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Abstract. — In this paper, the performances of the quasi-Newton BF@&-al
rithm, the NEWUOA derivative free optimizer, the Covariandatrix Adapta-
tion Evolution Strategy (CMA-ES), the Differential Evoioin (DE) algorithm
and Particle Swarm Optimizers (PSO) are compared expetaiyeon bench-
mark functions reflecting important challenges encoundténereal-world op-
timization problems. Dependence of the performances inctimglitioning of
the problem and rotational invariance of the algorithmsimgarticular investi-
gated.

1 Introduction

Continuous Optimization Problems (COPs) aim at finding tloba optimum
(or optima) of a real-valued function (alabjectivefunction) defined over a
(subset of) a real vector space. COPs commonly appear igdayes life of
many scientists, engineers and researchers from varisciplities, from physics
to mechanical, electrical and chemical engineering talginl Problems such as
model calibration, process control, design of parameddrizarts are routinely
modeled as COPs. Furthermore, in many cases, very littladgvk about the
objective function. In the worst case, it is only possiblerétrieve objective
function values for given inputs, and in particular the usas no information
about derivatives, or even about some weaker charaatsrisfithe objective
function (e.g. monotonicity, roughness, . ..). This is theeg; for instance, when
the objective function is the output of huge computer progransuing from
several years of development, or when experimental preses=d to be run in
order to compute objective function values. Such problemeumt to what is
calledBlack-Box OptimizatiofBBO).
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Because BBO is a frequent situation, many optimization odgtakasearch
algorithmg have been proposed to tackle BBO problems, that can belgross
classified in two classes: (i) deterministic methods inelatassical derivative-
based algorithms, in which the derivative is numericallynpoited by finite dif-
ferences, and more recent Derivative Free OptimizationQ)p&gorithms [IL],
like pattern searcH][2] and trust region methdds [3]; (ickiastic methods rely
on random variables sampling to better explore the searabes@and include
recently introduced bio-inspired algorithms (see Sedlipn

However, the practitioner facing a BBO problem has to ch@wseng those
methods, and there exists no theoretical solid ground wieman stand to per-
form this choice, first because he does not know much abowtbiestive func-
tion, but also because all theoretical results either makpl#ying hypotheses
that are not valid for real-world problems, or give resultattdo not yield any
practical outcome. Moreover, most of BBO methods requimmesparameter
tuning, and here again very little help is available for theggitioner, who is left
with a blind and time-consuming test-and-trial approach.

In such context, this paper proposes an experimental peigpen BBO
algorithms comparisons. Rigorous procedures to comparestults of differ-
ent BBO algorithms have been propospgd [4], taking into actthe stochastic
nature of many of them, and giving fair chances to each oné&earht How-
ever, a critical issue in such experiments is that of the lerack suite. And
because no set of real-world problems can be guaranteeds¢o alh possible
cases of difficult COPs, the approach that has been choseiistterbuild artifi-
cial test functions with some precise characteristics @ahatknown to be possi-
ble sources of difficulty for optimization (e.g. ill-conitihing, non-separability,
non-convexity, ruggedness, ...). Such experimental t€soluld then be cau-
tiously generalized, leaving only a few good-performingoaithms in each spe-
cific context.

Of course, in real-life BBO situations, it is assumed thahimg is known
about the objective function. However, the user sometinasssbme partial in-
formation (e.g. because his problem is known to be similather better-known
problems) that might lead him to decide for a BBO method thdé&kperimen-
tally) known to perform well, ’in vitro’, in his precise siation. But on the other
hand, assuming absolutely nothing is known in advance athmubbjective
function, running the champion algorithms as identified énf@ctly controlled
environment might give him some information about his fiorc{e.g. if numer-
ical gradient-based algorithms perform 100 times betten #il other methods,
his problem is probably very similar to a quadratic problefihis paper is a
first step in aiming such ’in vitro’ results.



Next, in Sectior{]2, some characteristics of the objectivection are sur-
veyed that are known to make the corresponding BBO problauh ISzctior{]3
introduces the algorithms that will be compared here. 8efithen introduces
the test bench that illustrates the different difficultiéghtighted in Sectior]2,
as well as the experimental conditions of the comparisohs.résults are pre-
sented and discussed in Sectjpn 5, and the paper ends withcmrolusions in

Sectior[p.

2 What makes a search problem difficult?

In this section, we discuss problem characteristics tteaeapecially challeng-
ing for search algorithms.

