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Abstract: Analysis of wireless experimentation results is a complex task to
achieve. As multiple probes are needed in order to get a global view of a
wireless experimentation, the resulting packet traces may be very large. In this
paper we propose an algorithm that realizes trace synchronization and merging
in a scalable way. The algorithm generates a database that only stores the
information marked as relevant for post-processing analysis by the experimenter.
Initial performance results are promising.
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Résumé : Analysis of wireless experimentation results is a complex task to
achieve. As multiple probes are needed in order to get a global view of a
wireless experimentation, the resulting packet traces may be very large. In this
paper we propose an algorithm that realizes trace synchronization and merging
in a scalable way. The algorithm generates a database that only stores the
information marked as relevant for post-processing analysis by the experimenter.
Initial performance results are promising.
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1 Introduction

The Internet architecture and network protocols are evolving to accommodate
for future user needs. Given the complexity and the size of current proto-
col stacks, any innovation or change must undergo several validations steps
that may have di�erent realism levels (analytical proofs, simulations and ex-
periments). Even if modeling and simulation are important in the evaluation
process, experimentation represents a major technique that should be under-
taken before production solutions. However, experimentation is still complex
and di�cult to achieve.

The experimentation process must include several steps: scenario descrip-
tion, running, monitoring and capture, archiving and analysis[3]. From these
steps one of the most important and complex is experiment monitoring and
capture because it creates a high processing load and large data size. There are
many proposals to get around these two problems. In wired networks, sampling
allows reducing processing and memory resources, while in wireless networks,
metrics computed on the �y simplify the monitoring and reduce memory require-
ments. Nevertheless, in both cases, understanding the experiment is limited and
may include a "margin of error" . To provide more complete experimentation
understanding, monitoring should include full packet capture with the cost of an
increased processing complexity [1]. Packet capture is typically done in several
places and this increases the size of traces to be stored [4].

In fact, an important point that contributes to the di�culty of the experi-
mental approach is the large amount of information generated through monitor-
ing and the di�culty to merge this information in an easily exploitable engine.
Accelerate data access becomes as important as capturing it, since the goal is
to analyze and study the experiment results. Another important point is the
impact of monitoring and capture during the experiment. "Passive monitoring"
1requires several passive probes but traces generated with this method need
to be synchronized before merging due to absence of a central synchronization
point.

Merging traces represents a complex problem especially in wireless experi-
mentations, due to packet redundancy in multiple probes. Merging traces so-
lutions need to be e�cient in order to process the large amount of generated
traces. These solutions should provide an output data structure that allows easy
and fast analysis and must be scalable in order to be used in large and various
experimental settings. In addition, merging solutions need to include a speci�c
collecting traces method in order to automate the whole process. We use the
term "pre-processing" throughout the paper to designate all the required oper-
ations for "merging" packets trace (i.e., synchronization, traces collection and
generation of a unique trace).

In this paper, we propose a scalable and e�cient pre-processing algorithm
for wireless traces. Section 2 provides a survey of existing traces synchronization
and merging e�orts. Section 3 describes our pre-processing solution. Section 4
presents presents the performance results of our algorithm and �nally section 5
concludes the paper.

1Passive monitoring is a technique used to capture tra�c from a network by generating a
copy of that tra�c
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2 Related work

Trace synchronization and merging was �rst investigated by Agrawala et al. in
[4] where they show that several probes are required to obtain a global view of
the experiment in wireless environment. To synchronize traces, they propose
the use of beacon timestamps as a common reference and perform linear re-
gression to �t all the traces. This method requires merging from all the traces
simultaneously, thus generating a high pre-processing overhead.

Another solution that covers this gap is JIGSAW [5] which provides a single
and uni�ed view of all radio tra�c on a 802.11 wireless network. JIGSAW is
based on three axes: large-scale synchronization, frame uni�cation and radio
reconstruction. Its output is a data structure called Jframe, which includes
source information of the packets. Although JIGSAW uses a database engine
to synchronize and merge traces, its output format still keeps the content of the
packets as a payload block and does not include multi-protocol features.

