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Preface

A wireless communication network can be viewed as a collection of nodes, located in some domain, which
can in turn be transmitters or receivers (depending on the network considered, nodes may be mobile users,
base stations in a cellular network, access points of a WiFi mesh etc.). At a given time, several nodes
transmit simultaneously, each toward its own receiver. Each transmitter–receiver pair requires its own
wireless link. The signal received from the link transmitter may be jammed by the signals received from
the other transmitters. Even in the simplest model where the signal power radiated from a point decays in
an isotropic way with Euclidean distance, the geometry of the locations of the nodes plays a key role since
it determines thesignal to interference and noise ratio(SINR) at each receiver and hence the possibility of
establishing simultaneously this collection of links at a given bit rate. The interference seen by a receiver is
the sum of the signal powers received from all transmitters, except its own transmitter.

Stochastic geometry provides a natural way of de�ning and computing macroscopic properties of such
networks, by averaging over all potential geometrical patterns for the nodes, in the same way as queuing
theory provides response times or congestion, averaged over all potential arrival patterns within a given
parametric class.

Modeling wireless communication networks in terms of stochastic geometry seems particularly relevant
for large scale networks. In the simplest case, it consists in treating such a network as a snapshot of a
stationary random model in the whole Euclidean plane or space and analyzing it in a probabilistic way.
In particular the locations of the network elements are seen as the realizations of some point processes.
When the underlying random model is ergodic, the probabilistic analysis also provides a way of estimating
spatial averageswhich often capture the key dependencies of the network performance characteristics
(connectivity, stability, capacity, etc.) as functions of a relatively small number of parameters. Typically,
these are the densities of the underlying point processes and the parameters of the protocols involved. By
spatial average, we mean an empirical average made over a large collection of 'locations' in the domain
considered; depending on the cases, these locations will simply be certain points of the domain, or nodes
located in the domain, or even nodes on a certain route de�ned on this domain. These various kinds of
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spatial averages are de�ned in precise terms in the monograph. This is a very natural approach e.g. for
ad hoc networks, or more generally to describe user positions, when these are best described by random
processes. But it can also be applied to represent both irregular and regular network architectures as
observed in cellular wireless networks. In all these cases, such a space average is performed on a large
collection of nodes of the network executing some common protocol and considered at some common time
when one takes a snapshot of the network. Simple examples of such averages are the fraction of nodes
which transmit, the fraction of space which is covered or connected, the fraction of nodes which transmit
their packet successfully, and the average geographic progress obtained by a node forwarding a packet
towards some destination. This is rather new to classical performance evaluation, compared to time averages.

Stochastic geometry, which we use as a tool for the evaluation of such spatial averages, is a rich branch
of applied probability particularly adapted to the study of random phenomena on the plane or in higher
dimension. It is intrinsically related to the theory of point processes. Initially its development was stimulated
by applications to biology, astronomy and material sciences. Nowadays, it is also used in image analysis
and in the context of communication networks. In this latter case, its role is similar to that played by the
theory of point processes on the real line in classical queuing theory.

The use of stochastic geometry for modeling communication networks is relatively new. The �rst papers
appeared in the engineering literature shortly before 2000. One can consider Gilbert's paper of 1961 (Gilbert
1961) both as the �rst paper on continuum and Boolean percolation and as the �rst paper on the analysis
of the connectivity of large wireless networks by means of stochastic geometry. Similar observations can
be made on (Gilbert 1962) concerning Poisson–Voronoi tessellations. The number of papers using some
form of stochastic geometry is increasing fast. One of the most important observed trends is to take better
account in these models of speci�c mechanisms of wireless communications.

Time averages have been classical objects of performance evaluation since the work of Erlang (1917).
Typical examples include the random delay to transmit a packet from a given node, the number of time steps
required for a packet to be transported from source to destination on some multihop route, the frequency
with which a transmission is not granted access due to some capacity limitations, etc. A classical reference
on the matter is (Kleinrock 1975). These time averages will be studied here either on their own or in
conjunction with space averages. The combination of the two types of averages unveils interesting new
phenomena and leads to challenging mathematical questions. As we shall see, the order in which the time
and the space averages are performed matters and each order has a different physical meaning.

This monograph surveys recent results of this approach and is structured in two volumes.
Volume I focuses on the theory of spatial averages and contains three parts. Part I in Volume I provides a
compact survey onclassicalstochastic geometry models. Part II in Volume I focuses onSINRstochastic
geometry. Part III in Volume I is an appendix which contains mathematical tools used throughout the
monograph. Volume II bears on more practical wireless network modeling and performance analysis. It is
in this volume that the interplay between wireless communications and stochastic geometry is deepest and
that the time–space framework alluded to above is the most important. The aim is to show how stochastic
geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context.
Part IV in Volume II is focused on medium access control (MAC). We study MAC protocols used in ad
hoc networks and in cellular networks. Part V in Volume II discusses the use of stochastic geometry for the

iv



quantitative analysis of routing algorithms in MANETs. Part VI in Volume II gives a concise summary of
wireless communication principles and of the network architectures considered in the monograph. This part
is self-contained and readers not familiar with wireless networking might either read it before reading the
monograph itself, or refer to it when needed.

Here are some comments on what the reader will obtain from studying the material contained in this
monograph and on possible ways of reading it.

For readers with a background in applied probability, this monograph provides direct access to an emerg-
ing and fast growing branch of spatial stochastic modeling (see e.g. the proceedings of conferences such as
IEEE Infocom, ACM Sigmetrics, ACM Mobicom, etc. or the special issue (Haenggi, Andrews, Baccelli,
Dousse, and Franceschetti 2009)). By mastering the basic principles of wireless links and of the organi-
zation of communications in a wireless network, as summarized in Volume II and already alluded to in
Volume I, these readers will be granted access to a rich �eld of new questions with high practical interest.
SINR stochastic geometry opens new and interesting mathematical questions. The two categories of objects
studied in Volume II, namely medium access and routing protocols, have a large number of variants and of
implications. Each of these could give birth to a new stochastic model to be understood and analyzed. Even
for classical models of stochastic geometry, the new questions stemming from wireless networking often
provide an original viewpoint. A typical example is that of route averages associated with a Poisson point
process as discussed in Part V in Volume II. Reader already knowledgeable in basic stochastic geometry
might skip Part I in Volume I and follow the path:

Part II in Volume I ) Part IV in Volume II ) Part V in Volume II,

using Part VI in Volume II for understanding the physical meaning of the examples pertaining to wireless
networks.

For readers whose main interest in wireless network design, the monograph aims to offer a new and
comprehensive methodology for the performance evaluation of large scale wireless networks. This method-
ology consists in the computation of both time and space averages within a uni�ed setting. This inherently
addresses the scalability issue in that it poses the problems in an in�nite domain/population case from the
very beginning. We show that this methodology has the potential to provide both qualitative and quantitative
results as below:

� Some of the most important qualitative results pertaining to these in�nite population models
are in terms ofphase transitions. A typical example bears on the conditions under which the
network is spatially connected. Another type of phase transition bears on the conditions under
which the network delivers packets in a �nite mean time for a given medium access and a given
routing protocol. As we shall see, these phase transitions allow one to understand how to tune the
protocol parameters to ensure that the network is in the desirable ”phase” (i.e. well connected and
with small mean delays). Other qualitative results are in terms of scaling laws: for instance, how
do the overhead or the end-to-end delay on a route scale with the distance between the source
and the destination, or with the density of nodes?

� Quantitative results are often in terms of closed form expressions for both time and space aver-
ages, and this for each variant of the involved protocols. The reader will hence be in a position
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to discuss and compare various protocols and more generally various wireless network organiza-
tions. Here are typical questions addressed and answered in Volume II: is it better to improve on
Aloha by using a collision avoidance scheme of the CSMA type or by using a channel-aware ex-
tension of Aloha? Is Rayleigh fading bene�cial or detrimental when using a given MAC scheme?
How does geographic routing compare to shortest path routing in a mobile ad hoc network? Is
it better to separate the medium access and the routing decisions or to perform some cross layer
joint optimization?

The reader with a wireless communication background could either read the monograph from beginning to
end, or start with Volume II i.e. follow the path

Part IV in Volume II ) Part V in Volume II ) Part II in Volume I

and use Volume I when needed to �nd the mathematical results which are needed to progress through
Volume II.

We conclude with some comments on what the reader willnot �nd in this monograph:

� We do not discuss statistical questions and give no measurement based validation of certain
stochastic assumptions used in the monograph: e.g. when are Poisson-based models justi�ed?
When should one rather use point processes with some repulsion or attraction? When is the sta-
tionarity/ergodicity assumption valid? Our only aim is to show what can be done with stochastic
geometry when assumptions of this kind can be made.

� We will not go beyond SINR models either. It is well known that considering interference as noise
is not the only possible option in a wireless network. Other options (collaborative schemes, suc-
cessive cancellation techniques) can offer better rates, though at the expense of more algorithmic
overhead and the exchange of more information between nodes. We believe that the methodology
discussed in this monograph has the potential of analyzing such techniques but we decided not
to do this here.

Here are some �nal technical remarks. Some sections, marked with a * sign, can be skipped at the �rst
reading as their results are not used in what follows; The index, which is common to the two volumes, is
designed to be the main tool to navigate within and between the two volumes.
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Preface to Volume I

This volume focuses on the theory and contains three parts.

Part I provides a compact survey onclassicalstochastic geometry models. The basic models de�ned
in this part will be used and extended throughout the whole monograph, and in particular to SINR based
models. Note however that these classical stochastic models can be used in a variety of contexts which
go far beyond the modeling of wireless networks. Chapter 1 reviews the de�nition and basic properties of
Poisson point processes in Euclidean space. We review key operations on Poisson point processes (thinning,
superposition, displacement) as well as key formulas like Campbell's formula. Chapter 2 is focused on
properties of the spatial shot-noise process: its continuity properties, its Laplace transform, its moments
etc. Both additive and max shot-noise processes are studied. Chapter 3 bears on coverage processes,
and in particular on the Boolean model. Its basic coverage characteristics are reviewed. We also give a
brief account of its percolation properties. Chapter 4 studies random tessellations; the main focus is on
Poisson–Voronoi tessellations and cells. We also discuss various random objects associated with bivariate
point processes such as the set of points of the �rst point process that fall in a Voronoi cell w.r.t. the second
point process.

Part II focuses on the stochastic geometry of SINR. The key new stochastic geometry model can
be described as follows: consider a marked point process of the Euclidean space, where the mark of a
point is a positive random variable that represents its “transmission power”. The SINR cell of a point
is then de�ned as the region of the space where the reception power from this point is larger than an
af�ne function of the interference power. Chapter 5 analyzes a few basic stochastic geometry questions
pertaining to such SINR cells in the case with independent marks, such as the volume and the shape of
the typical cell. Chapter 6 focuses on the complex interactions that exist between cells. Chapter 7 studies
the coverage process created by the collection of SINR cells. Chapter 8 studies the impact of interfer-
ences on the connectivity of large-scale mobile ad hoc networks using percolation theory on the SINR graph.

Part III is an appendix which contains mathematical tools used throughout the monograph.
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It was our choice not to cover Gibbs point processes and the random closed sets that one can associate
to them. And this in spite of the fact that these point processes already seem to be quite relevant within this
wireless network context (see the bibliography of Chapter 18 in Volume II for instance). There are two main
reasons for this decision: �rst, these models are rarely amenable to closed form analysis, at least in the case
of systems with randomly located nodes as those considered here; second and more importantly, the amount
of additional material needed to cover this part of the theory is not compatible with the format retained here.
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Part I

Classical Stochastic Geometry

1



The most basic objects studied in classical stochastic geometry are multidimensional point processes,
which are covered in Chapter 1, with a special emphasis on the most prominent one, the Poisson point
process. Our default observation space in this part will be the Euclidean spaceRd of dimensiond � 1. Even
if for most of the applications studied later, the planeR2 (2D) suf�ces, it is convenient to formulate some
results in 3D or 4D (e.g. to consider time and space).

Shot noise �elds, which are used quite naturally to represent interference �elds, are studied in Chapter 2.
Chapter 3 is focused on coverage processes, with the particularly important special case of the Boolean
model. Chapter 4 bears on Voronoi tessellations and Delaunay graphs, which are useful in a variety of
contexts in wireless network modeling. These basic tools will be needed for analyzing the SINR models
stemming from wireless communications to be analyzed from Part II on. They will be instrumental for
analyzing spatio-temporal models when combined with Markov process techniques.
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1
Poisson Point Process

Consider thed -dimensional Euclidean spaceRd. A spatialpoint process(p.p.) � is a random, �nite or
countably-in�nite collection of points in the spaceRd, without accumulation points.

One can consider any given realization� of a point process as a discrete subset� = f x i g � Rd of
the space. It is often more convenient to think of� as acounting measureor a point measure� =

P
i " x i

where" x is the Dirac measureat x; for A � Rd, " x (A) = 1 if x 2 A and " x (A) = 0 if x 62A.
Consequently,� (A) gives the number of “points” of� in A. Also, for all real functionsf de�ned onRd,
we have

P
i f (x i ) =

R
Rd f (x) � (dx). We will denote byM the set of all point measures that do not have

accumulation points inRd. This means that any� 2 M is locally �nite, that is� (A) < 1 for any bounded
A � Rd (a set is bounded if it is contained in a ball with �nite radius).

Note that a p.p.� can be seen as a stochastic process� = f �( A)gA2B with state spaceN = f 0; 1; : : :g 3
�( A) and where the indexA runs over bounded Borel subsets ofRd. Moreover, as for “usual” stochastic
processes, thedistribution of a p.p. is entirely characterized by the family of �nite dimensional distributions
(�( A1); : : : ; �( Ak )) , whereA1; : : : ; Ak run over the bounded subsets ofRd. 1

1.1 De�nition and Characterizations

1.1.1 De�nition

Let � be a locally �nite non-null measure onRd.

De�nition 1.1.1. The Poisson point process� of intensity measure� is de�ned by means of its �nite-

1 We do not discuss here the measure-theoretic foundations of p.p. theory; we remark that each time we talk about a subsetB of Rd or a function
f de�ned onRd , we understand that they belong to some “nice class of subsets that can be measured” and to some “nice class of functions that
can be integrated”. A similar convention is assumed for subsets ofM and functions de�ned on this space (typically, we want all events of the type
f � 2 M : � (A ) = kg, A � Rd , k 2 N, to be ”measurable”). See (Daley and Vere-Jones 1988) or (Daley and Vere-Jones 2005; Daley and
Vere-Jones 2008) for details.
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dimensional distributions:

P
n

�( A1) = n1; : : : ; �( Ak ) = nk

o
=

kY

i =1

�
e� �( A i ) �( A i )n i

ni !

�
;

for everyk = 1 ; 2; : : : and all bounded, mutually disjoint setsA i for i = 1 ; : : : ; k. If �( dx) = � dx is a
multiple of Lebesgue measure (volume) inRd, we call� a homogeneous Poisson p.p.and� is its intensity
parameter.

It is not evident that such a point process exists. Later we will show how it can be constructed. Suppose
for the moment that it does exist. Here are a few immediate observations made directly from the above
de�nition:

� � is a Poisson p.p., if and only if for everyk = 1 ; 2; : : : and all bounded, mutually disjoint
A i � Rd for i = 1 ; : : : ; k, (�( A1); : : : ; �( Ak )) is a vector of independent Poisson random
variables of parameter�( A i ); : : : ; �( Ak ), respectively. In particular,E(�( A)) = �( A), for all
A.

� Let W be some boundedobservation windowand letA1; : : : ; Ak be some partition of this win-
dow:A i \ A j = ; for j 6= i and

S
i A i = W . For alln; n1; : : : ; nk 2 N with

P
i ni = n,

Pf �( A1) = n1; : : : ; �( Ak ) = nk j �( W ) = n g =
n!

n1! : : : nk !
1

�( W )n

Y

i

�( A i )n i : (1.1)

The above conditional distribution is the multinomial distribution. This last property shows that
given there aren points in the windowW , these points are independently and identically dis-
tributed (i.i.d.) inW according to the law�( �)

�( W ) .

Example 1.1.2 (Locations of nodes in ad hoc networks).Assume that nodes (users), who are supposed
to constitute an ad hoc network (see Section 25.3.1 in Volume II), arrive at some given regionW (a subset
of the plane or the 3D space) and independently take their locations inW at random according to some
probability distributiona(�). This means that each user chooses location dx with probability a(dx); the
uniform distribution corresponds to a “homogeneous” situation and non-uniform distributions allow us to
model e.g. various “hot spots”. Then, in view of what was said above, the con�guration ofn users of this
ad hoc network coincides in law with the conditional distribution of the Poisson p.p.� with intensity�( dx)
proportional toa(dx) onW , given�( W ) = n.

Suppose now that one does not want to �x a priori the exact number of nodes in the network, but only
the “average” numberA(dx) of nodes per dx is known. In such a situation it is natural to assume that the
locations of nodes inW are modeled by the atoms of the (non-conditioned) Poisson process with intensity
�( dx) = A(dx). 2.

The observation about conditional distribution suggests a �rst construction of the Poisson p.p. in a
bounded window; sample a Poisson random variable of parameter�( W ) and if the outcome isn, sam-
ple n i.i.d. random variables with distribution�( �)

�( W ) on W . The extension of the construction to the whole

2 One can make the story of nodes arriving toW more complete. Assuming a spatio-temporal Poisson arrival process of nodes, independent
Markovian mobility of each node and independent exponential sojourn time of each node in the network before its departure one obtains a spatial
birth-and-death process with migrations, who has Poisson p.p. as its stationary (in time) distribution; see (Serfozo 1999, Ch.9)
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spaceRd can then be done by considering a countable partition ofRd into bounded windows and an inde-
pendent generation of the Poisson p.p. in each window. We will return to this idea in Section 1.2. Before
this, we give more terminology and other characterizations of the Poisson p.p.

1.1.2 Characterizations by the Form of the Distribution

� Say that� has a�xed atomatx0 if P f �( f x0g) > 0g > 0.
� Call a p.p.� simpleif P f �( f xg) = 0 or 1 for all x g = 1 ; i.e., if with probability 1,� =

P
i " x i ,

where the pointsf x i g are pairwise different.

Proposition 1.1.3. Let � be a Poisson p.p. with intensity measure� .

� � has a �xed atom atf x0g if and only if � has an atom atx0 2 Rd (i.e. �( f x0g) > 0).
� A Poisson p.p.� is simple if � is non-atomic, i.e. admits a density with respect to Lebesgue

measure inRd.

Proof. The �rst part is easy: use De�nition 1.1.1 to writePf �( f x0g) > 0g = 1 � e� �( f x0g) > 0 if and
only if �( f x0g) > 0.

The second part can be proved using the conditioning (1.1) along the following lines. Let us take a
bounded subsetA � Rd.

P f � is simple inA g

=
1X

n=2

Pf �( A) = ngPf all n points of� are differentj �( A) = ng

=
1X

n=2

e� �( A ) (�( A))n

n!
1

(�( A))n

Z
: : :

Z

A n

1(x j all different) �( dx1) : : : �( dxn ) = 1 :

We conclude the proof thatPf � is simpleg = 1 by considering an increasing sequence of bounded sets
Ak % Rd and using the monotone convergence theorem.

We now give two characterizations of the Poisson p.p. based on the form of the distribution of the variable
�( A) for all A.

Theorem 1.1.4. � is a Poisson p.p. if and only if there exists a locally �nite measure� onRd such that for
all boundedA, �( A) is a Poisson random variable (r. v. ) with parameter�( A).

Proof. We use the following fact that can be proved using moment generating functions (cf. (Daley and
Vere-Jones 1988, Lemma 2.3.I)): suppose(X; X 1; : : : ; X n ) is a random vector with Poisson marginal dis-
tributions and such thatX =

P n
i =1 X i ; thenX 1; : : : ; X n are mutually independent.
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Theorem 1.1.5.Suppose that� is a simple p.p. Then� is a Poisson p.p. if and only if there exists a locally
�nite non-atomic measure� such that for any subsetA, Pf �( A) = 0 g = e� �( A ) .

Proof. This is a consequence of a more general result saying that the distribution of the p.p. is completely
de�ned by itsvoid probabilities; see (Kallenberg 1983, Th. 3.3) for more details.

1.1.3 Characterization by Complete Independence

De�nition 1.1.6. One says that the p.p.� has the property ofcomplete independenceif for any �nite fam-
ily of bounded subsetsA1; : : : ; Ak that are mutually disjoint, the random variables�( A1); : : : ; �( Ak ) are
independent.

Theorem 1.1.7.Suppose that� is a p.p. without �xed atoms. Then� is a Poisson p.p. if and only if

(1) � is simple and
(2) � has the property of complete independence.

Proof. The necessity follows from Proposition 1.1.3. For suf�ciency, one shows that the measure�( A) =
� log(Pf �( A) = 0 g) satis�es the assumptions of Theorem 1.1.5. (cf. (Kallenberg 1983, Section 2.1)).

1.2 Laplace Functional

De�nition 1.2.1. TheLaplace functionalL of a p.p.� is de�ned by the following formula

L � (f ) = E
�
e�

R
Rd f (x) �( dx)

�
;

wheref runs over the set of all non-negative functions onRd.

Note that the Laplace functional completely characterizes the distribution of the p.p. Indeed, forf (x) =P k
i =1 t i 1(x 2 A i ),

L � (f ) = E
�
e�

P
i t i �( A i )

�
;

seen as a function of the vector(t1; : : : ; tk ), is the joint Laplace transform of the random vector
(�( A1); : : : ; �( Ak )) , whose distribution is characterized by this transform. WhenA1; : : : ; Ak run over all
bounded subsets of the space, one obtains a characterization of all �nite-dimensional distributions of the p.p.

Here is a very useful characterization of the Poisson p.p. by its Laplace functional.
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Proposition 1.2.2. The Laplace functional of the Poisson p.p. of intensity measure� is

L � (f ) = e�
R

Rd (1� e� f ( x ) )�( dx) : (1.2)

Proof. For a given non-negative functionf (x), consider the functiong(x) = f (x)1(x 2 A), whereA 2 B
is bounded. We have

L � (g) = e� �( A )
1X

n=0

(�( A))n

n!
1

(�( A))n

Z
: : :

Z

A n

e�
P n

i =1 f (x i ) �( dx1) : : : �( dxn )

= e� �( A )
1X

n=0

1
n!

� Z

A

e� f (x) �( dx)
� n

= e�
R

Rd (1� e� g( x ) ) �( dx) :

We conclude the proof by considering an increasing sequence of bounded setsAk % Rd and using the
monotone convergence theorem.

Takingf (x) = sg(x) with s � 0 and withg(�) � 0 in (1.2) and differentiating w.r.t.s at s = 0 , we get the
following corollary:

E
Z

Rd

f (x)�( dx) =
Z

Rd

f (x)�( dx) : (1.3)

Construction of the Poisson p.p. in a Bounded Window. Given an intensity measure� and a bounded
subsetW of the space, consider the followingindependentrandom objectsf N; X 1; X 2; : : :g, where

� N is a Poisson r. v. with parameter�( W ),
� X 1; X 2; : : : are identically distributed random vectors (points) taking values inW � Rd with

Pf X 1 2 � g = �( �)=�( W ).

In connection with the remark at the end of Section 1.1.1, we show below using Laplace functionals that
� =

P N
k=1 "X i is a Poisson p.p. with intensity measure� jW (�) = �( � \ W ), the restriction of� to W .

Evidently� is a random set of points inW . We now calculate the Laplace functional of� . For a non-negative
functionf , we have

L � (f ) = E
�
1(N = 0) + 1(N > 0)e�

P N
k =1 f (X i )

�

= e� �( W )
1X

k=0

(�( W )) k

k!

� Z

W
e� f (x) �( dx)

�( W )

� k

= e� �( W )+
R

W e� f ( x ) �( dx) = e�
R

W (1� e� f ( x ) ) �( dx) ;

which shows that� is the announced Poisson p.p. The above construction can be extended to the whole
space. We will do it in the next section.

In the following example we show that De�nition 1.1.1 ford = 1 , i.e. of a Poisson p.p. in 1D, is equiva-
lent to frequently used de�nition based on independent, exponentially distributed inter-point distances.
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Example 1.2.3 (Homogeneous Poisson p.p. in 1D).Consider a Poisson p.p.� =
P

k "Sk on the real line
R with intensity measure� dx, where0 < � < 1 . Assume that the atoms of� are numbered in such
a way thatSk� 1 < S k for k 2 Z (by Proposition 1.1.3 the atoms of� are pairwise different) andS1 =
maxf x > 0 : �((0 ; x)) = 0 g is the �rst atom of� in the open positive half-line(0; 1 ). We will show
that f Skg can be constructed as a renewal process with exponential holding times, i.e.,Sk =

P k
i =1 Fi for

k � 1 andSk = �
P 0

i = k Fi for k � 0, wheref Fk : k = : : : ; � 1; 0; 1: : :g is a sequence of independent,
identically distributed exponential random variables. Indeed,Pf F1 > t g = Pf S1 > t g = Pf �((0 ; t]) =
0g = e� �t soS1 = F1 is exponential random variable with parameter� . By the the strong Markov property
(Proposition 1.5.3), for allk � 2,

P f Fk > t j F1; : : : ; Fk� 1g = Pf Sk � Sk� 1 > t j S1; : : : ; Sk� 1g

= Pf Sk � Sk� 1 > t j Sk� 1g

= Pf �(( Sk� 1; Sk� 1 + t]) = 0 j Sk� 1g

= e� �t

and similarly fork � 0, with f Fkgk� 0 andf Fkgk� 1 being independent.

Remark: In the last example, we have evaluated the probabilities of the events of the formf S1 > t g,
f Sk � Sk� 1 > t g. This was done under the tacit assumption that in the representation� =

P
k "Sk , the

variablesf Skg arerandom variables, i.e.; that the corresponding events belong to the “nice class” of events
whose probabilities can be measured. This is true in this particular case and, more generally, points of any
p.p.� can always be numbered in such a way that the location of the point with a given number is a random
variable (see (Kallenberg 1983)). In what follows, we assume thatf xkg are random variables any time we
use a representation of the form� =

P
k " xk .

1.3 Operations Preserving the Poisson Law

1.3.1 Superposition

De�nition 1.3.1. The superposition of point processes� k is de�ned as the sum� =
P

k � k :

Note that the summation in the above de�nition is understood as the summation of (point) measures. It
always de�nes a point measure, which however, in general, might not be locally �nite (we do not assume
the last sum to have �nitely many terms). Here is a very crude, but useful condition for this to not happen.

Lemma 1.3.2. The superposition� =
P

k � k is a p.p. if
P

k E[� k (�)] is a locally �nite measure.

A re�ned suf�cient condition may be found by the Borel–Cantelli lemma.

Proposition 1.3.3. The superposition of independent Poisson point processes with intensities� k is a Pois-
son p.p. with intensity measure

P
k � k if and only if the latter is a locally �nite measure.
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Proof. ) By the de�nition.
( By Lemma 1.3.2 the superposition is a p.p. One evaluates its Laplace functional as follows

E
�
e�

P
k

R
Rd f (x) � k (dx)

�
= E

� Y

k

e�
R

Rd f (x) � k (dx)
�

=
Y

k

e�
R

Rd (1� e� f ( x ) ) � k (dx)

= e�
R

Rd (1� e� f ( x ) ) (
P

k � k (dx)) :

Construction of Poisson p.p. on the Whole Space.We return to the construction of the Poisson p.p. with
given intensity measure� . Let f Wkgk=1 ;::: be a countable partition of the space withWk bounded for all
k. Following the arguments described in Section 1.1.1, we construct in eachWk an independent copy of the
Poisson p.p. with intensity measure� k (�) = �( � \ Wk ). By Proposition 1.3.3,� =

P
k � k is a Poisson p.p.

of intensity measure� =
P

k � k .

1.3.2 Thinning

Consider a functionp : Rd 7! [0; 1] and a p.p.� .

De�nition 1.3.4. Thethinning of � with theretention functionp is a p.p. given by

� p =
X

k

� k" xk ; (1.4)

where the random variablesf � kgk are independent given� , andPf � k = 1 j � g = 1 � Pf � k = 0 j � g =
p(xk ).

Less formally, we can say that a realization of� p can be constructed from that of� by randomly and
independently removing some fraction of points; the probability that a given point of� located atx is not
removed (i.e. is retained in� p) is equal top(x).

It is not dif�cult to verify that the above construction transforms a Poisson p.p. into another Poisson p.p.

Proposition 1.3.5. The thinning of the Poisson p.p. of intensity measure� with the retention probabilityp
yields a Poisson p.p. of intensity measurep� with (p�)( A) =

R
A p(x) �( dx).

Proof. The Laplace functional of� p atg = f 1A with A bounded is

L � p (g) = e� �( A )
1X

n=0

(�( A))n

n!
1

(�( A))n

Z
: : :

Z

A n

nY

i =1

�
p(x i )e� f (x i ) + 1 � p(x i )

�
�( dx1) : : : �( dxn )

= e� �( A )
1X

n=0

1
n!

� Z

A

�
p(x)e� f (x) + 1 � p(x)

�
�( dx)

� n

= e�
R

Rd (1� e� g( x ) ) p(x)�( dx) :
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Example 1.3.6 (Aloha).A typical application is that of some ad hoc network made of nodes distributed
according to some Poisson point process and using Aloha as medium access control (see Chapter 25.1.2 in
Volume II). The principle of this protocol is that each node tosses a coin independently of everything else to
decide whether it accesses the shared wireless medium or not. The bias of this coin may depend on the local
density of nodes. The last result shows that the set of transmitters is a Poisson p.p. The set of nodes which
refrain transmitting is also Poisson.

Corollary 1.3.7. The restriction� jW of a Poisson p.p. of intensity measure� to some given setW is a
Poisson p.p. with intensity measure�( � \ W ) = � jW (� � � ).

1.3.3 Random Transformation of Points

Consider a probability kernelp(x; B ) from Rd to Rd0
, whered0 � 1, i.e. for all x 2 Rd, p(x; �) is a

probability measure onRd0
.

De�nition 1.3.8. The transformation� p of a p.p.� by a probability kernelp(�; �) is a point process inRd0

given by
� p =

X

k

" yk ; (1.5)

where theRd0
-valued random vectorsf ykgk are independent given� , with Pf yk 2 B 0 j � g = p(xk ; B 0).3

In other words,� p is obtained by randomly and independently displacing each point of� from Rd to some
new location inRd0

according to the kernelp. This operation preserves the Poisson p.p. property as stated in
the following theorem.

Theorem 1.3.9 (Displacement Theorem).The transformation of the Poisson p.p. of intensity measure�
by a probability kernelp is the Poisson p.p. with intensity measure� 0(A) =

R
Rd p(x; A ) �( dx), A � Rd0

.

Proof. The Laplace functional of� p is

L � p (f ) = E exp
�
�

X

i

f (Yi )
�

= E
Z

Rd0

: : :
Z

Rd0

e�
P

i f (yi )
Y

j

p(X j ; dyj )

= E
Y

j

Z

yj 2 Rd0

e� f (yj )p(X j ; dyj )

= E exp

2

6
4

X

j

log

0

B
@

Z

y2 Rd0

e� f (y)p(X j ; dy)

1

C
A

3

7
5 :

3We use the same notation� p for thep-thinning and the transformation by kernelp. The context indicates what is meant.
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Evaluating now the Laplace functional of� at g with g(x) = � log
� R

y2 Rd0 e� f (y)p(x; dy)
�

, we get

L � p (f ) = L � (g) = exp
�
�

Z

Rd

�
1 � elog

R
Rd0 e� f ( y ) p(x;dy)

�
�( dx)

�

= exp
�
�

Z

Rd

�
1 �

Z

Rd0

e� f (y) p(x; dy)
�

�( dx)
�

= exp
�
�

Z

Rd

Z

Rd0

(1 � e� f (y) ) p(x; dy)�( dx)
�

= exp
�
�

Z

Rd0

(1 � e� f (y) )� 0(dy)
�

:

Example 1.3.10 (Random walk and random waypoint mobility).Consider some Mobile Ad hoc NET-
work (MANET) – see Section 25.3.1 in Volume II. Assume the MANET nodes to be initially distributed
according to some Poisson p.p. Assume each node then moves according to some discrete time, continu-
ous state space Markov chain with kernelp(x; dy) on Rd. More precisely, at each time slot, each node is
displaced from its initial positionx 2 Rd to a new positiony 2 Rd, independently of everything else. The
displacement is random and its law depends only onx.