2.1 lll-conditioning

The conditioning of a problem can be defined as the range @vevel set)
of the maximum improvement of objective function value inall lof small
radius centered on a given level set. In the case of convedrgtia functions
(f(x) = %XTHX whereH is a symmetric definite matrix), the conditioning can
be exactly defined as the condition number of the Hessianixmidtri.e., the
ratio between the largest and smallest eigenvalue. Simekdets associated to
a convex quadratic function are ellipsoids, the conditiomber corresponds to
the squared ratio between the largest and shortest axithgeafthe ellipsoid.

Problems are typically considered as ill-conditioned & ttonditioning is
larger than 18. In practice we have seen problems with conditioning aslasy
1019, In this paper we will quantitatively assess the perforneasiependency on
the conditioning of the objective function.

2.2 Non-separability

An objective functionf(xy,...,X,) is separable if the optimal value for any
variablex; can be obtained by optimizing(Xa,...,X—-1,%,%+1,...,%) for any
fixed choice of the variables,, ..., X_1,X.1,...,X,. Consequently optimizing
an n-dimensional separable objective function reduces tomipiing n one-
dimensional functions.

Functions that are additively decomposable, i.e., thabeamritten asf (x) =
yitq fi(x) are separable. One way to render a separable test functibsapa-
rable is to rotate first the vectar which can be achieved by multiplyingoy an
orthogonal matrixB: if x — f(x) is separable, the function— f(Bx) might be
non-separable for all non-identity orthogonal matriBesn this paper we will
investigate separable and non-separable problems.



2.3 Non-convexity

Some BBO methods implicitly assume or exploit convexity toé bbjective
function. Composing a convex functiohe R to the left with a monotonous
transformationg : R — R can result in a non-convex function, for instance the
one-dimensional convex functiof(x) = x> composed with the monotonous
functiong(.) = |.|/* becomes the non-convex functigf|.]. In this paper we
will assess performance dependency on convexity.

3 Algorithms tested

This section introduces the different algorithms that Wil compared in this
paper. They have been chosen because they are consideredh® thampi-
ons in their category, both in the deterministic optimiaativorld (BFGS and
NEWUOA) and in the stochastic bio-inspired world (CMA-ESE and PSO).
They will also be a priori discussed here with respect to iffeedlties of con-
tinuous optimization problems highlighted in previous t&etf2.

3.1 The algorithms

BFGS is a well-known quasi-Newton (i.e. gradient-based) metHamm the
current point, it computes a 'descent direction’ using apragpimation of the
inverse of the Hessian matrix of the objective function agupto its gradient,
and performs a line-search (1D optimization) along thigation. It then up-
dates the approximate inverse Hessian. BFGS method is lant@thod: it has
a proven convergence to a stationary point. . . providedttréirgy point is close
enough from the solution, and the objective function is laguhe Matla
version of BFGS (Matlab functiofminunc ) will be used here, because it is
blindly used by many scientists facing optimization protde Default parame-
ters were used except for stopping criteria: the algoritetops if the function
value improvement in one iteration is less tham 20

In BBO context, the gradients have to be computed numeyi¢ali option
in Matlab BFGS), which might be a source of possible numépoablems.

NEWUOA (NEW Unconstrained Optimization Algorithm) has been pisgzb
by Powell [3]: it is a DFO algorithm using the trust region @digm. The
trust region is a ball, centered on the current best poinWWNIBA computes
a quadratic interpolation of the objective function withhre current trust re-
gion, based on known values of the objective, and then paga truncated
conjugate gradient minimization of the interpolated mddehe trust region.



It then updates either the current best point or the radiubheftrust region,
based on the a posteriori interpolation error, and somestiotds on the trust
region size. Here, the implementation by Matthieu Guibersted athttp:
Iwww.inrialpes.fribipop/people/guilbert/newuoa/new uoa.html has
been used.

An important parameter of NEWUOA is the quadratic model te it the
interpolation, or, equivalently, the number of points thed necessary to com-
pute the interpolation. As recommended by Powj¢ll [8];+2L points have been
used herer(is the dimension of the search space). Other critical paeare
the initial and final radii of the trust region: the initialdias governs the granu-
larity of the objective function that the algorithm will 'seand the final radius
tunes the amount of local search that will performed. Heeeintitial and final
values 100 and 10° were used, after some preliminary experiments.

