Conditional mixed-state model for structural change analysis from very high resolution optical images

Benjamin Belmudez 1 Veronique Prinet 1 Jian-Feng Yao 2 Patrick Bouthemy 3 Xavier Descombes 4
3 VISTAS - Spatio-Temporal Vision and Learning
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
4 ARIANA - Inverse problems in earth monitoring
CRISAM - Inria Sophia Antipolis - Méditerranée , SIS - Signal, Images et Systèmes
Abstract : The present work concerns the analysis of dynamic scenes from earth observation images. We are interested in building a map which, on one hand locates places of change, on the other hand, reconstructs a unique visual information of the non-change areas. We show in this paper that such a problem can naturally be takled with conditional mixed-state random field modeling (mixed-state CRF), where the "mixed state" refers to the symbolic or continous nature of the unknown variable. The maximum a posteriori (MAP) estimation of the CRF is, through the Hammersley-Clifford theorem, turned into an energy minimisation problem. We tested the model on several Quickbird images and illustrate the quality of the results.
Type de document :
Communication dans un congrès
2009 IEEE International Geosciences and Remote Sensing Symposium, Jul 2009, Cape Town, South Africa. 2009
Liste complète des métadonnées


https://hal.inria.fr/inria-00398062
Contributeur : Xavier Descombes <>
Soumis le : mercredi 24 juin 2009 - 11:07:59
Dernière modification le : vendredi 24 février 2017 - 01:12:20
Document(s) archivé(s) le : lundi 15 octobre 2012 - 14:41:50

Fichier

belmudez-igarss09-crp3376.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00398062, version 1

Citation

Benjamin Belmudez, Veronique Prinet, Jian-Feng Yao, Patrick Bouthemy, Xavier Descombes. Conditional mixed-state model for structural change analysis from very high resolution optical images. 2009 IEEE International Geosciences and Remote Sensing Symposium, Jul 2009, Cape Town, South Africa. 2009. <inria-00398062>

Partager

Métriques

Consultations de
la notice

503

Téléchargements du document

145