The last result shows that the displaced points still form a Poisson p.p. The joint Laplace functional of
� = f X i g (the initial p.p.) and� 0 = f Yi g (the displaced p.p.) atf; g , wheref andg are positive functions,
is de�ned as

L � ;� 0(f; g ) = E
�

e�
P

i f (X i )�
P

i g(Yi )
�

:

Using arguments similar to those in the last proof, one gets that

L � ;� 0(f; g ) = exp
�
�

Z

Rd

�
1 �

Z

Rd

e� f (x)� g(y) p(x; dy)
�

�( dx)
�

= exp
�
�

Z

Rd

(1 � e� g(y) )� 0(dy)
�

exp
�
�

Z

Rd

(1 � e� f (x) )

0

@
Z

Rd

e� g(y) p(x; dy)

1

A �( dx)
�

:

This displacement scheme can of course be iterated further while preserving the Poisson property.
Notice that if the initial Poisson p.p. has an intensity measure which is 0 outside a �nite windowW , one

can use this Markov model to 'maintain' all displaced points inW by appropriate choices of the displace-
ment laws.

Here are a few particular cases of this general model:

� The random walkmodel is that where the displacement consists in adding tox an independent
random variableD with some �xed lawH onRd n f 0g which does not depend onx.

� The random waypointmodel is similar to the latter, but with the displacement equal to 0 with
probability � and to a non null random vector with a �xed distributionH on Rd n f 0g with
probability1 � � . A node either 'stops' with probability� or moves in some new direction with
the complementary probability.
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� Thehigh mobilityrandom walk case features a small parameter� > 0 and consists in adding the
random variableD=� to x to get the new position; here, the law ofD is as in the �rst case above.
Then

L � ;� 0(f; g ) = L � 0(g) exp
�
�

Z

Rd

(1 � e� f (x) )

0

B
@

Z

Rd nf 0g

e� g(x+ y=� )H (dy)

1

C
A �( dx)

�
:

Let us show how to use this formula to prove that for homogeneous Poisson p.p., this high mo-
bility case leads to independence between� and� 0 when� ! 0. For this, it is enough to prove
that for all functionsg which tend to 0 at in�nity in all directions,

lim
� !1

Z

Rd

(1 � e� f (x) )

0

B
@

Z

Rd nf 0g

e� g(x+ y=� )H (dy)

1

C
A dx =

Z

Rd

(1 � e� f (x) )dx:

But for all x and ally 6= 0 , g(x + y=�) tends to 0 when� tends to 0. This and the dominated
convergence theorem allow one to conclude the proof of independence.
Notice that this independence property does not hold in the high mobility random waypoint model
as de�ned above.

Example 1.3.11 (Transformation of space).Consider a functionG : Rd 7! Rd0
. Note that the mapping

G can be seen as a special case of a probability kernel from one space to the other, which transforms
x 2 Rd into G(x) with probability 1. Suppose� is a Poisson p.p. with intensity measure� on Rd. By
Theorem (1.3.9),� 0 =

P
k "G(xk ) is a Poisson p.p. onRd0

with intensity measure� 0(�) = �( G� 1(�)) .

Example 1.3.12 (Dilation). A special case of a transformationRd onto itself is adilation by a given factor

 : G(x) = 
x , x 2 Rd. By the above result� 0 =

P
k " 
x k is a Poisson p.p. with intensity measure

� 0(A) = �( A=
 ), whereA=
 = f y=
 : y 2 Ag.

Example 1.3.13 (Homogenization).Another special case consists in �nding some transformationG which
makes of� 0a homogeneous Poisson p.p. For this, assume that�( dx) = � (x)dx and suppose thatG(x) is a
differentiable mapping fromRd to Rd, which satis�es the functional equation onRd given by

� (x) = � jJG(x)j ;

where� is some constant andJG is the Jacobian ofG. Then, note that for allA � Rd

�( G� 1(A)) =
Z

G� 1 (A )

� (x) dx =
Z

G� 1 (A )

� jJG(x)j dx =
Z

A

� dx ;

which proves that the intensity measure of� 0 is � 0(dx) = � dx; see (Senoussi, Chadoeuf, and Allard 2000)
for more details. In particular in 1D (d = 1 ), the functionG(t) =

Rt
0 � (s) ds transforms the inhomogeneous

Poisson p.p. on[0; 1 ) into the homogeneous one of intensity (parameter)1 on[0; 1 ). This construction can
easily be extended toR by considering the analogous transformation on the negative half-line.
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Example 1.3.14 (Polar coordinates).Consider a homogeneous Poisson p.p.� on R2 with constant inten-
sity � and letG(x) : R2 7! R+ � [0; 2� ) be the mappingG(x) = ( jxj; \ (x)) , where\ (x) is the argument
of x) (i.e.the angle between vectorx and theX axis). Then the transformation� 0of � by G(x) is a Poisson
p.p. with intensity measure

� 0� [0; r ); [0; � )
�

= ��r 2�= (2� ); r � 0; 0 � � < 2�:

The point process� 0 can also be seen as Poisson p.p. on[0; 1 ) with intensity measure� T (dt) = ��t 2,
independently marked in the space[0; 2� ), with uniform mark distribution(cf. Section 2.1).

1.4 Palm Theory

Palm theory formalizes the notion of the conditional distribution of a general p.p. given it has a point at some
location. Note that for a p.p. without a �xed atom at this particular location, the probability of the condition
is equal to 0 and the basic discrete de�nition of the conditional probability does not apply. In this section we
will outline the de�nition based on the Radon–Nikodym theorem.

We �rst de�ne two measures associated with a general point process:

De�nition 1.4.1. Themean measureof a p.p.� is the measure

M (A) = E[�( A)] (1.6)

onRd. Thereduced Campbell measureof � is the measure

C !(A � �) = E
� Z

A

1(� � " x 2 �) �( dx)
�

(1.7)

onRd � M, whereM denotes the set of point measures.

Note thatM (A) is simply the mean number of points of� in A. The reduced Campbell measureC !(A � �) is
a re�nement of this mean measure; it gives the expected number of points of� in A such that when removing
a particular point from� , the resulting con�guration satis�es property� . The fact that one measure is a
re�nement of the other, or more formally, thatC !(� � �) for each� is absolutely continuous with respect
to M (�), allows us to express the former as an integral of some functionP !

x , called the Radon–Nikodym
derivative with respect to the latter:

C !(A � �) =
Z

A

P !
x M (dx) for all A � Rd : (1.8)

The functionP !
x = P !

x (�) depends on� . Moreover, ifM (�) is a locally �nite measure,P !
x (�) can be chosen

as a probability distribution onM for each givenx.

De�nition 1.4.2. Given a point process with a locally �nite mean measure, the distributionP !
x (�) is called

thereduced Palm distributionof � given a point atx.

The following central formula of Palm calculus, which is called theCampbell–Mecke formula, is a mere
rewriting of the above de�nition whenf (x; � ) = 1(x 2 A; � 2 �) . Its extension to generalf follows from
classical monotone class arguments.
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Theorem 1.4.3 (Reduced Campbell-Little-Mecke Formula).For all non-negative functions de�ned on
Rd � M

E
� Z

Rd

f (x; � � " x ) �( dx)
�

=
Z

Rd

Z

M

f (x; � ) P !
x (d� ) M (dx) : (1.9)

In what follows we will call formula (1.9) the (reduced) Campbell formula.
One can de�ne the (non-reduced) Campbell measure by replacing1(� 2 � � " x ) by 1(� 2 �) in (1.8)

i.e.

C(A � �) = E
� Z

A

1(� 2 �) �( dx)
�

= E
� X

i

1(x i 2 A)1(� 2 �)
�

= E
�
�( A)1(� 2 �)

�
: (1.10)

This leads to a (non-reduced) Palm measurePx which can also be de�ned by

Px (�) = P !
x (f � : � + " x 2 � g):

We callPx thePalm distribution of� .
Takingf (x; � ) = g(x; � + " x ) and substituting in (1.9), we obtain the following(non-reduced) version

of Campbell's formula:

E
� Z

Rd

g(x; �) �( dx)
�

=
Z

Rd

Z

M

g(x; � ) Px (d� ) M (dx) : (1.11)

We now focus on Poisson point processes. Directly from De�nition 1.1.1, we have:

Corollary 1.4.4. The mean measure of a Poisson p.p. is equal to its intensity measureM (�) = �( �).

We now state a central result of the Palm theory for Poisson p.p. It makes clear why the reduced Palm
distributions are more convenient in many situations.

Theorem 1.4.5 (Slivnyak–Mecke Theorem).Let � be a Poisson p.p. with intensity measure� . For �
almost allx 2 Rd,

P !
x (�) = Pf � 2 � g ;

that is, the reduced Palm distribution of the Poisson p.p. is equal to its (original) distribution.

In what follows we will call the above result for short the Slivnyak's theorem.

Proof. of Theorem 1.4.5The proof is based on a direct veri�cation of the integral formula

C !(A � �) =
Z

A

Pf � 2 � gM (dx) = �( A)Pf � 2 � g :

By Theorem 1.1.4 it is enough to prove this formula for all� of the formf � : � (B ) = n g. For all such�

C !(A � �) = E
� X

X i 2 A

1
�

(� � "X i )(B ) = n
� �

:

14



If A \ B = ;

E
� X

X i 2 A

1(� � "X i )(B ) = n)
�

= E[�( A)1(�( B ) = n)] = �( A)Pf �( B ) = n g:

If A \ B 6= ; ,

E
� X

X i 2 A

1(� � "X i )(B ) = n)
�

= E[�( A n B )1(�( B ) = n)] + E[�( B \ A)1(�( B ) = n + 1)]

= �( A n B )Pf �( B ) = n g + E[�( A \ B )1(�( B n A) = n � �( B \ A) + 1)] :

But

E[�( B \ A)1(�( B n A) = n � �( A \ B ) + 1)]

= e� �( A \ B )
n+1X

k=0

�
(�( A \ B )) k

k!
ke� �( B nA) (�( B n A))n� k+1

(n � k + 1)!

�

= e� �( B )
n+1X

k=1

�
(�( A \ B )) k

(k � 1)!
(�( B n A))n� (k� 1)

(n � (k � 1))!

�

= e� �( B ) �( A \ B )
n!

nX

k=0

�
n!

k!(n � k)!
(�( A \ B )) k �( B n A))n� k

�

= �( A \ B )e� �( B ) (�( B ))n

n!
= �( A \ B )Pf �( B ) = n g:

Before showing an application of the above theorem, we remark that it is often useful to seePx (�) and
P !

x (�) as the distributions of some p.p.� x and� !
x called, respectively, thePalmandthe reduced Palm version

of � . One can always take� x = � !
x + " x , however for a general point process it is not clear whether one can

consider both� and� x ; � !
x on one probability space, with the same probability measureP. But Slivnyak's

theorem implies the following result which is a popular approach to the Palm version of Poisson p.p.s:

Corollary 1.4.6. For Poisson p.p.� one can take� !
x = � and� x = � + " x for all x 2 Rd.

Using now the convention, according to which a p.p. is a family of random variables� = f x i gi , which
identify the locations of its atoms (according to some particular order) we can rewrite the reduced Campbell
formulafor Poisson p.p.

E
� X

x i 2 �

f (x i ; � n f x i g)
�

=
Z

Rd

E[f (x; �)] M (dx) : (1.12)

Here is one of the most typical applications of Slivnyak's theorem.
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Example 1.4.7 (Distance to the nearest neighbor in a Poisson p.p.).For a givenx 2 Rd and � 2 M,
de�ne the distanceR� (x) = R� (x; � ) = min x i 2 � jx i � xj from x to its nearest neighbor in� 2 M. Note
that themin is well de�ned due to the fact that� is locally �nite, even if arg minx i 2 � jx i � xj is not unique.
Let � be a Poisson p.p. with intensity measure� and letP !

x be its reduced Palm measure given a point atx.
By Slivnyak's theorem

P !
x (f � : R� (x; � ) > r g) = Pf �( Bx (r )) = 0 g = e� �( B x (r )) ;

whereBx (r ) is the (closed) ball centered atx and of radiusr . InterpretingP !
x as the conditional distribution

of � � " x given� has a point atx, the above equality means that for a Poisson p.p.� conditioned to have a
point atx, the law ofthe distance from this point to its nearest neighboris the same as that ofthe distance
from the locationx to the nearest point of the non-conditioned Poisson p.p.Note that this distance can be
equal to 0 with some positive probability if� has a �xed atom atx. Note that this property becomes an a.s.
tautology when using the representation� !

x = � of the reduced Palm version of the Poisson p.p.� . Indeed,
in this caseR� (x; � !

x ) = R� (x; �) trivially. The mean value ofR� (x; �) is equal to
R1

0 e� �( B x (r )) dr . In
the case of Poisson p.p. onR2 of with intensity measure� dx

E[R� (x; �)] =
1

2
p

�
: (1.13)

A surprising fact is that the property expressed in Slivnyak's theorem characterizes Poisson point pro-
cesses.

Theorem 1.4.8 (Mecke's Theorem).Let � be a p.p. with a� -�nite mean measureM (i.e. there exists a
countable partition ofRd such thatM is �nite on each element of this partition). Then� is the Poisson p.p.
with intensity measure� = M if and only if

P !
x (�) = Pf � 2 � g :

Proof. ) By Slivnyak's theorem.
( By Theorem 1.1.4 it suf�ces to prove that for any boundedB

Pf �( B ) = n g = Pf �( B ) = 0 g
(M (B ))n

n!
: (1.14)

From the de�nition of the reduced Palm distribution with� = f � : � (B ) = n g,

C !(B � f � : � (B ) = n g) = E
� X

x i 2 �

1(x i 2 B )1(�( B ) = n + 1)
�

= ( n + 1) Pf �( B ) = n + 1 g:

Using now the assumption thatP !
x (�) = Pf � 2 � ; g, for all �

C !(B � �) =
Z

B

P !
x (�) M (dx) =

Z

B

Pf � 2 � gM (dx) = M (B )Pf � 2 � g :

Hence
(n + 1) Pf �( B ) = n + 1 g = M (B )Pf �( B ) = n g;

from which (1.14) follows.
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1.5 Strong Markov Property

Consider a point process� . We callS � Rd arandom compact set(with respect to� ) whenS = S(�) is a
compact set that is a function of the realization of� . We give an example in Example 1.5.2.

De�nition 1.5.1. A random compact setS(�) is called astopping set if one can say whether the event
f S(�) � K g holds or not knowing only the points of� in K .

Remark: It can be shown that ifS = S(�) is a stopping set, then for all� 2 M,

S(�) = S(� \ S(�) [ � \ Sc(�))

whereSc is the complement ofS. In other words, all modi�cations of� outside the setS(�) have no effect
onS(�) .

Here is a very typical example of a stopping set.

Example 1.5.2 (k th smallest random ball). Consider the random (closed) ballB0(R�
k ) centered at the ori-

gin, with the random radius equal to thek th smallest norm ofx i 2 � ; i.e., R�
k = R�

k (�) = min f r � 0 :
�( B0(r )) = kg. In order to prove thatB0(R�

k ) is a stopping set let us perform the following mental ex-
periment. Given a realization of� and a compact setK , let us start `growing' a ballB0(r ) centered at the
origin, increasing its radiusr from 0 until the moment when either (1) it accumulatesk or more points or
(2) it hits the complementK c of K . If (1) happens, thenB0(R�

k ) � K . If (2) happens, thenB0(R�
k ) 6� K .

In each of these cases, we have not used any information about points of� in K c; soB0(R�
k ) = B0(R�

k (�))
is a stopping set with respect to� .

Remark: The above example shows a very useful way to establish the stopping property: if there is a
one-parameter sequence of growing compact sets which eventually leads to the construction of a random
compact, then this compact is a stopping set.

Suppose now that� is a Poisson p.p. By the complete independence (see De�nition 1.1.6) we have

E[f (�)] = E
h
f

�
(� \ B ) [ (� 0\ B c)

�i
; (1.15)

where� 0 is an independent copy of� .
The following result extends the above result to the case whenB is a random stopping set.

Proposition 1.5.3 (Strong Markov property of Poisson p.p.).Let � be a Poisson p.p. andS = S(�) a
random stopping set relative to� . Then (1.15) holds withB replaced byS(�) .

Proof. The Poisson process is a Markov process. Therefore it also possesses the strong Markov property;
see (Rozanov 1982, Theorem 4).

17



Example 1.5.4 (Ordering the points of a Poisson p.p. according to their norms).Let

f R�
k = R�

k (�) gk� 1

be the sequence of norms of the points of the Poisson p.p.� arranged in increasing order (i.e.R�
k is the norm

of thek-th nearest point of� to the origin). We assume that the intensity measure� of � has a density. One
can conclude from the strong Markov property of the Poisson p.p. that this sequence is a Markov chain with
transition probability

Pf R�
k > t j R�

k� 1 = sg =

(
e� �( B 0 (t )) � �( B 0 (s)) if t > s

1 if t � s :

1.6 Stationarity and Ergodicity

1.6.1 Stationarity

Throughout the section, we will use the following notation: for allv 2 Rd and� =
P

i " x i ,

v + � = v +
X

i

" x i =
X

i

" v+ x i :

De�nition 1.6.1. A point process� is stationaryif its distribution is invariant under translation through any
vectorv 2 Rd; i.e.P f v + � 2 � g = Pf � 2 � g for anyv 2 Rd and� .

It is easy to see that

Proposition 1.6.2. A homogeneous Poisson p.p. (i.e. with intensity measure� dx for some constant0 <
� < 1 ) is stationary.

Proof. This can be shown e.g. using the Laplace functional.

It is easy to show the following properties of stationary point processes:

Corollary 1.6.3. Given a stationary point process� , its mean measure is a multiple of Lebesgue measure:
M (dx) = � dx.

Obviously� = E[�( B )] for any setB 2 Rd of Lebesgue measure 1. One de�nes the Campbell–Matthes
measure of the stationary p.p.� as the following measure onRd � M:

C(A � �) = E
� Z

A

1(� � x 2 �) �( dx)
�

= E
� X

i

1(x i 2 A)1(� � x i 2 �)
�

: (1.16)

Notice that this de�nition is different from that in (1.7) or in (1.10). In particular, in the last formula� � x
is thetranslationof all atoms of� by the vector� x (not to be confused with� � " x , the subtraction of the
atom" x from � ).
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If � < 1 , by arguments similar to those used in Section 1.4, one can de�ne a probability measureP0

onM, such that

C(A � �) = � jAjP0(�) ; (1.17)

for all � (see Section 10.2 in the Appendix).

De�nition 1.6.4 (Intensity and Palm distribution of a stationary p.p.). For a stationary point process� ,
we call the constant� described in Corollary 1.6.3 theintensity parameter of� . The probability measure
P0 de�ned in (1.17) provided� < 1 is called thePalm–Matthes distributionof � .

Again, one can interpretP0 as conditional probability given� has a point at the origin (see Section 10.2).
Below, we always assume0 < � < 1 . The following formula, which will often be used in what follows,

can be deduced immediately from (1.17):

Corollary 1.6.5 (Campbell–Matthes formula for a stationary p.p.). For a stationary point process�
with �nite, non-null intensity� , for all positive functionsg

E
� Z

Rd

g(x; � � x) �( dx)
�

= �
Z

Rd

Z

M

g(x; � )P0(d� ) dx : (1.18)

Remark 1.6.6 (Typical point of a stationary p.p.). It should not be surprising that in the case of a station-
ary p.p. we actually de�ne only one conditional distribution given a point at the origin0. One may guess
that due to the stationarity of the original distribution of the p.p. conditional distribution given a point at an-
other locationx should be somehow related toP0. Indeed, using formulae (1.18) and (1.11) one can prove
a simple relation betweenPx (as de�ned in Section 1.4 for a general p.p.) andP0. More speci�cally, taking
g(x; � ) = 1(� + x 2 �) we obtain

Z

Rd

Px f � : � 2 � gdx =
Z

Rd

P0f � : � + x 2 � gdx ;

which means that for almost allx 2 Rd the measurePx is the image of the measureP0 by the mapping
� 7! � + x on M (see Section 10.2.3 for more details). This means in simple words, thatthe conditional
distribution of points of� “seen” from the origin given� has a point there is exactly the same as the
conditional distribution of points of� “seen” from an arbitrary locationx given� has a point atx. In this
context,P0 (resp.Px ) is often called thedistribution of� seen from its “typical point” located at0 (resp.
at x). Finally, note by the Slivnyak Theorem 1.4.5 and Corollary 1.4.6 that for a stationary Poisson p.p.� ,
P0 corresponds to the law of� + "0 under the original distribution.
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In what follows we will often consider, besides� , other stochastic objects related to� . 4. Then, one
may be interested in the conditional distribution of these objects “seen” from the typical point of� . 5 In
these situations it is more convenient to de�ne thePalm–Matthes(or shortlyPalm) probability P0 on the
probability space where the p.p.� and all other objects are assumed to be de�ned, rather than on (some
extension of)M as above.6. Expectation with respect toP0 will be denoted byE0. We will return to this
idea in Sections 2.1.2 and 4.3. Here note only thatP0 is the distribution of� underP0. Thus theCampbell-
Matthes formula (1.18) can be rewritten as

E
� Z

Rd

g(x; � � x) �( dx)
�

= �
Z

Rd

E0[g(x; �)] dx : (1.19)

1.6.2 Ergodicity

Consider a stationary p.p.� . Let f be some functionM ! R+ . We are interested inspatial averagesof the
form

lim
n!1

1
jAn j

Z

A n

f (v + �) dv; jAn j ! 1 ; (1.20)

whenever the limit exists. Roughly speaking� is ergodic if the last limit exists and is equal toE[f (�)]
for almost all realizations of� , for all integrable functionsf and for some “good” setsAn , for instance
An = B0(n). As we see, ergodicity is a requirement for simulation.

Several other types of averages can be de�ned like e.g. directional averages

lim
n!1

1
n

nX

k=1

f (vk + �) (1.21)

wherev 2 Rd, v 6= 0 . Note that the existence of the limit in (1.21) would follow from the strong law of
large numbers iff (vk + �) , k = 1 ; : : : were independent random variables.

De�nition 1.6.7. We say that a stationary p.p.�

� is mixingif

P f v + � 2 � ; � 2 � g ! P f � 2 � gPf � 2 � g whenjvj ! 1 ;

for all for con�guration sets� and� that depend on the realization of the p.p. in some bounded
set;

4 Two typical examples of such situations are:

� random marks attached to each point of� and carrying some information, (to be introduced in Section 2),
� another point process on the same space (considered e.g. in Section 4.3).

Another, slightly more complicated example, is the cross-fading model mentioned in Example 2.3.9 and exploited in many places in Part IV in
Volume II of this book (see in particular Section 16.2 in Volume II).

5 For example, the distribution of the mark of this typical point, or points of other point processes located in the vicinity of the typical point of� .
6 For this, one has to assume that this probability space is endowed with an abstract “shift” operator (see Remark 10.2.3 for the details) that says
how the translation of the “observation point” by some vectorx 2 Rd impacts the “observed picture” of all considered objects. In the simple
scenarios considered above, this consists in translating, by the vector� x, the points ofall the considered point processes while preserving their
original marks.
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� is ergodicif

lim
t !1

1
(2t)d

Z

[� t;t ]d

1
�
v + � 2 � ; � 2 �

�
dv = Pf � 2 � gPf � 2 � g ;

for all such� ; � .

By the dominated convergence theorem we have the following fact:

Corollary 1.6.8. A mixing point process is ergodic.

Also

Proposition 1.6.9. A homogeneous Poisson p.p.� is mixing and hence ergodic.

Proof. For � and� as in De�nition 1.6.7,� � v = f� v + � : � 2 � g and� depend on the con�guration
of points in disjoint subsets ofRd. Thus, by the very de�nition of the Poisson p.p.,1(v + � 2 �) = 1(� 2
� � v) and1(� 2 �) are independent.

Coming back to our ergodic postulates, call a sequencef A i g of convex sets aconvex averaging se-
quenceif A1 � A2 � : : : � Rd andsupf r : An contains a ball of radiusr g ! 1 whenn ! 1 . One
can can prove the following result for general stationary point processes cf. (Daley and Vere-Jones 1988,
Section 10.3) and (Pugh and Shub 1971).

Proposition 1.6.10.Suppose that� is translation invariant. Then the following statements are equivalent.

(1) � is ergodic.
(2) For anyf such thatE[f (�)] < 1 and for all vectorsv 2 Rd, possibly off some countable set

of hyperplanes inRd (a hyperplane is not assumed to contain the origin), the limit (1.21) almost
surely exists.

(3) For anyf such thatE[f (�)] < 1 and any convex averaging sequencef A i g the limit in (1.20)
is equal toE[f (�)] almost surely.

(4) Any functionf of � that is translation invariant (i.e. such that for allv 2 Rd, f (v + �) = f (�)
almost surely), is almost surely constant.

In many problems, rather than (1.20), one is interested in another kind of spatial average that will be
referred to asspatial point averagesin what follows, and which are of the form

lim
n!1

1
�( An )

X

x i 2 A n

f (� � x i ); jAn j ! 1 ; (1.22)

whenever the limit exists. The following result can be found in e.g. (Daley and Vere-Jones 1988, cf. Propo-
sition 12.2.VI).
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Proposition 1.6.11. If � is translation invariant and ergodic, for allf and for any convex averaging sequence
f Ang

lim
t !1

1
�( An )

X

x i 2 A n

f (� � x i ) =
Z

f (� ) P0(d� ) = E0[f (�)] a :s: ; (1.23)

providedE0[f (�)] < 1 .

The above ergodic property says that the distributionP0 of the point process “seen from its typical point”
(cf. Remark 1.6.6) is also the distribution of� “seen from its randomly chosen point”.

In Part V in Volume II we will also considerroute averagesassociated with certain multihop routing
algorithms. A routing algorithm is de�ned through a mapA D : Rd � M ! Rd, whereA D (X; �) 2 � , for
X 2 � , is the next hop fromX on the route. This next hop depends on the destination nodeD and also on
the rest of the point process� .

Within this setting, when denoting byA n
D then-th order iterate ofA D and byN (O; D) the number of

hops from originO to destinationD , route averages are quantities of the type

1
N (O; D)

N (O;D )X

n=1

f (A n
D (O; �) � A n� 1

D (O; �)) ;

wheref is some functionRd ! R+ . One of the key questions within this context is the existence of a limit
for the last empirical average whenjO � D j ! 1 .

1.7 Extensions

1.7.1 Doubly Stochastic (Cox) Point Processes

Under this name one understands a point process which can be constructed (on some probability space) as
follows. Consider arandom measure	 on Rd. (For example we may have	( B ) =

R
Rd X (x)dx, where

X (x) is some non-negative integrable stochastic process onRd.) Assume that for each realization	 =  ,
an independent Poisson p.p.�  of intensity is given. Then� 	 is called adoubly stochastic Poissonor
Cox(point) process. Moment measures and Palm probabilities for Cox process can be evaluated explicitly.
For example

M (B ) = E[� 	 (B )] = E[E[�  (B ) j 	 =  ]] = E[	( B )] :

1.7.2 Gibbs Point Processes

Another important extension of the class of Poisson p.p.s consists of Gibbs processes. Here we give the
de�nition of a Gibbs point process on aboundedset D � Rd (the de�nition for unboundedD is more
involved). For a given non-negative functionE : M ! R+ and a (deterministic) measure� on D, the
distribution of theGibbs p.p.with energy functionE and Poissonweight process� of mean measure� ,
is the distribution� on M de�ned by �(�) = Z � 1E[1(� 2 �) E (N )], whereZ = E[E(�)] is the
normalizing constant (it is also called thepartition functionor thestatistical sum). Observe then that the
Gibbs point process as de�ned has densityE with respect to a Poisson p.p.� .
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2
Marked Point Processes and Shot-Noise Fields

In a marked point process (m.p.p.), a mark belonging to somemeasurable space and carrying some informa-
tion is attached to each point.

2.1 Marked Point Processes

Consider ad dimensional Euclidean spaceRd, d � 1, as the state space of the point process. Consider a
second spaceR` , ` � 1, called the space of marks. A marked p.p.e� (with points inRd and marks inR` ) is
a locally �nite, random set of points inRd, with some random vector inR` attached to each point.

One can represent a marked point process either as a collection of pairse� = f (x i ; mi )gi , where� =
f x i g is the set of points andf mi g the set of marks, or as a point measure

e� =
X

i

" (x i ;m i ) ; (2.1)

where" (x;m ) is the Dirac measure on the Cartesian productRd � R` with an atom at(x; m). Both representa-

tions suggest thate� is a p.p. in the spaceRd � R` , which is a correct and often useful observation. We denote
the space of its realizations (locally �nite counting measures onRd � R` ) by eM. As a point process in this
extended space,e� has one important particularity inherited from its construction, namely thate�( A � R` ) is
�nite for any bounded setA � Rd, which is not true for a general p.p. in this space.

2.1.1 Independent Marking

An important special case of marked p.p. is the independently marked p.p.

De�nition 2.1.1. A marked p.p. is said to be independently marked (i.m.) if, given the locations of the points
� = f x i g, the marks are mutually independent random vectors inR` , and if the conditional distribution of
the markm of a pointx 2 � depends only on the location of this pointx it is attached to; i.e.,P f m 2 � j
� g = Pf m 2 � j x g = Fx (dm) for someprobability kernel or marksF�(�) from Rd to R` .
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An i.m.p.p. can also be seen as a random transformation of points by a particular probability transition
kernel (cf. Section 1.3.3). This leads to immediate results in the Poisson case.

Corollary 2.1.2. An independently marked Poisson p.p.e� with intensity measure� onRd and marks with
distributionsFx (dm) onR` is a Poisson p.p. onRd � R` with intensity measure

e�( A � K ) =
Z

A

ep(x; K ) �( dx); A � Rd; K � R` ;

whereep(x; K ) =
R

K Fx (dm): Consequently, its Laplace transform is equal to

L e� ( ef ) = E
�
exp

�
�

X

i

ef (x i ; mi )
��

= exp
�

�
Z

Rd

�
1 �

Z

R`

e� ef (x;m ) Fx (dm)
�

�( dx)
�

; (2.2)

for all functions ef : Rd+ l ! R+ .

Proof. Taked0 = d + `, and consider the following transition kernel fromRd to Rd0
:

p(x; A � K ) = 1(x 2 A)ep(x; K ) x 2 Rd ; A � Rd ; K � R` : (2.3)

The independently marked Poisson p.p. can be seen as a transformation of the (non-marked) Poisson p.p. of
intensity� on Rd by the probability kernel (2.3). The result follows from the Displacement Theorem (see
Theorem 1.3.9).

Remark: An immediate consequence of the above result and of Slivnyak's theorem is that the reduced Palm
distributionP !

(x;m ) (�) of i.m. Poisson p.p.e� given a point atx with markm is that of the i.m. Poisson p.p.
with intensity measure� and with mark distributionFx (dm). Moreover, a mere rewriting of the reduced
Campbell formula for Poisson point processes yields

E
� Z

Rd � R`

f (x; m; � n f xg) e�( d(x; m))
�

=
Z

Rd

Z

R`

E
h
f (x; m; e�)

i
Fx (dm) M (dx) : (2.4)

In the general case, independent marking leads to the following results:

Corollary 2.1.3. Let e� be an i.m.p.p.

(1) The mean measure ofe� is equal to

E[e�( A � K )] =
Z

A

Fx (K ) M (dx) A � Rd; K � R` ; (2.5)

whereM (A) = E[�( A)] is the mean measure of the points� of e� .
(2) The reduced Palm distributionP !

