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Probabilistic motion planning among moving obstaclesoleihg typical
motion patterns.

Chiara Fulgenzi, Anne Spalanzani, and Christian Laugier
LIG, INRIA Rhbne-Alpes, France

Abstract— The paper presents a navigation algorithm for replanning is performed. In all the cited methods however,
dynamic, uncertain environment. The static environment is yncertainty is usually not taken explicitly into account.
unknown, while moving pedestrians are detected and tracked From the more theoretical point of view instead, many works

on-line. Pedestrians are supposed to move along typical mo- . L .
tion patterns represented by HMMs. The planning algorithm handle a non-deterministic or probabilistic represeatatf

is based on an extension of the Rapid|y.exp|0ring Random the information and the planning Under Uncertainty problem
Tree algorithm, where the likelihood of the obstacles futue is solved using Markov Decision Processes (MDP), Partially

trajectory and the probability of collision is explicitly t akeninto  Qpservable MDPs or game theory [9]-[11]. For an overview
account. The algorithm is used in a partial motion planner, ad see [2]. These approaches are however very expensive from

the probability of collision is updated in real-time according to th tati | fi d limited to | di
the most recent estimation. Results show the performance ifo € computational perspective, ana are limited to low di-

a car-like robot in a simulated environment among multiple ~Mensional problems or to off-line planning. In [12] and
dynamic obstacles. [13] a navigation strategy based on typical pattern based

and probabilistic prediction is used in a planning algarth
based on a complete optimization methotf, . However,
Autonomous navigation in populated environments reprepe problem ofA* and of all complete methods is that the
sents still an important challenge for robotics researdte T computational time depends on the environment structure
key of the problem is to guarantee safety for all the agentg,q opstacles: these methods are more adapted to a low dy-
moving in the space (people, vehicles and the robot itselfyamic environments, where the information does not change
In contrast with static or controlled environments, Whe“?requently, the obstacles velocity is limited and the robot
path planning techniques are suitable [1] [2], high dynamigan stop often and plan its future movements. Also, they
environments present many difficult issues: the detectiqquire a discretization of both the state and the control
and tracking of the moving obstacles, the prediction of thgpace, which reduces drastically the space for finding a
future state of the world and the on-line motion planning anghasiple solution, expecially for robots with non-holoreor
navigation. The decision about motion must be related witRg,.ike constraints. Some recent work proposes to integra
the on-line perception of the world and take into account thgncertainty in randomised techniques, such as Probadilist
sources of uncertainty involved: Road Maps [14] and Rapidly-exploring Random Trees (RRT)
1) The limits of the perception system: occluded zoneg$]5] [16].
limited range, accuracy and sensibility, sensor faultsin a highly dynamic environment aanytimealgorithm is
2) The future behaviour of the moving agents: modeheeded, which is able to give a feasible solution at "anytime
error, unexpected changes of motion direction anfl is asked to. We address the problem of taking explicitly

|I. INTRODUCTION

velocity; _ into account the uncertainty in sensing and in predictioa. W
3) New agents entering the workspace; want our navigation algorithm to integrate new information
4) Errors of the execution system. coming from the perception system and to be able to react

Many real world applications rely on reactive strategiég t to the changes of the environment. In previous work [17] we
robot decides only about its immediate action with respecteveloped a probabilistic extension of the RRT algorithm to
to the updated local estimation of the environment [3]—[5]handle a probabilistic representation of the static emvirent
These strategies present however some major drawback: fiastd of the moving obstacles prediction. The search alguarith

of all the robot can be stuck in local minima; secondly, moshas been integrated in a navigation algorithm which updates
of the developed approaches do not take into account thige probabilistic information and chooses the best partial
dynamic nature of the environment and the uncertainty gfath on the searched tree. The navigation algorithm is based
perception, so that the robot can be driven in dangerous on the architecture of Partial Motion Planning (PMP, [18]),
blocking situations. where execution and local planning work in parallel to assur
To face these problems, reactive techniques are combinsafe behaviour. The static environment is initially unkmow
with global planning methods: a complete plan from presersind the robot explores it and builds an occupancy grid.
state to goal state is computed on the basis of the a pridfihile in [17] motion patterns were represented by Gaussian
information; during execution, the reactive algorithm jgida Processes, in this paper we consider the case where pre-
the trajectory in order to avoid moving and unexpected odearned motion patterns are represented by Markov chains
stacles [6]—-[8]. If the perception invalidates the planpath and prediction is based on Hidden Markov Models. We



present how we adapted the algorithm to the new kind off&
prediction, new ideas to take into account new entering
obstacles and simulation results.