On the other side, current experimental platforms as PLANETLAB and
ORBIT do not include trace merging as part of the experimental process. One
of the most evolved wireless experimental platforms is ORBIT, a grid of wire-
less nodes with experimental control infrastructure. ORBIT provides real-time
insertion of data into a database through the OML [1] framework. OML is
a measurement data collection and organization framework, which enables the
experimenter to de�ne the measurement points and parameters, collect and pre-
process measurements, and organize the collected data into a single database.
It is a real-time framework where measurements are executed on experimental
nodes during experimentation; In these conditions it is very di�cult to include
trace capturing as a feature without disrupting the experimentation.

Another network testbed, called Emulab [6], introduces an e�cient approach
to optimize the hardware use. It provides several virtualization levels in order
to share resources between users. Moreover, it ensures the connectivity between
virtual components and the real ones. Although such a hybrid con�guration can
result in a powerful tool, there are no means for trace merging or synchronization
provided by the platform itself, and data must be processed with external tools.

In synthesis, capturing and merging traces allows to get a global under-
standing of network experimentation. Merging traces is done in physical layer
of wireless networks but it is di�cult in upper layers due to the high computing
and memory resources needed to achieve this type of measurements. Captured
traces generated from a single probe can represent a large amount of data, which
increases the overall data size when we use several probes. In this case it is more
e�cient to store the traces within databases [2] (data �les can be an archiving
solution but does not allows e�cient post-processing).

3 E�cient pre-processing data solution

In this section, we describe �rst the synchronization and merging algorithm,
which reads the trace �les, uni�es the timestamps and then stores the packets
into a database(subsection 3.1). Then, we propose an original approach to store
and �lter packet traces (subsection 3.2). After that we introduce the basic traces
collection model(subsection 3.3), we discuss its weaknesses in order to introduce
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optimizations that we implemented (subsection 3.4), which further allows us to
analyze the scalability of the system.

3.1 Synchronization and merging algorithm

The main di�culty in the merging process, is to identify each packet individ-
ually. This operation requires spatial and temporal characterization. Spatial
information is provided by di�erent localizations of the wireless probes, while
temporal information is provided using timestamps generated by each probe.
When probes are in monitor mode2, each of the probes will use a di�erent time
reference to generate its trace (unlike the station mode where beacons generated
by the AP can synchronize the clocks of all stations).

In order to synchronize the traces generated by the di�erent probes, we
propose to use the beacons generated by the AP as the time reference. We
propose to use the beacons generated by the AP as the time reference. Beacon
frames are transmitted periodically by the AP. The beacon frame carries the
AP internal clock reference as part of the payload. When a probe captures a
beacon frame, the wireless driver adds a PHY level header called radiotap, which
includes the local time-of-arrival timestamps of the probe. The saved output
is a packet with both the reference timestamps from the AP and the local
timestamps, generated by the wireless card. We use this frame to determine the
di�erence between the reference time and the local one. This di�erence is called
the "drift clock". The next step is to shift the local timestamps in the traces
using the "drift clock". The "drift clock" is not constant during the experiment,
so we need to reevaluate it for each new beacon frame. We use the latest value
each time we need to correct packet timestamps in order to synchronize the rest
of the packets on the trace3.

The goal of the synchronization algorithm is to prepare traces to merge. The
merging process must identify each packet in each trace in a non ambiguous way.
Due to the spatial distribution of probes, several packets may be received at the
same time by di�erent probes. We need to get around this ambiguity without
overhead.

The identi�cation algorithm is based on the following two-step criteria: First,
we narrow the comparison to the nearby packets by de�ning a time window
centered on the timestamp of the new packet4. Second, once we have obtained
the list of pre-existing packets from the database within the time window, we
use the hash of the payload of the new packet to check if it is already present in
the database. There are two possible outputs of this process: If the new packet
already exists in the database (i.e., it was inserted before from another trace)
and in this case, we only keep the reference of the probe and the corresponding
radiotap information. Else, the packet does not exist in the database and in
this case, we proceed with the insertion of needed protocols information.