(x;m ) (�) of e� given a point atx with mark m is equal to the

distribution of the i.m.p.p., with points distributed according to the reduced Palm distributionP !
x

of � and with the same mark distributionsFx (dm).
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(3) (Reduced Campbell's formula for i.m.p.p.) For all non-negative functionsef de�ned onRd �
R` � eM,

E
� Z

Rd � R`

f (x; m; ~� n " (x;m ) ) e�( d(x; m))
�

=
Z

Rd

Z

R`

Z

eM

f (x; m; e� ) P !
(x;m ) (de� )Fx (dm) M (dx) :

(2.6)

Proof. We only prove the �rst statement; for the remaining ones see e.g. (Daley and Vere-Jones 1988).
Conditioning on� we have

E[e�( A; K )] = E
� Z

Rd

Z

R`

1(x 2 A)1(m 2 K ) e�( d(x; m))
�

= E
� Z

Rd

1(x 2 A)Fx (K ) �( dx)
�

=
Z

A

Fx (K ) M (dx) ;

which proves (2.5).

2.1.2 Typical Mark of a Stationary Point Process

Many stochastic models constructed out of independently marked point processes may also be seen as
marked point processes, however, they are often no longer independently marked. The Matérn model con-
sidered below in Section 2.1.3 is an example of such a situation; the Voronoi tessellation of Chapter 4 is
another.

Consider thus a general marked p.p.~� as in (2.1). In general, it is not true that, given the locations of
points of� , the markm of somex 2 � is independent of other marks with its distribution determined only
by x. However, it is still interesting and even of primary interest to the analysis of~� to know theconditional
distributionPf m 2 � j x g of markm given its point is located atx. In what follows we treat this question
in the case of a stationary p.p.

De�nition 2.1.4. A marked point process (2.1) is said to bestationaryif for any v 2 Rd, the distributions
of v + ~� =

P
i " (v+ x i ;m i ) and ~� are the same. The constant� = E[�( B )] = E[~�( B � R` )], whereB has

Lebesgue measure 1, is called itsintensity.

Note that in the above formulation the translation by the vectorv “acts” on the points of� and not on their
marks, thus ensuring that shifted points “preserve their marks”.

De�ne the Campbell–Matthes measureeC of the marked p.p.e� as

eC(B � K ) = E
� Z

Rd

Z

R`

1(x 2 B )1(m 2 K ) e�( d(x; m))
�

: (2.7)

If � < 1 , by arguments similar to those used in Section 1.4, one can show that it admits the representation

eC(B � K ) = � jB j � (K ) : (2.8)
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De�nition 2.1.5 (Palm distribution of the marks). The probability measure� (�) on the space of marksR`

given in (2.8) is called thePalm distribution of the marks.

The Palm distribution� of the marks may be interpreted as the conditional distribution� (�) = Pf m 2 � j
0 2 � g of the markm of a point located at the origin 0, given0 2 � . Not surprisingly, takingf (x; m; ~� ) =
1(x 2 B )1(m 2 K ) in (2.6) and comparing to (2.8) we �nd that

Corollary 2.1.6. Consider a stationary i.m.p.p. For (almost all)x, the probability kernel of marksFx (�) =
� (� � � ) is constant and equal to the Palm distribution of the marks.

In view of the above observation we shall sometimes say that the points of a stationary i.m.p.p. are indepen-
dently andidenticallymarked.

Under the Palm probabilityP0 of a stationary p.p.� , all the objects de�ned on the same space as� have
their distributions “seen” from the typical point of the process, which is located at 0 (cf. the discussion at
the end of Section 1.6.1). In the case of a stationary m.p.p., underP0, the mark attached to the point at 0 has
the distribution� ; this explains why it is also called thedistribution of the typical mark. In this context, the
Campbell–Matthes formula (1.18) can be rewritten to encompass the marks

E
� Z

Rd

g(x; ~� � x) �( dx)
�

= �
Z

Rd

E0[g(x; ~�)] dx : (2.9)

Note that in the above formula, in contrast to (2.6), the m.p.p.~� is not treated as some p.p. in a higher
dimension but rather as a point process� on a probability space on which marks are de�ned as well.
This approach is more convenient in the case of a stationary m.p.p. since it exploits the property of the
invariance of the distribution of~� with respect to a speci�c translation of points which preserves marks (cf.
De�nition 2.1.4). 1

The following observation is a consequence of Slivnyak's theorem 1.4.5:

Remark 2.1.7. Consider a stationary i.m. Poisson p.p.~� with a probability kernel of marksFx such that
Fx (�) = F (�). One can conclude from Corollary 2.1.6 and the Remark after Corollary 2.1.2 that its distri-
bution under the Palm probabilityP0 is equal to that of~� + " (0;m 0 ) , where~� is taken under the original
(stationary distribution)P and the markm0 of the point at the origin is independent of~� and has the same
distributionF (�) as for any of the points of~� .

Almost all stochastic models considered throughout this monograph are constructed from some marked
point processes. Here is a �rst example driven by an i.m. Poisson p.p.

2.1.3 Mat́ern Hard Core Model

Hard core models form a generic class of point processes whose points are never closer to each other than
some given distance, sayh > 0 (as if the points were the centers of some hard balls of radius1

2h). For the
Poisson p.p. there exists noh > 0 such that the p.p. satis�es the hard core property forh.

1The Palm probabilityP 0 can be de�ned as the Palm distribution of the marks in the case when the whole con�guration of points and all other
random objects existing on the probability space “seen” from a given point ofx 2 � is considered as a mark of this point – the so calleduniversal
mark. This requires a more abstract space of marks thanR` considered above; see Section 10.2 for more details.

26



We now present a hard core p.p. constructed from an underlying Poisson p.p. by removing certain points
of the Poisson p.p. depending on the positions of the neighboring points and additional marks attached to
the points.

Let � be a Poisson p.p. of intensity� onRd:

� =
X

i

" x i :

Let us consider the following independently marked version of this process:

e� =
X

i

" (x i ;Ui ) ;

wheref Ui gi are random variables uniformly distributed on[0; 1]. De�ne new marksf mi g of points of� by

mi = 1(Ui < U j for all yj 2 Bx i (h) n f x i g) : (2.10)

InterpretingUi as the “age” of pointx i , one can say thatmi is the indicator that the pointx i is the “youngest”
one among all the points in its neighborhoodBx i (h).

The Mat́ern hard core (MHC) point process is de�ned by:

� MHC =
X

i

mi " x i : (2.11)

� MHC is thus an example of adependentthinning of � . In contrast to what happens for an independent
thinning of a Poisson p.p. as considered in Section 1.3.2,the resulting MHC p.p. is not a Poisson p.p..
Nevertheless some characteristics of the MHC p.p. can be evaluated explicitly, as we show shortly. Consider
also the “whole” marked p.p.

~� MHC =
X

i

" (x i ;(Ui ;m i )) : (2.12)

Clearly ~� MHC is not independently marked, because off mi g. Nevertheless~� MHC (as well as� MHC ) is
stationary. This follows from the following fact. Let~� MHC ( e�) denote the (deterministic) mapping frome�
to ~� MHC . Then for allv 2 Rd,

~� MHC (v + e�) = v + ~� MHC ( e�)

with v + e� interpreted as in De�nition 2.1.4.
We now identify the distribution of marks by �rst �nding the distribution of the typical mark of~� MHC

and then calculating the intensity� MHC of the p.p.� MHC . For B � Rd and0 � a � 1, by Slivnyak's
theorem (see Proposition 1.4.5)

~C(B � ([0; a] � f 1g)) = E
� Z

B

Z

[0;a]

1(u < U j for all yj 2 Bx (h) \ � n f xg) e�( d(x; u))
�

= � jB j
Z

B

aZ

0

P
� � X

(x j ;Uj )2 e�

1(Uj � u)" x j

� �
Bx (h)

�
= 0

�
du dx

= � jB j

aZ

0

e� �u� d hd
du = jB j

1 � e� �a� d hd

� dhd ;
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where� d =
p

� d=�(1 + d=2) is the volume of the ballB0(1) of Rd. Comparing the last formula with (2.8),
we �nd that

� (du � f 1g) = P0f U0 2 du; m0 = 1 g = e� �u� d hd
du ;

for 0 � u � 1, where(U0; m0) is the mark of the point located at 0 underP0. In this formula we recognize
that U0 has the original uniform distribution of marksUi and, givenU0 = u, the point at 0 is retained in
� MHC (i.e.m0 = 1 ) with probabilitye� �u� d hd

.
In order to calculate the intensity� MHC of the Mat́ern p.p. we take a setB with volumejB j = 1 and

obtain

� MHC = ~C(B � [0; 1] � f 1g) = � P0f m0 = 1 g =
1 � e� �� d hd

� dhd :

Notice that when� ! 1 , � MHC % 1
� d hd . Hence the MHC process packs hard spheres of radiush=2 with a

volume fraction (proportion of space covered by spheres — see Section 3.1.8 for a general de�nition) of

p =
1

� dhd � d

�
h
2

� d

=
1
2d : (2.13)

Remark 2.1.8. The value1=2d is a good lower bound (sometimes called the “greedy” one) for the volume
fraction obtained by anysaturatedhard sphere packing. A con�guration of non-overlapping (hard) balls
with the same radius is calledsaturatedif no further ball with this radius can be added without violating
the no-overlap constraint. Letp be the fraction of the space (say, in some empirical mean sense) covered
by a saturated con�gurationf Bx i (R)gi of balls with radiusR. The saturation condition implies that all
points of the space are at distance no larger than2R from the center of some ball of this con�guration
(otherwise a new ball could be added there). This implies that when doubling the radius of each ball of the
original con�guration, one obtains a full coverage of the space: i.e.� =

S
i Bx i (2R) = Rd. The volume

fractionp0of � is thus equal to 1. On the other hand, when denoting byp the volume fraction of the original
con�guration, we get thatp0 � 2dp (when using the multiplication of the radius by2 and the inequality
stemming from the overlapping). Thus1 = p0 � 2dp, which impliesp � 1=2d.

For comparison, an upper bound given in (Blichfeldt 1929) for the volume fraction ofanyhard sphere
model valid for alld � 1 is (d=2 + 1)2 � d=2 and the best currently known upper bound is2� 0:5990d(1+ o(1))

whend ! 1 (Kabatiansky and Levenshtein 1978).
Table 2.1 gives the volume fractions of some classical hard-sphere models ford = 1 ; 2; 3.

Example 2.1.9 (Carrier sense multiple access).The above MHC model can be used as a (very) simple
model of the instantaneous repartition of active nodes in an ad hoc network using carrier sensing mutiple
access (CSMA) protocol (see Chapter 25.1.3 in Volume II). In this protocol, a node which wants to access
the shared wireless medium senses its occupation and refrains from transmitting if the channel is already
locally occupied. Hence, each active node creates some exclusion region around itself preventing other
nodes located in this region from transmitting. The simplest possible model taking such an exclusion is the
MHC with a radiush equal to the sensing (exclusion) range of CSMA. Note that in this model� MHC =
� MHC (�; h ) corresponds to the spatial density of active nodes in the ad hoc network of density� , when this
network uses CSMA with a sensing range ofh.
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model
saturated Mat́ern RSA densest packing

dimension
1 0.5 0.747598... 1.
2 0.25 0.54700 0.90689...
3 0.125 0.38278 0.74048...

Table 2.1 Volume fractions of some classical hard-sphere models. The left column gives the exact value (2.13) for the saturated Matérn model. The
center column gives the value of the saturated RSA (Random Sequential Addition) model. Ford = 1 this model, known as theRényi car parking
problem, has an exact solution; ford = 2 ; 3 we used simulated values taken from (Torquato, Uche, and Stillinger 2006). It should be mentioned that
the construction of the RSA model on the whole space is not trivial; see (Stoyan and Schlather 2000; Penrose and Yukich 2002) for a rigorous proof
of the convergence of the empirical volume fractions when the observation window tends to in�nity. The densest packing is given on the rightmost
column. On the plane the densest packing is that of the hexagonal lattice (cf. Section 19.3.2 in Volume II), the volume fraction of which is1=6�

p
3.

For d = 3 it was conjectured by Kepler in 1611 and proved only recently that the cubic or hexagonal packings (which both have volume fraction
�= (3

p
2)) are the densest possible.

2.2 Shot-Noise

2.2.1 General Point Processes

A shot-noise (SN) �eld is a non-negative vector random �eldI e� (y) de�ned for all y in some Euclidean
space and which is a functional of a marked point processe� . Here is a list of the spaces involved in its
de�nition:

� The �eld is de�ned onRd0
i.e. for all y 2 Rd0

;
� The vector �eld takes its values in(R+ )k i.e. I � (y) 2 R+ k for all y;
� It is generated by a marked point processe� =

P
i " (x i ;m i ) onRd with marks inR` .

The additional ingredient for its de�nition is some non-negativeresponse functionL = ( L 1; : : : ; L k ) :
Rd0

� Rd � R` 7! (R+ )k .

De�nition 2.2.1. Under the setting described above, the SN �eld associated with the marked point process
e� and the response functionL is de�ned by

I e� (y) = ( I 1(y); : : : ; I k (y)) =
Z

Rd

Z

R`

L(y; x; m) e�( d(x; m)) =
X

(x i ;m i )2 e�

L(y; x i ; mi ) ; y 2 Rd0
;

where the integral and the sum are evaluated component-wise for the vector response functionL .

Remark: The case where the �eld lives in the same space as the point processe� (i.e., d0 = d) is the most
common. The term ”Shot-Noise” comes from this special case withd = 1 . It describes a stochastic process
with 'shots' taking place at the epochsf X i g of a Poisson point process on the real line, which represents
time. The shot atX i has an effect over time of the forml(t � X i ), wherel : R ! R+ is a function which
is usually such thatl(x) = 0 for x < 0 (non anticipativeness) and decreasing forx � 0. The Shot-Noise at
time t,

I (t) =
X

i

l (t � X i ) ;

is then the 'sum' of the effects of the shots that took place before timet.

29



SinceL is positive,I e� (y) is well de�ned but can be in�nite. In the sequel we require this random �eld
to be a.s. �nite and moreover to have �nite expectation. Using the Campbell formula (2.6) we can easily
express this expectation in the case of an i.m.p.p.e� .

Proposition 2.2.2. Let I e� (y) be the SN �eld as above and assume thate� is an i.m.p.p. Then

E[I e� (y)] =
Z

Rd � R`

L(y; x; m) F (dm j x)M (dx) (2.14)

componentwise.

Proof. We have by (2.6)

E[I e� (y)] = E
� Z

Rd

Z

R`

L(y; x; m) e�( d(x; m))
�

=
Z

Rd � R`

L(y; x; m) F (dm j x)M (dx) :

Assuming that the right-hand side in (2.14) is �nite for ally, we guarantee that each random vector
I e� (y) has �nite expectation and thus is �nite almost surely. This however is not suf�cient to be able to say
that with probability 1 the whole �eldf I e� (y) : y 2 Rd0

g is �nite. For this latter as well as for a continuity
property of the paths of this �eld (which will be useful later on) we prove the following technical result.

Proposition 2.2.3. Let I e� (y) be the shot-noise �eld de�ned above and assume thate� is an i.m.p.p. If for
eachy 2 Rd0

, there exists� y > 0 such that
Z

Rd

Z

R`

sup
z2 B y (� y )

L(z; x; m) F (dm j x)M (dx) < 1 (2.15)

componentwise, then with probability1, the �eld I e� (y) is �nite for all y 2 Rd0
. If moreover the response

functionL(y; x; m) is a continuous (lower semi-continuous) function iny for any �xed (x; m), then with
probability1, the �eld I e� (y) has continuous (lower semi-continuous) paths.

Proof. From the open coveringf By(� y) : y 2 Rd0
g of Rd0

one can choose a countable coveringf Byw (� yw ) :
w = 1 ; 2; : : :g (this is possible sinceRd0

is separable). From (2.15), there exists a subset
 0of the space on
which � is de�ned and having probability one, such that for all! 2 
 0

I 0(yw) =
Z

Rd

Z

R`

sup
z2 B yw (� yw )

L(z; x; m) e�( d(x; m)) < 1 ;

for all w = 1 ; 2; : : : Consequently, for all! 2 
 0 andz 2 Rd0
, I e� (z) � I 0(yw(z) ) < 1 componentwise,

wherew(z) denotes the center of the ball of radius� yw ( z ) of the countable coverage which coversz; i.e.,
z 2 Byw ( z ) (� yw ( z ) ). This proves the �rst statement.
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For continuity (lower semi-continuity), take anyz 2 Rd0
andzn ! z (zn & z). For suf�ciently largen,

zn andz belong toByw ( z ) (� yw ( z ) ). Then by dominated convergence,

lim
n!1

I e� (zn ) =
Z

Rd

Z

R`

lim
n!1

L(zn ; x; m) e�( d(x; m)) = I e� (z) ;

becauseL is continuous (lower semi-continuous) in its �rst argument.

2.2.2 Poisson Point Processes

In the case of a SNI (y) = I e� (y) generated by an i.m. Poisson p.p.e� , the distribution of the SN vectorI (y)

is known in terms of its multivariate Laplace transformL I (y) (t1; : : : ; tk ) = E[e�
P k

i =1 t i I i (y) ].

Proposition 2.2.4. Suppose thate� is an i.m. Poisson p.p. with intensity measure� and mark distribution
Fx (dm). Consider the SNI (y) = I e� (y) with response functionL = ( L 1; : : : ; L k ). Then

L I (y) (t1; : : : ; tk ) = exp
�

�
Z

Rd

Z

R`

�
1 � e�

P k
i =1 t i L i (y;x;m )

�
Fx (dm) �( dx)

�
: (2.16)

Proof. Observe thatL I (y) (t1; : : : ; tk ) = L e� (f ) whereL e� (�) is the Laplace transform ofe� at the function

f = f (x; m) = �
P k

i =1 t i L i (y; x; m). Equation (2.16) follows from Corollary 2.1.2 and Proposition 1.2.2.

One can evaluate explicitly the higher moments ofI by differentiating the above formula at 0.

Joint Distribution of the Field at Several Points. Let I (y) = I e� (y) be a SN �eld with response function
L as in De�nition 2.2.1 and let	 be a linear transformation(R+ )k� n 7! (R+ )k0

for some integersn andk0.
Then

I 0
e�
(y1; : : : ; yn ) = 	( I (y1); : : : ; I (yn ))

is a SN �eld onRd0� n with response function

L 0((y1; : : : ; yn ); x; m) = 	( L (y1; x; m); : : : ; L (yn ; x; m)) :

In particular, taking	( a1; : : : ; an ) =
P n

j =1 aj , we see that then-dimensional aggregateI
P

e�
(y1; : : : ; yn ) =

P n
j =1 I (yj ) is a SN onRd0� n with associated functionL

P
((y1; : : : ; yn ); x; m) =

P n
j =1 L(yj ; x; m). Simi-

larly, the integralsI
R

e�
(A) =

R
A I (y) dy can be interpreted as a shot-noise �eld on the space of (say) closed

subsetsA � Rd0
. As another immediate consequence of the above formulation, we have the next result by

settingk0 = k � n, using the identity transformation	 and appealing to Proposition 2.2.4:

Corollary 2.2.5. Let I = I e� (y) be as in Proposition 2.2.4. Then the joint Laplace transform,L I (y ) (t ) of
the vectorI (y ) = ( I (y1); : : : ; I (yn )) is given by

L I (y ) (t ) = exp
�

�
Z

Rd

Z

R`

�
1 � e�

P n
j =1

P k
i =1 t ij L i (yj ;x;m )

�
Fx (dm)�( dx)

�
;

wheret = ( t ij : j = 1 ; : : : ; n; i = 1 ; : : : ; k).
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Absolute Continuity. In the following proposition we give simple conditions for the Poisson SN vector
I e� (y) to have a probability law which is absolutely continuous (has a density) with respect to Lebesgue
measure. This property can be used to derive the distribution function of the shot-noise from its Laplace (or
Fourier) transform via the Plancherel-Parseval Theorem (cf. Section 12.1).

Proposition 2.2.6. Let I = I e� (y) be as in Proposition 2.2.4.
If �( Rd) = 1 and if, for eachA � (R+ )k of Lebesgue measure 0,

Z

Rd

Z

R`

1(L(y; x; m) 2 A) Fx (dm)�( dx) = 0 ; (2.17)

then, for ally 2 Rd0
, the random vectorI e� (y) is absolutely continuous with respect to thek-dimensional

Lebesgue measure (i.e. has a density).

Proof. Fix y 2 Rd0
; without loss of generality lety = 0 . TakeA � (R+ )k of k-dimensional Lebesgue

measure 0. For anyr > 0
Pf I e� (0) 2 A g = Pf I r + I c

r 2 A g;

whereI r =
R

jx j� r

R
R` L(0; x; m) e�( d(x; m)) andI c

r =
R

jx j>r

R
R` L(0; x; m) �( d(x; m)) . By the Poisson

assumptionI r andI c
r are independent. Moreover

Pf I e� (0) 2 A g =
1X

n=0

P
n

I r + I c
r 2 A j e�

�
x : jxj � r

	
= n

o
P

n
e�

�
x : jxj � r

	
= n

o
:

Recall from the discussion at the end of Section 1.1.1 that conditioned on�
�

x : jxj � r
	

= n, with n > 0,
the random variableI r can be represented as the sum ofn independent random variables, distributed as
L(0; x; m) wherex andm have joint distribution

1

�
� �

x : jxj � r
	 � Fx (dm)�( dx) :

Thus, by (2.17)

P
n

I r + I c
r 2 A

�
�
� e�

�
x : jxj � r

	
= n

o
= 0 :

Consequently,

P f I e� (0) 2 A g � P
n

�
�

x : jxj � r
	

= 0
o

! 0 whenr ! 1

because�( Rd) = 1 . This completes the proof.

2.3 Interference Field as Shot-Noise

Consider a collection of transmitters distributed in the space and sharing a common radio medium. Following
the observations made in Chapter 23 in Volume II, assume that signal attenuation depends on distance (cf.
Section 23.1 in Volume II) and some stochastic ingredients (cf. Section 23.2 in Volume II).

The total power received from this collection of transmitters at a given location is in essence a shot-noise
�eld at this location. For instance in the case of a planar model with omni-directional antennas, the simplest
model consists of
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� a collection of pointsf x i g representing the locations of transmitters on the planeR2 (d = 2 in
De�nition 2.2.1);

� marksmi = pi representing the powers of the transmitters (` = 1 ); and
� a scalar (k = 1 ) response functionL(y; x; p) = p=l(jx � yj), wherel is the omni-directional

path-loss function (cf. Section 23.1.2 in Volume II).

As we shall see, �ne elements of the radio wave propagation model (antenna azimuth, random fading model,
etc.) can be taken into account by enriching the marks of the p.p.

As outlined in Section 24.3.4 in Volume II, the total power received from a set of transmitters scattered
in the plane can often be considered as interference or noise with respect to the signal received from one
(or more) transmitter(s) not belonging to this set. Within this setting, this total power plays a key role in
detection theory as explained in Section 24.3.4 in Volume II. The fact that theinterference �eldof such a set
of transmitters can be interpreted as a shot-noise �eld opens new ways of assessing its statistical properties.
In the same way as Rayleigh fading was shown to be an ef�cient statistical model better suited to assessing
the �uctuations of a multipath channel than solving the electromagnetic �eld equations, the shot-noise model
can be seen to be an ef�cient statistical model for predicting the �uctuations of the interference �eld. This
is often more practical than evaluating exactly the power of interference.

2.3.1 Standard Stochastic Scenario

Consider a marked point processe� = f x i ; pi g with points on the planef x i g 2 R2 and markspi 2
R+ . Points represent transmitter locations and marks emitted powers. Consider some isotropic or ommi-
directional path-loss (OPL) functionl , for example models OPL 1–OPL 3 described in detail in Exam-
ple 23.1.3 in Volume II and de�ned as follows:

(OPL 1) l(r ) = ( A max(r0; r )) � ,
(OPL 2) l(r ) = (1 + Ar ) � ,
(OPL 3) l(r ) = ( Ar ) � ,

for someA > 0, r0 > 0 and� > 2, where� is called thepath-loss exponent. Assuming the signals are
transmitted and received by omni-directional antennas, the total power received at some locationy is

I (y) = I e� (y) =
X

(x i ;pi )2 e�

pi

l (jy � x i j)
; y 2 R2: (2.18)

We shall often consider the following standard stochastic scenario for the above interference shot-noise
�eld:

(1) e� is a stationary i.m.p.p. with points inR2 and intensity� ;
(2) the marks have some distributionPf p � sg = G(s) that does not depend on the location of the

point.

Notice that this model excludes power control as described in Section 25.2 in Volume II where powers are
functions of the transmitter locations.

Kendall-like Notation for the Standard Interference Model Mimicking Kendall's notation in queuing
theory, we call the above standard stochastic scenario of SN a GI/GI interference model, where the �rst

33



GI denotes a general independently marked stationary p.p. and the second GI stands for a general mark
distribution. Some special cases are:

M/� if the underlying i.m.p.p.e� is Poisson;
D/� if the underlying i.m.p.p.e� is deterministic;
�/M if the marks are exponentially distributed; i.e.G(s) = 1 � e� �s with � � 0.
�/D if the marks are deterministic (constant).

For instance, the interference �eld in a MANET with nodes located according to a Poisson p.p. and without
power control (see Section 25.3.1 in Volume II) can be seen as a M/� SN. Similarly, the famous honeycomb
model used in certain cellular network models for representing the location of base stations leads to a down-
link interference �eld which falls in the D/� SN class provided no power control is used (see Section 25.3.2
in Volume II).

Remark 2.3.1. Assume that emitted powerspi = p are constant and that we have some Rayleigh fading
(see Section 23.2.4 in Volume II). Then the power received at the locationy from a transmitter atx i is equal
to pFi =l(jx i � yj), whereFi is an exponential random variable with mean 1. Thus, interpretingpFi as a
“virtual power” (which is hence exponential with meanp), the GI/M model may be used to describe the
interference in the presence of Rayleigh fading. In what follows, we shall most often work directly with the
virtual power, or equivalently assume that Rayleigh fading is represented by an exponential random variable
of parameter� = p� 1.

The independence betweenFi for different transmitters, which is assumed in the GI/M model, can be
justi�ed if the point process is sparse on the scale of the coherence distance (see Section 23.3 in Volume II).
However this SN representation is valid only for one given location. Indeed, using the same value of the
fadingFi from pointx i to different locationsy 2 R2 would not be a reasonable assumption as the channel
conditions change signi�cantly wheny varies more than the coherence distance. We will return to this
problem in Section 2.3.3.

Corollary 2.3.2. The mean total received power in the GI/GI model is constant and equal to

E[I (y)] = E[I ] = E[p]�
Z

R2

1
l(jyj)

dy =

1Z

0

(1 � G(s)) ds 2��

1Z

0

r
l (r )

dr : (2.19)

The Laplace transform of the received power in the M/GI model is equal to

L I (y) (t) = L I (t) = exp
�

� 2��

1Z

0

r
�

1 � L p
�
t=l(r )

� �
dr

�
; (2.20)

whereL p(t) =
R1

0 e� ts G(ds) is the Laplace transform of the transmitted power. The second moment in
the M/GI model is equal to

E[I 2(y)] = ( E[I ])2 + E[p2] 2��

1Z

0

r
(l (r ))2 dr : (2.21)
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Example 2.3.3.For the M/M model, these values are equal to

E[I ] =
2��
�

1Z

0

r
l (r )

dr ; (2.22)

L I (t) = exp
�

� 2��

1Z

0

r
1 + �l (r )=t

dr
�

: (2.23)

Below, we use the fact that

1Z

0

1
1 + xu dx = 1=u�(1 =u)�(1 � 1=u): (2.24)

Assuming OPL 3 forl , one obtains

L I (t) = exp

(

� �
�

t
�

� 2=� K (� )
A2

)

; (2.25)

with

K (� ) =
2� 2

� sin(2�=� )
=

2� �(2 =� )�(1 � 2=� )
�

: (2.26)

Assuming OPL 1 forl with � = 4 , one obtains

L I (t) = exp
�

��
A2

r
t
�

arctan
�

(Ar 0)2
r

�
t

�
�

�� 2

2A2

r
t
�

� ��r 2
0

t
t + ( Ar 0)4�

�
: (2.27)

Corollary 2.3.4. Consider a M/GI model with the non-null marks (i.e.,G(0) < 1), for which at least one
of the following conditions is satis�ed: the distribution functionG of the mark admits a density or the OPL
functionl(r ) is strictly decreasing. Then for0 � a � b

Pf a � I � bg =

1Z

�1

L I (2i�s )
e� 2i�bs � e� 2i�as

2i�s
ds ; (2.28)

provided
R1

�1 jL I (2i�s )j2 ds < 1 .

Proof. Under our assumptions, by Proposition 2.2.6, the SNI has a density that is square integrable provided
the Fourier transform ofI is square integrable (see (Feller 1971, p.510)). Then the result follows by the
Plancherel-Parseval theorem (see Lemma 12.2.1).
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Remark 2.3.5. For the GI/GI scenario with OPL 1 and OPL 2 andE[p] =
R1

0 s G(ds) < 1 we can con-
clude from Proposition 2.2.3 and formula (2.19) withl(r ) replaced byl(max(r � �; 0)) that, with probability
1, the SN �eldI e� (y) is �nite for all y 2 R2. For OPL 3 one has to be more careful. Note that by (2.19) the
integral expressingE[I ] is in�nite in this case for� > 2 due the pole at the origin (cf. also Example 23.1.3
in Volume II). Consequently, the simpli�ed isotropic path-loss function OPL 3 cannot be used to model the
mean interference �eld created by a homogeneous i.m.p.p. on the plane. However, with probability 1,I e� (y)
is �nite for all y 2 R2 except fory 2 � . One can prove this by considering the mean of the shot-noise
created by transmitters outside some vicinity of the receiver (which is �nite) and knowing that the number
of transmitters within this vicinity is �nite with probability 1.

Using the explicit formula (2.20) one can also check that in the M/GI model with OPL 3 andG(0) < 1
the Fourier transformL I (2i� ) of I is square integrable.

Note that for the M/GI model, Proposition 2.2.4 allows one to calculate thejoint Laplace transform of
the received power at several locations.

2.3.2 *Directional Antennas

In the case of directional transmitter antennas, one can enrich the marked point processe� of the previous
section by taking as marks(pi ; � i ), wherepi is, as above, the power transmitted by pointx i and where� i is
its antenna azimuth. We assume all the antennas have the same radiation pattern�� 2

e = �� 2 (cf. Section 23.1.2
in Volume II). If this is not the case, one has to consider the whole radiation pattern function as the mark of
a point. Using the model (23.3 in Volume II), it makes sense to model the total power received aty by the
shot-noise

I (y) = I e� (y) =
X

(x i ;(pi ;� i )) 2 e�

pi �� 2(� i � \ (y � x i ))
l (jy � x i j)

; y 2 Rd : (2.29)

Corollary 2.3.6. The mean total received power in a GI/GI interference model with directional antennas
having the same radiation pattern�� 2 and having independently, uniformly distributed azimuth� is constant
in y and equal to

E[I (y)] = E[I ] =

1Z

0

(1 � G(s)) ds
1

2�

2�Z

0

�� 2(� ) d� 2��

1Z

0

r
l (r )

dr :

The Laplace transform of the received power in the M/GI model with the above directional antennas is equal
to

L I (y) (t) = L I (t) = exp
�

� �

2�Z

0

1Z

0

r
�

1 � L p
�
t �� 2(� )=l(jr j)

� �
dr d�

�
:
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Example 2.3.7.Continuing Example 23.1.4 in Volume II, note that for the radiation pattern RP0 we have
1
�

R�
� � �� 2(� ) d� = 1 , whereas for RP1, this integral can be expressed in terms of theSine integral

1
2�

�Z

� �

sin(!� )
!�

d� =
1

!�

!�Z

0

sin �
�

d� =
Si(!� )

!�
:

Numerical integration for! = 1 :81 (so as to have�� 2(�= 3) = 1=2 = 3dB) gives

3
2�

2Si(!� )
!

= 0 :3968:

For a general radiation pattern RP2, the integral
R�

� � �� 2(� ) d� can be easily evaluated analytically

1
2�

�Z

� �

�� 2(� ) d� =
1

2�
� 6� 1� + 9 � 2

1 � 9� 2
2 + 18� 2� � 4� 2

6(� � 3� 1)
:

The above value for� 1 = �
12; � 2 = 2

3 � is equal to19=48 = 0:39583.

2.3.3 Fading Field

We return to the question of the joint law of the interference �eld at several locations of the space in the case
of a Rayleigh fading, already alluded to above. We consider this question in the omni-directional path-loss
function case.