Il describes the representation of the static and dynamicg

world and how the probability of collision of a configuration §

is computed. Section IV recalls the RRT basic algorithm and

the proposed approach. Section V recalls the PMP metho¢ = o s B !

and describes the planning and navigation algorithm devel- (@) (b)

oped. Results are presented in Section VI: an experiment

with a laser scan dataset with moving pedestrians is predenfig. 1. (a) The cycab in the parking at INRIA Rhone-Alpes and (b) aoupancy
. . . . grid with the robot (green rectangle) and 2 moving obsta@etoured circles) along

and results in a simulated environment are shown. SectiQ their estimated trajectories.

VIl ends the paper with remarks and ideas for future work.

Il. THE ROBOT AND THE STATE SPACE
range finder). Assuming static environment, the probabilit

of occupation of each cell is recursively updated according
to the observations and estimated using a Bayesian filter. Th
robability of occupation of a point in the space is retridve
the probability of the correspondent cell. For the set of
N cells S = (i,j), covered by the robot in stat&, the
robability of collision P. with static obstacles is given by
fie max probability over the set.

We consider a car-like robot moving iR2. The con-

figuration space = {x,y,0,v,w} described respectively
by the position, orientation, linear and angular velositie
of the robot in the workspace. The robot moves accordi
to its motion modelg(t + 1) = F(q(¢),u(t)) where input
u is given by pairs(a,«) with a the linear anda the
angular acceleration. The robot is subjected to kynemat]
and dynamic constraints: the linear velocityis limited in
the interval[0, v,,.,] @and the angular velocity is limited P.(X,,G) = max(Poec(i,7)) (1)
iN [~Wmaz, Wmaz]- @ and alpha are also boundeds € ) ) S ) )
[@mins Gmaz] ANA Q& € [Qmin, Cmaz)- Slncg t_he grid represent thg_ static qul.d’ there is not néed o
Time is represented by the s&t = (0, +oc), which is the pred|ct|qn and the_ probability qf c_:oII|S|on dpes not depgnd
infinite set of discrete instants with measure unit the tieyes ON the time at which the robot is in a certain configuration.
7. We define state spac& of the robot, the space that g \oving obstacles

represents the configuration of the robot at a certain ihstan Lets assume that the moving obstaclzscan be approx-
in time & = C x T'. In the workspace there are static and 9 P

moving obstacles. The task of the robot is to move fro Imated by circles of fixed radius. The state of an obstacle is

the initial configurationgy to a goal configuratiofy.e; in n}( = (=,v, 9.’ v), Its position in the 2D space, orientation and
o . o L . linear velocity. Given an object observatignthe belief state
finite time without entering in collision with any obstacke.

solution trajectory is a sequence of states fraito ¢yoa X and the prediction are estimated using Bayesian inference.

that is feasible according to the motion model of the robo-t{qgskr;;{:g?n Ob;e(':\;ili?ust b(ihiestiictg(rj 2%/ _tl_r:ch?r?Ot (T\I/IanT?re
and that is collision free: ie each configuration and eac 9 yp 9 9

- . algorithm based on a set of Kalman Filters as in [20]: the
transition of the sequence are collision free. We assunte th : - )
I ; ; obstacles motion can be represented withlinear motion

the position of the robot is known at each instant and that the :
. . . . : models hypothesed,,, each affected by zero-mean white

robot moves following according to its motion model without

error. In the deterministic case, the configuration spéce Gaussian noiseV'(0, Qm). At a considered instant, the

can be divided irCy,.., the set of free configurations of the est_lmat|on of the state_ of an obj_ect IS repre.sented by a
; . .. weighted sum of Gaussian (Gaussian mixture):

robot and’,;, the set of configurations where the robot is in

collision with an obstacle. In our case instead we want te giv ) M e

a probabilistic representation of environment percepéiod P(0;) — Z am - N(X5,, %;,) )

prediction uncertainty and we need to define a probability m=1 _ _

of collision for each robot configuration. In the following The state of an obstacle at future time can be predicted

paragraphs we explain how this probability is computed foapplying recursively the motion models, and the prediction

a considered state of the rob#t.. X is always a mixture of Gaussian. We consider obstacles
moving according to Hidden Markov Models as in [21]. The
Ill. PROBABILITY OF COLLISION 2D plane is non uniformly partitioned in Voronoi regions.
A. The Static environment The probability that an obstactg, is in a specific regiony,