CMA-ES is an Evolution Strategy (ES)|[$,6] algorithm: from a setpdrents’
(potential solutions), 'offspring’ are created by samgl{Baussian distributions,
and the best of the offspring (according to the objectivefiam values) become
the next parents. The art of Evolution Strategies lies innhg the parameters
of the Gaussian distributions are updated: the CovariarateivAdaptation 7]
uses the path that has been followed by evolution so far tad@pt the step-
size, a scaling parameter that tunes the granularity of ¢laech, comparing
the actual path length to that of a random walk; and (ii) mpttile covariance
matrix of the multivariate Gaussian distribution by modity its eigenvectors
in order to increase the likelihood of recent beneficial nsoyesingle Gaussian
distribution is maintained, its mean being a linear comiiamaof the parents.
Besides the population size, CMA-ES is parameter-free. gdpulation size
has been set to its default value-4 3log(n) |, but it needs to be increased in
order to tackle highly rugged search landscapes. Thelistiég-size has been
set to a third of the parameters’ range. The version usedisnptiper (Scilab
0.92) implements weighted recombination and rankadate [B] (version 0.99
is available ahttp://www.lri.fr/ ~ hansen/cmaes_inmatlab.html ]).

PSO (Particle Swarm Optimization]][9] is a bio-inspired algbm that recently
raised a lot of interest, thanks to several published gosultse and the simplic-
ity of its implementation. The biological paradigm is thdaswarm of particles
that 'fly’ over the objective landscape, exchanging infotiora about the best
locations (i.e. potential solutions) they have seen. Moegipely, each particle
updates its velocity, stochastically twisting it toware ttirection of the best
positions so far visited by (i) itself and (ii) the whole swarit then updates its
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position according to its velocity and computes the newealfithe objective
function.

A Scilab transcription of the Standard PSO 2006, that it atgilable on
the main page dPSO Centrahttp://www.particleswarm.info/ |, was used
here, with default settings.

Differential Evolution (DE [fL§]) borrows from Evolutionary Algorithms (EAS)
a population of potential solutions that evolves subjecbltgective-function
based selection. However, the main operator used to geneeat solutions,
that somehow replaces mutation, is specific to DE (and thecedar its name):
the difference between two points in the population is aded third one.
Uniform crossover is used with some probability. The impdeation posted
by the original authors dittp://www.icsi.berkeley.edu/ ~ storn/code.

html was used here. However, the authors themselves confehsjrigtiidance
to DE parameter tuning, that the results might be very degraneoh the param-
eters. They propose in the code 6 possible settings, andséxeexperiments
(3 x 288 trials) on a moderately ill-conditioned problem leadasonsider the
“DE/local-to-best/1/bih strategy, where a single difference vector, computed
between a random point and the best point in the populasarséd to generate
the new points. In those preliminary experiments, the usgagsover seemed
to have little beneficial impact on the results, so no crossevas used, thus
making DE rotationally invariant (see below). Those prafiany experiments
also resulted in values of the other parameters of DE: thelptipn size was
set to the recommended value oinl@ weighting factor td- = 0.8.

3.2 Invariances

Some a priori comparisons can be made about those algoritiefated to the
notion ofinvariance Indeed, invariances add to the robustness of an algorithm:
functions belonging to the same equivalence class withesp some invari-
ance property will look exactly the same for an algorithnt teanvariant under
the transformation defining this equivalence class.

Two sets of invariance properties are distinguished, wdrethey regard
transformations of the objective function value or transfations of the search
space. First, all comparison-based algorithms are invatiader monotonous
transformations of the objective function, as comparisares unaltered if the
objective functionf is replaced with somgo f for some monotonous function
g. All bio-inspired algorithms used in this paper are comgamibased, while
the BFGS and NEWUAO are not (see Secfion 2.3).

Regarding transformations of the search space, all atgositare trivially
invariant under translation of the coordinate system. Buubk consider some
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orthogonal rotations: BFGS is coordinate-dependent ddest@omputation of
numerical gradients. NEWUOA is invariant under rotationemwlconsidering
the complete quadratic model, i.e. built wiin+ 1)(n+ 2) points. This vari-
ant is however often more costly compared to the-2 one — but the latter is
not invariant under rotation. The rotational invarianceCMIA-ES is built-in,
while that of DE depends whether or not crossover is used fossaver re-
lies on the coordinate system. This was one reason for ogpittiossover here.
Finally, PSO is (usually) not invariant under rotationsadlscomputations are
done coordinate by coordinafeJ[L1,12].

4 Test functions and experimental setup

4.1 Test functions

The benchmark functions tested are given in Taple 1. Thetiimg are tested

Table 1. Test functions with coordinate-wise initialization intats and target
function value, wherg := Bx implements an angle-preserving, linear transfor-
mation,i.e. Bis orthogonal.