In order to model the actual received power, one introduces a random fading �eldF = F (x; y) on
R2 � R2, whereF (x; y) re�ects the multipath signal propagation fromx to y (cf. Chapter 23 in Volume II).
It is then natural to introduce the response function

L(y; x; p) = pF(x; y)=l(jx � yj)

in the SN description of the interference �eld. Consequently, a fading-aware SN model takes the form

I (y) = I e� (y) =
X

(x i ;(pi ;F i )) 2 e�

pi Fi (y)
l (jy � x i j)

; y 2 Rd ; (2.30)

whereFi (�) = F (x i ; �). Note the above formula remains compatible with De�nition 2.2.1 with marksmi =
(pi ; Fi (�)) which comprise the emitted power and the fading �elds of transmitterx i (we admit however that
the space of this mark is more complex thanR` as assumed in De�nition 2.2.1).

As far as probabilistic assumptions are concerned, it is dif�cult to describe completely the distribution
of the fading �eldF (�; �), and thus of the marksFi (�). However, inspired by what is said in Section 23.2.4
in Volume II it is reasonable to assume the followingfading process postulates:

(1) The stochastic processF (�; �) is independent of the other elements of the standard scenario for
SN described in Section 2.3.1 and has a constant marginal distributions with mean 1.

(2) If jy1 � y2j > � or jx1 � x2j > � , where� is some constant, thenF (x1; y1) andF (x2; y2) are
independent random variables.

(3) If jy1 � y2j < � andjx1 � x2j < � , where� < � is some constant, thenF (x1; y1) = F (x2; y2).

Remark: Typically the constants�; � , which are related to the coherence distance, are of the order of the
wave-length, and so are very small compared to the typical distance between transmitters and/or receivers.
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2.3.3.1 Interference at a Single Location

The above fading process postulates, together with the exact form of the marginal distribution ofF , are
enough to evaluate (or to reasonably approximate) the characteristics of the interference �eld at one location,
sayy0. In this case only the distribution of the vector

�
Fi = Fi (y0) = F (x i ; y0) : x i 2 �

�
is required. Our

postulates on the fading process and the remark following them justify the assumption that this is a vector of
independent and identically distributed (i.i.d.) random variables. This assumption is reasonable at least if the
mean nearest neighbor distance for the point process� (which equals1=(2

p
� ) in the case of the Poisson

p.p. with intensity� ) is much larger than the constant� in the second postulate. Thus, taking a standard
model withp0

i := pi Fi captures the fading effect well. Recall in particular that a constant emitted powerp
and Rayleigh fadingFi are equivalent to taking exponential “virtual powers”p0

i (and no fading).

2.3.3.2 Fading at Discrete Locations

We now focus on the value of the interference �eld at several locations of the plane, sayy1; : : : ; yk .
Our standard model for SN (see Section 2.3.1) can be enriched by random variables representing fading

in the channel fromx i 2 � to yj , for each pair(i; j ) of transmitteri = 1 ; : : : and receiver locations,
j = 1 ; : : : ; k. For this, one considers marks(pi ; (F 1

i ; : : : ; F k
i ))) 2 (R+ )1+ k , wherepi denotes the power of

transmitteri and(F 1
i ; : : : ; F k

i ) the random vector representing the value ofF j
i = F (x i ; yj ), the fading in

the channels from transmitteri to receiversyj , j = 1 ; : : : ; k.
Consider the vector shot-noise �eld(I 1(y); : : : ; I k (y)) de�ned onR2� k by

I j (y) =
X

(x i ;(pi ;(F 1
i ;:::;F k

i ))) 2 e�

pi F
j
i

l (jy � x i j)
: (2.31)

Note that due to our assumption on the fading, the value of this vector �eld taken at(y1; : : : ; yk ), i.e.;
(I 1(y1); : : : ; I k (yk )) corresponds to the total power received byyj from all the transmittersx i when the
fading fromx i to yj is F j

i .
As far as probabilistic assumptions are concerned we assume that

(1) e� is a general stationary i.m.p.p. inR2 with intensity� (note that the i.m. assumption is reason-
able in view of our postulates for the fading process, at least for point processes with a mean
nearest neighbor distance suf�ciently large compared to� ), and

(2) marks are identically distributed and such thatp and the vector(F 1; : : : ; F k ) are independent;
we denote byFpower (dp) the distribution ofp.

When appropriate, we also assume the following:

(3) The components of the fading vector(F 1; : : : ; F k ) are i.i.d.2

A Rayleigh fading channel would consist in assumingF j exponential random variables (cf. Section 23.2.4
in Volume II).

Kendall-like Notation (cont.). By analogy with queuing theory, we call the model (2.31) a GI/GI/k SN,
wherek stands for the number of different channels represented. If the underlying point process is Poisson,

2Assumption 3 is reasonable if the locationsy1 ; : : : ; yk , are well separated in space.

38



we denote it by M/�/k, while �/M/k stands for the model withindependent exponential received powers in
each of thek channels(e.g. constant emitted power and Rayleigh fading).

As above, using (2.5), we can calculate the mean value of the total signal received atyk in the GI/GI/k
model:

E[I j ] = E[p]E[F ]
Z

R2

1
l(jy � xj)

M (dx) ;

whereE[F ] is the mean fading of the channel.
For the M/GI/k model, i.e. under the assumption thate� is an i.m. Poisson p.p., by Corollary 2.2.5, we

can evaluate the joint Laplace transformL (I 1 ;:::;I k ) (t1; : : : ; tk ) = E[expf�
P k

j =1 t j I j g].

Corollary 2.3.8. For the M/GI/k SN

L (I 1 ;:::;I k ) (t1; : : : ; tk ) = exp
�

�
Z

Rd

�
1 �

Z

R`

L f

� pt1
l (jy1 � xj)

; : : : ;
ptk

l (jyk � xj)

�
Fpower (dp)

�
�( dx)

�
;

whereL f (t1; : : : ; tk ) is the Laplace transform of the fading vectorf . If f consists of independent components
thenL f (t1; : : : ; tk ) =

Q k
j =1 L f (t j ).

Example 2.3.9 (Random cross-fading model).In the previous example we considered some �nite set of
�xed locations and a random pattern of transmitters. Consider now a more general situation, when one has a
random pattern of transmitters� e and another, possibly in�nite, random set� r of receivers. This model is
very �exible and does not exclude the case where certain transmitters and receivers are located at the same
points, i.e. possibly� e \ � r 6= ; ; in the extreme case, one can consider� e = � r . In this context it is useful
to attach tox i marks of the form(pi ; f ij ; x j 2 � r ) wherepi denotes the power of transmitterx i andf ij the
fading of the channel fromx i to yj . This model could be denoted by GI/GI/1 and is related to the so called
random connection modelconsidered in continuum percolation (see (Meester and Roy 1996)).

2.3.4 Time-space Shot-Noise

This section is concerned with a time–space model which leads to a vector shot-noise �eld., namely to a
�eld which takes its values in(R+ )k with k > 1 (see the beginning of Section 2.2.1). The basic data in this
model are

� a collection of pointsf x i g representing the locations of transmitters on the planeR2 (d = d0 = 2
in De�nition 2.2.1);

� a collection of marksPi 2 R+ k ; the i -th coordinate ofPi , denoted bypi;n ; is the power/fading
of transmitteri at time1 � n � k (the dimensionl of the mark space of De�nition 2.2.1 is hence
here equal tok); and

� ak-dimensional response functionL(y; x; P ) with n-th coordinateL n (y; x; P ) = pn=l(jx � yj),
wherepn is then-th coordinate ofP and wherel is some omni-directional path-loss function.

This time–space model is a natural extension of the standard model of Section 2.3.3.1: transmitters are �xed
but their power/fading conditions change over time and

I (y) =
X

i

L(y; x i ; Pi ) 2 R+ k
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is then the vector ofR+ k the n-th coordinate of which, denoted byI n (y), gives the interference at lo-
cationy and at timen. Proposition 2.2.4 allows one to derive the Laplace transformL I (y) (t1; : : : ; tk ) =

E[e�
P k

n =1 tn I n (y) ] of I (y).
A natural instance of the model is that where the transmitter locations form a Poisson p.p. of intensity� ,

the marksPi are i.i.d. and the coordinates ofPi are i.i.d. Then

L I (y) (t1; : : : ; tk ) = exp
�

� 2��

1Z

0

r
�

1 �
kY

n=1

L p
�
tn=l(r )

� �
dr

�
; (2.32)

whereL p(u) denotes the Laplace transform ofp1;1 atu.

2.4 Extremal Shot-Noise

We now introduce a shot-noise model in which instead of adding the impact of all points (and their marks) we
look for points having extremal impact. For simplicity we consider here only a scalar extremal shot-noise
�eld de�ned on the same space as the point-processe� . More precisely, consider a marked point process
e� =

P
i " (x i ;m i ) onRd with marks inR` and some non-negative response functionL : Rd0

� Rd � R` 7! R+ .

De�nition 2.4.1. Given a marked point processe� and response function as above theextremal shot-noise
(ESN) �eld is de�ned by

X e� (y) = sup
(x i ;m i )2 e�

L(y; x i ; mi ) ; y 2 Rd0
:

SinceL is positive,X e� (y) is well de�ned but can be in�nite.
Interestingly, the �nite-dimensional distributions of the �eldf X e� (y) = X (y) : y 2 Rd0

g can be ex-
pressed via the Laplace transform of certain associated (additive) shot-noise variables. For this note that

Pf X (y1) � t1; : : : ; X (yk ) � tk g = Pf L(yj ; x i ; mi ) � t j for all j = 1 ; : : : ; k; (x i ; mi ) 2 e� g

= E
�
exp

� X

(x i ;m i )2 e�

log
� kY

j =1

1(L(yj ; x i ; mi ) � t j )
� ��

: (2.33)

Consequently, for i.m. Poisson p.p. we can express these �nite-dimensional distributions explicitly.

Proposition 2.4.2. Suppose thate� is an i.m. Poisson p.p. with intensity measure� and mark distribution
Fx (dm). Consider the ESNX (y) = X e� (y) with the response functionL . Then

Pf X (y1) � t1; : : : ; X (yk ) � tk g = exp
�

�
Z

Rd

Z

R`

�
1 �

kY

j =1

1(L(yj ; x; m) � t j )
�

Fx (dm) �( dx)
�

:

In particular

Pf X (y) � t g = exp
�

�
Z

Rd

Z

R`

1(L(y; x; m) > t ) Fx (dm) �( dx)
�

:
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Proof. The results follow from (2.33) and (2.2).

The extremal shot-noise model is often used in situations where one looks for some optimal transmit-
ter/receiver. For instance, the extremal shot-noiseX e� (y) represents the strongest signal power received
at y.
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3
Boolean Model

In this chapter we introduce the most celebrated model of stochastic geometry — the Boolean model (BM).
It is also a basic model of continuum percolation.

3.1 Boolean Model as a Coverage Process

In the simplest setting, the BM is based on (1) a Poisson p.p., whose points are also calledgerms, and
(2) on anindependentsequence of i.i.d. compact sets called thegrains. The Poisson set of germs and the
independence of the grains make the BM analytically tractable. The BM is often used as the null hypothesis
in stochastic geometry modeling.

We de�ne the BM as a model driven by an i.m. Poisson p.p. onRd,

~� =
X

i

" (x i ;� i ) ; (3.1)

with marks� i being independentrandom closed sets(RACs) ofRd, representing the grains. One can make
the set of closed subsets ofRd a measurable space (see (Matheron 1975)). Note that in Section 2.1 we
considered (for simplicity) only marksmi in some Euclidean spaceR` . To handle more general mark spaces
we can think of subsets� i as being chosen from some family of closed sets,� i 2 f �( m) : m 2 R`g, by
a random sampling of some parameterm 2 R` . Perhaps the simplest example is the following family of
random closed balls:

Example 3.1.1 (Random closed balls).By a random closed ballwe mean a closed ball�( m) = B0(m)
of random radiusm 2 R+ , centered at the origin0 2 Rd.

More general, non-parametric RACs, modeling possibly very irregular random grains, can also be considered
using the measure-theoretic formalism (see (Matheron 1975)).
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Let us introduce the following operations on the subsetsA; B 2 Rd of the Euclidean space:

A � B = f x + y : x 2 A; y 2 B g;

x + B = f x + y : y 2 B g; for x 2 Rd;
�B = f� x : x 2 B g;

rB = f ry : y 2 B g; for r 2 R:

De�nition 3.1.2. Let � be a Poisson p.p. of intensity�( �) onRd and let~� be given by (3.1) for some inde-
pendent and i.i.d. sequence of marksf � i g which are RACs ofRd. We assume that the common distribution
of these RACs satis�es the condition that

E[�( �� � K )] < 1 for each compactK � Rd ; (3.2)

where� is a generic RAC with this distribution. The associatedBoolean modelis the union

� BM =
[

i

(x i + � i ) : (3.3)

Lemma 3.1.5 below shows that condition (3.2) guarantees that almost surely, in each bounded window, there
are at most �nitely many grains. This desired local structure of the model implies that thecountable in�nite
union� BM of closed setsx i + � i is a closed setand thus that the BM is also a RAC.

We often consider the following example of a BM.

Example 3.1.3 (Homogeneous BM inRd with random spherical grains). Let � be a stationary Poisson
process with intensity� on Rd (i.e., �( dx) = � dx). Assume that� i = B0(Ri ) whereRi are i.i.d. and
distributed as the generic random variableR. The random set� given by (3.3) is called thehomogeneous
BM with random spherical grains. Note that condition (3.2) is equivalent toE[Rd] < 1 , which is always
assumed. Figure 3.1 shows a realization of a BM with random spherical grains in dimension 2.

We now study some basic characteristics of the BM.

3.1.1 Capacity Functional

The capacity functional plays for RACs a role analogous to that of the (cumulative) distribution function for
random variables. It is a key characteristic of a RAC that uniquely de�nes its distribution.

De�nition 3.1.4. Let � be a RAC. Thecapacity functionalT� (K ) of � is de�ned as

T� (K ) = Pf � \ K 6= ; g

for all compactsK � Rd.
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Fig. 3.1 Boolean Model with random spherical grains.

Remark: Obviously we haveT� (; ) = 0 and in general0 � T� (K ) � 1. These properties can be seen as
analogous to the propertiesF (�1 ) = 0 ; 0 � F (x) � 1 of a distribution functionF of a random variable.
One can complete the above two properties by another couple of properties, analogous to monotonicity and
right continuity of a distribution function, and then de�ne aChoquet alternating capacity functionalas any
functionalT(K ) of the compact setsK satisfying the four conditions. A celebrated theorem of the theory of
RACs (Choquet's theorem; see (Matheron 1975)) states that each such capacity functional uniquely de�nes
some RAC distribution, exactly as each d.f. de�nes the distribution of a random variable.

Before calculating the capacity functional of the BM, we prove the following very useful lemma.

Lemma 3.1.5. Let � BM be the BM with intensity of germs� and the generic grain� . Then, the number of
grains of the BM intersecting a given compactK ,

NK = # f x i : (x i + � i ) \ K 6= ;g ;

is a Poisson random variable with parameterE[�( �� � K )].

Proof. Let ~� be a marked Poisson p.p. generating the BM as in De�nition 3.1.2. For a given compactK
de�ne the point process

� K =
X

(x i ;� i )2 ~�

" x i 1((x i + � i ) \ K 6= ; ) :

Note that� K is an independent thinning of the points of~� (germs of the BM) with the thinning probability

pK (x) = Pf x + � \ K 6= ; g = Pf x 2 �� � K g:
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By Proposition 1.3.5,� K is a Poisson p.p. with intensity measurepK (x)�( dx). MoreoverNK = � K (Rd)
is a Poisson random variable with parameter

R
Rd pK (x) �( dx). By Fubini's theorem

Z

Rd

pK (x) �( dx) =
Z

Rd

Pf x 2 �� � K g�( dx) = E
� Z

Rd

1( x 2 �� � K ) �( dx)
�

= E[�( �� � K )] ;

which completes the proof.

We can now calculate the capacity functional of the BM.

Proposition 3.1.6. The capacity functional of the BM� BM with intensity of germs� and the generic grain
� is equal to

T� BM (K ) = 1 � e� E [�( �� � K )] :

Proof. Note thatT� (K ) = Pf NK 6= 0 g, whereNK = # f x i : (x i + � i ) \ K 6= ;g . The result follows
from Lemma 3.1.5.

3.1.2 Characteristics of the Homogeneous BM

De�nition 3.1.7. We say that the BM� BM is homogeneousif the underlying Poisson p.p.� is stationary.
The intensity of the latter,0 < � < 1 , is also called the intensity of the homogeneous BM.

Remark: Note that thedistribution of the homogeneous BM is invariant with respect to any translation in
Rd. Indeed, the homogeneity assumption implies that the capacity functional of� BM is translation invariant
i.e. T� BM (a + K ) = T� BM (K ) for any a 2 Rd. This follows from Proposition 3.1.6 and the simple
observation thatj �� � (a+ K )j = ja+ ( �� � K )j = j �� � K j, wherej � j denotes Lebesgue measure (volume)
in Rd. The fact that

T� BM (a + K ) = Pf � BM \ (a + K ) 6= ; g = Pf (� BM � a) \ K 6= ; g = T� BM � a(K )

and the remark after De�nition 3.1.4 imply that the same holds true for the distribution of� BM .
In the sequel we will de�ne some important characteristics of a RAC whose distribution is invariant with

respect to any translation inRd (for short, we will speak of a translation invariant RAC) and evaluate these
characteristics for the homogeneous BM.

De�nition 3.1.8 (Volume fraction). Thevolume fraction p of the translation invariant RAC� is de�ned
as themean fraction of the volume occupied by�

p =
E[ j� \ B j ]

jB j

for jB j > 0, which, by translation invariance of� , can be shown not to depend on the particular choice of
boundedB .
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Remark: Due to the translation invariance of the RAC, the volume fraction can also be expressed asthe
probability that a given point (say the origin) is covered by� . Indeed

p =
E[j� \ B j]

jB j
=

1
jB j

Z

B

E[1(x 2 �)] dx = Pf 0 2 � g = Pf � \ f 0g 6= ; g = T� (f 0g) ;

which is nothing but the capacity functional of� evaluated on a singleton.
By the above remark and Proposition 3.1.6, we immediately obtain that:

Corollary 3.1.9. The homogeneous BM with intensity� and generic grain� has the volume fraction

p = 1 � e� � E [ j� j ] :

De�nition 3.1.10 (Covariance function). Thecovariance functionC(x) of the translation invariant RAC
� BM is de�ned as the probability that two points separated by the vectorx 2 Rd belong to� BM ; i.e. by

C(x) = Pf 0 2 � BM ; x 2 � BM g:

This de�nition can be extended to any translation invariant RAC.

Note thatC(x) = E[1(0 2 �) 1(x 2 �)] , so it is a “non-centered” covariance of the random variables
1(0 2 �) and1(x 2 �) ; the “true” centered covariance is equal toC(x) � (P(0 2 �)) 2 = C(x) � p2.

If the distribution of the RAC� is invariant with respect to all translations and rotations inRd thenC(x)
depends only onjxj. In this case we will writeC(x) = C(jxj), with a slight abuse of notation.

Corollary 3.1.11. The covariance function of the homogeneous BM with intensity� and the generic grain
� is equal to

C(x) = 2 p � 1 + (1 � p)2e� E [ j� \ (� � x)j ] :

Proof. We write

C(x) = Pf 0 2 � \ (� � x) g

= Pf 0 2 � g + Pf x 2 � g � P f 0 2 � [ (� � x) g

= 2p � Pf 0 2 � [ (� � x) g

= 2p � Pf � \ f 0; xg 6= ; g

= 2p � T� (f 0; xg)

= 2p � 1 + e� � E [ j �� �f 0;xgj ]

= 2p � 1 + e� � E [ j� j+ j� � x j�j � \ (� � x)j ]

= 2p � 1 + (1 � p)2e� E [ j� \ (� � x)j ] ;

which completes the proof.
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0

Fig. 3.2 The radius of the smallest sphere centered at0 and intersecting the BM and the shortest segment joining0 with the BM in the direction
of (� 1; 0). The conditional distribution functions of the radius of the sphere and the length of the segment, given0 is not covered by the BM, are
called, respectively, the spherical and linear contact distribution functions.

De�nition 3.1.12 (Contact distribution function). Consider a translation invariant RAC� . Let B be a
given bounded convex set containing the origin i.e.,0 2 B . Thecontact distribution function(CDF) HB (r )
of � with respect to thetestsetB is de�ned as the conditional probability that the dilation of the setB by
the factorr is included in the complement� c = Rd n � of the RAC� given0 2 � c; i.e.,

HB (r ) = Pf rB � � c j 0 2 � c g =
Pf � \ rB = ;g

1 � p
; r � 0 ;

wherep is the volume fraction of� .

Different instances of contact distribution functions can be considered, depending on the choice of the test
setB . The most popular cases are as follows:

The spherical CDF. This is the case whenB = B0(1); in this case the CDFHB 0 (1) (r ) is theconditional
distribution function of the distance from0 to � given0 62� ; see Figure 3.2.

The linear CDF. This case arises whenB = [0 ; v], a segment from the origin with directionv 2 Rd,
jvj = 1 ; in this case the CDFH [0;v](r ) is theconditional distribution function of the distance from
0 to � in the direction of the vectorv, given0 62� . If � is invariant with respect to rotations,
then the linear CDF does not depend on the directionv andH [0;v](r ) = H (r ) can be seen as the
conditional distribution function of the distance from the origin to� in arandomly chosen direction;
see Figure 3.2.

Note that the CDF can be expressed in terms of the capacity functional. In particular, the CDF of the
homogeneous BM can be evaluated using Proposition 3.1.6.
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De�nition 3.1.13 (Coverage probability). The coverage probabilityof the compact setK by a RAC�
(not necessarily translation invariant) is de�ned as the probability thatK is included in� , i.e. asPf K �
� g.

The coverage probability is in general dif�cult to evaluate. Obviously

Pf K � � g � T� (K )

and equality holds for a singletonK = f xg.
More explicit results can be obtained for some hard-core germ–grain models, in which points (“germs”)

of some point process are centroids of some non-intersecting closed sets (“grains”); c.f. e.g. the Matérn
model in Example 2.1.3. For such models, for any connectedK , the eventf K � � g is equal to the event
thatK is entirely contained in one of the grains.

For the BM, the following easy result holds.

Proposition 3.1.14.Let � BM be the BM given by (3.3) driven by a stationary Poisson p.p. with intensity
0 < � < 1 and with typical grain� . The random set� BM covers any given subsetK � Rd of non-null
d-dimensional volumejK j > 0 with probability 1 iff E[ j� j ] = 1 .1

Proof. Assume that the BM coversK for all K with positive volume. Then, by De�nition 3.1.8, its volume
fraction isp = 1 . Using the explicit formula given in Corollary 3.1.9, one �nds that necessarilyE[ j� j ] = 1 .

Conversely, if the latter is true, we havep = 1 and consequently thed-dimensional volume of the
complement of the BM,Rdn� BM is almost surely null. In order to conclude that� BM covers allK as above,

we show that� BM = Rd. For this consider the following� -dilation � BM (� ) =
S

i

�
x i + (� i � B0(� ))

�
of

� BM , and note thatjRd n � BM j = 0 implies� BM (� ) = Rd for any� > 0. By monotone convergence

Pf � BM = Rd g = lim
� ! 0

Pf � BM (� ) = Rd g = 1 ;

which completes the proof.

More informative results for the coverage of the BM are known only in asymptotic form. In this regard,
consider the following parametric family of homogeneous BMs on the planeR2 with spherical grains with
random radiusR of �nite second moment (cf. Example 3.1.3).

� BM (r ) =
[

i

(x i + B0(rR i )) : (3.4)

Proposition 3.1.15.Let K be a compact set inR2 whose boundary@Khas zero 2-D Lebesgue measure,
i.e. j@Kj = 0 . Consider the family of BMs (3.4) with intensity of germs� and assume thatE[R2+ � ] < 1
for some� > 0. Denote

� (�; r ) = �r 2� E[R2] � log
jK j

�r 2E[R2]
� 2 log log

jK j
�r 2E[R2]

� log
E[R]2

E[R2]
:

1Strictly speaking, in this case, the set� BM is no longer a BM since the conditionE [j� j] < 1 is not satis�ed; cf. condition (3.2).
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Then

Pf K � � BM (r ) g = exp[ � e� � (�;r ) ] + o(1) as� ! 1 ; r ! 0 ; (3.5)

provided� (�; r ) tends to some limit (possibly�1 ).

The original proof of the above result (which is very technical and more general — dimensiond � 2, more
general grains, and multiple coverage — can be found in (Janson 1986, cf. Lemma 7.3).

Note that the above result gives approximations of the coverage probability for dense BMs with small
grains. The following two particular parameterizations are of interest if one wants to design a BM with
some given (approximate) probability of coverage of a given setK . The �rst one shows how many germs of
a given size are needed, while the second one indicates how large grains should be if the density of germs is
given.

Corollary 3.1.16. For a givenu (�1 < u < 1 ) take

� = � (r ) =
1

�r 2E[R2]

�
log

jK j
�r 2E[R2]

+ 2 log log
jK j

�r 2E[R2]
+ log

E[R]2

E[R2]
+ u

�
(3.6)

or

r = r (� ) =

s
log � + log log � + log

�
jK jE[R]2=E[R2]

�
+ u

�� E[R2]
: (3.7)

Then

Pf K � � g = exp[ � e� u ] + o(1)

asr ! 0 or � ! 1 , respectively.

Proof. Note that (3.6) is a solution of the equality� (�; r ) = u in � while (3.7) implies� (�; r (� )) ! u
when� ! 1 . The result follows from Proposition 3.1.15.

The following bounds have been shown in (Hall 1988, Theorem 3.11) in the case of the BM with grains of
�xed (deterministic) radius.

Proposition 3.1.17.Let � BM (r ) be the homogeneous BM given by (3.4) with constantRi � 1and intensity
of grains� . Let B = B0(1) denote the unit disc. Then

1 � minf 1; 3(1 + �r 2� 2)e� �r 2 � g < P
n

B �
[

i :x i 2 B

(x i + � i )
o

< 1 �
1
20

minf 1; (1 + �r 2� 2)e� �r 2 � g:

Note that the above result gives bounds for the probability that the unit disc is included in the union of grains
whose germs belong to this discand not to the whole union� BM .

The BM is often considered as a model for the total coverage obtained by a deployment of an irregular
radio network. One can think of an access network, or a sensor network. Points denote locations of access
points or sensors, whereas the grains model communication or sensing regions of the antennas. In this
context one can use level sets of the path-loss function (see Section 2.3.1) as these grains.
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3.2 Boolean Model as a Connectivity Model

One says that two nodesx i andx j of the BM at (3.3) areconnectedif (x i + � i ) \ (x j + � j ) 6= ; .
The random geometric graph is the graph associated by Boolean connectivity: its nodes are the points of

the point process and there is an edge between two nodes if they are connected.
Continuum percolation (also referred to as Boolean percolation) is about the existence of in�nite con-

nected components of the BM (or equivalently in�nite components in the random geometric graph).
In this section, we restrict our attention to a BM with spherical grains.

3.2.1 Connectivity in a Compact Set

De�nition 3.2.1 (Connectivity in a �nite window). Given a compact setK , we say that the BM� BM is
connected inK if the set

S
i :x i 2 K (x i + � i ) is connected.

Only an asymptotic result is known for the probability of the above event in the case of the BM with spherical
grains all of the sameconstantradius.

Proposition 3.2.2. Let K be a square inR2 and consider the parametric family of BMs� BM (r ) on R2

given by (3.4) with constantRi � 1 and intensity� . Let � (�; r ) = 4 �r 2�= jK j � log � . Then

Pf � BM (r ) is connected in the squareK g = exp[ � e� � (�;r ) ] + o(1) as� ! 1 ; r ! 0 ; (3.8)

provided� (�; r ) tends to some limit (possibly�1 ).

Proof. We use Proposition 13.1.4 concerning the Minimal Spanning Tree (MST) of the Poisson p.p. (see
Chapter 13) . The key observation is that� BM (r ) percolates in the squareK iff the longest edgeM K of the
minimal spanning tree of� \ K is not longer than2r , which is equivalent to

��M 2
K � log � � 4��r 2 � log � :

Scaling down the radius of the grains and the side of the squareK by the factor
p

jK j, we obtain

��M 2 � log � � 4��r 2=jK j � log � ;

whereM is the longest edge of the MST of� in the unit square. The result now follows from Proposi-
tion 13.1.4.

Corollary 3.2.3. For a givenu (�1 < u < 1 ) take

� = � (r ) =
jK j
4�r 2

�
log

jK j
4�r 2 + log log

jK j
4�r 2 + u

�
(3.9)

or

r = r (� ) =

r
jK j(log � + u)

4��
: (3.10)

Then
Pf � BM (r ) is connected in the squareK g = exp[ � e� u ] + o(1)

asr ! 0 or � ! 1 , respectively.
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Proof. Note that (3.10) is a solution of the equation� (�; r ) = u with unknown� , while (3.9) implies
� (� (r ); r ) ! u whenr ! 0. The result follows from Proposition 3.1.15.

3.2.2 Percolation inRd

In this section we restrict our attention to homogeneous BMs with spherical grains of random radiusR (cf.
Example 3.1.3). Assume thatE[Rd] < 1 . With probability 1 the BM with spherical grains (3.4) is not
connected inRd. In fact, one can prove the following stronger fact. Denote by� d the volume of a unit-radius
ball in Rd. Denote byB0(R0) the grain (ball) centered at 0 under the Palm probabilityP0 (call it a “typical
grain”; cf. Section 2.1.2).

Proposition 3.2.4. Consider the homogeneous BM� BM in Rd given by (3.4), withr = 1 and intensity� .
Assume thatE[Rd] < 1 . Then

� the probability that a typical grain is isolated is equal to

P0
�

B0(R0) \
[

x i 6=0

�
x i + B0(Ri )

�
= ;

�
= E

�
e� �� d

P d
k =0 (d

k)Rd� k
0 E[Rk ]

�
; (3.11)

and
� the number of isolated grains of� BM is in�nite with probability 1.

Proof. Conditioning on the radiusR0 = r of the typical grainB0(R0) located at the origin underP0,
all other points whose grainsare not disjointfrom B0(r ) form an independent thinning (cf. Section 1.3.2)
of the marked p.p.~� 0 =

P
i :jx i j6=0 " (x i ;B 0 (R i )) . The retention probability for positionx i and radiusRi is

pr (x i ; Ri ) = Pf r + Ri � j x i j g. By Slivnyak's theorem (see Proposition 1.4.5), underP0, ~� 0 is homoge-
neous Poisson with intensity� and by Proposition 1.3.5, the thinning is a non-homogeneous Poisson p.p.
with intensity measure� such that

�( Rd) = �
Z

Rd

Z

R+

pr (x; s) dx F (ds) = �� d

dX

k=0

�
d
k

�
r d� kE[Rk ] := 
 (r );

whereF is the distribution ofR. Consequently, the probability thatB0(r ) is isolated is equal toe� 
 (r ) and
(3.11) follows when de-conditioning with respect to the radiusR0 = r .

In order to prove the second statement, denote byN = N ( ~�) the number of isolated grains of the
BM � BM , where ~� is a Poisson p.p. that generates� BM (cf. De�nition 3.1.2). By the ergodicity of the
homogeneous Poisson p.p. (this is easily extended to i.m. Poisson p.p.s; cf. proof of Proposition 1.6.9), it
follows from Proposition 1.6.10 (4) thatN is almost surely constant. In what follows, we show thatN is not
bounded, implyingN = 1 almost surely. Indeed, by Campbell's formula (1.19) and (3.11) we have

E[N (�)] = �
Z

Rd

P0f B0(R0) is isolated setgdx = 1 ;

which implies thatN cannot be bounded.
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Remark: From the above considerations it should be clear that even very “strange” but possible (i.e. of
positive probability) local con�gurations of points of the Poisson p.p. can be observed in�nitely many times
in the whole pattern.

We now continue on percolation, which, in view of what was said, cannot be reasonably de�ned as a
total connectivity of� BM .

De�nition 3.2.5. The BMpercolatesonRd if there exists an in�nite connected component of� BM .

