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Abstract. This paper addresses unsupervised hierarchical classification
of personal documents tagged with time and geolocation stamps. The
target application is browsing among these documents. A first partition
of the data is built, based on geo-temporal measurement. The events
found are then grouped according to geolocation. This is carried out
through fitting a two-level hierarchy of mixture models to the data. Both
mixtures are estimated in a Bayesian setting, with a variational proce-
dure: the classical VBEM algorithm is applied for the finer level, while a
new variational-Bayes-EM algorithm is introduced to search for suitable
groups of mixture components from the finer level. Experimental results
are reported on artificial and real data.

1 Introduction

This paper addresses the goal of automated structuring a collection of geo-
temporally annotated documents. A typical motivation arises from sets of images
that can be captured and annotated automatically from mobile camera phones.
Schemes for navigating efficiently into a shoebox of personal photographs have
attracted growing attention in the past few years, as reviewed in the next sec-
tion, using image content or meta-data provided by the camera, or a combination
thereof. Our proposal does not consider the image content.

Geolocation and time are naturally essential criteria for this organization
process, as they are both quite reliably measured and provide valuable navigation
axes into one’s memory and onto man-machine user interfaces. To address large
amounts of data, we aim at determining data groups (i.e. clustering) into this
geo-temporal space, in order to recover meaningful events and places. Let an
event be a group of images that are close both in time and space, while a place
is a group of data consistent from the sole geolocation criterion. The purpose
of this task is to enable efficient browsing through time at a higher level of
granularity than data, and hyperlinking co-located events that are distant in
time.



A main point of the paper is the way these two clustering operations are
carried out and relate to one another. First, at the finer level, events are clus-
ters directly identified from image meta-data in three-dimensional space (¢, z,y).
Then, at the coarser level, places are identified by forming groups of the pre-
viously found events, but considering only the location features (i.e. discarding
time).

The technical framework for formalizing and solving this issue is that of Gaus-
sian Mixture models (GMM) [1], as classically employed for numerous clustering
tasks [2-6], including geo-temporal data [7]. For the problem at hand, where a
hierarchy is sought with as little supervision as possible, we propose an orig-
inal technique, based the variational approach to Bayesian estimation at each
level. The Variational Bayes framework has shown an efficient way of addressing
mixture model estimation [8]: while Bayesian modelling enables regularization of
estimates (avoiding degenerate situations for covariance matrices) and provides a
principled manner of determining adequate model complexity (practically, num-
ber of clusters), the associated estimation algorithm often known as VBEM
preserves the general form and the relatively low complexity of the Expectation-
Maximization (EM) algorithm, but further handles the model complexity issue
efficiently.

We propose to extend VBEM to handling a hierarchy of models : we de-
rive in this paper how, also at the coarser level, mixture parameters for places
may be inferred from a variational-Bayes EM algorithm applied to event-level
components parameters. In other words, two slightly different variational-Bayes
mixture estimation procedures are applied : the classical one, operating on
punctual geo-temporal data, then the novel version, operating on component-
level geolocation-only mixture parameters. The abovementionned advantages of
VBEM algorithms are thus generalized to this coarser layer. Besides, because
of the hierarchical constraint, the associations between events and places are
explicit, in contrast with what would be obtained by determined both of them
from the data. At the same time, thanks to the probabilistic framework, un-
certainties on these associations are preserved, enabling various decision-making
policies. Finally, because this coarse-level algorithm operates on mixture param-
eters rather than data, it only requires moderate computation cost.

Closely related work offering iterative component-grouping solution for build-
ing hierarchies on mixture models were proposed in [9] and [10]. However, they
address a maximum likelihood estimate (or similarly, minimizing Kullback-Leibler
loss) rather than a Bayesian setting, and hence leave open the issue of model
complexity.

Let us mention that the nature of the scheme is also straightforwardly amenable
to extensions : the data may be processed incrementally with an initializa-
tion/update mechanism in the probabilistic assignments at component-level, and
events provided by multiple users may be handled, thus identifying common
events, common places. We do not cover these perspectives herein.

