to variations in context, the decision
service must cope with this problem by negotiating with
the other available services. In the scenario, the decision
service of the environment negotiates with the Dbag to
find the appropriate service to integrate according to the
Dbag’s preferences. Once they reach an agreement, a con-
tract may be established and stored in the negotiation
service. The contract provides the Dbag a service when
the band-width is low and another one when it is high.

5. Implementation

We begin the implementation of a prototype, by the de-

finition of the interface of integration Integrable. This
interface constitutes the first block of the development of
the integration system offered in our article.
Interface Integrable provides three methods allowing
to manage the integration in a service, of a service or group
of services: method Integrate, method Unintegrate
and method Get IntegratedServices.

public interface Integrable {

void integrate(Collection serviceSet)
throws IntegrationException;

void unintegrate (Collection serviceSet)
throws UnIntegrationException;

Collection getIntegratedServices();

}

Method Integrate allows integrating a set of services
into the common service. The technical integration service
implements this method by parameterization, downloading-
uploading, composition or weaving. In case the integration
is not possible an exception IntegrationException
is generated. This case of error can appear if for instance
we undertake a weaving between objects unweavable.
Method Unintegrate allows to cancel integration of
a group of services beforehand integrated. It guarantees
the reversibility of integration. In case the service to des-
integrate is being used in the context or is not available, an
exception UnIntegrationException is raised.
Method GetIntegratedServices returns all the ser-
vices having already been integrated into the common ser-
vice.

After the definition of this interface, we are interested in
defining our different services introduced in figure 2 in form
of bundles OSGi, and in defining other necessary interfaces
for the total process of integration as: Negotiable inter-
face and L.i feCycle interface.

6. Conclusion and perspectives

In this article, we introduce a middleware architecture of
automatic integration of services. We focused on three main
points. First, we defined a context and a model of service.
Then, we conceived an integration service, providing an in-
terface Integrable, and itself resulting of the integration
of different services (technical integration service, negotia-
tion service, decision service, context manager and life cy-
cle manager). Finally, we defined the different techniques of
integration (parameterization, downloading/uploading - de-
ployment, composition and weaving). In the future, we aim,
at finishing the development of our system under OSGi and
publishing our services as UPnP devices. We are also work-
ing on adding a semantic description of our services so as
to enrich the services of negotiation and decision.

References

[1] G. Bieber and J. Carpenter. Introduction to Service-Oriented
Programming. OpenWings, Apr. 2001. White paper.

[2] E. Bruneton. Developing with Fractal. The ObjectWeb Con-
sortium, France Telecom (R&D), Mar. 2004. version 1.0.3.

[3] D. Chakraborty. Service Discovery and composition in Per-
vasive Environments. PhD thesis, University of Maryland,
2004.

[4] D. Chakraborty, Y. Yesha, and A. Joshi. A Distributed Ser-
vice Composition Protocol for pervasive Environment. In
University of Maryland, Baltimore County (UMBC) eBiq-
uity, Mar. 2004.

[5] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud, M. Ségura-
Devillechaise, and M. Siidholt. An expressive aspect lan-
guage for system applications with Arachne. In 4th Inter-
national Conference on Aspect-Oriented Software Develop-
ment (AOSD’05), Mar. 2005.

[6] D. Garlan and B. Schmerl. Component-Based Software En-
gineering in Pervasive Computing Environments. In 4th
International Conference on Software Engineering (ICSE)
Workshop, May 2001.

[7]1 G.T.Heineman and W. T. Councill. Component-Based Soft-
ware Engineering: Putting the Pieces Together. Addison-
Wesley, June 2001.

[8] W. Iverson. Real Web services. O’Reilly, Oct. 2004.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In European Conference on Object-Oriented
Programming (ECOOP), pages 220-242, June 1997.

[10] R. Laddad. AspectJ in Action: practical Aspect-Oriented
Programing. Manning publications, July 2003.

(11]

(12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

F. Le Mouél. Environnement adaptatif d’éxécution distribuée
d’applications dans un contexte mobile (Adaptive environ-
ment for distribution of applications in a mobile context).
PhD thesis, Université de Rennes 1, Rennes, France, Dec.
2003.

F. Le Mouél, F. André, and M.-T. Segarra. AeDEn: An
Adaptive Framework for Dynamic Distribution over Mo-
bile Environments. Annales des Télécommunications, 57(11-
12):1124-1148, Nov.-Dec. 2002.

R. Monson-Haefel. Entreprise JavaBeans. O’Reilly & As-
sociates, Mar. 2000.

N. Pessemier, L. Seinturier, and L. Duchien. Components,
ADL and AOP: Towards a common approach. In Workshop
ECOOP Reflection, AOP and Meta-Data for software Evo-
lution (RAM-SE04), June 2004.

S. R. Ponnekanti and A. Fox. Sword: A developer toolkit for
web service composition. In 11th World Wide Web Confer-
ence, 2002. Honolulu, USA.

A. Rashid and G. Kortuem. Adaptation as an Aspect in Per-
vasive Computing. at Object-Oriented Programming, Sys-
tems, Languages & Applications (OOPSLA) *04 Workshop,
Oct. 2004.

J. Robinson, I. Wakeman, and T. Owen. Scooby: Middleware
for Service Composition in Pervasive Computing. In 2nd In-
ternational Workshop on Middleware for Pervasive and Ad-
Hoc Computing, Toronto, Canada, Oct. 2004.

D. Saha and A. Mukherjee. Pervasive Computing: A par-
adigm for the 21st century. IEEE Computer Society, Mar.
2003.

M. Satyanarayanan. Pervasive Computing: Vision and Chal-
lenges. IEEE Personal Communication, Aug. 2001.

M. Sheshagiri, M. des Jardins, and T. Finin. A planner for
composing services described in DAML-S. In International
Conference on Automated Planning and Scheduling (ICAPS)
2003 Workshop on planning for web services, July 2003.

A. E. Walsh. UDDI, SOAP and WSDL: the web services
specification Reference book. Pearson Education, Apr. 2002.
R. Zahavi. Entreprise Application Integration with Corba
Component and Web-Based solutions. Johne Wiley & sons,
Nov. 1999.