Just as with isolated grains, one is also interested in the event that, under the Palm distribution,the typical
grain B0(R0) belongs to an in�nite component.

Remark: By “in�nite component” we understand a component which consists of an in�nite number (# )
of grains. Note that such an in�nite component is almost surely an unbounded set in the sense that it is not
contained in any bounded window, because the number of grains visible in a compact window is a.s. �nite
(as a consequence ofE[Rd] < 1 , cf. Lemma 3.1.5). Denote byC the maximal (in the sense of inclusion)
connected subset of� BM which includesB0(R0). We callC the clump.

Let our homogeneous BM with spherical grains (see Example 3.1.3) be parameterized by the intensity�
of the stationary Poisson p.p. Denote by� c the following “critical” intensity

� c = inf
n

� � 0 : P0
� f # C = 1 g > 0

o
; (3.12)

where# C denotes the number of grains in the clumpC and the notationP0
� makes explicit the dependence

of the model on the intensity of grains� .

Remark: Note that the probabilityP0
� f # C = 1 g is increasing in� . This can be easily seen using the

results on thinning and superposition of Poisson p.p.s (see Section 1.3). Consequently,P0
� f # C = 1 g = 0

for all 0 � � < � c (which might be the empty set if� c = 0 ).
One of the central questions of percolation theory for BMs concerns the non-degeneracy of� c (which

here means0 < � c < 1 ). The following “phase transition” type results are known on the matter.

Proposition 3.2.6. Let � c be the critical intensity (3.12) of the family of BMs with spherical grains of
random radiusR.

� If d � 2 andPf R0 = 0 g < 1 (i.e. if R is not almost surely equal to 0), then� c < 1 .
� If E[R2d� 1] < 1 , then� c > 0.

Remark: For a one-dimensional BM withE[R] < 1 , we have� c = 1 (i.e, # C is almost surely �nite for
all � ), while if E[R] = 1 we have� c = 0 : the BM covers the whole line for any� > 0.2

Proof. The proof of the �niteness of the critical intensity exploits some discretization and known results for
discrete site percolation (cf. Section 14.2). Namely, consider some constants� > 0 andp0 > 0, such that
Pf R � � g = p0 > 0; such positive constants exist under the assumptionPf R0 = 0 g < 1. Consider a
square lattice (inRd) with side of length�= (2d

p
d). Note that this value is chosen so that any two balls of

2Strictly speaking in this case it is no longer a BM, for whichE [R] < 1 is required; cf. Example 3.1.3.
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radius not less than� , centered at some points of any two adjacent sites of the lattice, are not disjoint. We
declare a site of the lattice open if there is a point ofe� in it marked with a ball of radiusR � � . Otherwise,
we declare the site closed. Note that the probabilityp = p(� ) for a given site to be open is positive and tends
to 1 when� ! 1 . Moreover, the sites are declared open independently. It is known that in this discrete
model withp large enough, but stillp < 1, the origin belongs to an in�nite connected set of opened sites with
a positive probability; see Proposition 14.2.2. By the construction of our discrete model, this implies that
B0(R0) belongs to an in�nite connected component with non-null probability for� large enough, thereby
ensuring that� c < 1 .

In order to prove that� c > 0, consider the followinggenerationsof grains connected toB0(R0). The
�rst generation consists of all the grains directly connected to it. Givenn � 1 generations, the(n + 1) -st
generation consists of all grains directly connected to some grain of then -th generation and which do not
intersect any grain of generation1; : : : ; n� 1. We say that any grainx i + B (Ri ) is of typek if k� 1 � Ri < k
(k = 1 ; 2: : :). Note that the number of grains of typek of the(n + 1) th generation, directly connected to
a given grain of typei of then th generation, but not totally contained in it, is not larger than the number of
all grains of radiusR, k � R < k + 1 intersecting this given grain and not totally contained in it, which is
in turn dominated by a Poisson random variable of parameter

� (i; k ) = E[# f points of Poisson p.p. inB0(i + k) n B0(( i � k)+ ) marked by R:k � R < k + 1g]

= �� d

�
(i + k)d � (i � k)d

+

�
P f k � R < k + 1 g:

The process of generations of grains connected toB0(R0) is not a branching process due to the dependence
between generations; however it can be stochastically bounded by a multi-type branching (Galton-Watson)
process with a Poisson number of children of typek born to a parent of typei ; this Poisson number has
mean� (i; k ). It is not dif�cult to see that theexpected number of all individuals in all generationsof this
branching process, given the root is of typei , is equal to1 +

P 1
n=1

P 1
k=1 mn

ik , wheremn
jk is the jk th

entry of then th power of the matrixf mik = � (i; k )g. It is a matter of a direct calculation (see the details
in (Meester and Roy 1996, proof of Theorem 3.3)) that the (unconditional) expectation of the total number
of individuals is �nite for suf�ciently small� > 0 providedE[R2d� 1] < 1 .

The critical intensity� c is related to the size of a clump generated by a typical grain underP0. The
following result says that it is also critical for percolation as de�ned in De�nition 3.2.5.

Proposition 3.2.7. Let � c be the critical intensity (3.12) of the family of BMs with spherical grains of
random radiusR.

� Assume� c > 0. If 0 < � < � c thenP � f BM percolatesg = 0 .
� Assume� c < 1 . If � c < � thenP � f BM percolatesg = 1 .
� The number of in�nite connected components isP � -almost surely constant and equal to 0 or 1.

Proof. Assume0 < � < � c. We have by the Campbell formula

P � f BM percolatesg � E �

� X

i

1
�

x i � B0(Ri ) belongs to an in�nite component
� �

= �
Z

Rd

P0
� f # C = 1 g dx = 0 :
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By the ergodicity of the homogeneous Poisson p.p. (that can be easily extended to independently marked
Poisson p.p.; cf. proof of Proposition 1.6.9), it follows from Proposition 1.6.10 (4) that the number of in�nite
connected components is almost surely constant.

Assume now that� c < � < 1 . Note that the BM percolates iff the numberN of grains which be-
long to an in�nite component is not less than 1. As before, it can be shown by the Campbell formula
that E � [N ] = 1 . Consequently,P � f N � 1g > 0, which implies by ergodicity thatP � f N � 1g =
P � f BM percolatesg = 1 .

Proving that the number of in�nite connected components is at most 1 is trickier. The arguments are
based on the ergodicity of the BM (see (Meester and Roy 1996, Section 3.6)).

Example 3.2.8 (Connectivity in ad hoc networks).Consider an ad hoc network. Following Example 1.1.2
we assume that the locations of the mobile nodes are modeled by some homogeneous Poisson p.p.� .
Assume that two nodesx i ; x j 2 � can communicate directly with each other ifjx i � x j j � � , where
� is some constant communication range. This is equivalent to saying that these nodes are connected in
the BM based on� and with spherical grains of radiusr = � =2 (cf. the de�nition of connectivity at the
beginning of Section 3.2). Assume that the nodes of this network can relay packets and that multihop routing
is used. Then, nodes can communicate through some multihop route if and only if they belong to the same
connected component of this BM.

A �rst question concerning the performance of this network concerns its connectivity. One can distin-
guish two scenarios:

� Limited network case.If we assume a bounded windowK then, it makes sense to ask for the
probability of full connectivity, i.e. the probability that any two nodes in the network can com-
municate with each other (through a multihop route). The results of Proposition 3.2.2 and its
corollary can be used to approximate this probability if the node density� is large (i.e. if there
are very many nodes inK ) and the communication range� is small compared to (the side of the
square)K .

� Large network case.For networks in a large domain, it is more appropriate to adopt a model based
on the BM on the whole plane (or space). Then, in view of the negative result of Proposition 3.2.4,
full connectivity cannot hold and the best one can hope for is that a node can communicate with
an in�nite number of nodes. In other words, the in�nite ad hoc network is said to be “connected”
if the corresponding BM percolates. Note that in this case, the BM has a unique in�nite connected
component (Proposition 3.2.7). The latter can be interpreted as the “main part” of the network.

We conclude from the above models that one can bring a disconnected (non-percolating) network to the
percolation regime by increasing the density of nodes or by enlarging the communication range. We shall
return to this problem in Chapter 8 where we show that this method for connecting a network does not
always work when interference is taken into account.
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4
Voronoi Tessellation

4.1 Introduction

In this chapter, we introduce an important random tessellation of the Euclidean spaceRd. By de�nition, a
tessellation is a collection of open, pairwise disjoint polyhedra (polygons in the case ofR2), the union of
whose closures cover the space, and which is locally �nite (i.e., the number of polyhedra intersecting any
given compact set is �nite).

De�nition 4.1.1. Given a simple point measure� on Rd and a pointx 2 Rd, theVoronoi cellCx (� ) = Cx

of the pointx 2 Rd w.r.t. � is de�ned to be the set

Cx (� ) = f y 2 Rd : jy � xj < inf
x i 2 �;x i 6= x

jy � x i jg :

The Voronoi cell is often de�ned as the closure of the last set. Given a simple point process� =
P

i " x i on
Rd, theVoronoi Tessellation (VT)or mosaicgenerated by� is de�ned to be the marked point process

V =
X

i

" (x i ;Cx i (�) � x i ) :

The Voronoi cellCx (� ) as de�ned above is an open set; it is often de�ned instead as the closure of this set.
Observe that, with our de�nition, not every point inRd is covered by some Voronoi cell: given two pointsx i

andx j say of� that have Voronoi cells that abut each other, there are some pointsy that are common to the
boundaries of both cells but are not in either (cf. Figure 4.1 which shows the Voronoi tessellation generated
by some realization of a point process).

Note that the cellCx i (�) of the atomx i is the set of all those points ofRd that are closer to this atom
x i than to any other atom of� . Note also that we consider these cellsfCx i � x i g shifted to the origin as
marks of the pointsf x i g of � . This extends slightly the concept of marked point processes considered in
Chapter 2.
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Fig. 4.1 Voronoi tessellation generated by a random sample of points.

One can easily see that each Voronoi cell is a convex polyhedron, but it may be unbounded. It is not
dif�cult to prove, by considering the typical cellC0(� ) under the Palm distribution, that in the case of a
Voronoi tessellation generated by a homogeneous Poisson p.p., all cells are bounded with probability 1.

The Voronoi tessellation is an important model for the theory of point processes as well as for applica-
tions. In the remaining part of this chapter we will show it “in action” in a few theoretical and more practical
contexts.

4.2 The Inverse Formula of Palm Calculus

In Section 1.6 (and in more detail in Chapter 10) we de�ned the Palm–Matthes distributionP0 of a stationary
point process� ; it can be interpreted as the conditional distribution of� given �( f 0g) � 1. We will now
show how the stationary distributionP of � can be retrieved fromP0 using Voronoi cells.

Theorem 4.2.1.Let � be a simple stationary point process with intensity0 < � < 1 . For all non-negative
functionsf : M ! R+ ,

E[f (�)] = � E0
� Z

Rd

f (� � x)1(x 2 C0(�)) dx
�

:

Proof. Let us take

h(x; �) = 1
�

�
�
B �

0(jxj)
�

= 0
�

;

whereB �
x (r ) = f y : jy � xj < r g is the open ball of radiusr centered atx. Let us take for granted the

property (proved below in Lemma 4.2.2) that among the points of� , with probability 1 w.r.t.P , there is a
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unique point which is closest to the origin. Using this property, we can state that with probability 1,
Z

Rd

h(x; �) �( dx) = 1 ;

and consequently by the Campbell–Matthes formula (1.19) (see also Section 10.2.2),

E[f (�)] = E
� Z

Rd

f (� + x � x)h(x; � + x � x) �( dx)
�

= �
Z

Rd

E0[f (� + x)h(x; � + x)] dx

= �
Z

Rd

E0[f (� � x)h(� x; � + x)] dx

= � E0
� Z

Rd

f (� � x)1(x 2 C0(�)) dx
�

:

It remains to prove:

Lemma 4.2.2. For a simple stationary non-null point process�

Pf there exist two or more distinct points equidistant to the origin 0g = 0 :

Proof.

P f there exist two or more distinct points equidistant to the origing

� E
� Z

Rd

1
�

�( f y 6= x : jyj = jxj g) � 1
�

�( dx)
�

� E
� Z

Rd

1
�

(� � x)( f y0 6= 0 : jy0+ xj = jxj g) � 1
�

�( dx)
�

= � E0
� Z

Rd

1
�

�( f y0 6= 0 : jy0+ xj = jxj g) � 1
�

dx
�

� � E0
� Z

Rd

Z

Rd nf 0g

1(jy0+ xj = jxj) �( dy0) dx
�

= � E0
� Z

Rd nf 0g

kf x : jy0+ xj = jxj gk �( dy0)
�

= 0 ;

wherek � k denotes thed-dimensional volume.

Let us now takef � 1; this yields the following formula, which determines the mean value of the volume
of the typical cell:
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Corollary 4.2.3.
1 = � E0[jC0(�) j] :

There are no closed form expressions for the distribution of the volume of the typical cell except for dimen-
sion 1.

Let us call nowC(0; �) the cell of the stationary tessellationV that covers the origin (i.e.0 2 C(0; �) ).
In view of Lemma 4.2.2,C(0; �) is uniquely de�ned for almost all realizations of� w.r.t. P . Let us take
f = g(C(0; �)) if C(0; �) is unique and 0 if not, whereg is some non-negative function ofC(0; �) (e.g.
its volume, perimeter, number of sides, etc.). We obtain the following corollary.

Corollary 4.2.4.
E[g(C(0; �))] = � E0[g(C0(�)) jC0(�) j] :

In particular,

E
�

1
jC(0; �) j

�
=

1
E0[jC0(�) j]

:

By Jensen's inequality, one obtains the following result that can be seen as yet another incarnation of the
waiting time paradox (see (Feller 1971), Vol. 2)

E[jC(0; �) j] � E0[j(C0(�) j] :

This paradox is explained by the fact that the cell which covers the origin is sampled with some bias with
respect to the distribution of the typical cellC0(�) underP0, namely, this sampling favors large cells (as
having more chance to cover a given �xed point). For more on this bias, see e.g. (Møller 1994).

The next example shows how Theorem 4.2.1 can be used to construct a stationary periodic point process.

Example 4.2.5 (Stationarization of the honeycomb).Consider a regular hexagonal grid onR2 with the
distance� between two adjacent vertexes of this grid. (The set of vertexes of this grid can be described on
the complex plane byHex= f �( u1 + u2ei�= 3); u = ( u1; u2) 2 f 0; � 1; : : :g2g). Consider a (deterministic)
point process� Hex whose points are located on this grid. Consider this deterministic scenario as the Palm
distributionP0 of some stationary point process. Note that the surface area of the typical cell (hexagon)
of this process is equal to� 2=(2�

p
3). Thus its intensity is� Hex = 2 �

p
3=� 2. By Theorem 4.2.1, the

stationary version of this periodic p.p. can be constructed by randomly shifting the deterministic patternHex
through a vector uniformly distributed in the Voronoi cell (hexagon) of the origin. The Voronoi tessellation
generated by this (Palm or stationary) p.p. is sometimes called the honeycomb model.

4.3 The Neveu Exchange Formula

In this section we will prove another useful formula of the Palm calculus connecting the Palm distributions
of two stationary point processes. Again, the Voronoi tessellation will be used as a tool. The formalism for
Palm probabilities is that de�ned in Remark 10.2.3 which allows one to de�ne several Palm probabilities on
a common probability space that carries several point processes. The key tool is again the Campbell-Matthes
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formula that in the case of two stationary (not necessarily independent!) point processes has the following
incarnation

E
� Z

Rd

g(x; � � x; � 0� x) �( dx)
�

= �
Z

Rd

E0[g(x; � ; � 0)] dx ; (4.1)

where� < 1 is the intensity of� andE0 is the expectation with respect to its Palm probabilityP0; i.e., in
particular,P0f �( f 0g) � 1g = 1 .

Theorem 4.3.1 (Exchange formula).Let � and� 0 be two simple stationary point processes (de�ned on
the same probability space) with intensity, respectively,0 < � < 1 and0 < � 0 < 1 . Let E0

� andE0
� 0

denote the Palm-Matthes probabilities of� and� 0 respectively. If

E0
� 0

�
�( @C0(� 0))

�
= 0 ; (4.2)

where@denotes the boundary, then for any non-negative functionf (�; � 0) of the point measures(�; � 0) we
have

� E0
�

h
f (� ; � 0)

i
= � 0E0

� 0

� Z

Rd

f (� � x; � 0� x)1
�

x 2 C0(� 0)
�

�( dx)
�

:

Proof. It suf�ces to prove the formula for a bounded function, so in what follows we assume thatsupf � 1.
For anyx 2 Rd let Fx = Fx (� ; � 0) = f (� � x; � 0 � x). By the Campbell formula (4.1) (see also
Section 10.2.2) and due to (4.2)

� E0
� [f (� ; � 0)] = E

� Z

[0;1]d

Fx �( dx)
�

= E
� Z

[0;1]d

� 0(dy)
Z

Rd

Fx1(x 2 Cy(� 0)) �( dx)
�

+ A � B ;

where

A = E
� Z

Rd n[0;1]d

� 0(dy)
Z

[0;1]d

Fx1(x 2 Cy(� 0)) �( dx)
�

;

B = E
� Z

[0;1]d

� 0(dy)
Z

Rd n[0;1]d

Fx1(x 2 Cy(� 0)) �( dx)
�

:
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Note �rst that

E
� Z

[0;1]d

� 0(dy)
Z

Rd

Fx1(x 2 Cy(� 0)) �( dx)
�

= E
� Z

[0;1]d

� 0(dy)
Z

Rd

Fx1(x � y 2 Cy� y(� 0� y)) �( dx)
�

= E
� Z

[0;1]d

� 0(dy)
Z

Rd

Fx+ y1(x 2 C0(� 0� y)) (� � y)(dx)
�

= � 0E0
� 0

Z

Rd

Fx1
�

x 2 C0(� 0)
�

�( dx)
�

:

In order to show thatA � B = 0 , knowing thatA � E[�([0 ; 1]d)] = � < 1 , it suf�ces to prove that
A = B . For this, we consider a partition ofRd by hypercubesRd =

S
v(� + v), where� = [0 ; 1]d andv

runs over all vectorsv =
P d

i =1 � i ei , where� i 2 Z, andei are the unit vectors of the Euclidean base. We
have

A =
X

v6=0

E
� Z

�+ v

� 0(dy)
Z

�

Fx1(x 2 Cy(� 0)) �( dx)
�

;

B =
X

v6=0

E
� Z

�

� 0(dy)
Z

�+ v

Fx1(x 2 Cy(� 0)) �( dx)
�

;

and for eachv 6= 0 ,

E
� Z

�+ v

� 0(dy)
Z

�

Fx1(x 2 Cy(� 0)) �( dx)
�

= E
� Z

�

(� 0� v)(dy)
Z

�

Fx1(x 2 Cy+ v(� 0)) �( dx)
�

= E
� Z

�

(� 0� v)(dy)
Z

�

F � x1(x 2 Cy(� 0� v) + v) �( dx)
�

= E
� Z

�

(� 0� v)(dy)
Z

�

Fx1(x � v 2 Cy(� 0� v)) �( dx)
�

= E
� Z

�

(� 0� v)(dy)
Z

� � v

Fx+ v1(x 2 Cy(� 0� v)) (� � v)(dx)
�

= E
� Z

�

� 0(dy)
Z

� � v

Fx1(x 2 Cy(� 0)) �( dx)
�

;

where the last equality is due to the stationary of both point processes. ThusA = B , which concludes the
proof.
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4.4 Neighbors in the Voronoi Tessellation, Delaunay Triangulation

Let Cx (� ) be the Voronoi cell ofx 2 Rd generated by the point pattern� that is always assumed in this
section to be simple (� (f zg) = 0 or 1). We will call any pointy 2 � such thaty 6= x andja � xj = ja � yj
for somea 2 Cx (� ), whereCx (� ) denotes the closure ofCx (� ), aVoronoi neighborof x.

De�nition 4.4.1. TheDelaunay triangulationgenerated by a simple point measure� is a graph with the set
of vertices� and edges connecting eachy 2 � to any of its Voronoi neighbors.

Example 4.4.2 (Neighborhood in ad hoc networks).In a periodic (say hexagonal or square) grid, it is ob-
vious to de�ne the neighbors of a given vertex. However, for irregular patterns of points like a realization of
a Poisson p.p., which we use below to model the set of nodes of ad hoc networks (cf. Example 1.1.2), this
notion is less evident. The Delaunay triangulation offers some purely geometric de�nition of 'neighborhood'
in such patterns.

De�ne, for x 2 Rd,

Nx (� ) =
n

y 2 � : �
�

B (x; y; z)
�

= 0 for somez = f z1; : : : ; zd� 1g 2 �; x; y; f zi g; distinct
o

;

whereB (x; y; z) is the open ball circumscribed on the pointsx; y; f zi g. The following geometric result
allows us to identify the Voronoi neighbors ofx in � or equivalently the edges fromx in the Delaunay
triangulation:

Lemma 4.4.3. Assume thatCx (� ) is bounded. Then, forx in � , Nx (� ) coincides with the set of Voronoi
neighbors ofx.

Proof. De�ne a vertex of the cellCx (� ) to be any location inz 2 Rd equidistant tox and (at least)d � 1
other pointsy1; : : : ; yd� 1 2 � . We use below the fact that ifz is such a vertex, then each of the points
y1; : : : ; yd� 1 is a Voronoi neighbor ofx.

If y 2 � belongs toNx (� ), then by de�nition, there exists an empty open ball withx; y; z1; : : : ; zd� 1 on
its boundary, wherez1; : : : ; zd� 1 2 � . So, the center of this ball is a vertex of the cellCx (� ) and therefore,
y is a Voronoi neighbor ofx.

Conversely, ify is a Voronoi neighbor ofx, since the cellCx (� ) is �nite, its boundary contains a �nite
domainDd1 included in the hyperplane of dimensiond� 1 equidistant tox andy; the boundaries ofDd1 are
�nite domains contained in hyperplanes of dimensiond� 2. LetDd� 2 be one of the latter. There exists a triple
of points(x; y; z1) which are equidistant to any element of theDd� 2. More generally, for all2 � k � d � 1,
there exists a �nite domainDd� k included in some hyperplane of dimensiond � k and such that all the
elements ofDd� k are equidistant to(x; y; z1; : : : ; zk� 1) for somez1; : : : ; zk� 1 2 � . In particular, there
exists a locationz of the boundary ofCx (� ) and pointsz1; : : : ; zd� 1 2 � such thatz is equidistant tox, y
andz1; : : : ; zd� 1. That isy 2 N x (� ).

The open ball centered at a vertex ofCx (� ) and havingx on its boundary is empty of points of� . The
union of these balls over all vertexes of the cell is called thefundamental region(or theVoronoi �ower) of
the cellCx (� ). It is easy to see that the Voronoi �ower contains the Voronoi cell.
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Proposition 4.4.4. Assume thatCx (� ) is bounded. Then the Voronoi �ower ofCx (� ) is a random stopping
set.

Proof. For a given compact setK , consider balls centered at the vertexes ofCx (� ) with radii growing until
they hitx or any of them hits the complementK c of K . Use a similar argument as in Example 1.5.2.

4.5 The Voronoi Tessellation Model for Cellular Access Networks

We give an example of VT based model of cellular access networks (see Section 25.3.2 in Volume II) which
will be used later.

Example 4.5.1 (Cellular Access Network).The model components are as below:

� UsersandAccess Pointslocated on the planeR2 are represented by two independent stationary
point processes, denoted respectively by� u and� a.

� Each access pointx i 2 � a serves users in a geographical zone which is modeled by its Voronoi
cell Cx i (� a). Note that this assumption is equivalent to the hypothesis that each user is served by
the nearest access point.

� The model parameters are the intensities� u ; � a of the p.p.s� u ; � a, respectively. Typically� u >
� a, but this assumption is not essential for our analysis.

Consider now the following mean additive characteristic associated with the typical cell of the access net-
work model:

�I = E0
� a

� Z

R2

1(x 2 C0(� a))g(x; � a) � u(dx)
�

;

whereE0
� a

is the expectation w.r.t the Palm distribution of� a andg is a non-negative function of the location
x 2 R2 and the pattern� a of access points. Taking different functionsg, one gets the following examples
of such additive characteristics:

� if g(x; � ) � 1, then �I = �M represents the mean number of users in the typical cell;
� if g(x; � ) = jxj, then �I = �L is the mean total length of connections in this cell (which is more

pertinent in a wired access network);
� if g(x; � ) = 1 =l(jxj), wherel(r ) is some omni-directional path-loss function as considered in

Example 23.1.3 in Volume II, then�I = �P represents the mean total power received by the access
point from all the users attached to it (assuming all users transmit with a constant power 1);

� if g(x; � ) = l(jxj) with l(�) as above, then�I = (PL) represents the mean total path-loss “re-
ceived” at the access point from all the users it serves;

� if g(x; � ) = l(jxj)
P

yi 2 � 1=l(jx � yi j) with l(�) as above, then�I = (RPL) represents the mean
total relative path-loss ratio “received” at the access point from all its users.

Let h(x; �) be de�ned as in the proof of Theorem 4.2.1 and take

f (� u ; � a) = f (� a) =
Z

R2

g(� y; � a � y)h(y; � a) � a(dy) :
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Recall from the de�nition ofh that f (� a) = g(� Y � ; � a � Y � ) whereY � = arg minfj yi j : y 2 � ag is
the access point nearest to the origin (a.s. uniquely de�ned due to stationarity and the fact that the p.p. is
simple). Moreover, on the setf � a(f 0g) � 1g for x 2 C0(� a) we havef (� a � x) = g(x; � a). Thus, by
Neveu's exchange formula (Theorem 4.3.1) we obtain that

�I =
� u

� a
E0

� u

h
g(� Y � ; � a � Y � )

i
: (4.3)

We see that the Neveu exchange formula allows us to transform the “access-point centric” scenario into
a dual “user-centric” scenario. This transformation shows that the mean number of users per access point
(caseg(x) � 1) is equal to

�M =
� u

� a
:

When � a is a Poisson p.p. one can explicitly evaluate (4.3) for various types of additive characteristics.
Under Poisson assumptions (for� a only) one knows the distribution function ofY � , namelyP0

� a
f j Y � j >

r g = P0
� a

f � a(B0(r )) = 0 g = exp[ � � a�r 2], and it is not dif�cult to see that the argument\ (Y � ) is
uniformly distributed on[0; 2� ). Moreover, givenjY � j = r , all points of� a which are farther away from 0
thanr form a non-homogeneous Poisson p.p. with intensity measure� a1(jyj > r ) dy (see Section 1.5). We
denote this Poisson process by� aj>r . Consequently

�I =
� u

� a

1
2�

2�Z

0

1Z

0

r E
h
g
�

(r cos�; r sin � ); � aj>r

�i
e� � a �r 2

dr d� : (4.4)

For g(x; � ) = jxj, we obtain

�L =
� a

2� 3=2
c

:

The mean received power�P with l(r ) given by OPL 1 or OPL 2 in Example 23.1.3 in Volume II can be
given in terms of some special functions (note that for OPL 3,�I = 1 due to the pole at the origin). The
mean path-loss expression is explicit and, for OPL 3, it takes the form

(PL) =
� u

� a

A � �(1 + �= 2)
(� a� ) �= 2

:

Under the same assumption, the mean relative path-loss is equal to

(RPL) =
� u

� a

2
� � 2

:
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Bibliographical Notes on Part I

Chapters 1 and 2 cover classical topics in point process theory. A classical reference on the matter is (Daley
and Vere-Jones 1988). Most results are well known. The approach ofx 1.5 is borrowed from (Zuyev 2006).
For more on hard-sphere packing problems mentioned in Example 2.1.3 see e.g. (Conway and Sloane 1998).
We did not �nd references for the discussion of Example 1.3.10 but it is likely that these simple observations
were already made.

Shot noise processes and Boolean models as considered in Chapters 2 and 3 respectively are core topics
in stochastic geometry. For a comprehensive treatise on the matter, see (Stoyan, Kendall, and Mecke 1995).
For an analysis of the tail behavior of Shot Noise �elds, the reader might consult (Ganti and Haenggi 2008b).
For a history on the use of Shot Noise �elds to represent interference, see the introductory paper of (Haenggi,
Andrews, Baccelli, Dousse, and Franceschetti 2009). We did not �nd earlier papers on the joint distribution
of the time-space SN proposed inx 2.3.4.

For the class of random tessellations discussed in Chapter 4, the reader could consult (Møller 1994). For
a general book on tessellations, see (Okabe, Boots, Sugihara, and Chiu 2000). The models ofx 4.5 come
from (Baccelli, Klein, Lebourges, and Zuyev 1997) and (Baccelli, B�aszczyszyn, and Tournois 2003). For a
recent survey on the matter, see (Zuyev 2009).

Point processes and stochastic geometry models are widely used inspatial statistics; see e.g. (Illian,
Penttinen, Stoyan, and Stoyan 2008) for a recent book on this subject.
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Part II

Signal-to-Interference Ratio Stochastic
Geometry
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This part bears on stochastic geometry models de�ned by SINR. More precisely, we de�ne and analyze
a random coverage process of thed-dimensional Euclidean space which stems from the wireless communi-
cation setting described in Part VI in Volume II. As for the Boolean model, the minimal stochastic setting
consists of a point process on this Euclidean space and a sequence of real-valued random variables consid-
ered as marks of this point process. In this coverage process, the cell attached to a point is de�ned as the
region of the space where the effect/response of the mark of this point exceeds an af�ne function of the
shot-noise process associated with the other points of the marked point process.

Chapter 5 describes the typical cell: its volume, its shape etc. Chapter 6 is focused on the interaction
between cells within this setting. Chapter 7 studies the coverage process created by the collection of SINR
cells. Finally, Chapter 8 studies the connectivity of this coverage process and in particular the conditions
under which it percolates.
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5
Signal-to-Interference Ratio Cells

5.1 Introduction

Let e� =
P

i " (x i ;m i ) be a marked point process, with pointsf x i g in Rd and marksf mi g in R` . Consider

a scalar shot-noise �eldI e� (y) de�ned on the same space ase� (i.e. onRd), and generated bye� and by the
response functionL : Rd � Rd � R` 7! R+ (cf. Section 2.2). Letw(y) � 0 be some external or thermal
noise �eld.

De�nition 5.1.1. We de�ne theSignal to Interference and Noise Ratio (SINR) cellof point (X; M ) for
thresholdt � 0 as

C(X;M ) = C(X;M ) ( e� ; w; t) =
n

y 2 Rd : L (y; X; M ) � t
�
I e� (y) + w(y)

� o
: (5.1)

For more on the physical meaning of SINR, see Section 24.3.4 in Volume II.

Example 5.1.2 (Bit-rate level sets in interference and noise �eld).The simplest scenario is that where
the mark of pointX is the powerP 2 R+ emitted by the antenna located atX 2 R2 and where
L(y; x; P ) = P=l(jx � yj), with l the mean omni-directional path-loss function (see Section 23.1.2 in
Volume II). More general scenarios can be described with richer marks (such as antenna azimuth, fading
etc.). Other cases of interest are those where some interference and/or noise cancellation techniques are
used. This results in models where the cell is de�ned with a more general af�ne function:

C(X;M ) = C(X;M ) ( e� ; w; t) =
n

y 2 Rd : L (y; X; M ) � t
�
�I e� (y) + 
w (y)

� o
(5.2)

where� and
 are factors smaller than one (cf. Section 24.3.4 in Volume II where we discuss the case
 = 1
and� small in Equation (24.20 in Volume II).

ThenC(X;P ) represents the set of locationsy where the SINR of the channel fromX to y is larger than
the thresholdt as illustrated by Figure 5.1.
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Fig. 5.1 Locationy belongs to the cellC of pointx because the SINR fromx exceedst aty. The cellC is the set of locations of the plane where a
minimum bit rate can be guaranteed from transmitterx.

Within the setting of Section 24.3.4 in Volume II, this translates into some bit-error probability, and
consequently into some channel goodput. The exact relation betweent and the bit-rate depends on particular
modulation and coding used.

Some instances of SINR cells are given in Figures 5.2, 5.3, 5.4, 7.1. Notice that the SINR cellC(X;P ) is
not always a convex set. In some cases it can even be not connected.