Function a Initialization fiarget
feni (%) = 3i_ 10(Ti [1,10'9 [-20,80" 10°°
frosedX) = Z. 1( (yz Y|+l 1)2) [17108} [—20,80" 10°°
a0 = (sis *ﬁyz) (1,1010 [-20,80" 1079

in their original axis-parallel version (i.8 is the identity andy = x), and in
rotated versions, wheng= Bx. The orthogonal matriB is chosen such that
each column is uniformly distributed on the unit hypersphsurface|[J7], fixed
for each run.

The ellipsoid functionf; is a convex-quadratic function where the parame-
tera is the condition number of the Hessian matrix that is variesveen 1 and
1019 in our experiments. Ié = 1 the ellipsoid is the isotropic separable sphere
function. The functionf* has the same contour lines (level sets¥as how-

elli
ever it is neither quadratic nor convex. o 1, the functionsfe; andfe”/I are
separable ifand only B=1.

The Rosenbrock functioffirgsenis non-separable, has its global minimum
atx=[1,1,...,1] and, for large enougb andn, has one local minimum close
tox=[-1,1,...,1], see also[[13]. The contour lines of the Rosenbrock func-

tion show a bent ridge that guides to the global optimum (tbheeRbrock is



sometimes called banana function) and the parantetntrols the width of
the ridge. In the classical Rosenbrock functanequals 100. For smaller the
ridge becomes wider and the function becomes less diffioudbtve. We vary
a between one and §0

4.2 Experimental Setup

For each algorithm tested we conduct 21 independent triais to 10’ function
evaluations. If, for BFGS, no success was encountered uitmber of trials was
extended to 1001.

We quantify the performance of the algorithms using the ssegerfor-
manceSPL used in [I}], analyzed i J[L5], and also denoted as Q-medsur
[LG). The SPL equals the average number of function evaluations foresisec
ful runs divided by the ratio of successful experiments, igtan experiment is
successful if thefiargetis reached before T@unction evaluations are exceeded.
TheSPL is an estimator of the expected number of function evainatto reach
frarget if the algorithm is restarted until a success (supposingitefitime hori-
zon) and assuming that the expected number of function atiahs for unsuc-
cessful runs equals the expected number of evaluationsiéoessful runs.

5 Results

Results are shown for dimension 20. Results for 10 and 40&atesmilar ten-
dencies and are displayed in Appenfdix A.

Ellipsoid functions: dependencieBigure[1 showsSPL (search costs, expected
running time in number of function evaluations) versus ¢toa number on all
ellipsoidal functions. A remarkable dependency on the itimmdnumber can be
observed in most cases. The two exceptions are PSO on thalskepainctions
and DE. In the other cases the performance declines by atddastor of ten
for very ill-conditioned problems as for CMA-ES. The ovéwdtongest perfor-
mance decline is shown by PSO on the rotated functions. NEWEl@ws in
general a comparatively strong decline, while BFGS is onfgdsible for high
condition numbers in the rotated case, reporting some ricah@roblems. The
decline of CMA-ES is moderate.

For CMA-ES and DE the results are (virtually) independerthefgiven el-
lipsoidal functions, where CMA-ES is consistently betwéea and forty times
faster than DE. For PSO the results are identical on Ellipsod Ellipsoid/4,
while the performance decline under rotation (left verdghtrfigures) is very
pronounced. PSO performs well only on separable or very-eggitlitioned



Separable Ellipsoid Function Rotated Ellipsoid Function

Y s 1 4 4 i
10 10 10 10 10 10 10 10 10 10 10 10
Condition number Condition number

Separable Ellipsoff* Function Rotated Ellipsoid/4 Function

Y s 1 4 4 i
10 10 10 10 10 10 10 10 10 10 10 10
Condition number Condition number

Fig. 1. All ellipsoidal functions in 20D. Shown iSPL (the expected running
time or number of function evaluations to reach the targettion value) versus
condition number.

functions. A similar strong decline under rotation can bsesteed for NEWUOA
on the Ellipsoid function for moderate condition numbers@5, on the other
hand, shows a strong rotational dependency on both fursctioty for large
condition numbers> 1P.

Switching from Ellipsoid (above) to Ellipsotd* (below) only effects BFGS
and NEWUOA. BFGS becomes roughly five to ten times slower.nailar ef-
fect can be seen for NEWUOA on the rotated function. On theusdye EI-
lipsoid function the effect is more pronounced, because NIOA performs
exceptionally well on the separable Ellipsoid function.