The whole process is executed as a continuous data �ow algorithm. Raw
traces are saved in very large �les (e.g. hundreds of megabytes per �le for 300

2In most of the cases, probes use the monitor mode, which allows packets to be captured
without having to associate with an access point or ad-hoc network �rst.

3The maximum di�erence between two successive values thumbnail in experiments is in-
cluded in the margin of error in the time windows (see subsection 3.3).

4The time window is bounded by 100 microsec, which covers possible errors int the syn-
chronization
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seconds of ping tra�c between 5 stations). The merging software cannot load
such a large �le in memory to process it in batch mode. We have designed
an algorithm called CrunchXML [7] that synchronizes and inserts packets into
the database while reading data from the capture �le. This algorithm reads
the database structure and uses a state-machine in order to interpret the data
from the capture �le. With this algorithm, t only a small amount of temporary
memory is required since only one packet is processed at a time.

3.2 Smart packets traces storage

To insert packet traces into a database, we need an adequate data structure
in order for the analysis phase to be easy and e�cient. Note that relational
database engines are based on tables, rows and columns. On the other hand,
packets carry a number of protocol headers which is not known a priori. The
simplest database schema is to associate one table to each protocol. Because
the order of headers may change from one packet to the other, we stored each
packet in a chained row structure.

The chained row structure stores a packet into the database by relating
rows from tables (see Figure 1). Every packet is composed by several headers
and each of them is related to a di�erent protocol. In our database, we have
created several tables, called protocol tables, which correspond to each of the
protocols of interest for the experiment. Each of these protocol tables include
the relevant protocol �elds as columns and two special columns to recreate
the header sequence from the packet. These two special columns point to the
following protocol table and to the row where the next header of the packet is
stored. Using this �exible structure, the database can hold any combination of
protocol headers within a packet.

Figure 1: Shortcut is used to access all the packet headers from the �rst one. This structure

allows the user to access every information in two steps whatever the number of tables.

Furthermore, the storage space is reduced: First, common packets from the
traces are stored only once, thus reducing considerably the used space. Second,
only the protocols and �elds under study are stored, so the payload and other
protocols (unless strictly needed) are not part of the database. Indeed, when
packets are separated in protocol tables, we can concentrate only on the protocol
under study e.g. for counting, averaging or sampling �eld values. For example,
if a general tra�c analysis is desired, the throughput and airtime values can be
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calculated for the whole experiment using the radiotap table, which stores the
timestamps, packet source and packet size.

Moreover, the chained row structure simpli�es anonymization of traces. Each
of the �elds from the stored packets can be replaced with another data pattern
through a database query, thus providing increased privacy for trace publication.

3.3 Traces collection

One of the key challenges in the design of an experimental large-scale testbed
is how to collect experiment results from di�erent probes in an e�cient way.
In fact, if we collect raw data in order to process them in the server, the net-
work will be overloaded due to the large data size. We designed a distributed
packet pre-processing model in which probes are used to insert packets into the
database. Each of the probes acts as a client to the database server, which re-
ceives queries to search through the protocol tables and to insert rows according
to the algorithm described in subsection 3.1.

Our insertion process is based on a data �ow model which allows to process
large trace �les. The �rst prototype implements the routine described in Figure
2, for each packet individually. This basic model proves that the merging algo-
rithms is a correct solution to provide a unique database trace but it did not
provide satisfactory performance so we proceeded to design several optimiza-
tions that we describe hereafter.

We have implemented ans tested this basic model and its performs correctly
(no synchronization error). However, the scalability of the algorithm was poor
in term of CPU requirements. So, we have proposed and implemented a set of
optimizations presented in the following subsection.