5.2 The Signal-to-Interference Ratio Cell is Well-De�ned

There are two levels at which the de�nition of the SINR cell can be treated.
Firstly, recall from Section 2.2 that the shot-noise �eld with non-negative response function is always

well de�ned but may be in�nite. At a second, more theoretical level, one may ask whether the SINR cell,
which is a random set, is almost surely aclosed set. This is a natural question in stochastic geometry, where
the space of closed sets is a standard observation space for random objects. The following result, which
immediately follows from Proposition 2.2.3 gives some suf�cient conditions for this to hold.

Corollary 5.2.1. Let e� be an i.m.p.p. Assume that the thermal noisew(y) has almost surely continuous
trajectories. IfL (y; x; m) is continuous iny and if for eachy 2 Rd, there exists a ballB (y; � y) such
that (2.15) holds, thenI e� (y) is almost surely �nite and has continuous trajectories. Consequently the SINR
cell C(X;M ) ( e� ; w; t) is a (random) closed set with probability 1.
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5.3 Standard Stochastic Scenario and First Order Cell Characteristics

Following the assumptions of Section 2.3.1 we will often consider the following standard stochastic scenario
for SINR cells:

(1) e� is a general stationary i.m.p.p. with points inR2 and intensity� > 0;
(2) the markspi have a distributionPf p � sg = G(s) that does not depend on the location of the

point;
(3) The markM = P of the pointX generating the cellC(X;P ) is independent ofe� and has also

distribution functionG.
(4) The thermal noise �eldw(y) = W is constant in space and equal everywhere to some non-

negative random variableW � 0 independent ofe� andP.

A slightly more general case is that where

(3') the markM = P of the pointX generating the cellC(X;P ) is independent ofe� but has a different
distribution functionG0 than the marks of the point process.

Remark: More general scenarios are considered in other chapters. For instance power control, studied in
Chapter 19 in Volume II, requires powers which are dependent marks of the p.p.; similarly, the case of space
and/or time dependent thermal noise is studied in 17 in Volume II.

Kendall-like Notation cont. Developing our previous Kendall-like notation for SN (see Section 2.3.1),
we call the above scenario the GI

W + GI/GI model, where the GI in the numerator denotes a general distribution
for P and the GI/GI in the denominator denotes the SN interference model. Special cases of distributions
marks are deterministic (D) and exponential (M). We recall that M/� denotes a SN model with a Poisson
point process.

This contains two important particular cases:

� The GI
0+ GI/GI model, which will be referred to as theinterference limitedmodel (since the thermal

noise is not present);
� The GI

W +0 model, where the interference is absent, and which will be referred to as thenoise
limitedmodel, and which boils down to the Boolean (or to the conditional Boolean) model under
natural assumptions on the attenuation function (see Section 5.5).

5.3.1 One Point Coverage Probability

Assume the standard SINR cell scenario of Section 5.3. We are interested in the probability that the SINR
cell C(X;P ) generated by a point located, say, at the originX = 0 , covers a given locationy; i.e.,

p0(y) = P
n

y 2 C(0;P ) ( e� ; W; t)
o

= P
n

P � l(jyj)t
�
W + I e� (y)

� o
: (5.3)

Note that this probability is the value of the capacity functionalTC(0 ;P ) (f yg) of the random (assume closed)
setC(0;P ) evaluated on the singletonf yg (cf. De�nition 3.1.4).

Here is a general result for the GI
W + GI/GI case.
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Proposition 5.3.1. Assume the GI
W + GI/GI standard scenario of Section 5.3 with condition (3') (i.e.P can

have a distribution which differs from that of the marks ofe� ). Assume the following:

� at least one of the random variablesW; I e� or P has a Fourier transform which is square inte-
grable;

� each of the random variablesW; I e� andP has a �nite �rst moment.

Then

p0(y) =
1
2

�
1

2i�

1Z

�1

E
�
exp(� 2i��I e� (y))

�
E [exp(� 2i��W )] E [exp(� 2i��P= (tl (jyj)))]

�
d� ; (5.4)

where the singular contour integral in the right-hand side, which has a pole at� = 0 , is understood in the
principal value sense; i.e., one has to calculate this integral over the domain(�1 ; � � ] [ [�; 1 ) and then let
� decrease to0.

Proof. SinceX is the sum of independent random variables, it suf�ces that one of the terms of the sum has
a density forX to have one. If this density has a square integrable Fourier transform, so doesX . If all terms
in the sum have �nite �rst moments, so hasX . The result follows from applying Corollary 12.2.4 in the
Appendix to the density of the random variableX = P=(tl (jyj)) � W � I e� (y).

The above proposition is useful when one knows the Fourier transform of the shot-noiseI e� . This is the
case in particular for the M/GI SN; i.e, whene� is an i.m. Poisson p.p. (and more generally some doubly
stochastic Poisson process). Indeed,E[e� 2i��I e� ] = L I e�

(2i�� ) and the Laplace transformL I e�
of the Poisson

shot-noise is known in closed form (see Proposition 2.2.4 and Example 2.3.3).
Some suf�cient conditions forI � (y) to have a density are given in Proposition 2.2.6.
There are several interesting cases where the shot-noiseI e� has an in�nite mean. Even in the M/GI SN

case, this is the case when one adopts the OPL 3 attenuation model (see Remark 2.3.5 of Chapter 2). For
such scenarios, the assumptions of the last proposition do not hold. We can then use the following result.

Proposition 5.3.2. Assume the GI
W + GI/GI standard scenario of Section 5.3 with condition (3') (i.e.P can

have a distribution which differs from that of the marks ofe� ). Assume the following:

� at least one of the random variablesW; I e� has density with a Fourier transform which is square
integrable;

� the random variableP has density with a Fourier transform which is square integrable;
� the random variableP has a �nite �rst moment.

Then

p0(y) =
Z

R

E
�
exp(� 2i��I e� (y))

�
E [exp(� 2i��W )]

E [exp(� 2i��P= (tl (jyj)))] � 1
2i�s

ds: (5.5)

Proof. The proof follows immediately from Equation (5.3) above and Corollary 12.2.2 in the Appendix.
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Proposition 5.3.3. For the M
W + GI/GI model

p0(y) = L W
�
�tl (jyj)

�
L I e�

�
�tl (jyj)

�
;

whereL W is the Laplace transform ofW .

Proof. We have

p0(y) = P
n

P � tl (jyj)(W + I e� )
o

=

1Z

0

e� �utl ( jyj)FW + I e�
(du) = L W

�
�tl (jyj)

�
L I e�

�
�tl (jyj)

�
;

where the last equality relies on the fact that the Laplace transform of the sum of independent random
variables is equal to the product of the Laplace transforms of the terms.

Example 5.3.4.For M
0+ M/M model with OPL 3 andW = 0 , p0(y) = e� � jyj2 t2=� K , whereK = K (� ) =�

2� �(2 =� )�(1 � 2=� )
�

=� .

Example 5.3.5.Consider the PH
W + GI/GI model, where PH means thatP has the phase-type distribution

PH (�; B ; b). Recall that it is de�ned as the distribution of the time until absorption of the pure-jump Markov
chain on the state spacef 0; 1; : : : ; bg with in�nitesimal generatorB (which is a(b+ 1) � (b+ 1) -matrix),
where0 is an absorbing state and where� is the vector describing the initial distribution onf 1; : : : ; bg. The
tail-distribution function ofP is known to be equal to

Pf P � u g = �e uB = �
1X

n=0

unB n

n!
;

whereeB is the matrix exponential de�ned by the corresponding power series. For this model we have

p0(y) =

1Z

0

Pf P � tl (jyj)u gP( W + I = du ) =

1Z

0

�
1X

n=0

(utl (jyj)B )n

n!
P( W + I = du )

= �
1X

n=0

(tl (jyj)B )n

n!

1Z

0

un P( W + I = du ) = �
1X

n=0

(tl (jyj)B )n

n!
E[(W + I )n ] :

Note that for the M/G SN model, the moments of the shot-noise can be obtained from the closed form
expression of the Laplace transform. Hence it is possible to evaluate (at least numerically) all terms of the
above expansion.

5.3.2 Mean Cell Volume

The one-point coverage probability is related to the mean cell volume by the following simple relation:

v0 � E
�
jC(0;P ) j

�
= E

� Z
1

�
y 2 C(0;P )

�
dy

�
=

Z
p0(y) dy : (5.6)
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Example 5.3.6.For the M
0+ M/M model with OPL 3

v0 � E
�
jC(0;P ) j

�
=

1
�t 2=�

�
2�(2 =� )�(1 � 2=� )

:

5.4 Fading in Signal-to-Interference Ratio Cell and Higher Order Characteristics

A simple higher order characteristic of a random closed set is its covariance function de�ned as the two-
point coverage probabilityPf y1 2 C(0;P ) ; y2 2 C(0;P )g for two given pointsy; z (cf. De�nition 3.1.10). In
general, it is dif�cult to evaluate this probability analytically even for theM

W + M/M model. A special, but very
important case, is when the fading is appropriately taken into account in the SINR cell model.

We have seen in Section 2.3.3 that a precise description of reality requires a response function of the
form L(x; y; p) = pF(x; y)=l(jx � yj) whereF (x; y) is a random fading �eld onR2 � R2.

Moreover, in Section 2.3.3.2 we have introduced the GI/GI/k model for SN, which is useful when a
discrete number of receiver locationsyj , j = 1 ; : : : ; k is involved. In this model, instead of considering
the whole fading �eld, one attaches ak-dimensional fading vector(f 1

i ; : : : ; f k
i ) to each point of the point

process, where(f 1
i ; : : : ; f k

i ) represents the channel conditionsf j = F (x i ; yj ), in the channels from the
considered point towards thek receivers. Now we adopt this approach in the SINR cell model.

Kendall-like Notation cont. We consider the GI/k
W + GI/GI/k model, where thek in the numerator means that

the mark attached to pointX consists of the emitted powerP and a fading vector(F 1; : : : ; F k ), with
F j = F (X; y j ), describing the channels fromX to k locationsy1; : : : ; yk . The notation GI/GI/k in the
denominator means that the fading conditions are taken into account for all interfering signals as well. In
this model we assume that all fading variables are independent.

5.4.1 Covariance Function

We now analyze the covariance functionp0(y1; y2) = Pf y1 2 C(0;P ) ; y2 2 C(0;P )g of the SINR cell with
fading.

Proposition 5.4.1. For the M/2
W + GI/GI/2 model, we have

p0(y1; y2) = L W

�
�t

�
l (jy1j) + l(jy2j)

� �
L (I 1 ;I 2 )

�
�tl (jy1j); �tl (jy2j)

�
;

whereL (I 1 ;I 2 ) (t1; t2) is the joint Laplace transform of the vector(I 1; I 2) = ( I e� (y1); I e� (y2)) of the SN in
the GI/GI/2 model.

Proof. When using the same type of arguments as in the proof of Proposition 5.3.3, we have

p0(y1; y2) = P
n

PF1 � tl (jy1j)(W + I 1); PF2 � tl (jy2j)(W + I 2)
o

=

1Z

0

1Z

0

1Z

0

e� �ut (l ( jy1 j)+ l (jy2 j)) e� �v 1 tl ( jy1 j)e� �v 2 tl ( jy2 j) P
�

W = du; I 1 = dv1; I 2 = dv2

�

= L W

�
�t

�
l (jy1j) + l(jy2j)

� �
L (I 1 ;I 2 )

�
�tl (jy1j); �tl (jy2j)

�
;
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where the �rst equality uses the fact that in the M/2 model, the received powersPF1; PF2 are independent
exponential random variables with parameter� , while the second equality uses the fact that(I 1; I 2) andW
are independent.

Example 5.4.2.For the M/2
0+ M/D/2 model with deterministic emitted powerp = 1=� , Proposition 2.2.4 implies

that

p0(y1; y2) = exp
�
� �

2�Z

0

1Z

0

r
�

1 � e� t
�

l (r )=l(r 1 )+ l (
p

r 2+ s2 � 2rs cos� )=l(r 2 )
� �

dr d�
�

;

wherer1 = jy1j, r2 = jy2j ands = jy1 � y2j.
For the M/2

0+ M/M/2 model, we get from Corollary 2.3.8 that

p0(y1; y2) = exp
�
� �

2�Z

0

1Z

0

r
�

1 �
1

�
1 + tl (r )=l(r1)

��
1 + tl (

p
r 2 + s2 � 2rs cos� )=l(r2)

�
�

dr d�
�

:

5.5 Noise or Interference Limited Cell: Towards a Boolean or Voronoi Shape

We focus now on the shape of the SINR cell. In general it is very complicated and few things can be said
about it. However in some special cases, it takes a “classical” form. These cases consist in:

(noise limited cell) diminishing the in�uence of the interference �eld in such a way that the noise �eld
becomes predominant; in this case, the SINR cell takes the form of aBoolean cell(the Boolean
model could then be seen as a Signal to Noise Ratio (SNR) cell model);

(interference limited cell) in the absence of noise �eld, and when the power attenuation is strong, then the
impact of the nearest-neighbor interferers becomes predominant; in this case the SINR cell takes
the form of aVoronoi cell;

(noise and interference limited cell) when the power attenuation is strong and related in an appropriate
way to the thermal noise �eld, then the cell expands like the Voronoi cell in the directions towards
the interferers which are close enough, and it expands like the Boolean cell in directions where the
nearest interferers are farther away than some threshold distance. This case can be related to the so
calledJohnson–Mehl cell; see e.g. (Stoyan, Kendall, and Mecke 1995, s. 10.7, p. 333–334).

Before starting let us formalize the notion of convergence of closed sets (see (Matheron 1975, Th. 1-2-2,
p. 6)),

De�nition 5.5.1 (Painlevé–Kuratowski convergence of closed sets).We say that the sequencef Fng of
closed subsets ofRd converges to a closed setF � Rd (we write limn Fn = F ) if the following two
conditions are satis�ed:

(1) For anyx 2 F , there exists a sequencexn , wherexn 2 Fn for all n � 1 except for at most a
�nite number, such thatxn converges tox in Rd.

(2) For any sub-sequence of setsFnk , k � 1, and any sequence of pointsxk 2 Fnk converging tox,
we havex 2 F .
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The following results are useful when studying the above convergence (see (Matheron 1975, Cor. 3,
p. 7).

Corollary 5.5.2. Let Fn ; F be closed subsets ofRd:

� If F1 � F2 � : : : and
T

n Fn = F , thenlimn Fn = F .
� If F1 � F2 � : : : and

S
n Fn = A, thenlimn Fn = A, whereA is the closure ofA.

5.5.1 Noise Limited Cell: Towards the Boolean Case

Assume the following parametric dependence of the SINR cell on the SN generated bye� :

C(� ) (X; M ) =
n

y : L (y; X; M ) � t(�I e� (y) + w(y))
o

(5.7)

where� � 0 andL is a generic response function as de�ned in Section 2.2.1 (here withd0 = d).

Example 5.5.3.See the end of Section 24.3.4 in Volume II for an example of such an interference cancel-
lation based on spread spectrum techniques.

Obviously the setC(0)
(X;M ) , which we call theSignal to Noise Ratio (SNR) cell, is a Boolean cell1 and no

longer depends one� ; this limiting case is easy to analyze. In what follows, we study the following continuity
and differentiability problems, when� ! 0.

� In what sense and under what conditions does the SINR cellC(� )
(X;M ) tend to the SNR cellC(0)

(X;M )?
� Assuming this continuity and taking� small, what �rst (or a higher) order perturbation should

one apply to the characteristics of the SNR cell to get the characteristic of the SINR cell?

Convergence in the Space of Closed Sets.In order to prove convergence theorems, we need the following
technical condition on the response functionL :

(1) for eachx; y 2 Rd andm 2 R` , there exists a sequenceyn such thatL (yn ; x; m) > L (y; x; m)
andlimn yn = y.

We also suppose for simplicity that the condition (4) of the standard scenario of Section 5.3 for SINR holds,
i.e., that the thermal noise �eldw(y) = W is constant in space (but the valueW can be random).

Proposition 5.5.4. Assume that the conditions of Corollary 5.2.1 withw(y) = W > 0 and Condition (1)
are satis�ed. Then almost surely

C(0)
(X;M ) =

[

�

C(� )
(X;M ) ; (5.8)

1Recall that in the Boolean model the cell (grain) attached to a given point, say atX , neither depends on the locations of the points of the point
process nor on their grains.
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whereC denotes the closure ofC. Consequently, sinceC(� )
(X;M ) is an increasing family of closed sets,

lim � ! 0 C(� )
(X;M ) = C(0)

(X;M ) in the space of closed sets (Painlevé–Kuratowski convergence).

Proof. SinceC(� )
(X;M ) = C(� ) � C(0)

(X;M ) = C(0) andC(0) is closed,

[

�

C(� ) � C(0) :

It remains to show thatC(0) �
S

� C(� ) . For this, take anyy 2 C(0) . This meansL(y; X; M ) � tw.
Condition (1) above then guarantees the existence of a sequenceyn ! y such that for alln, L (yn ; X; M ) >
w, which implies thatyn 2 C(� n ) for some� n > 0. So

y = lim
n

yn 2
[

n

C(� n ) ;

which completes the proof.

Figure 5.2 illustrates this convergence.

Convergence of Characteristics. We now consider the convergence of certain characteristics of the SINR
cell to those of the SNR cell, including the probability for a point to be covered (volume fraction), the capac-
ity functional, and the volume of the typical cell. This can only be done under some additional conditions,
because these characteristics are not continuous functions on the space of closed sets. Here is an example of
such a result.

Denote by
D (X;M ) =

�
y : L (y; X; M ) = tW

	

the set of locations where the signal-to-noise ratio (without interference) isexactly equalto t. One can think
of it as the boundary of the SNR cellC(0)

(X;M ) ; however this is not always true.

Proposition 5.5.5. Suppose the conditions of Proposition 5.5.4 are satis�ed. LetK be a compact set and�K
denote the largest open set contained inK . If

P
�

D (X;M ) \ K 6= ; andD (X;M ) \ �K = ;
	

= 0 (5.9)

then we have the following convergence of the capacity functional of the SINR cell on the setK :

lim
� ! 0

P
�

K \ C(� )
(X;M ) 6= ;

	
= P

�
K \ C(0)

(X;M )

	
:

Proof. The result is a consequence of the following fact: ifD (X;M ) \ K 6= ; impliesD (X;M ) \ �K 6= ; then

lim
� ! 0

1
�
K \ C(� )

(X;M ) 6= ;
�

= 1
�
K \ C(0) (X; M ) 6= ;

�
: (5.10)
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Fig. 5.2 The SINR cells limited by the noise (converging to a Boolean model). Standard stochastic scenarioU;:::; U
W + M/U (the sequence of symbols

U; : : : ; U corresponds to a multi-cell scenario; see Section 6.3) withU uniform distribution on[0; 2], w(y) = W = 0 :1, t = 1 , and OPL with
path loss exponent� = 3 . On successive �gures� = 0 :4; 0:2; 0:2 and0:0001. For more discussion see Example 7.5.4.

In order to prove (5.10) we assert the following inequalities:

1
�

K \ C(0)
(X;M ) 6= ;

�
� 1

�
K \ D (X;M ) 6= ; ; �K \ D (X;M ) = ;

�

� lim
� ! 0

1
�

K \ C(� )
(X;M ) 6= ;

�
(5.11)

� 1
�

K \ C(0)
(X;M ) 6= ;

�
: (5.12)

Inequality (5.12) is immediate from the fact thatC(� )
(X;M ) � C(0)

(X;M ) for � � 0. In order to prove (5.11), it is

enough to show that ifK \ C(0)
(X;M ) 6= ; and if in addition, for all� > 0, K \ C(� )

(X;M ) = ; , then the second
indicator in the left-hand side of (5.11) is equal to 1. But under these two assumptions, there existsy 2 K
such thatL (y; X; M ) � tW andL(y; X; M ) < tW + � 1 for any positive� 1, and soL(y; X; M ) = tW .
This meansK \ D (X;M ) 6= ; and by our assumption also�K \ D (X;M ) 6= ; . Let y 2 �K \ D (X;M ) . By
Condition (1) we can �ndy0 2 �K in the neighborhood ofy, such thatL (y0; X; M ) > tW . This gives
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K \ C(� )
(X;M ) 6= ; for some� > 0, contradicting our assumption and concluding the proof of (5.11).

Remark: Note that in the case of a translation invariant functionL , i.e., whenL(y; x; m) = L(y � x; 0; m)
for all x; y; 2 Rd, the condition (5.9) is equivalent to

P
n

X 2
� �D (0;M ) � K

�
n

� �D (0;M ) � �K
� o

= 0 ; (5.13)

where �D = f� y : y 2 Dg. In particular for the standard SINR scenario and for the path-loss models OPL 2
and OPL 3, the assumptions of Proposition 5.5.5 are satis�ed. Then, forK = f yg, Condition (5.9) reads
Pf P = tW l (jy � X j) g = 0 .

Let

p(� )
0 (y) = Pf y 2 C(� )

(0;P ) g and v(� )
0 = E[jC(� )

(0;P ) j]: (5.14)

From Proposition 5.5.5 we can easily derive the following results.

Corollary 5.5.6. Assume the standard SINR scenario and a path-loss model OPL 2 or OPL 3. Assume that
either the distribution functionG of P or that ofW has a density. ThenPf P = tW l (jzj) g = 0 for all
z 2 Rd and

lim
� ! 0

p(� )
0 (y) = p(0)

0 (y) = 1 � E[G� (tW l (jyj))] ;

lim
� ! 0

v(� ) = v(0)
0 = 2 �

1Z

0

r
�
1 � E[G� (tW l (r ))]

�
dr ;

whereG� (u) = lim v% u G(v) is the left-continuous version ofG and the expectation is taken with respect
to the random noiseW .

The second relation follows from (5.6).

Perturbation Formulae. Assume the standard SINR scenario. Note that Corollary 5.5.6 gives the follow-
ing approximation of the one point coverage probability

p(� )
x (y) = 1 � E[G� (tW l (jyj))] + o(1) ;

when� ! 0, for OPL 2 or OPL 3 and provided the distribution functionG of the emitted powerP has a
density. Now we brie�y show how to derive the �rst and higher order expansions ofp(� )

x (y).
Let F� denote the left-continuous version of the distribution function of the random variable

P=(tl (jyj)) � W , i.e.

F� (u) = P
n

P=(tl (jyj)) � W < u
o

: (5.15)

We suppose thatF� admits the following approximation at 0

lim
u& 0

F� (u) � F� (0)
u� = f � for some� � 0; f � < 1 : (5.16)
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Proposition 5.5.7. Assume that(5:16) holds for some� � 0 andf � < 1 . Then whenE[(I e� (y)) � < 1 ],

p(� )
0 (y) = 1 � E[G� (tW l (jyj))] � � � f � E

h
(I e� (y)) � 1(I � (y) > 0)

i
+ o(� � ) : (5.17)

Remark: Note that if eitherG or the distribution function ofW has a density, thenF� (u) admits the
densityf � (u) at the origin (which however might be in�nite) and� = 1 , f � = f � (0). On the other hand,
if P=(tl (jyj)) � W has an atom at 0; i.e., ifP f P = tW l (jyj) g > 0 (which is not possible under the

assumptions of Corollary 5.5.6), then (5.16) holds for� = 0 , f � = P
n

P = tl (jyj) � W
o

, and thus (5.17)
yields

p(� )
0 (y) = P

n
P � tl (jyj)W

o
� P

n
P = tl (jyj)W; I e� (y) > 0

o
+ o(1)

= P
n

P > tl (jyj)W
o

+ P
n

P = tl (jyj)W; I e� (y) = 0
o

+ o(1) :

Proof. (of Proposition 5.5.7). We have

p(� )
0 (y) = P

n
P � tl (jyj)W

o
� P

n
0 � P=(tl (jyj)) � W < �I e� (y)

o
: (5.18)

SinceP; W and I e� are independent, the second term in (5.18) is equal toE[F� (�I e� (y)) � F� (0)]. If
E[(I e� (y)) � ] < 1 and (5.16) holds then

E
�

F� (�I e� (y)) � F� (0)
(�I e� (y)) � 1(I e� (y) > 0)(I e� (y)) �

�
� E

h
(f � + A)( I e� (y)) �

i
< 1 ;

for some constantA < 1 and all� > 0, and thus by the dominated convergence theorem

lim
� ! 0

1
� � P

n
0 � p=(tl (jyj)) � W < �I e� (y)

o
= f � E

h
(I e� (y)) � 1(I e� (y) > 0)

i
;

which completes the proof.

If the distribution functionF� admits a higher order approximation, then we can give a higher order
approximation ofp(� )

0 (y). Here we brie�y state the result assuming thatF� hash derivativesF (k)
� (0); k =

1; : : : ; h, at0; i.e.,

F� (u) = F� (0) +
hX

k=1

F (k)
� (0)
k!

uk + R(u) and R(u) = o(uh) u & 0: (5.19)

Proposition 5.5.8. Assume that(5:19) holds for someh � 1. Then

p(� )
0 (y) = 1 � E[G� (tW l (jyj))] �

hX

k=1

� k F (k)
� (0)
k!

E
�
(I e� (y)) k �

+ o(� h) ; (5.20)

providedE[(I e� (y))h ] < 1 .
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The proof goes along the same lines as the proof of Proposition 5.5.7.
From (5.6) we see that, in principle, any approximation of the coverage probability also yields an ap-

proximation of the mean cell volume, simply by integration of the terms of the latter expansion with respect
to y. In what follows we show how to justify the interchange of the integral and the expansion for the case
of formula (5.20), assuming, as before, the standard scenario for SINR.

In order to express the dependence ony, we writeF� (u; y) andF (k)
� (u; y) to denoteF� de�ned in (5.15)

and its derivatives with respect tou. Similarly, we denote the remainder term in (5.19) byR(u; y). Assume
now that (5.19) holds for ally 2 Rd and moreover

jR (u; y)j � H 1(u)H 2(y) (5.21)

whereH 1(u) is a nondecreasing function satisfying

lim
u& 0

H 1(u)
uh = 0 (5.22)

and
1Z

0

H 2(y) dy < 1 : (5.23)

Proposition 5.5.9. Assume that(5:19) and(5:21)–(5:23) hold for someh � 1. Then the mean cell volume
is

v(� ) = v(0) �
hX

k=1

� k 1
k!

1Z

0

F (k)
� (0; y) dy E

�
(I e� (0)) k �

+ o(� h) ; (5.24)

provided
R1

0 F (k)
� (0; y) dy < 1 for k = 1 ; : : : ; h and

E
�
H 1

�
I e� (0)

��
I e� (0)

� h �
< 1 : (5.25)

Proof. By (5.6), (5.18) and (5.19), it suf�ces to show that

lim
� ! 0

� � h

1Z

0

E
h
R(�I e� (y); y)

i
dy = 0 :

For �xed y, by Proposition 5.20 we have pointwise convergence� � hE[: : :] ! 0. We establish the conditions
of the dominated convergence theorem forlim

R
� � hE[: : :]dy. For this, thanks to (5.22), take any� > 0

andu0 such thatH 1(u) � � for u � u0. Now, by monotonicity ofH 1(u), for � � 1

� � h

1Z

0

E
�
�
�R(�I e� (y); y)

�
�
� dy

�

1Z

0

H 2(y) dy
�

E
h
�

�
I e� (0)

� h1
�
�I e� (0) � u0

� i
+ E

h
H 1

�
I e� (0)

� � I e� (0)
u0

� h
1

�
�I e� (0) > u 0

� i �
;

which is �nite by (5.23) and Assumption (5.25); this completes the proof.
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Example 5.5.10.Consider the standard stochastic scenario with OPL 2 (withA = 1 ) and assume that the
distribution functionG of P admits a densityg. Then the conditions of Proposition 5.5.7 are satis�ed if

f � = E
�

g(tW l (jyj))
tW l (jyj)

�
< 1 :

Assume in addition thatt; l (jyj) andW are strictly positive. Direct computations give the following �rst
order expansion for the mean volume of the typical cell (provided the moments used in the expansion are all
�nite):

v(� ) = � E
�� �� P

W

� 1=�
� 1

� +
� 2�

+ �
2� E[I e� (0)]

�

�
E

h� P
W

� 1+1 =� i
E[P1=� ] � E

h� P
W

� 1=� i
E[P � 1+1 =� ]

�
+ o(� ) ;

Note that the existence of the negative momentE
�
P � 1+1 =�

�
is guaranteed by Condition (5.16) and that

E[I e� (0)] =

1Z

0

sg(s) ds2��

1Z

0

r
(1 + r ) � dr =

2��
� 3� + � 2 + 2

1Z

0

sg(s) ds :

5.5.2 Interference Limited Cell: Towards the Voronoi Case

Consider for simplicity the standard SINR scenario. Recall that from De�nition 4.1.1, the Voronoi cell
CX = CX (�) attached to pointX of � , is determined by some “neighboring” points ofX i 2 � only. It is
quite reasonable to expect that if we let the OPL functionl(r ) increase fast inr , we get the same effect for
the SINR cellC(X;P ) . We formalize this observation taking appropriate families of OPL functions.

Convergence in the Space of Closed Sets.Let ln (r ) = (1 + r )n , W = 0 , P > 0 almost surely. Denote
by Cn

(X;P ) = Cn
(X;P ) (

e� ; 0; t) the SINR cell corresponding to the OPLln .

Proposition 5.5.11.Almost surely the following convergence holds on the space of closed sets (Painlevé–
Kuratowski convergence)

lim
n!1

Cn
(X;P ) = CX ;

whereCX = CX (�) is the Voronoi cell of pointX 2 � w.r.t. � .

Proof. Denote byI (n)
e�

(y) the SN associated with the OPL functionln . Note that we haveI (n)
e�

(y) > 0 for

all n provided�( R2) > 0; otherwiseC(X;P ) = CX = R2 and the result trivially holds. Moreover, since we
assumedP > 0 almost surely, we have

�
I (n)

e�
(y)

� 1=n
=

� X

(xk ;pk )2 e�

Pk (1 + jy � xk j) � n
� 1=n

n!1�! sup
xk 2 �

(1 + jy � xk j) � 1 =
�

1 + min
xk 2 �

jy � xk j
� � 1

(5.26)
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(this property differs from the standard calculus exercise in that the number of terms in the sum is in�nite; it
uses the property that a.s. the above supremum is reached by a unique point of� ). Moreover the convergence
is locally uniform iny. Note now thatCn

(X;P ) = f y : jy � X j � f n (y)g, where

f n (y) =
� P

tI (n)
e�

(y)

� 1=n
� 1 :

By (5.26)

lim
n!1

f n (y) = min
xk 2 �

jy � X j

locally uniformly in y. We now formally prove thatlimn Cn
(X;P ) = f y : jy � X j � minxk 2 � jy � xk jg.

According to De�nition 5.5.1 we have to show that the following two conditions hold:

(i) For anyy s.t. jy � X j � minxk 2 � jy � xk j, there exists a sequence of pointsyn ! y such that
jyn � X j � f n (yn ) for all suf�ciently largen.

(ii) If a sequence of pointsykn , such thatjykn � X j � f kn (ykn ) for all n, converges toy, then
jy � X j � minxk 2 � jy � xk j.

Supposey is in the interior of the Voronoi cell; i.e.,jy � X j < minxk 2 � jy � xk j. Thenjy � X j � f n (y) for
all suf�ciently large n becausef n (y) ! minxk 2 � jy � xk j. So Condition (i) is satis�ed with the constant
sequenceyn = y. If y is on the boundary of the Voronoi cell, i.e. ifjy � X j = min xk 2 � jy � xk j, then there
exists a sequence of pointsyn converging toy and such that for alln, jyn � X j < minxk 2 � jyn � xk j. One
can use this sequence to construct the one required in (i).

Let ykn be as given in (ii). For alln

jykn � X j � f kn (ykn ):

Lettingn ! 1 , the left-hand side tends tojy � X j and the right-hand side (because of the uniform conver-
gence off n ) to minxk 2 � jy � xk j and we getjy � X j � minxk 2 � jy � xk j.

Remark: A result similar to (5.5.11) can be proved for any family of OPL functionsl � satisfying

lim
� ! � 0

l � 1
�

� X

i

pi =l� (x i )
�

!
1

min i x i

for any (positive) coef�cientspi . For example forl � (yi ) = exp[ �y i ] and� 0 = 1 .