Ellipsoid functions: comparisonOn the separable Ellipsoid function up to a
condition number of DNEWUOA clearly outperforms all other algorithms.
Also BFGS performs still better than PSO and CMA-ES while DEfgrms
worst. On the separable Ellipséif function BFGS, CMA-ES and PSO perform
similar. NEWUOA is faster for low condition numbers and stwor large



Rosenbrock Function Rotated Rosenbrock Function

7 ; :
/ ) L
10 ¥ 10 7 i A
- A

~A— NEWUOA =
-0- BFGS

DE2 DE2
- PSO - PSO
—— CMAES —— CMAES

~~ NEWUOA
—-O- BFGS

] 10 1 5 1
10 10 10 10 10 10 10 10 10 10 10 10
alpha alpha

Fig. 2. Rosenbrock function. Shown &PL (the expected running time or num-
ber of function evaluations to reach the target functiomegakersus condition-
ing parameteq.

ones. For condition number larger thar® IBEWUOA becomes even worse
than DE.

On the rotated functions, the performance of PSO declirms\igh increas-

ing condition number. For numbers larger thasd, SO is remarkably outper-
formed by all other algorithms. On the rotated Ellipsoiddtion for moderate
condition numbers BFGS and NEWUOA perform best and outperfoMA-
ES by a factor of five, somewhat more for low condition numparsl less for
larger condition numbers, while PSO and DE are much worselaFge condi-
tion numbers CMA-ES becomes superior and DE is within a fagftten of the
best performance.

On the rotated Ellipsoid* BFGS and CMA-ES perform similar up to con-
dition of 1°. NEWUOA performs somewhat better for lower condition num-
bers up to 16. For larger condition numbers BFGS and NEWUOA decline and
CMA-ES performs best.

Rosenbrock functiorOn the Rosenbrock function NEWUOA is the best algo-
rithm (Figure[R). NEWUOA outperforms CMA-ES roughly by a facof five,
vanishing for very large values for the conditioning partena. For smalla,
BFGS is in-between, and for> 10* BFGS fails. DE is again roughly ten times
slower than CMA-ES. Only PSO shows a strong dependency omtaton of
the function and it reveals the strongest performance meglith increasingy,
while it never competes with the best three algorithms.

Scaling behaviorsThe scaling of the performance with search space dimension
is similar for all functions (see Appendi§ A for the data). BNES, NEWUOA
and PSO show the best scaling behavior. They slow down bytarfaetween



five and ten in 40D compared to 10D. For BFGS the factor is #lighbove
ten, while for DE the factor is thirty or larger, presumabbchuse the default
population size increase linearly with the dimension.

6 Summary

In this paper we have conducted a comparison of BFGS, NEWWHDA three
stochastic bio-inspired optimization methods in a blaok-bptimization sce-
nario. The empirical study was conducted on smooth funstieith varying
condition number. Aside from gradients being not provided,consider these
functions as the favorite playgrounds of BFGS and NEWUOA. filvd that
NEWUOA performs exceptional on separable quadratic fonstiit performs
in all cases very well with moderate condition numbers, bgins a compara-
tively steep performance decline with increasing ill-citioding. BFGS per-
forms well overall, but shows a strong decline on very ilikditioned non-
separable functions. For DE, the parameters are difficiline and yet it per-
forms overall poorly with the single best parameter setongour small func-
tion set. With the chosen parameters, DE shows the strongfasstness to ill-
conditioning though. PSO performs similar to CMA-ES on teparable prob-
lems, with an even weaker dependency on the conditioningaddrseparable
problems PSO exhibits a strong performance decline witleasing condition-
ing and performs very poorly even on moderately ill-comaigd functions.
Finally, CMA-ES generally outperforms DE and PSO, while opatmoder-
ate function conditioning BFGS and NEWUOA are significariélgter in most
cases. Due to their invariance properties, the performaemdts of CMA-ES
and DE are the most stable ones and most likely to generaliziaér functions.
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Fig. 3. Ellipsoid function. Shown isSPL (the expected running time or num-
ber of function evaluations to reach the target functiou@palersus condition
number.
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Fig. 4. Ellipsoid/4 function. Shown isSP1 (the expected running time or num-
ber of function evaluations to reach the target functiou@palersus condition
number.



Rosenbrock Function

Rotated Rosenbrock Function
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Fig. 5. Rosenbrock function. Shown &P1 (the expected running time or num-
ber of function evaluations to reach the target functiomeglversus condition-
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