3.4 Optimizations

The set of optimizations include �ve items: the Packet insertion transaction,
Multiple Transactions Grouping, Concurrent Clients Access, Multiple Selection
Grouping and an Adaptive Time Window.

Packet Insertion Transaction This optimization avoids sending multiple
queries to the database in order to insert one packet and regroups them in one
transaction. We minimize the global tra�c and time needed to achieve packet
insertion . To analyze the performance of this optimization, we use the following
parameters: N the average number of a�ected protocols tables, S the average
size of all �elds for one header, T the average latency between the client and the
server. With the basic data �ow model described in 3.3, the time required to
perform the operation is T×N and the tra�c size is (S+request_overhead)×N .
Using this optimization reduces the transaction time to T and the tra�c size to
S ×N + request_overhead5.

Multiple Transactions Grouping The new generation of relational databases
o�ers the possibility to achieve multiple transactions in one request [2]. We
use this feature to send more than one transaction per request. Let us de-
�ne M , the number of transactions in one request. The tra�c size will be
M ×N × S + request_overhead instead of (S + request_overhead)×N ×M
if the transactions were done without any grouping.

5Note that transaction ensures that either the whole operation is performed or all the
changes are reversed to the former state.
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Figure 2: Merging and synchronization algorithm

Concurrent Clients Access To take advantage of multiple transaction
grouping, the packet insertion transactions have to be bu�ered and are delayed.
Since multiple clients are accessing the database, concurrency problems may
arise when more then one probe try to insert the same packet into the database.
We have used the reference time (presented in 3.1) to de�ne an order between
di�erent packets and we take advantage from this order to provide a "locked by
zone" feature. When a probe groups packets in order to insert them together,
it must specify the minimum and the maximum timestamps in the grouped
packets and must locked the access to the zone limited by these values in order
to forbid packets duplication. This operation is named locked by time window.
If another probe needs to use the locked zone, it must wait until the �rst probe
concludes its packets insertion operation. This avoids inconsistencies due to
packet diplucation in the database.

Multiple Select Requests As shown in Figure 2, the insertion decision
is preceded by a speci�c request (called select) to the database to check if the
actual packet exists. In the basic model, we must send individually this request
for each packet because the global state of the database can change between
two requests. But the previous optimizations introduce a new information: The
state of all packets whose timestamps are include in the time windows can not
change until the client releases the locked zone. In Figure 2, we can see that to
make a decision, the client needs to send two arguments: the timestamps and the
hash of the packet. If the packet exists, the database returns the next_index.
Then, the client uses this index to chain the reception header to the packet in
the database. This optimization consists on requesting three �elds (timestamps,
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hash and next_index) from the database for all packets whose timestamps are
in the time window. When the client processes captured packets, the insertion
decision can be delayed until the packet timestamps is out of the time window.

Adaptive Time Window To increase the e�ciency of the database inser-
tion process, the main control variable is the time window interval. To adapt
this value to the network and server conditions, we use the server response
time T_server. The goal is to minimize the probability of a bottleneck during
the insertion operation. We calculate a T_server threshold in order to get the
best performance of the database, so if the T_server increases, time window
is decreased in order to reduce to database load. Inversely, if the T_server
decreases, the time window is increased. There are many algorithms that al-
lows to implement this idea. we have implemented a simple one based on a
smooth reevaluation of the T_server and the time window is updated using
proportionately inverse ratio to the T_server variation.

4 Software performance

In the previous sections, we have presented proposals to perform pre-processing
of wireless captured traces. We also presented optimizations of the basic model
in order to increase scalability. In this section, we study the performance of the
pre-processing mechanisms; we �rst start with an initial analysis of the impact of
each optimization. Second, we study the impact of the number of simultaneous
and concurrent active clients on the e�ectiveness of the system. Finally, to cover
a wide range of experimental platform conditions, we study the performance of
the algorithm under di�erent CPU power capacities.

