Noether's forms for the study of non-composite rational functions and their spectrum

Laurent Busé 1 Guillaume Chèze 2 Salah Najib 3
1 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : In this paper, the spectrum and the decomposability of a multivariate rational function are studied by means of the effective Noether's irreducibility theorem given by Ruppert. With this approach, some new effective results are obtained. In particular, we show that the reduction modulo p of the spectrum of a given integer multivariate rational function r coincides with the spectrum of the reduction of r modulo p for p a prime integer greater or equal to an explicit bound. This bound is given in terms of the degree, the height and the number of variables of r. With the same strategy, we also study the decomposability of r modulo p. Some similar explicit results are also provided for the case of polynomials with coefficients in a polynomial ring.
Type de document :
Article dans une revue
Acta Arithmetica, Instytut Matematyczny PAN, 2011, 147 (3), pp.217-231. 〈10.4064/aa147-3-2〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00395839
Contributeur : Laurent Busé <>
Soumis le : mardi 16 juin 2009 - 14:53:36
Dernière modification le : jeudi 18 janvier 2018 - 10:39:12
Document(s) archivé(s) le : vendredi 11 juin 2010 - 00:51:13

Fichiers

noether-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Laurent Busé, Guillaume Chèze, Salah Najib. Noether's forms for the study of non-composite rational functions and their spectrum. Acta Arithmetica, Instytut Matematyczny PAN, 2011, 147 (3), pp.217-231. 〈10.4064/aa147-3-2〉. 〈inria-00395839〉

Partager

Métriques

Consultations de la notice

383

Téléchargements de fichiers

234