The 2D static environment is represented by an occig@ given by the int_egral of the probability_ distribution ave
pancy grid [19]: the space is divided in square cells. Thie area of the region enlarged by the radius of the obstacles
environment is initially unknown, and the probability of M .
occupationP,.. of each cell is fixed ai.5. During navigation P(O; € s) = //P(Oﬁ) = Z //N(an, )
the space is observed by mean of a distance sensor (laser g m=1"g"



The integral is approximated sampling the distribution-uniThe distance between the points on the scan is studied and
formly with the probability and considering the ratio beeme intervals bigger than the minimal size of an obstacles are
the number of samples inside and outside &fea kept as possible doors (green lines). The red circles are
Now, the belief of the state at tintds given by a discretized hypotheses of new entering pedestrians. In the case wreere th
distribution over the states of the Markov model. The predimbstacles follow typical patterns, they are supposed terent
tion at time horizort+k is recursively estimated propagatingfrom points along or around the pattern prototypes. In Fig.
the estimated state: 3, given the point of view of the robot and the pre-learned
: : : : atterns, new entering obstacles hypotheses are ingtibhbn
P(X"H2") = Z PXTHXTE P 2 fh nearest hidden poignts of the pa¥t2rns.

X The probability of a new obstacle entering in the workspace
where the first term in the sum is the probability to pasguring a certain time interval can be modeled as an homo-
from stateX'*+~! to stateX**" specified by the edges in geneous Poisson process. The probability that at least one

the Markov model and the second is given by the observatigjbstacle enters the scene, is given by the following equatio
model. Considering a state of the rob®¥f and the moving

obstacle O;, the probability of collision is given by the PIN(t+7)=N@t) =1 =1—e" (6)
integral of the probability distribution over the aré4X?)

, The rate parametey, is the expected number of arrivals per
gg‘;f;glist_)y the robot and enlarged by the radius of thL‘?nit time. This parameter is learned from the observation

dataset, at the same time than the typical patterns. The prob
; " . K ability of occupation correspondent to the obstacle grows
P(0; € 5(X;)) = // P(0;) = ZP(OZ' €sk) B with the length of the time period of prediction according to
S(Xt) k=1 equation 6.

The integral is obtained summing the probability that the

obstacle is in one of the regions for which s, NS (XY) # 0.
Considering multiple moving obstacles, the total proligbil ® (g
of collision is given by the probability of colliding with @n
or another obstacle. Under the assumption that the callisio g
with each obstacle is conditionally independent of all athe b ?
the following equation is obtained: ~
geq = b g@e"
P.(X,,0) =1~ ]~ P(0; € S(x}))) (4) Q %%o :

The probability of collision considering both the static-en

vironment and the moving obstacles is obtained in the san@- 2 A partial grid map, the extractedborggreen) and the supposed
way: new entering obstacles (red) .

PC(XTvag) =1- (1 - PC(XTvg)) : (1 - Pc(erO)) (5)

C. New obstacles entering the scene

In dynamic environments, obstacles can enter or exit the
workspace during the navigation task. Also if partial plisugn
is used, it should be taken into account that new obstactes ca
enter the the workspace and interfere with the next motions
of the robot. If it is possible to predict from where and when
some obstacle may enter the scene, a more robust planning
can be performed. The robot must:

— Distinguish from where a new obstacle may come. 40 50 60 70
— Apply a probability to the fact that an obstacle may
enter and a motion model. Fig. 3. A partial grid map, the extractedoors and the supposed new

For the first problem the robot searches for specific are&8tering obstacles.
from where an obstacle may entetoprg. This technique

is based on some assumptions about the observed space

and the size, shape and behaviour of the obstacles. In the ) )
general case, the robot must be able to recognize on-line the Basic Algorithm for RRTs

doorswith its perception only. In Fig. 2, a local occupancy The Rapidly-exploring Random Tree (RRT) is a well
grid obtained with a laser range finder in a car park i&known randomized algorithm to explore large state space
shown. We assumed that obstacles may enter only traversiinga relatively short time. The pseudocode of the algorithm
hidden areas: i.e. they cannot pass through static obstaclis given in Algorithm 1. The algorithm chooses a pojnt