4.1 Impact of di�erent optimizations

Figure 3: Performance for each proposed optimization
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Figure 4: Maximum number of request per unit time in function of the number of probes

Our experimental scenario consists of 6 stations with generates packet trace
sizes from 50 MB to 450 MB on each client. In the �rst approach, we distribute
the insertion process from the probe stations towards a single database server.
The stations are connected to the server through a 100Mbps switched Ethernet
switch.

We can observe on Figure. ?? that the non optimized solution, represented
as the line with squares, has an non-linear performance and the whole pro-
cess lasts more than 4 days to process 2.7 GB (450MB × 6) of packet traces.
When transactional insertion process is used, shown with the line with dia-
monds, the performance is improved by 50% but the non-linear behavior is still
present. The other optimizations such as multiple transaction grouping, shown
with downwards triangles, and concurrent client access, shown with upwards
triangles, decrease the processing time, although it is still non-linear in both
cases.

The optimization that changes the insertion time from exponential to linear
is the multiple select requests, shown with the righthand triangles. In fact,
the SELECT operation is the most expensive in processing resources on the
database server, and when the client increases the frequency of insert-selection
operations, the database increases the time used to rebuild the table indexes.
Nevertheless, when we use the multiple select requests, we minimize the CPU use
at the server, which allows to execute indexing e�ciently. Finally, the adaptive
time window further improves this behavior by adapting the requests to the
server capabilities.
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4.2 Multiple Platform Scalability

To study the scalability of the optimized implementation in various platforms,
we tuned the two following parameters: the number of simultaneous clients and
the available server_CPU power. We change the number of the clients from 1
to 20 in order to cover a wide range of cases, while using a virtual machine as
a server so that we can adjust its available processing power. The real machine
is composed of two Xeon E5450 (Quad Cores) and 16 Gb of RAM. We increase
the available processing power of the virtual machine as a percentage of the
processing power of the server. For example, 25% means that the virtual server
is equivalent to a dual-core processor with 4GB of RAM. Figure. ?? presents
the evolution of the average number of operations by second executed by the
server during the insertion of 450 MB �le. The higher the number of operations
per time unit, the better.

The �rst value for each curve represents the best value that can be reached
by one client. In most of the cases, two stations perform as e�ciently as half the
processing time of a single station. For more than two stations, the performance
depends on the available server processing power.

For all cases we can distinguish two thresholds: Below the �rst threshold, the
performance of the server increases proportionately to the number of stations.
Between the two thresholds, the system is characterized by a stable performance,
which is shared between di�erent stations. From the second threshold, we ob-
serve that the performance decreases in function of the number of stations. We
conclude that managing a high number of connections monopolizes much of the
server CPU.

These thresholds can be observed on each curve on Figure. ??. For ex-
ample, a quad-CPU (50%) provides the best performance until the limit of 4
simultaneuos stations, so the �rst threshold is 4 and share the max performance
until 12 stations so the second threshold is 12.

5 Conclusion

In this paper, we considered the problem of merging captured traces and we have
proposed an e�cient solution for the merging and synchronization problem.

Our solution called CrunchXML [7] is a distributed algorithm providing syn-
chronization and merging of wireless traces and results insertion in a database.
This solution aims to be scalable and e�cient in order to be used in di�erent
experimental platforms. Performance of our solution is directly related to that
of the database server. For this reason, we have analyzed the impact of server
performance on the system stability. This analysis shows that our solution is
adapted for most of the current infrastructure.

The e�ciency of our solution allows us to study new domains such as packet
tracing in multiple testbeds. The method we proposed is based on a database
and this allows to identify packets individually in multiple traces. This approach
can help researchers to study small �ows in the Internet.

Furthermore, our solution can be used to compare di�erent validation ap-
proaches outputs (simulation, emulation and experimentation). Indeed, the
unique hard constraint that each approach should respect is the use of real
packet traces(e.g. NS-3 packets).
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