The remainder of this paper is organized as follows. Section 2 reviews work
pertaining to organization of personal images. We then disclose the proposal



based on a hierarchy of mixture models (section 3). Experimental results are then
provided in section 4, and conclusions and perspectives are drawn (section 5).

2 Related Work

Time stamp is the obvious criterion for ordering pictures, as well as for iden-
tifying groups of images close in time (i.e. assumed to have a common topic).
Segmenting the sequence of time stamps has been viewed in [11,12] as the incre-
mental detection of gaps, with the advantages that data may be processed as a
flow, and each temporal unit is not assumed to be generated from a particular
parametric law. However, there result a somewhat arbitrary definition of what
is a significant “gap” in time.

Most works on personal image indexing now cope with image location. Prac-
tically, handy GPS systems are now largely popular to provide this informa-
tion (we disregard herein all GPS measurement problems). Systems such as
WWMX [13] or Flickr propose a map-based interface to browse the collection.
The main problem of such approaches is that the map gets cluttered, when the
number of images grow, especially on handheld devices. Alleviating this issues
is indeed a main motivation for the work in the present paper. In this direction,
building compact representations of the images set and easy navigation proce-
dures has been proposed in [13], where images are aggregated in accordance with
the map scale, while [14] selects relevant images from multi user collection based
on their meta-data (see below).

Directly combination of the temporal and geographical meta-data, which is
the focus of the present paper, was put forward in [7,15], which also organize
an image collection hierarchically, based on time and location clusters. A series
of heuristic rules derived from user’s expectations are implemented [15] to build
a geo-temporal hierarchy of events. In [7], we proposed an incremental EM al-
gorithm to carry out distinct temporal and spatial hierarchical classifications,
significantly different from the present paper with regard to the relation betwen
geolocation and time, the way the hierarchy is built, and the technique for con-
ducting Bayesian estimation. Finally, time and geogaphical structuring can also
be combined with image features [16], or with the camera settings [17]. Such
criteria may indeed be of interest if applied on subset of images corresponding
to an event.

Recent contributions extend these principles to the multi user context [14,18—
20]. Popular websites as Flicker or GoogleMap enable users to share their per-
sonal collections, leading to potentially huge amounts of images. Experiments on
user with the Zurfer system [18] show that favorite organization criteria differ
from the single user context : users prefer to browse image sets according to
social interactions (photos from friends and family members). Let us however
notice the distinction between pictures authored by these relatives and personal
pictures involving theses persons (such as present in the picture). This was for
instance taken into account in [14], where the distance, in a social network, be-
tween the image authors and the query author, is taken into account to select



a representative image. The importance of images and image cluster is assessed
through a heuristic combination of textual tag originality (tf/idf), the diversity
of image authors in the location of interest, and various other criteria. This
work was extended in [18] to include image content. In [19], a temporal variable
is studied, that reflects the density of pictures (from multiple users) on the tem-
poral axis, enabling temporal determination of events. Interestingly, it compares
to our proposal in the same way Parzen density estimation compares to mixture
models density estimators. Finally, let us notice that, in such multi-user search
scenarios, image browsing is generally restricted to a subset of the complete
collective collection (generally a specific location).

3 Determinating events and places with hierarchical
variational-Bayes

3.1 Clustering into events with VBEM on punctual geo-temporal
data

In this section, we aim at clustering images based on their metadata in three-
dimensional (x,y,t) space. Briefly stated, we model the data as sampled from a
Gaussian mixture, and carry out a Bayesian estimation of model parameters by
means of a variational approximation.