We show some snapshots in Figure 5.3. Note also that the above result suggests that the VT access model
considered in Section 4.5 may be a reasonable model, at least for high path-loss exponents.

Convergence of Characteristics. As in the Boolean case, one can prove the convergence of various func-
tionals. We consider here only the cell volume.

Proposition 5.5.12.The volume of the cellCn
(X;P ) converges in distribution to the volume of the Voronoi

cell CX (�) provided the boundary ofCX (�) has volume0 almost surely.
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Fig. 5.3 The SINR cells limited by increasing impact of interference in the absence of noise (converging to the Voronoi tessellation). Standard
stochastic scenarioU;:::; U

0+ M/U (the sequence of symbols U; : : : ; U corresponds to a multi-cell scenario; see Section 6.3), withU uniform distribution
on [0; 2], w(y) = 0 , t = 0 :2; OPL with path loss exponent� = 3 ; 5; 12 and100. For more discussion see Example 7.5.8.

Proof. This can be done using the following inequalities

1
�

z 2 CX (�)
�

� 1
�

jz � X j = min
xk 2 �

jz � xk j
�

� lim inf
n!1

1
�

z 2 Cn
(X;P )

�

� lim sup
n!1

1
�

z 2 Cn
(X;P )

�

� 1
�

z 2 CX (�)
�

;

which hold for allz 2 Rd. Then, representing volumes as integrals with respect to Lebesgue measure, using
the Fatou lemmas forlim inf andlim sup, we get the conclusion provided that

Z

Rd

1
�

jz � xj = min
xk 2 �

jz � xk j
�

dz = 0

almost surely.
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Fig. 5.4 The SINR cells limited by strong interference and increasing noise (Johnson–Mehl grain growth model). Standard stochastic scenario
U;:::; U

W + M/U (the sequence of symbols U; : : : ; U corresponds to a multi-cell scenario; see Section 6.3), withU uniform distribution on[0; 2], t = 0 :5,

OPL with path loss exponent� = 30 . Increasing noisew(y) = W = (1 + R) � 30 , whereR = 0 :4; 1:2; 2 and1 (i.e., W = 0 ). For more
discussion see Example 7.5.9

The last condition of the proof is true e.g. for the Poisson p.p.� with a diffuse intensity measure� , in
particular for any stationary Poisson p.p.

5.5.3 Noise and interference limited cell: towards the Johnson–Mehl cell

We also have convergence to intermediate states of the Johnson–Mehl grain growth model (see e.g. (Stoyan,
Kendall, and Mecke 1995, s. 10.7, p. 333–334),

Corollary 5.5.13. Under the assumptions of Proposition 5.5.11, if, instead ofW � 0, we takeW = ( R +
1)� n for some �xed or random variableR, then

lim
n!1

Cn
(X;P ) = CX (�) \ BX (R) ;

whereBX (R) is the ball centered atX of radiusR.
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We give an illustration of this convergence in Figure 5.4.
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6
Interacting Signal-to-Interference Ratio Cells

6.1 Introduction

We consider now the relationships between several SINR cells. As in Chapter 5 lete� =
P

i " (x i ;m i ) be an
i.m.p.p. with pointsf x i g in Rd and marksf mi g in R` . Let I e� (y) be a scalar shot-noise �eld onRd generated
by e� and the response functionL : Rd � Rd � R` 7! R+ .

De�nition 6.1.1. Let n be a positive integer and let(X i ; M i ), i = 1 ; : : : ; n, X 2 Rd, M 2 R` , be a
collection ofn marked points. Lett i � 0, i = 1 ; : : : ; n be a collection ofn thresholds. We de�ne the SINR
cells of this collection of marked points and thresholds in the shot-noise �eldI e� and the thermal noise �eld
w(y) � 0 as

C(X i ;M i ) = C(X i ;M i ) ( e� ; f (X j ; M j ); j 6= ig; w; t i )

=
n

y : L (y; X i ; m) � t i (I e� (y) + �
X

j 6= i

L(y; X j ; M j ) + w(y))
o

; (6.1)

where0 < � � 1 is some constant.

If � = 1 , this is the collection of SINR cells of the pointsX i , i = 1 ; : : : ; n for the SN created by the p.p.

e� +
nX

i =1

� X i ;M i :

If � 6= 1 , the response of the pointsX j and that of the points ofe� are weighted differently.

Example 6.1.2 (Downlink in a Code Division Multiple Access cell with several users).Let e� be an i.m.
Poisson p.p. representing the location of base stations using Code Division Multiple Access (CDMA) – see
Section 25.1.4 in Volume II). LetX be the location of a tagged base station withn users. Since alln users
are served by the tagged base station, we takeX i = X for i = 1 ; : : : ; n. In this case the cellC(X i ;Pi ) gives
the locations where useri , when served by the tagged base station with powerPi , receives a signal strong
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enough to sustain the goodput that corresponds to the SINR thresholdt i . In this case the factor� might stem
from the fact that orthogonal signatures are used within a cell. Another essential feature of CDMA is power
control (addressed in Section 25.2 in Volume II).

Remark 6.1.3. Note that when changing the thresholdst i to

t0
i =

t i

1 + �t i
(6.2)

one can replace
P

j 6= i L(y; X j ; M j ) in (6.1) by
P n

j =1 L(y; X j ; M j ). Indeed,

L (y; X i ; m) � t i (I e� (y) + �
X

j 6= i

L(y; X j ; M j ) + w(y))

if and only if

L (y; X i ; m) � t i =(1 + �t i )( I e� (y) + �
nX

j =1

L(y; X j ; M j ) + w(y)) :

This means thatC(X i ;M i ) ( e� ; f (X j ; M j )gj 6= i ; t i ) = C(X i ;M i ) ( e� ; f (X j ; M j )gj =1 ;:::;n ; t0
i ).

6.2 Constraints on Cell Intersections

We now comment on a basic algebraic property which sheds some light on the fact that the SINR cells are
typically deformed and may have holes, and this happens even in the case of a simple isotropic response
functionL .

Proposition 6.2.1. Consider the collection of SINR cellsC(X i ;M i ) = C(X i ;M i ) ( e� ; f (X j ; M j ); j 6= ig; t i ) of
De�nition 6.1.1. For any subsetJ � f 1; : : : ; ng of cells, if

T
i 2 J C(X i ;M i ) 6= ; , then

P
i 2 J t0

i � 1=� , where
t0
i is given by (6.2).

Proof. Assumey 2
T

i 2 J C(X i ;M i ) 6= ; . Then, then by Remark 6.1.3, we have the set of inequalities

L(y; X i ; m) � t0
i �

X

j 2 J

L(y; X j ; M j ); i 2 J ;

Summing them up, we obtain
X

j 2 J

L(y; X j ; M j ) � �
X

i 2 J

t0
i

X

j 2 J

L(y; X j ; M j ) ;

which is equivalent to
P

i 2 J t0
i � 1=� .

Remark 6.2.2. Note that the above result is purely algebraic (no stochastic assumptions are made). It says
that by increasing the signalsL(y; X i ; M i ) that one cannot cover a given pointy by arbitrarily many cells.
In particular, in the case of constantt i = t no location can be covered by more thans = bt�= (1 + t� )c,
cells, whatever the locationsX i of the transmitters and whatever the strength of their signalsL (y; X i ; M i ).
For example, on Figure 5.3s = 4 , while on Figure 5.4s = 1 inhibits any overlapping of cells.
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Example 6.2.3 (Pole capacity of the downlink CDMA cell).Let us continue Example 6.1.2 and consider
one given antenna, say located atX , which transmits a compound signal of total powerP1 + : : : + Pn for
servingn users with respective bit-rates corresponding totk , k = 1 ; : : : ; n. Since the possible locations
of these users are described by the cellsC(X;P k ) , by Proposition 6.2.1, if

P n
i =1 t0

i > 1=� then these cells
cannot simultaneously cover any given location. This means that if all the users are at the same location,
they cannot be served simultaneously by the tagged base station, no matter how strong the emitted powers
are. If one assumest i = t, this mean that no more thann1 � (1 + �t )=(�t ) users can be served. This upper
bound for the number of users is called thepole capacity of the CDMA cell. It gives the maximal number of
users that can be served at a given location with a bit-rate corresponding to the SINR thresholdt.

6.3 Stochastic Scenarios and Coverage Probabilities

By the standard stochastic scenario for collections of SINR cells, we understand the framework described in
Section 5.3, with the response functionL(y; x; p) = p=l(jy � xj), wherel is an omni-directional power at-
tenuation function (see Section 23.1.2 in Volume II), with assumption (3) of the single cell scenario replaced
by:

(3� ) The marksM j = Pj of the pointsX j (j = 1 ; : : : ; n) generating the cellsC(X j ;Pj ) are mutually

independent, independent ofe� , and have the same distribution functionG as the marks ofe� .

In a slightly more general case one can consider the scenario where

(3� 0
) The marksP1; : : : ; Pn are mutually independent and independent ofe� and have some given

distributionG0.

Kendall-like Notation cont. Extending our previous notation for SINR, we call the above framework for
collections of SINR cellsGI;:::;GI

W + GI/GI model, where GI's in the numerator denote the general distribution of the
Pj 's.

6.4 Joint Point-Coverage Probability

Assume the standard scenario for collections of SINR cells. Lety1; : : : ; yn ben locations. We are interested
in the probability that for allj = 1 ; : : : ; n the cellC(X j ;Pj ) covers locationyj :

pX 1 ;:::;X n (y1; : : : ; yn ) = P
� n\

j =1

n
yj 2 C(X j ;Pj ) ( e� ; f (X l ; Pl ); l 6= j g; W; t i )

o �
(6.3)

= P
� n\

j =1

n
Pj � t i l (jyj � X j j)

�
I e� (yj ) + �

X

l6= i

Pl =l(jyj � X l j) + W
�oo

:

Special cases are the probabilitypX 1 ;:::;X n (y; : : : ; y) that all cells cover a given pointy and the probability
pX;:::;X (y1; : : : ; yn ) that a given node usingn independent powers, coversn different locations (cf. Exam-
ple 6.2.3). Recall, that in all these cases, the powersPl for l 6= j are considered as interference with respect
to the transmissionj .

The following result gives the joint point-coverage probability for theM;:::;M
W + GI/GI model, where the received

powersP1; : : : ; Pn are exponential with mean1=� . Recall from Section 5.4 that this might correspond to
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a situation whenPj = P f j , whereP is some constant emitted power andf j is an exponential random
variable modeling Rayleigh fading in the channel fromX j to yj . For simplicity we state and prove the result
for two cells.

Let l jk = l(jyk � X j j), k; j = 1 ; 2 and letL (I 1 ;I 2 ) (s1; s2) be the joint Laplace transform of the vector
(I e� (y1); I e� (y2)) andL W (s) the Laplace transform ofW .

Proposition 6.4.1. Consider the standardM;M
w+ GI/GI model. If

� =
t1t2� 2l11l22

l21l12
< 1 (6.4)

then the joint point-coverage probability is equal to

pX 1 ;X 2 (y1; y2) = �
1 � �

(l21 + t1l11� )( l12 + t2l22� )
L W

� � 1 + � 2

1 � �

�
L (I 1 ;I 2 )

� � 1

1 � �
;

� 2

1 � �

�
;

where� i = t i l ii l ji (l ij + t j l jj � ), i; j = 1 ; 2, i 6= j . OtherwisepX 1 ;X 2 (y1; y2) = 0 .

Proof. Note �rst that the condition (6.4) is necessary for the inequalities in (6.4) withj = 1 ; 2 andn = 2 to
hold whenW � 0 andI e� � 0. So it is necessary forpX 1 ;X 2 (y1; y2) > 0. In what follows we assume it is
satis�ed. Similarly as in the proof of Proposition 5.4.1 we have

pX 1 ;X 2 (y1; y2) =

1Z

0

1Z

0

1Z

0

A(u; v1; v2) P
�

W = du; I 1 = dv1; I 2 = dv2

�
;

with

A(v; u1; u2)

=

1Z

0

1Z

0

1
�
p1 � t1l11(u + v1 + �p 2=l21)

�
1

�
p2 � t2l22(u + v2 + �p 1=l12)

�
� 2e� � (p1+ p2 ) dp1dp2 :

Forai ; bi � 0, i = 1 ; 2 andb1b2 < 1, we have
1Z

0

1Z

0

1(p1 � a1 + b1p2)1(p2 � a2 + b2p1)� 2e� � (p1+ p2 ) dp1dp2

= �
1 � b1b2

(1 + b1)(1 + b2)
exp

�
� �

a1(1 + b2) + a2(1 + b1)
1 � b1b2

�
:

Taking ai = t i l ii (u + vi ), bi = t i l ii �=l ji with i; j = 1 ; 2, j 6= i , we observe thatb1b2 < 1 is equivalent
to (6.4) which we assume to be satis�ed. Thus we have

pX 1 ;X 2 (y1; y2)

=
1 � �

(l21 + t1l11� )( l12 + t2l22� )

1Z

0

1Z

0

1Z

0

e� � (( v+ u1 )� 1+( v+ u2 )� 2 )=(1� � )P
�

W = du; I 1 = dv1; I 2 = dv2

�
;

and the result follows.
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7
Signal-to-Interference Ratio Coverage

7.1 Introduction

Let b� =
P

i " (x i ;m i ;t i ) be a marked point process, with pointsf x i g in Rd and marksf mi g in R` (as

in Chapter 5) andt i 2 R+ . As in Chapter 5, letI e� (y) be the SN onRd, generated bye� =
P

i " (x i ;m i ) (i.e.,
b� without the markst i ) and by the response functionL : Rd � Rd � R` 7! R+ .

De�nition 7.1.1. We de�ne theSINR coverage processgenerated byb� and the thermal noise �eldw(y) �
0, as the following union of SINR cells:

� SINR = �( b� ; w)

=
[

(x i ;m i ;t i )2 b�

C(x i ;m i ) ( e� � " (x i ;m i ) ; w; t i ) (7.1)

=
n

y : there exist(x i ; mi ; t i ) 2 b� : L (y; x i ; mi ) � t i (I e� (y) � L (y; x i ; mi ) + w(y))
o

:

Remark: From Remark 6.1.3,C(x i ;m i ) ( e� � " (x i ;m i ) ; w; t i ) in (7.1) is equal toC(x i ;m i ) ( e� ; w; t0
i ) with

t0
i =

t i

1 + t i
: (7.2)

Moreover ift0
i > 0 for all i , then� SINR can also be expressed as

� SINR = f y : X b� (y) � I e� (y) + w(y)g;

where

X b� (y) = max
(x i ;m i ;t i )2 b�

� L (y; x i ; mi )
t i

�

is a max-shot-noise process generated byb� and the response functioneL(y; x; m; t ) = L(y; x; m)=t (cf.
Section 2.4), provided themax is well de�ned, for example when there is an a.s. �nite number of cells
covering pointy.
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Fig. 7.1 SINR coverage model without fading. Fig. 7.2 SINR coverage model with point dependent fading.

Standard Stochastic Scenario and Kendall-like Notation. We shall often consider the following stan-
dard scenario for the coverage process.

(1) We assume thatb� is a general stationary independently marked point process with points inR2

and intensity� > 0;
(2) The marks(mi = ( pi ; t i )) have some given distributionPf p � u; t � v g = G(u; v) that does

not depend on the location of the corresponding point;
(3) The thermal noise �eldw(y) = W is constant in space and equal everywhere to some non-

negative random variableW � 0 independent ofb� .

Note that assumptions (1)–(2) correspond to some natural extension (markst i are added) of the standard
scenario for SN, for which the following isotropic response functionL(y; x; p) = p=l(jy � xj) is assumed,
with l some omni-directional power attenuation function (see Section 23.1.2 in Volume II).

Extending our previous Kendall-like notation to SINR coverage, we call the above scenario theGI/GI
W + GI/GI

model.
Figure 7.1 shows a realization of the SINR coverage modelM/D

W + M/D while Figure 7.1 shows the same
situation with an independent fading for each point.

7.2 Typical Cell of the Coverage Process

Let P !
(x;m;t ) denote the reduced Palm distribution ofb� (see Section 1.4). Recall that one can consider this

distribution as the conditional distribution ofb� � " (x;m;t ) given thatb�( f (x; m; t )g) > 0. UnderP !
(x;m;t ) , the

SINR cellC(x;m;t ) ( e� ; w; t) is calledthe typical cell of the coverage process� SINR at (x; m; t ).1

1The name “typical cell” is natural in the stationary case.
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From Corollary 2.1.3, in the case of an i.m.p.p.,P !
(x;m;t ) is also the distribution of an independently

marked point process with marks having the original distribution.
If moreoverb� is an i.m. Poisson p.p. then by Slivnyak's Theorem (see Theorem 1.4.5) the reduced Palm

distributionP !
(x;m;t ) is equal to the original Poisson distribution ofb� . Moreover, the moment measurecM of

b� is equal to
cM (d(x; m; t )) = F (d(m; t ))�( dx);

where� is the intensity measure of the Poisson p.p.� . This allows us to interpret many results obtained in
Chapter 5 for a single SINR cell as concerning the typical cell of the SINR coverage process� SINR with
(possibly) a randomized markP. Note also that Assumption (3) of the standard scenario for SINR cells
states thatP is randomized according to its original generic distribution.

7.3 Nearest Transmitter Cell

Consider a GI/GI
W + GI/GI model. We are interested in the probability that a given location, say the originy = 0 ,

is covered by the cell of thenearesttransmitter:

p� = P
n

y 2 C(xo ;po ) ( e� � " (xo ;po ) ; W; t)
o

= P
n

po � l (jxoj)t
�
W + I e� (y) � po=l(jxoj)

� o
;

wherexo = arg minx i 2 � jx i j (by Lemma 4.2.2,xo is almost surely well de�ned) andpo is the mark ofx � in
e� . In the case of Poisson p.p., the joint distribution of(x � ; p� ) ande� � " (xo ;po ) is known. Thus, conditioning
onx � , one can evaluatep� by similar arguments asp0(y) (see Section 5.3.1). These calculations are explicit
in the M/M

W + M/M model.

Proposition 7.3.1. For the M/M
W + M/M model with deterministict i = t

p� =

1Z

0

2��r exp(� ��r 2)L W (�tl (r )) exp

0

@� 2��

1Z

r

u
1 + l(u)=(tl (r ))

du

1

A dr ; (7.3)

whereE[po] = 1=� .

Proof. Recall thatPf j xoj > r g = e� ��r 2
. Moreover, givenxo = r , e� � " (xo ;po ) is an i.m. Poisson p.p.

with intensity� 1(jxj > r ) and independent ofp� . Thus conditioning onjxoj = r , by the same arguments as
in the proof of Proposition 5.3.3, the coverage probability is equal to

L W (�tl (r )) exp

0

@� 2��

1Z

r

u
1 + l(u)=(tl (r ))

du

1

A : (7.4)

We obtain the result by integrating with respect to the law ofjxoj.

Example 7.3.2.Consider OPL 3 with� = 4 andW � 0. Then using the fact that

1Z

r

u
1 + l(u)=(tl (r ))

du =
r 2

4

p
t
�

� � 2 arctan(1=
p

t)
�

;
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we get that

p� =

1Z

0

2��r exp
�

� r 2��
�

1 +
1
2

p
t
�

� � 2 arctan(1=
p

t)
� ��

dr: (7.5)

7.4 � SINR as a Random Closed Set

We now consider some stochastic-geometry theoretic properties of SINR coverage processes. We require
that the typical cell be a closed set forcM (d(x; m; t )) almost all(x; m; t ) 2 Rd � R` � R+ . By Campbell's
formula, one can then conclude that under the original (unconditional) distribution of� SINR, all the cells
C(x i ;m i ) ( e� � " (x i ;m i ) ; w; t i ) are almost surely closed sets. In the case of an i.m.p.p., conditions for the
typical cell to be a closed set can hence be found in Corollary 5.2.1.

In stochastic geometry it is customary to require� SINR to be a closed set (note that the countable union
of closed sets need not be closed). In fact we require the stronger property that for any given bounded set
in Rd (with compact closure), the number of cells that have non-empty intersection with it is almost surely
�nite. 2

Denote byNK the random number of cells

Ci = C(x i ;m i ) ( e� � " (x i ;m i ) ; w; t i ) (7.6)

that hit a given bounded setK

NK =
X

i

1
�

K \ Ci 6= ;
�

: (7.7)

In what follows we assume thatb� is an i.m. Poisson p.p. and we give several instances of moment-conditions
(bearing on the distributionF (d(m; t )) of the generic mark(m; t ) and the intensity measure� of the p.p.)
for E[NK ] to be �nite for arbitrary largeK . Later on we will comment on the general stationary case as
well.

Note �rst that the required property is always satis�ed if�( Rd) < 1 (i.e. whenb� has almost surely a
�nite number of points inRd). In the following we will assume one of the two following conditions on the
response function:

(A1) There exists a �nite real numberR� , such thatL (y; x; m) = 0 for all m 2 R` andy; x 2 Rd with
jy � xj > R � .

(A2) There exist positive constantsA and� such thatL (y; x; m) � Ajsj jzj � � , for all y; x 2 Rd; s 2
R` , wherej � j denotes the Euclidean norm.

Note that condition (A2) is satis�ed for the standard scenario with OPL 1 and OPL 2.

2An equivalent statement is that thecollection of cellsis a.s. a Radon point measure on the space of closed sets, so that it can be treated as a point
process

X

( x i ;m i ;t i )

" C i

on the space of closed sets. This is a typical assumption for coverage processes (in particular for the Boolean model, see e.g. (Stoyan, Kendall, and
Mecke 1995), eq. (3.1.1), p. 59.).
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Proposition 7.4.1. Let b� an be i.m. Poisson p.p. with intensity� . Assume thatt i > 0 a.s. We have

E[NK ] < 1 (7.8)

for an arbitrary largeK if one of the following conditions holds:

(i) Condition (A1) is satis�ed andw(x) > 0 for all x 2 Rd with probability 1,
(ii) Condition (A2) is satis�ed,w(t) � W > 0 a.s. for some (possibly random) variableW , and for

all R > 0

E
�
�

�
B

�
0; R +

� Ajm0j
t0W

� 1=� � ��
< 1 : (7.9)

(iii) Condition (A2) is satis�ed,L (y; x; m) > 0 a.s. for ally 2 Rd, and for allR > 0
Z

Rd

e� �( B (0;jx j)) E
�
�

�
B

�
0; R +

� Ajm1j
t1L(R; x; m 0)

� 1=� � ��
�( dx) < 1 ; (7.10)

wherem0 is independent of(m1; t1), with both having the distribution of the marginals of a
typical mark, andL(r; x; m ) = inf y:jyj� r L(y; x; m).

Proof. In order to prove (7.8), we construct various Boolean models dominating our coverage process� SINR

and we use Lemma 3.1.5 to ensure that the number of cells of the Boolean model which intersectK is of
�nite mean, which is equivalent to

E[�( �� � K )] < 1 ; (7.11)

where� is the generic grain of the BM.

(i) Under (A1), we haveCi � B (X i ; R� ) and the result follows from the fact that (7.11) is obviously
�nite for the Boolean model with deterministic cells.

(ii) Under (A2) we have

Ci =
�

y : L (y; x i ; mi ) � t i (I e� (y) � L (y; x i ; mi ) + w(y))
�

�
�

y : L (y; x i ; mi ) � t i W
�

�
�

y : Ajmi j j y � x i j � � � t i W
�

�
�

y : jy � x i j �
� Ajmi j

t i W

� 1=�
�

: (7.12)

Thus we haveCi � B (x i ; � i ) ; a.s., where

� i =
� Ajmi j

t i W

� 1=�
:

There is no loss of generality in assuming that the bounded setK is the ballB (0; R) and the
result now follows from the simple observation thatB (0; R) � B (0; � i ) = B (0; R + � i ).
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(iii) Now we do not assume anything aboutw(t) (thus it may by positive or null). Instead we use one
of the points of the process� to guarantee a suf�cient level for the variableI e� and thus bound
cell sizes from above. Letx0 denote the point of� which is nearest to the origin, and letm0 be
its mark. We have

NK = 1(K \ C0 6= ; ) +
X

i 6=0

1(K \ Ci 6= ; ) � 1 +
X

i 6=0

1(K \ Ci 6= ; ) : (7.13)

For any pointx i 6= x0 (i.e., jx i j > jx0j) of the point process, with markmi ; t i , andK = B (0; R)

Ci (�) \ K �
�

y : jyj � R andjy � x i j �
� Ajmi j

t i L(y; x0; m0)

� 1=�
�

�
�

y : jy � x i j �
� Ajmi j

t i inf y; jyj� R L(y; x0; m0)

� 1=�
�

� B
�

x i ; � (R; m i ; t i ; x0; m0)
�

;

where

� (R; m i ; t i ; x0; m0) =
� Ajmi j

t i L(R; x0; m0)

� 1=�
:

Using now (7.13) and the assumption thatx0 is the point nearest to the origin, we get

E[NK ] � E
�
1 +

X

i 6=0

1(K \ Ci 6= ; )
�

= E

" Z

Rd

1
�

�( B o(0; x0)) = 0
�

 

1 +
X

i 6=0

1(K \ Ci 6= ; )
�

�( dx0)
�

�
Z

Rd

e� �( B (0;jx0 j)) E

"

1 +
X

i; jx i j>x 0

1(K \ B (x i ; � (R; m i ; t i ; x0; m0)) 6= ; )
�

�( dx0) :

So by (7.11) for the Boolean model withGi = B (0; � (R; m i ; t i ; x0; m0)) conditioned onx0; m0

E[NK ] �
Z

Rd

e� �( B (0;jx0 j)) E
�
1 + �

�
K � B

�
0; � (R; m1; t1; x0; m0)

� ��
�( dx) :

The proof is concluded by observing thatB (0; R) � B (0; � (� � � )) = B (0; R + � (� � � )) .

Corollary 7.4.2. Let � be an independently marked andhomogeneousPoisson p.p. with intensity�( dx) =
� dx. Then(7:9) is equivalent to the following condition

E
h� jm0j

t0W

� d=� i
< 1 ; (7.14)
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whereas(7:10) is equivalent to the conjunction of the following two conditions

Z

Rd

e� �� d jx jd
�

E[L (R; x; m 0)]
� � d=�

dx < 1 ; E
��

jm0j
t0

� d=� �
< 1 : (7.15)

Remark: Conditions analogous to parts (i) and (ii) of Proposition 7.4.1 can be observed in the stationary
ergodic case; (7.9) and (7.14) have the same form withE[: : :] replaced withE0[: : :], whereE0 is the expec-
tation w.r.t. the Palm distribution of the mark(m0; t0). The proof is based on Campbell's formula. Part (iii)
has no generalization due to the lack of an explicit form of the joint distribution ofx0 (the point which is
nearest to the origin) and the remaining part of a general point process.

7.5 The Coverage Process Characteristics

Our goal in this section is to analyze the coverage process� SINR, and more speci�cally, the distribution
of the number of cells covering a given point. From this, the volume fraction and other characteristics of
� SINR can be derived. LetNx = N f xg (cf. (7.7)) denote the number of cells covering a given pointx. For
all integersk, let k(n) = k(k � 1) : : : (k � n + 1) + , wherek+ = max(0 ; k). Below we give formulae for
factorial momentsE[N (n)

x ] of Nx . From this, the distribution ofNx can be derived using the formula

P(Nx = n) =
1
n!

1X

k=0

(� 1)k E[N (n+ k)
x ]
k!

; (7.16)

which follows from the well-known expansion of the generating function. Of course, these expansions usu-
ally require strong conditions (existence of all moments and convergence of the series). However, these
issues disappear whenNx is bounded.

7.5.1 BoundedNx

Suppose now that the distribution of the marks is such thatt i are bounded away from 0 i.e.

(B) t i � � a.s. for some constant� > 0.

Using the result of Proposition 6.2.1 we immediately have the following property of the coverage process:

Corollary 7.5.1. If Condition (B) is satis�ed thenNx < 1=� almost surely.

Proof. Assume thatn = Nx cells cover pointx. Then from Proposition 6.2.1,
P n

k=1 t i k � 1, wheret i k ,
k = 1 ; : : : n are marks of the cells coveringx. Sincet i k � � , son � 1=� .

Remark: This bound suggests an analogy with queueing theory. One can think of queueing theory as a
way of sharing time between customers arriving at a queue according to some point process on the line,
and requiring some given service times. We can also think of our coverage process as a way of sharing
space between the points of a spatial point process with given marks. Under the condition mentioned in
the last lemma, the coverage process can be seen as a spatial analogue of the`-server queue, with̀ =
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minf n integer: n � 1=� g, in that no point in space can be covered by more than` cells; in the same way,
the`-server queue forbids that at any point in time, more than`-customers could be served. Note thatsharing
actually means quite different things here and there: in queues, the sharing of time is implemented by shifting
customers in excess to later times, while keeping their service times unchanged. In contrast, for this coverage
process, sharing of space is obtained by shrinking the marks: if one de�nes thespace requestof point x0 as
the setC(0)

0 = f y : L (y; x0; m0) � t0w(y)g, which would be the share of space obtained byx0 if there were
no other points, then one can see the setC0 =

�
y : L (y; x0; m0) � t0(I e� (y) � L (y; x0; m0) + w(y))

	
, as

a shrunken version ofC(0)
0 resulting from the competition with the other points.

In the same vein, the Boolean model, which is a limiting case of our coverage process (see Section 5.5.1),
can also be seen as a spatial analogue of the in�nite server queue, and that in this case, the analogy is quite
strong, with in particular the same Poisson distribution for the number of marks (customers or cells) covering
a given (time or space) point.

7.5.2 Factorial Moments ofNx

We are now in a position to prove the following result.

Proposition 7.5.2. Assumeb� is a simple i.m. Poisson p.p. with intensity measure� . Then then-th factorial
moment of the numberNx of cells of� SINR( b�) covering pointx is equal to

E[N (n)
x ] =

Z

(Rd )n

P
�

x 2
n\

k=1

C(xk ;m k )

�
e� +

nX

i =1 ;i 6= k

" (x i ;m i ) ; w(y); t i

� �
�( dx1) : : : �( dxn ) ; (7.17)

wheree� is distributed asb� without markst i andf (mi ; t i )gn
i =1 are mutually independent vectors, indepen-

dent ofb� distributed as its generic mark. This relation holds provided the integral on the right hand side is
�nite. In particular, if b� is a homogeneous Poisson p.p. with intensity�( dx) = � dx then for eachx 2 Rd

E[Nx ] = � E
h�
�
�C(x;m 0 ) ( e� ; w(y); t0)

�
�
�
i

; (7.18)

wherejCj is thed-dimensional volume of the cellC.

Proof. For a particular realizationb� of the marked Poisson p.p, denote byb� (n) its n-th factorial power, that
is the following point measure on

�
Rd � R` � R+

� n

b� (n) =
X

x i 1 ;:::;x i n 2 �
distinct

" (( x i 1 ;:::;x i n );(m i 1 ;:::;m i n );(t i 1 ;:::;t i n )) :

In other words,b� (n) consists of alln-tuples of distinct points ofb� (see Chapter 9). Now we can write the
factorial power(Nx )(n) of the number cells covering pointx as the following integral with respect tob� (n)

N (n)
x =

Z

(Rd )n

nY

k=1

1
�

x 2 C(xk ;m k ) ( e� ; w(y); t i )
�

b� (n)
�

d((x1; : : : ; xn ); (m1; : : : ; mn ); (t1; : : : ; tn )
�

:

(7.19)
We get (7.17) by applying the re�ned Campbell theorem to the (see Corollary 9.2.3) expectation of this in-
tegral and the fact that factorial moment measures of Poisson processes are Lebesgue measures (Proposition
9.1.3).
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Remark: For the �niteness of the integral that appears in Proposition 7.5.2, it is enough to assume exactly
the same conditions as for the� -�niteness of the mean measure of

P
i "Ci given in Proposition 7.4.1 parts (i)

and (ii). In the caseP(w(y) = 0) > 0 however, some integrals of the negative moments of ordernd=� of
L (y; x0; m) have to be �nite, wherex0 is the point which is nearest to the origin. Details can be found
in (Baccelli and B�aszczyszyn 2001).