IV. PROBABILISTIC RRTs



B. Introducing probabilistic uncertainty

As stated in previous sections, the robot knowledge about
the environment is incomplete in both space and time (sensor
range, occlusions, new moving obstacles) and uncertain
(sensor accuracy, motion model of the moving obstacles). On
the basis of the RRT algorithm we developed an exploring
algorithm which takes into account probabilistic uncertyai
For each configuration of the space, a probability of col-
lision P.(¢q) is computed considering the static and moving
(b) obstacles and the perception limits as in equation 5. The
Fig: 4. (a) RRT basic algorithm applied to a point holonome robot iknawn probability of reaching a particular configuratiqn is then
B e e o Loy Given by the probabiliy to cross the tree from the rgot
Probabilistic RRT built in limited time: the search tree ahd likelihood of the nodes t0 the considered node, i.e. the probability rdt having
in blue (lighter colour is for lower likelihood) and the clewspartial path in red. collision in each of the traversed nodes:

: : Py(n(an)) = Ps(qo.--an) (7)
Algorithm 1: basic RRT Py(qo..qn) = (1—Pu(qn))- Ps(qo-..qn—1)
Data: T' N

1 while qgoar ¢ T do

pqg: éhoosePoint (dgoat); = H (1 - Pc(‘]n))
i qg="T. Nearesgl\(leig’t;ohr (p); n—~0

gnew = extend (q, p);
5 if gnew € Cprec then where we have considered that collision in subsequent nodes
?end T-addSon (g, gnew); is statistically independent. We call this probability the
8 4=dgoat; probability of successP; of the path. The probability falls
10 both q:;dﬁﬁ’é)o't do exponentially with the length of the path. This is a sign
11 g = T.parentNode (g); that longer path are more dangerous, as the uncertainty
12 opg P = ndd e accumulates over subsequent steps. All nodes than can be

added to the tree, or a minimum threshdhl,,;,,1 can be
chosen in order to avoid keeping in the tree very unlikely
paths. Once a point is chosen in the configuration space,
in the state space and tries to extend the current search tfgg node to grow nex is chosen in dependence both on a
toward that pointp is chosen randomly, but in single-querymeasure of the expected length of the pétht(qo, ¢, p) and
planning, some bias toward the goal is generally applied ign the probability of success of the path. More precisely,
order to speed up the exploratignis chosen in the limited P,(qn) is normalized by the lengthV of the path and
Cfree (line 2). The nearest neighbogiof p within the nodes  mytiplied by the inverse of the distance to the chosen point
of the search tree is chosen for extension. A new node {§ optain a weight for each node. This normalization is taken
obtained applying an admissible control from the chosegyt so that the probability of success doesn’t depend on the
nodegq towardp (line 3). If ¢ is collision-free, it is added |ength of the path, which is taken instead into account by

to the tree. The algorithm can be stopped once the goaltige distance term, as in the following equation:
found (linel) or it can continue to run to find a better path. 1

The algorithm lies on a deterministic representation of the Wy = ————— V/Ps(q) (8)
environment, so that both in the static and dynamic case dist(q0, ¢, p)

we have a priori information on if a node is collision freeThe functiondist(qo, ¢, p) is a sum of the length of the path
or not and add it or not to the search tree. Once the gofibm the rootg, to the considered node and of the shortest
state is reached, the path from the initial state to the gophth fromg to p, which is a lower limit for the length of

is retrieved. Figure 4(a) shows a point holonome robdhe eventual path tp. The weights are normalized over the
in a known environment with static obstacles. The initiaket of nodes in the tree, and the result is a distribution over
position of the robot is in the left corner at the bottomthe nodes. The node to grow next is than chosen taking the
while the goal is in the upper right corner. An example ofnaximum or drawing a random node proportionally to the
the search tree (blue lines) and the found path (red lin@robability. In our implementation we choose the seconé cas
is shown; different running of the algorithm would givewhich appeared to be more robust to local minima. Even
different results. In this case, the robot is supposed toemo¥f a path to the goal is found, the algorithm can continue
along straight lines, so that the Euclidean distance can e search for a better/safer path, until a path is asked for
used to determine the nearest neighbour in the current tresxecution. However, is not guaranteed that a path that could
The algorithm can be generalized for car-like robots sgiéin be consideredsafe enoughcan be found even in infinite
different NearestNeighbor(. ) function. and limiting the set time, because of the environment uncertainty. The chosen
of possible actions to the admissible controls of the robgiath is then the best path that is safe enough, i.e. for which
from the node configuration. Py(qn) > Psmina. Note that this threshold can be defined



1) Prune the tree: the new root is the position of the
robot and nodes that are in the past are deleted; the
probability of reaching the nodes is updated, taking
into account that the robot has already crossed part of
the tree.