A Gaussian mixture is defined by the following probability distribution func-
tion (pdf) :

K
p(@) = S N (@ | g, A7) (1)

k=1

where z is a d-dimensional feature vector and N (. | pg, A,:l) is a Gaussian pdf
with mean vector pj and precision matrix Ag. In the remainder of this paper,
we will designate N(. | u, A, ") as the k-th component of the GM. 2 = {wy}
is a weight vector associated to the components, following the constraint wy >
0 VE, > wi, = 1. We introduce a lightweight notation for the GMM parameters :
0 = {92, u, A} where p = {pu} and A = {Ax}.

In our case, where K is unknown, Maximum Likelihood Estimation (MLE)
is not applicable to determine jointly K with model parameters. Although this
issue may be overcome using penalized likelihood criteria to compare models
of various complexities (AIC [21], BIC [22]), this requires computation of each
model separately before comparison. Instead of treating model parameters as
unknown scalars from which we seek MLE, we can define pdfs over these pa-
rameters, leading to a fully Bayesian approach. In this context, we can define
a variational distribution that, in its optimal setting, will approximate the true
posterior distribution in the KL sense [1,8]. Furthermore, using exponential
distributions as Gaussians or multinomials allows to define prior pdfs over pa-
rameters. Therefore, by choosing an appropriate prior, estimating a correct K
will now be part of the global estimation process. Indeed, under this condition
the estimation will typically lead to a model with some insignificant component



weights that can be pruned ( [1]). Hence, by choosing an initial K sufficiently
large, we will automatically obtain an effective K (let us denote it K’). The
restriction of variational distributions to factorized versions allows to decline
coupled update equations over latent variables and parameters. As there is no
closed-form solution for this equations system, we can iteratively find a local
MAP (Maximum A Posteriori) pdf by using an EM-based algorithm [1,8], often
known as VBEM. Besides handling model complexity, setting a spherical prior of
covariance matrices helps avoid poor estimates, that classically plague clusters
that are responsible for little data.

3.2 Grouping events into places with a component-level VBEM
algorithm

Once events are identified, we attempt to find groups of events, based on the
mere parameters of the mixture that describe this set of events. We now describe
the technique employed to this aim.

We follow notations used [1] for punctual data. Classically, mixture varia-

af 2
tional estimation considers a set of data X = | ... | and Z = | ... | that is
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assumed to be generated from the mixture. z; is a d-dimensional feature vector
and z; the associated binary variable indicating from which component x; was
generated (e.g. from k-th component = z;, = 1, z;; = 0 Vj # k). In the cluster-
ing context, Z is hidden, and the purpose of the procedure is to compute a joint
estimate of § and Z. The associated pdfs are :
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Now consider an arbitrary mixture defining I components, with parameters
0" = {1, A'}. Typically this model might have redundant components, or
might be a group of mixtures. We then assume that X and Z were i.i.d sampled
from this distribution. It is therefore possible to regroup X by the component
that originated its various items. It leads us to the following formalism : X =
{Z1,..., 2.} with card(X) = N, &; = {z; | za = 1} and card(#;) = w;N. We are
now going to express the distributions (2) and (3) w.r.t this formalism. To achieve
tractability, we make the following assumption : Vz; € Z;, z;5 = const = z;;. Thus
we can rewrite the expression (3) :



K L
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For N sufficiently large, we can make the following approximation :

w|N

Zln]\f(mli | e, A1) =~ WiNE, N (2 | e, AY)] (7)

i=1

This statement is known as virtual sampling, and was introduced in [9,23] in
the context of max. likelihood estimation.
We can also write :

Eu [ln./\/(x | pg, A ] JN(z | pp, A )lnN(z | g, A ) dx  (8)
By 0N (@ | s, A >] = —KL (N | AT N G| s A7)
~HW(@ | 1, 4,7))

with K L(qo || g1) the KL divergence of ¢; from gy and H(qp) the entropy of
qo. These two terms have closed-form expressions [24]. Thus by reinjecting (9)
into (7), and then (7) into (6), we obtain the following expression :

K L
KL (NG | i, 4, NG ) - BV | 4 )]
K L
Inp(X | Z,p, A) ZZ 2]
e (11)

1 r_ 1 d
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The formalism change we made also has consequences on (2) : as we previ-
ously stated that zj, = z,x Va, € Z;, we can write :

L K
Z | _Q H H Znk H H w]i\/w{zm (12)
n=1k=1 1=1k=1



Variational update equations are partially based on moments evaluated w.r.t
p(Z) and p(X). Therefore we can review the cascading consequences relatively
to the method introduced in [1].

q(Z) expression is based on the computation of the In(p,x) terms. As a
consequence of (11) and (12), it now reduces to the computation of :

In(pix) = N;I/ (2E[lnwg] + E[lndet Ag] — d1n(27)) 3)
N By [T ™) 4 (i — 1) 20— )

This leads to the computation of the set {ry} and defines ¢(Z) in its optimal
setting.

The moment w.r.t p; and Ay is easily evaluated to give
G, TV [TT(WkAl_l) + (g — ) " Wi (g — mk)]

The pdfs ¢(£2) and ¢g(u, A) are also modified. In their optimal setting, the
update equations become :

ap = ap + Zwamk (14)
!

Be =B+ > NBu (15)
I

1
k=g (507710 +y waﬁkﬂf) (16)
1
Wit =Wyt + Bomomi — Bemgm{ + Y Nwjro(p™ + A7) (17)
1
v, = Vg + ZNWZ/TU@ (18)
1

Cycling through these update equations implements an EM-based algorithm,
analogously as presented in [1,8].

Also in [1], we learn that the previously described algorithm monotonically
decreases the KL distance between the variational pdf and the true posterior.
This is equivalent to maximising the lower bound of the complete likelihood. As
we can compute this lower bound, and as this bound should never decrease, we
can test for convergence by comparing two successive values of the bound. Only
terms of the bound that depend on Z or X are impacted, we list these changes
below :
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Choosing appropriate priors can be problematic. If we have expert knowledge
on the clustering structure to build, this can be used to build it, but we must
be able to carry out the problem in a totally unsupervised fashion. Fortunately,
it is possible to define uninformative but efficient priors. We set :

1. Uniformly chosen prior means (on the observed data space),
2. Isotropic prior covariances (diagonal values scaled to half of the observed
variance)

This approach is valuable if we choose an enough big number of prior com-
ponents. Doing this enables a sufficiently large search through parameter space,
therefore avoiding the worst local optima. Experimentally, we have found that
for low dimensional spaces (2 or 3), using 30 to 50 components is a rather good
compromise to capture most of the clustering structure while keeping a low
computational cost.

4 Experimental results

We present here results obtained on the proposed method (let’s name it VB-
Merge), first on an artifical, then on a real data set.

We want wish to evaluate the overall quality of estimations made with VB-
Merge. For this, we will compare the relative quality of models estimated with
VBMerge with respect to a batch VBEM approach. Indeed, the reduction of a
too rich model should not degenerate the estimation, in other words it should
converge to an estimation close to the true distribution, while reducing signif-
icantly the number of components. For the comparison we will use 2 synthetic
data sets (sampled from a 4-component 2-dimensional GM with randomly placed
means, various covariance matrices and various populations per component) and
the Glass Identification data set [25]. This data set describes 214 samples of glass
with 9 physical (numerical) characteristics. Each sample is associated with a true
label from 7 possible. We consider here that the partition of items w.r.t. labels
constitutes the distribution we try to discover.

Then we will illustrate the joint usage of VBEM and VBMerge on the sug-
gested geo-temporal context. This data set was introduced in [7] and describes
721 images over spatial and temporal attributes. It was obtained from a personal
collection taken in several countries over 3 years. In [7] this data set was used
to build a Gaussian mixture hierarchy designed to navigate conveniently in the
obtained events. We shall see that VBMerge can be a promising building block
in such a context.