2) Update the weight of the nodes: when a change in
the probability of collision is detected, the weight of
the correspondent nodes (and of their subtree) must be
updated.

3) Retrieve the best path.

If the considered environment is dynamic we need the robot
to do these operations in real-time. In better words we need

to know how much time is available for updating and how

OPnIy_ foff E{?]e ch0|ce; of f[he r:jatth (;)r c:n be dlf]fc?rer;ﬁfron}o allocate it. In the first step, the present state of the trobo
smin2 I (NE SAME ree IS upaated and grown after d erer]g considered. The tree is pruned so that only the subtree

observation as we wil _explajn in the ngxt section, Figl%r%\ttached to the state of the robot is maintained. When the
4(b) shows the perception given by a distance sensor 'np?obability to pass from a configuratio to ¢; changes,

static environment: areas_behmd the obstacles are unkno weight of the subtree attachedgois updated using the
to the robot (P, ~ 0.5). Figure 4(c) shows the tree grown following equations:
by the described algorithm for an holonome point robot. The ged ’

Fig. 5. Updating and growing the tree during environment explorati

colour of the edges of the tree depends on the likelihood p N — (P — Pl(a _

: : an|g anlq gila : )
of the associated path: the lighter the colour the lower the (avla:) (Plalao) (@] O))l — P(gilqo)
likelihood. In red, the best path chosen. P(gnlgo) = P(glgo) + (1 — P(¢ilq0))P(gnlg:) (10)

The first equation gives the probability of traversing thresetr
from ¢; to qn, assuming that the probability of reaching
A. Related work: the Partial Motion Planning changed fromP(q¢;|q0)) to 1. This equation is used once

In a dynamic environment the robot has a limited timé’Vhen the tree is pruned. This first update is due to the fact
to perform planning which depends on the time-validit)}hat the robo.t has already mgved .from t0 ¢;, so th.at the
of the models used and on the moving objects in thBEWF(dilqo) is 1. In the equationy, is the old rooty; is the
environment. The conditions used for planning could b8€W rootandzy is one node in the family of;. The second
invalidated at execution time: for example an obstacle aoufduation gives the p_r(_)bablhty to traverse the tree fipmo
have changed its velocity or some new obstacle could ha¥&’ when the prOba'_O"'ty to. pass from to g; changes from
entered the scene. The idea of Partial Motion Planning [12%] to P(qi!qo). Equation 10 is usgd after eqqatlon 9 whe_n t.he
is to take explicitly into account the real-time constrainPPServations revealed some difference with the prediction
and to limit the time available for planning to a fixedThe zones in which some difference have been detected are

interval. After each planning cycle, the planned trajeptorconSidered and the gffected nodes are up(_jated. Ir_l this case
is generally just a partial trajectory. The exploring tree i%0 a”‘?'%' are respecltlvely the start_ gnd endlr]g configuration
updated with the new model of the world and the final" which a change in the probability of collision has been

state of the previous trajectory becomes the root of the nefgtected.

exploring tree. The planning algorithm works in parallel, In Fig. 5, the on-line updating of the tree is shown at 3

with execution. Each node of the tree is guaranteed to pastants during navigation. At the beginning, the mostljike

not an Inevitable Collision State (ICS, [22]) by checking jfpaths are explored in the two possible directions and the

it exists a collision free braking trajectory from the nodeMOSt promising one is chosen. Fig.5(b) shows the tree after

This is a conservative approximation that doesn’t allow tha®me '_step_s: the tree has been L?pdatedi the branch in the
lr]:ght direction has been cut has is not reachable anymore

robot to pass an intersection before an approaching movi h has b . h h d th
obstacle. Our approach presents an adaptable time hori the tree has been grown. Fig.5(c) shows the tree and the

for planning. The time for the planning iterations depend8€" partial path found when a bigger portion of the space
on the length of the previous computed trajectory and on tHa visible
on-line observations. Safety of a path is guaranteed stgdyi V]. EXPERIMENTAL RESULTS

braking trajectories only for the last state of the path.