4.1 VBMerge Vs VBEM
For the quality assessment, we used the following settings :

— For the synthetic data sets, VBEM is initialised randomly with K = 30 (a
usually good value for 2D spaces). To generate a redundant GM we use a
classic EM algorithm estimation ( [26], [1] chap. 9) with K = 8. Indeed,
classic EM usually tends to overfit data, so this will be a good point if
VBMerge is able to compensate this drawback while giving a good estimate.

— For the glass data set, as its dimensionnality is much higher we use K = 300
for VBEM, as this is necessary to cover the data space properly. For classic
EM we use K = 30,

For all data sets, and for each setting (VBEM or classic EM-VBMerge), we
will measure :

— the empirical cross-entropy (the data set is considered as a sample from the
true distribution) of the estimated model w.r.t the true (unknown) distribu-
tion.

— the KL divergence of the estimated model w.r.t the true distribution. Of
course this calculation is possible only in the case of a synthetic data set,
where the true distribution is known. An approximate value of this measure
is obtained through a simple sampling scheme (see [1] chap. 11) (100000
draws)

— the number of components in the estimated model

— the couple error [27] measured between the inferred labels (i.e. which compo-
nent is associated with each datum) and the true labels. This error measures
if two items that are in the same (respectively a different) class w.r.t the orig-
inal distribution also are in the same (resp. different) class in the estimated
distribution.

— We made 20 measurements per study case.

Fig 1 displays the mean of these results, with associated standard deviation in
brackets. As the variational estimation integrates important characteristics such
as a low and appropriate number of components and a good separation between
low-entropic components (for a discussion about these aspects, see [7]), we believe
that the cross-entropic and KL values are significant quality measurements.

Obtained values on synthetic data set show that there is no significant differ-
ence between our VBMerge and the VBEM. Therefore our proposed algorithm
applied on a redundant model can lead to a result as good as obtained with an
usual variational estimate. On the other hand, the results are much worse on
the glass data set. This must be due to a bad initial estimate by the classic EM
algorithm. Indeed, this data set is not designed for Gaussian mixture modelling
at all (e.g. contains some very low entropic variables). A classic EM approach
is very sensitive to this problem, and will typically lead to a very degenerated
optimum, as VBEM alone is much more robust to such issues [1]).



4.2 Building a mixture hierarchy on geo-temporal data

The data set used for our experiment is represented in figure 2. We will follow
these steps to build a simple hierarchy :

1. Estimate a model on geo-temporal data using VBEM (see figure 4),
2. Project this model on the (z,y) sub-space,
3. Reduce this model using VBMerge.

When merging components with VBMerge, we define implicitly a probabilis-
tic mapping of the original components with the merged components. This allows
to define a 2-level GM hierarchy.

The second level is presented in Figure4(a). We obtained 8 compact and
well defined classes. All the main location of the user collection was correctly
retrieved. The first level on Figure 3 displays the reduced model defined only
on (z,y) space (clusters of the finer also appears). This can be an entry point
for user navigation since the obtained summary seems pertinent : it is composed
of just 3 clusters, with well defined boundaries. Nevertheless, the image group
situated at the coordinate [45, 75] is isolated : as in [7], small image group tends
to be grouped with the nearest clusters.

A user can then browse its collection switching between the different obtained
classifications : for example, he can first start by browsing our geographical
hierarchy to select a specific location, and then switch to the initial 3-D partition,
therefore offering a view of closely related places at a same time.

5 Conclusion

This paper discloses a technique for building a hierarchy of mixture models,
where the main contribution is a variational approach to Bayesian clustering of
components. The main features of the approach is that it possesses advantages of
Bayesian modelling, while being computationally very tractable. The technique
was motivated by an applicative need arising from indexing image collections,
based on geo-temporal metadata, enriching the browsing possibilities within the
collection.

Besides considering multi-users and integrating information from geographi-
cal information systems, such as work quoted in Section 2, we believe that struc-
ture from time-continuous capture of geolocation, rather than from the mere
time instants of pictures, should be investigated to gain valuable insight.
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