V. ON-LINE NAVIGATION

The planning algorithm has been tested with real data
acquired on the car-like vehicle (Cycab) shown in Figure
1(a). To test the algorithm we define a goal 20 meters ahead

When the robot moves, it observes the environment artbe robot at each observation cycle and let the algorithm run
updates its estimation with the incoming observations. Thie parallel with the online mapping and tracking (fig. 1(b)).
cost of crossing the tree changes and the tree needs to e planning algorithm runs at 2Hz. The prediction used
updated. The update consists in three steps: is the linear prediction given by the tracking algorithm. An

B. Developed Algorithm



b Fig. 7. Navigation results in simulated environment. (a) The Cysmhulator (b)
( ) The trajectory dataset. (c) Avoidance sequence based on Hkélliction.

Fig. 6. (a) The RRT grow in a static occupancy grid: lighter blue is limwer
likelihood. (b)The prediction of the moving obstacles anel éxplored tree ilfz, y, t)
space.

the grid for each goal: the probability to pass from a state to

another depends on the decrease of the distance to the goal
example of the grown tree and the chosen path is shown lretween the origin state end the destination one. A certain
fig. 6. The occupancy grid correspondent to the figure is th@mount of noise is applied so that states that present nearly
one in fig. 1(b). The two cones represent the prediction dhe same decrease in distance are given the same probability
the two moving pedestrians considering one linear motiofihe probability is then normalized over the set of edges
model and ellipses of axes correspondent to one covarianceming out from the origin node. A set of trajectories has
interval. A threshold has been applied to show differentbeen randomly simulated on the basis of the graph: for each
colours for safer (green) and dangerous (red) paths. Thmajectory the enter door and the exit door are chosen (Eigur
best path is shown in blue. Each sequence is then testé¢h)). Given a state of the obstacle, the next state is drawn
with the real data, letting a virtual robot move through theroportionally with the edges probability. The positiontioé
estimated map. Results have proven that the algorithm & aldbstacle inside the cell is chosen by a smoothing filter.
to compute safe trajectories in real time taking into actouMhe simulated robot has the same dimensions and kinematic
the static environment, the moving obstacles perceived amtd dynamic constraints of the Cycab. Perception is assumed
their velocity and the uncertainty which arise from a reaperfect: the obstacles are represented by circles.gffm
dataset. However, the reliability of linear predictionimited radius whose position is always known. The robot has to
to a short time range, expecially for moving obstacles asross the environment and successively reach goals which
pedestrians. The computed trajectories are safe only in thee positioned randomly in the environment, with some
short period in which the prediction is reliable; the probbounds near the walls. The robot knows the Markov graph
abilities of the tree and the chosen path changes often esrrespondent to the simulated trajectories and performs
the obstacles change their directions. In the next simdilatgrediction on the basis of HMMs. The robot reachi€®0
experiments we show that the use of typical patterns allogoals with various numbers of pedestrians simulated in the
the robot for most robust planning and more intelligenspace. Figure 7(c) show the robot (green rectangle) trimers
decisions. The navigation algorithm has been tested in thiee environment to reach the goal: the red line is the partial
Cycab simulator (7(a)). A rectangular environment has begrath computed at the time-step in the shot, while red circles
simulated. A certain number of doors is simulated for theepresent the moving obstacles with their previous trajgct
two long sides of the rectangle. Obstacles are supposedatiached. The robot reach&@D0 goals with various numbers
enter from a door and to exit by another door in the oppositef pedestrians simulated in the space. No collision with
side. The space has been discretized in a uniform cell grile robot in motion was detected during the experiment,
of step0.5m An 4-connected HMM graph has been built onwhile the number of collisions &% velocity grows with the



number of objects in the space. To understand these resuits,the planning algorithm and with testing the navigation
we must notice that the simulated obstacles don't have amyith the real robot.
knowledge of the robot and that its kinematic possibilities

are strongly limited if compared to those of the obstacles:

as the robot cannot go backward, it tends to avoid obstaclddl J. C. LatombeRobot Motion Planning Dordrecht, The Netherlands:

nd get stacked with the walls of the environment, while,,, & “Weh 1991, vol. SECS 0124

a get stacke . € walls o e e 0 ent, e[2] S. M. LaValle, Planning Algorithms Cambridge University Press
the obstacles continue to move around it. The two columns ™ (also available at http:/msl.cs.uiuc.edu/planningQp&

in Figure ?2? show respective'y the robot Stopping to let an [3] J. Borenstein and Y. Koren, “The vector field histograrmstbbstacle

- . avoidance for mobile robot,JEEE Transaction on Robotics and
obstacle pass and the robot moving out from the possible Automation vol. 7, no. 3, June 1991.
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