7.5.3 Volume Fraction

Thevolume fractionp = P(0 2 � SINR) is a basic characteristic of a stationary coverage process. Strictly
speaking, it can be de�ned and calculated for any coverage process, but then the notion might be misleading,
since it is only when we assume that the probabilityP(x 2 � SINR) does not depend onx, that we can say that
the expected fraction of thed-dimensional volume of� SINR per unit ball is equal top (cf. the remark after
De�nition 3.1.8). Thus for the remaining part of this section we assume that� is a homogeneous Poisson
p.p. with intensity� , that the functionL(y; x; m) = L(y � x; 0; m) depends only on(jx � yj; m)) and that
w(y) is stationary. Using the expansion (7.16) we can writep =

P 1
k=1 (� 1)k+1 =k!E[(N0)(k) ], where the

coef�cients are given in Proposition 7.5.2, provided all moments are �nite and the series is convergent. Note
however, that if we assume condition (B) of Section 7.5.1 (t i � � > 0 a.s.), then the expansion has only
�nitely many non-zero terms.

Note that the dependent marking of our coverage process (cells are dependent) makes it impossible to
calculate the volume fraction in the way typically used for Boolean models. Nevertheless using the factorial
moment expansion technique for a general class of functionals of spatial p.p.s presented in (B�aszczyszyn,
Merzbach, and Schmidt 1997) (see also papers cited there), the �rst order approximation of the volume
fraction can be represented as

p = �
Z

Rd

p0(x) dx + O(� 2) = � E[ jC(0;M ) j ] + O(� 2) ; (7.20)

wherep0(x) is the single (typical) cell coverage probability andE[ jC(0;M ) j ] is the expected volume of

the typical cell. The �rst term in the last formula differs from the formula (7.18) forE[N0] only in thatb� is
replaced by the null measure (without points). More general approximation formulae (involving polynomials
in � ) can be obtained via this expansion technique.

7.5.4 Noise or Interference Limited Coverage — Extremal Cases

The aim of this section is to extend the results of Section 5.5 on the convergence of cellsCi towards e.g.
those of the BM or those of a VT to the convergence of the whole SINR coverage process.

Noise Limited Cells — towards a Boolean Model. By analogy to what was done in Section 5.5.1 con-
sider the following family of SINR coverage processes

� (� )
SINR =

[

i

C(� )
i ;

where
C(� )

i =
n

y : L (y; x i ; mi ) � t(� (I e� (y) � L (y; x i ; m)) + W )
o

:

Note that (for simplicity) we have assumed a random noiseW which is constant in space, but possibly
random.
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Proposition 7.5.3. Assume that the conditions of Corollary 5.2.1 withw(y) = W are satis�ed as well
as Condition (1) in Section 5.5.1. Then, almost surely on the space of closed sets,lim � ! 0 � (� )

SINR = � (0)
SINR

(Painlev́e–Kuratowski convergence), provided� (� )
SINR is a random closed set for� 2 [0; � 0] and some� 0 > 0.

Proof. Observe that

[

�

� (� ) =
[

�

[

i

C(� )
i =

[

i

[

�

C(� )
i =

[

i

C(0)
i =

[

i

C(0)
i ;

where the last but one equality follows from (5.8) and the last one from the assumption that� (0)
SINR is a closed

set.

Remark: Suppose thatb� is an independently marked Poisson point process. Then� (0)
SINR given W is a

Boolean model with grainsC(0)
i =

n
y : L (y; x i ; mi ) � t i W

o
.

Example 7.5.4.We now illustrate Proposition 7.5.3 by showing some patterns of our coverage process
� SINR “conforming” to a Boolean model pattern. We simulated a Poisson p.p. with 60 points on the square
[� 5; 15]2 (so that� = 0 :15). While observing only the square[0; 10]2, we take all 60 points of the larger
square into account for evaluatingI e� . We assume the standard scenario for the coverage process with the
OPL function(1 + jyj)3. Thepi 's are uniformly distributed on[0; 2], t i � 1 andW � 0:1. The various
patterns result from taking various values for� . Figure 5.2 presents the coverage process� SINR “on its way”
to a Boolean model. We have: (a)� = 0 :4; note that2� < 1 < 3� ; thus at most two cells could cover any
given point, although this is not observed; (b)� = 0 :2; since4� < 1 = 5� , at most four cells could cover
any given point; (c)� = 0 :1; cells occupy more and more of the �nal space that they occupy under the
Boolean model regime; (d)� = 0 :0001; almost the limiting case where each cell is a disc with independent
radius distributed as(10p)1=3 � 1 (with mean201=3 � 3=4 � 1 � 1:035).

Here is an extension of Proposition 5.5.5. DenoteD (x;m;t ) = f y : L (y; x; m) = tW g.

Proposition 7.5.5. Suppose that the conditions of Proposition 7.5.3 are satis�ed. If for a given compact
K 2 Rd Z

Rd

Z

R`

Z

R+

P !
(x;m;t )

n
K \ D (x;m;t ) 6= ; ; �K \ D (x;m;t ) = ;

o
cM (d(x; m; t )) = 0 ; (7.21)

whereZ = ( S; (a; b; c)) is a generic mark, then as� # 0, the number of cellsNK (� (� )
SINR) hitting setK

converges almost surely and in expectation to the number of cells of� (0)
SINR hitting K .

Proof. Note that under assumption (7.21) the (expected) number of points ofb� not satisfying (5.9) is equal
to 0. Thus by Proposition 5.5.5

lim
� ! 0

NK (� (� )
SINR) = lim

� ! 0

X

i

1
�

K \ C(� )
i 6= ;

�
=

X

i

1
�

K \ C(0)
i 6= ;

�
:
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Corollary 7.5.6. Suppose thatb� is an i.m. Poisson point process. Then under the assumptions of Proposi-
tion 7.5.3 we have the following convergence of the capacity functional:

lim
� ! 0

P
�

� (� )
SINR \ K 6= 0

	
= 1 � exp

� Z

Rd

Z

R`

Z

R+

1
�
K \ C(0)

(x;m;t ) 6= ;
� cM (d(x; m; t ))

�
:

Nearest-interferer Limited Cells — towards the Voronoi Tessellation. For all integern > 2, let
� n

SINR = [ i Cn
i , whereCn

i is the SINR cellCn
i = Cn

(x i ;pi )
( e� � " (x i ;pi ) ; 0; t i ) obtained for the OPL 2

functionln (r ) = (1 + r )n and forW � 0. Similarly to Proposition 5.5.11 we have the following result:

Proposition 7.5.7. Assume thatb� is simple. Then for alli

lim
n!1

Cn
i = Cx i ;

almost surely on the space of closed sets (Painlevé–Kuratowski convergence), whereCx i = Cx i (�) is the
Voronoi cell ofx i generated by� , providedCn

i is a (random) closed set for suf�ciently largen.

Also the mean volume of the SINR cell can be approximated by the mean volume of the Voronoi cell, as in
Proposition 5.5.12.

Example 7.5.8.We now illustrate Proposition 7.5.7 by showing some patterns of our coverage process
� SINR “conforming” to the Voronoi tessellation of the plane (see Figure 5.3). The Poisson p.p., the obser-
vation and the simulation windows are as in Example 7.5.4. Markspi are uniformly distributed on[0; 2],
W � 0, t i � 0:2 thusallowing for at most four cells to overlap at a given point. The various patterns result
from taking the OPL functionl(r ) = (1 + r )n with variousn. We have: (a)n = 3 , (b) n = 5 , (c) n = 12,
(d) n = 100. The effect of overlapping is still visible. A more accurate tessellation can be obtained inhibiting
overlapping, e.g. by takingt i � 0:5.

Nearest-interferer and Noise Limited Cells — the Johnson–Mehl Model. When a strong attenuation
remains in some relation to the noise then the SINR coverage process might look like a sub-tessellations,
with each of its cellsconstrainedto remain within some disc with the diameter related to the noise.

Example 7.5.9.We now illustrate Corollary 5.5.13 by showing some patterns of our coverage process� SINR

“growing” to the Voronoi tessellation as in the Johnson-Mehl model (see Figure 5.4). The observation and
simulation windows and the Poisson p.p. are as in the previous examples. Markspi are uniformly distributed
on[0; 2] and we taket i � 0:5, thusinhibiting any intersections. The OPL functionl(y) = (1+ jyj)30 is strong
enough to give a tessellation covering almost the whole plane whenW � 0. We assumeW = (1 + R) � 30

and take: (a)R = 0 :4, (b) R = 1 :2, (c) R = 2 , (d) R = 1 (equivalent toW � 0). The result is a sequence
of sub-tessellations, with each of the cellsconstrainedto a disc of radiusR (wherever a cell has diameter
less thanR it has its �nal shape). All cells start growing at the same time.
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8
Signal-to-Interference Ratio Connectivity

8.1 Introduction

Consider a marked point processb� =
P

i " (x i ;m i ;t i ) as in Chapter 7 and the coverage process� SINR = [ i Ci

it generates, whereCi is the SINR cell of the point(x i ; mi ) for the SINR thresholdt i (see (7.6) in Chapter 7).

Suppose that the points of this point process constitute a network, in which one node is able to commu-
nicate with other nodes of the network, possibly via several hops (e.g. a MANET – see Section 25.3.1 in
Volume II). Suppose that the communication fromx i to x j is feasible ifx j 2 Ci . Important questions then
arise about the connectivity of the SINR model� SINR. They are similar to those concerning the connectivity
of the Boolean model studied in Section 3.2. Recall that the connectivity of the Boolean model in the whole
plane (space) is analyzed using percolation theory, in which setting the central question is the existence of
an in�nite connected component.

8.2 Signal-to-Interference Ratio Graph

Consider the following graphs associated with the SINR model� SINR generated by a marked point process
b� .

De�nition 8.2.1. Let Ci be de�ned by (7.6), Chapter 7.

� The directed SINR graphGd
SINR is the graph with vertices the atoms of� and with directed edges

from x i to x j if x j 2 Ci ;
� The bidirectional SINR graphGSINR is the graph with vertices the atoms of� and with non-

directed edges betweenx i andx j if x j 2 Ci andx i 2 Cj .

In this chapter we concentrate on the latter, which can be described in other words as the graph where
two points of� are connected iff they cover each other by their respective SINR cells.
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De�nition 8.2.2. One says that the SINR graphGSINR percolates if it contains an in�nite connected compo-
nent.

Remark: As already explained, the interest of percolation is to maintain simultaneous links allowing one
to build routes between any pair of nodes belonging to the in�nite component. Let us note that in spite of its
mathematical interest, this percolation model has one main practical drawback that stems from the technical
dif�culty of having a node being at the same time a transmitter and a receiver on the same frequency band.
This problem is taken care of in Chapter 22 in Volume II, where we consider time-space routing schemes
where receivers and transmitters form a partition of the set of nodes.

8.3 Percolation of the Signal-to-Interference Ratio Connectivity Graph

Consider the M/D
W + M/D model (see Chapter 7), i.e. the model generated by a homogeneous Poisson p.p. of the

plane with intensity� , marked by constant emitted powerspi = p and SINR thresholdst i = t. We assume
moreover that the noisew(y) = w is spatially constant and deterministic. We consider the response function
given byL(y; x; p) = p=l(jy � xj), wherel is some OPL function satisfying the following conditions:

(1) l(r ) � 1,
(2) l is continuous and strictly increasing (when �nite),
(3) l (0) < p=(tw),
(4)

R1
0 r=l (r ) dr < 1 .

Note that the condition (3) is necessary for the SINR cellCi to contain some neighborhood of its nucleusx i

(even in the absence of interference), while condition (4) guarantees that the SN generated by the underlying
marked p.p. and the response function is almost surely �nite.

Under the above assumptions, we consider the parametric family of SINR coverage processes

� (� )
SINR =

[

i

C(� )
i ; (8.1)

where
C(� )

i =
�

y : p=l(jy � x i j) � t
�
� (I e� (y) � p=l(jy � x i j)) + w

�	
: (8.2)

From Section 7.5.4 (see Proposition 7.5.3 and the remark following it), as� # 0, the cellC(� )
i converges

monotonically to the spherical cell

C(0)
i =

�
y : jy � x i j � l � 1(p=(tw))

	

of the Boolean model� (0)
SINR =

S
i C(0) , wherel � 1 is the inverse function ofl .

Fixing all other parameters, we denote byGSINR(�; � ) the SINR graph corresponding to� (� )
SINR. In what

follows we focus on the characterization of the two-dimensional set of parameter values

f (�; � ) : GSINR(�; � ) percolates with probability 1g:

Since the underlying point process is ergodic, it should be obvious that for the values of(�; � ) not be-
longing to the above set,GSINR(�; � ) percolates with probability 0 (i.e. does not percolate; cf. the proof of
Proposition 3.2.7 concerning the BM). Recall also that the parameter� stems from interference cancellation
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technique (see the discussion on the interference cancellation factor at the end of Section 24.3.4 in Vol-
ume II). Thus, the above set describes the pairs (density of nodes, interference cancellation factor) for which
the in�nite network contains an in�nite connected component, the nodes of which are able to communicate
simultaneously with the bit-rate associated to the SINR thresholdt.

By monotonicity in� , for each value of� > 0, there exists a critical value� � (� ), such thatGSINR(�; � )
percolates for0 � � < � � (� ) and does not percolate for� > � � (� ). The main question is to show whether
(and when) this SINR percolation threshold� � (� ) is strictly positive.

Let � SNR
c be the critical intensity for the percolation of the Boolean model� BM (�; r B ) with spherical

grains of �xed radiirB = l � 1(p=(tw))=2 (see (3.12) of Chapter 3 for the de�nition of the critical intensity).
Note thatrB is de�ned as the half of the radius of the spherical grains of� (0)

SINR. Thus, any two grains of
� BM (�; r B ) overlap iff the corresponding vertices ofGSINR(�; 0) are connected by an edge.

Note that� SNR
c represents the critical density of nodes for the existence of the in�nite connected com-

ponent in the SNR network; i.e. in the network where interference between coexisting channels is perfectly
cancelled. From the previous observation on the relation between� (� )

SINR and its Boolean limit� (0)
SINR, we

have the following immediate property:

Proposition 8.3.1. If � < � SNR
c then� � (� ) = 0 , i.e. for all � � 0, P f GSINR(�; � ) percolatesg = 0 .

Proof. SinceC(� )
i � C(0)

i for all � � 0 so GSINR(�; � ) � G SINR(�; 0); i.e. the graphs have the same set
of edges and the inclusion concerns the set of vertices. The result follows from the fact thatGSINR(�; 0)
percolates iff the Boolean model with spherical grains of the �xed radiusrB = l � 1(p=(tw))=2 percolates.

We now state the main result of this section.

Proposition 8.3.2. For any � > � SNR
c , the critical � � (� ) is strictly positive, i.e.P f GSINR(�; � )

percolatesg = 1 for all 0 � � < � � .

Proof. The main ideas of the proof given in (Dousse, Franceschetti, Macris, Meester, and Thiran 2006) are
as follows.

� Assuming� > � SNR
c , one observes �rst that the BM� BM (�; r 0) also percolates for somer0 <

rB . This means that the graphGSINR(�; 0) also percolates with any slightly larger constant noise
w0 = w + � 0, for some� 0 > 0.

� Moreover, one can show that the level-setf y : I e� (y) � M g of the SN �eld I e� percolates
(contains an in�nite connected component) for suf�ciently largeM . Consequently, taking� =
� 0=M one has percolation of the level-setf y : �I e� (y) � � 0g.

� The main dif�culty consists in showing thatGSINR(�; 0) with noisew0 = w+ � 0percolateswithin
an in�nite connected component off y : I e� (y) � � 0g. This is done by some mapping of the model
to a discrete lattice.

Here are the details of the proof. Let� > � SNR
c . Then, by assumption, the BM� BM (�; r B ) with intensity

� and spherical grains of �xed radiusrB percolates. Denote byr � (� ) < r B the critical radius for the
percolation of the BM� BM (�; r ); the existence of such a critical radius follows from Proposition 3.2.7,
by a rescaling argument (cf. Example 1.3.12). In what follows we pick some radiusr0 2 (r � (� ); rB ). By
assumption,� BM (�; r 0) percolates.
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In what follows we prove the percolation of some bond-percolation model (cf. Section 14.1). Then we
show how this implies the percolation ofGSINR(�; � ) for some� suf�ciently small.

Consider a square lattice of side-lengthd > 0, whose value is speci�ed later on. One de�nes two random
�elds Aa andBa with values inf 0; 1g, wherea runs over the setL d of all vertical and horizontal edges of
the above lattice. Letza = ( xa; ya) 2 R2 denote the geometric center of edgea.

� Fora denoting a horizontal edge, letAa be equal to 1 iff the following two conditions are satis�ed:

– the rectangle[xa � 3d=4; xa + 3d=4] � [ya � d=4; ya + d=4] is crossed from left to right
by a connected component of� BM (�; r 0),

– both squares[xa � 3d=4; xa � d=4]� [ya � d=4; ya+ d=4] and[xa+ d=4; xa+3d=4]� [ya �
d=4; ya + d=4] are crossed from top to bottom by a connected component of� BM (�; r 0).

For a denoting a vertical edge, the valueAa is de�ned similarly, by swapping the horizontal and
vertical coordinates.

� Fora 2 L d let Ba = 1 iff eI (za) < M , whereeI (z) is the SN generated by the underlying marked
Poisson ppe� (the one generating� SINR) with the modi�ed OPL function given by

el(r ) =

(
l(0) if 0 � r �

p
10d=4,

l(r �
p

10d=4) otherwise.

The value of the constantM is speci�ed later on.

Note that ifa anda0 are not adjacent thenAa andAa0 are independent. Consequently, the random �eld
f Aa : a 2 L dg de�nes a one-dependent bond (edge) percolation process, where the edgea is open iff
Aa = 1 . Consequently, using the fact that the probability of the crossing of a given rectangle by a connected
component of a super-critical BM converges monotonically to 1 when the sides tend to in�nity (see (Meester
and Roy 1996, Corollary 4.1)), we get that for any� > 0, one can �nd some value for the lattice side-length
d large enough to ensure that

Pf Aa1 = 0 ; : : : ; Aan = 0 g � � n (8.3)

for any set ofn different edgesa1; : : : ; an .
A similar statement can be shown for the �eldB . Precisely, for any given side-lengthd and any� > 0,

one can �nd a value for the constantM large enough for ensuring that

Pf Ba1 = 0 ; : : : ; Ban = 0 g � � n (8.4)

for any set ofn different edgesa1; : : : ; an . The proof of this statement is based on the following inequality,
which holds true for alls � 0

P [ Ba1 = 0 ; : : : ; Ban = 0 ] � P

"
nX

i =1

eI (zai ) > nM

#

� e� snM E
h
es

P n
i =1

eI (za i )
i

:

Note that the last expectation can be interpreted as the value of the Laplace transform of a Poisson p.p. (by
changing the order of summation

P m
i =1 and the sum which de�nes the SN valueeI (zai )). Using the known

form of this transform and assumption (4), one can show that for suf�ciently smalls > 0

E
h
es

P n
i =1

eI (za i )
i

� K n
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Fig. 8.1 Critical value of� as a function of the node density.

for some constantK which depends on� andd and not onM . This completes the proof of (8.4).
Using (8.3) and (8.4) one can show by the Cauchy-Schwartz inequality that for any� > 0, there exist

values of the lattice side-lengthd and of the constantM large enough for ensuring that

Pf Aa1 Ba1 = 0 ; : : : ; Aan Ban = 0 g � � n (8.5)

for any set ofn different edgesa1; : : : ; an .
By Peierls' argument (see Proposition 14.1.4 in Section 14.1.1) this last statement implies that one can

�nd values ofd andM such that we have percolation for the bond process onL d, where the edgea 2 L d is
open iffCa = AaBa = 1 .

It remains to show that the percolation of the above bond model implies that ofGSINR(�; � ) for some
suf�ciently small � = � (� ). From the fact thatr0 < r B = l � 1(p=(tw))=2 and from the strict monotonicity
of l , it follows that for all atomsx i ; x j of the Poisson p.p. such that their spherical grains of common radius
r0 intersect each other, we havel(jx i � x j j � p=(tw)(1 � � ) for some� > 0. Consequently,p=l(jx i � x j j) �
tw=(1 � � ) = t(w + � 0), for some� 0 > 0. Moreover, the existence of the in�nite connected component of
the bond percolation de�ned by the �eldf Cag implies the existence of an in�nite connected component in
the intersection of� BM (�; r 0) and the regionf y 2 R2 : I e� (y) � M g where the original shot noiseI e� is
not larger thanM . Thus theGSINR(�; � ) percolates for� � � 0=M , which concludes the proof.

8.3.1 Bounds on the SINR Percolation Threshold� � (� )

We consider the M/D
W + M/D model Section 8.3. Note that if the OPL functionl(r ) is bounded away from 0

(i.e. if the attenuation function is �nite), then when the density� of nodes increases, the right-hand side of
the inequality in (8.2) increases, while the left-hand side is bounded. Hence one may expect densi�cation
(taking � ! 1 ) to possibly destroy connectivity of the SINR graph. This is con�rmed by simulation as
shown by Figure 8.1 where we plot the critical value� � (� ) of � that separates the super and subcritical
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phases in function of the node density� .
The aim of this section is to provide bounds on� � (� ). A �rst immediate bound follows from Proposi-

tion 6.2.1.

Corollary 8.3.3. � � (� ) � 1=t for all � .

Proof. In order to have two different nodes communicating to one given node, this last node has to be
covered by two cells. By Proposition 6.2.1 this requires (as a necessary condition)2t=(1+ �t ) � 1=� which
is equivalent to� � 1=t.

In (Dousse, Baccelli, and Thiran 2005) the following asymptotic bound was proved in the case of an
OPL functionl which is in�nite outside some bounded set.

Proposition 8.3.4. Under the assumptions of Proposition 8.3.2 and assuming thatl is in�nite outside some
bounded set,

A 1

�
� � � (� ) �

A 2

�
for some positive and �nite constantsA 1; A 2.
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Chapters 5–7 follow (Baccelli and B�aszczyszyn 2001). Approximations and bounds for the probability of
coverage are considered in (Weber, Yang, Andrews, and de Veciana 2005). Under the assumption of Rayleigh
fading, the SINR coverage probability for a class of Poisson-Poisson cluster p.p. known as Neyman-Scott
p.p. was studied in (Ganti and Haenggi 2008a). The direct analytical methods have been used to compare this
provability for both for stationary and Palm repartition of nodes in the considered Poisson-Poisson cluster
p.p. to the coverage probability in the Poisson p.p. scenario. In a more general scenario, relying extensively
on the theory of stochastic ordering, in (B�aszczyszyn and Yogeshwaran 2009) one studies the effects of
ordering of random measures on ordering of shot-noise �elds generated by the respective random measures.
Some applications to the comparison of SINR coverage probabilities are presented there.

The results of Chapter 8 stem from (Dousse, Baccelli, and Thiran 2005) and (Dousse, Franceschetti,
Macris, Meester, and Thiran 2006). The percolation of the SINR graph is also studied and further developed
in (Franceschetti and Meester 2008).
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9
Higher Order Moment Measures of a Point Process

In this chapter,� is a p.p. onRd andB is the Borel� -algebra onRd. We denote byM the set of point
measures onRd and byM the� -algebra onM generated by sets of the formf � 2 M : � (A) = kg.

9.1 Higher Order Moment Measures

De�nition 9.1.1. For n � 1, we de�ne then-th power� n and then-th factorial power� (n) of � as the
following p.p. onRdn :

� n (A1 � : : : � An ) = �( A1) : : : �( An ) (9.1)

� (n) (A1 � A2 � : : : � An ) =
Z

: : :
Z

A 1 � A 2 � :::� A n

�
� �

P n� 1
k=1 " xk

�
(dxn )

�
� �

P n� 2
k=1 " xk

�
(dxn� 1) : : : �( dx1) : (9.2)

Here are a few immediate observations on these point processes:

� � n =
P

i 1 ;:::;i n :x i j 2 � " (x1 ;:::;x n ) ,

� � (n) =
P 6=

i 1 ;:::;i n :x i j 2 � " (x1 ;:::;x n ) ,

� For allA1; : : : ; An pairwise disjoint,� n (
N

k Ak ) = � (n) (
N

k Ak ).
� � (n) (A � : : : � A) = �( A)

�
�( A) � 1

�
: : :

�
�( A) � n + 1

� + .

De�nition 9.1.2. For n � 1, we de�ne then-th momentM n and then-th factorial momentM (n) of the
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p.p.� as the following measures onRd:

M n (B ) = E[� n (B )] (9.3)

M (n) (B ) = E[� (n) (B )] ; B 2 B n : (9.4)

Here are some obvious observations on these measures:

� M (1) (A) = M 1(A) = M (A) = E[�( A)].
� M 2(A � A) � (M (A))2 = Var(�( A)) is the variance of�( A).
� M 2(A � B ) � M (A)M (B ) = Cov (�( A); �( B )) is the covariance of�( A) and�( B ).
� ForA1; : : : ; An 2 B, M n (

N
k Ak ) = E[

Q
k �( Ak )]; in particularM n (An ) = E[�( A)n ].

� ForA1; : : : ; An pairwise disjoint,M n (
N

k Ak ) = M (n) (
N

k Ak ) = E[
Q

k �( Ak )].
� M (n) (A � : : : � A) = E[�( A)(�( A) � 1) : : : (�( A) � n + 1) + ].
� M 2(A � B ) = M (A \ B ) + M (2) (A � B ).

Proposition 9.1.3. For the Poisson p.p.� with intensity measure� , M = � andM (n) = � n , for all n.

Proof. Since�( A) is a Poisson r.v. with parameter�( A),

M (n) (An ) = E[�( A)(�( A) � 1) : : : (�( A) � n + 1) + ] = (�( A))n

Let n1; : : : ; nk 2 N, with
P

i ni = n and letA1; : : : ; Ak be pairwise disjoint Borel sets. We have

M (n)
� kO

i =1

An i
i

�
= E

� Y

i

� (n i ) (An i
i )

�
=

Y

i

E[� (n i ) (An i
i )] =

Y

i

M (n i ) (An i
i )

=
Y

i

� n i (An i
i ) = � n

� kO

i =1

An i
i

�
:

9.2 Palm Measures

De�nition 9.2.1. For n � 1, then-th order Campbell measureCn and then-th order reduced Campbell
measureC(n) of � are the following measures onRnd � M:

Cn (B � �) = E
� Z

B

1(� 2 �) � n (d(x1; : : : ; xn ))
�

(9.5)

C(n) (B � �) = E
� Z

B

1(� �
nX

i =1

" x1 2 �) � (n) (d(x1; : : : ; xn ))
�

; B 2 B n ; � 2 M : (9.6)

By the same type of arguments as in Section 1.4, we get:
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De�nition 9.2.2. If M n is � -�nite, for all � 2 M , there exist non-negative functionsPn
x1 ;:::;x n

(�) and

P (n)
x1 ;:::;x n (�) such that

Cn (B � �) =
Z

B

Pn
x1 ;:::;x n

(�) M n (d(x1; : : : ; xn )) (9.7)

C(n) (B � �) =
Z

B

P (n)
x1 ;:::;x n

(�) M (n) (d(x1; : : : ; xn )) : (9.8)

and such that forM n -almost all(x1; : : : ; xn ) 2 Rnd , Pn
x1 ;:::;x n

(�) andP (n)
x1 ;:::;x n (�) are probability measures

on(M; M ). Pn
x1 ;:::;x n

(:) is called then-th order Palm distribution of� andP (n)
x1 ;:::;x n (:) then-th order reduced

Palm distribution of� .

The following formulas, known as Campbell's formulas, are an immediate consequence of De�ni-
tion 9.2.2:

Corollary 9.2.3. For all non-negative functionsf on (Rnd � M)
Z

Rnd

Z

M

f (x1; : : : ; xn ; � ) Cn (d(x1; : : : ; xn ; � ))

=
Z

Rd

Z

M

f (x1; : : : ; xn ; � ) Pn
x1 ;:::;x n

(d� ) M n (d(x1; : : : ; xn )) (9.9)

Z

Rnd

Z

M

f (x1; : : : ; xn ; � ) C(n) (d(x1; : : : ; xn ; � ))

=
Z

Rd

Z

M

f (x1; : : : ; xn ; � ) P (n)
x1 ;:::;x n

(d� ) M (n) (d(x1; : : : ; xn )) : (9.10)

For x1; : : : ; xn 2 Rd let � x1 ;:::;x n and � !
x1 ;:::;x n

be point processes onRnd with laws Pn
x1 ;:::;x n

and

P (n)
x1 ;:::;x n respectively:

Pn
x1 ;:::;x n

(�) = P � x 1 ;:::;x n
(�) = Pf � x1 ;:::;x n 2 � g

P (n)
x1 ;:::;x n

(�) = P � !
x 1 ;:::;x n

(�) = Pf � !
x1 ;:::;x n

2 � g :

The Campbell formulas can be rewritten as

E
� X

x1 ;:::;x n 2 �

f (x1; : : : ; xn ; �)
�

=
Z

Rnd

E[f (x1; : : : ; xn ; � x1 ;:::;x n )] M n (d(x1; : : : ; xn )) (9.11)

E
� 6=X

x1 ;:::;x n 2 �

f (x1; : : : ; xn ; �)
�

=
Z

Rnd

E[f (x1; : : : ; xn ; � !
x1 ;:::;x n

)] M (n) (d(x1; : : : ; xn )) : (9.12)
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If M (n) is � -�nite, we have

Pf � x1 ;:::;x n �
nX

i =1

" x i 2 � g = Pf � !
x1 ;:::;x n

2 � g = P (n)
x1 ;:::;x n

(�) ; (9.13)

for M (n) -a.s. all pairwise different points(x1; : : : ; xn ) 2 Rd.

9.2.1 The Palm Measure Algebra

Assume thatM (n+ m) is � -�nite. For all (x1; : : : ; xn ) 2 Rnd , let

� C(n;m )
x1 ;:::;x n be them-th reduced Campbell measure of� x1 ;:::;x n ;

� M (n;m )
x1 ;:::;x m them-th factorial power of� x1 ;:::;x n ;

� P (n;m )
x1 ;:::;x n ;y1 ;:::;ym them-th reduced Palm measure of� x1 ;:::;x n .

Here is the composition rule for Palm measures:

Corollary 9.2.4. For allA 2 B n , B 2 B m

M (n+ m) (A � B ) =
Z

En

Z

Em

1
�

(x1; : : : ; xn ) 2 A
�

1
�

(y1; : : : ; ym ) 2 B
�

� M (m)
x1 ;:::;x n

(d(y1; : : : ; ym )) M (n) (d(x1; : : : ; xn )) (9.14)

and

P (n;m )
x1 ;:::;x n ;y1 ;:::;ym

= P (n+ m)
x1 ;:::;x n ;y1 ;:::;ym

(9.15)

for M (n+ m) -almost all(x1; : : : ; xn ; y1; : : : ; ym ) 2 Rn+ m .

Here is a direct consequence and extension of Slivnyak's theorem to higher order factorial moment
measures:

Corollary 9.2.5. Let � be a Poisson p.p. with intensity measure� . For � n -almost all(x1; : : : ; xn ) 2 Rd

distinct,

P (n)
x1 ;:::;x n

(�) = Pf � 2 � g (9.16)

Pn
x1 ;:::;x n

(�) = Pf � +
X

i

" x i 2 � g: (9.17)

The proof follows from (9.13) and Corollary 9.2.4 and from Slivnyak's theorem.
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10
Stationary Marked Point Processes

10.1 Marked Point Processes

Let (K; K) be some measurable mark space. In this chapter, we consider the spaceeM of point measures on
(Rd � K ; B 
 K ) such that for alle� 2 eM, e� (B � K) < 1 for all boundedB 2 B (B denotes the Borel
� -�eld of Rd). Let fM denote the� -�eld of eM generated by the mappingse� 7! e� (B � K ) whereB; K are
sets ofB; K respectively.

A marked p.p.e� is a measurable application from some probability space(
 ; A ; P) ! ( eM; fM ).

10.1.1 Translations

On eM, we de�ne thetranslation operatorof vectorx 2 Rd as

Sx e� (A � K ) = e� ((A + x) � K ) ; (10.1)

whereA + x = f y + x 2 Rd : y 2 A g. Note that ife� =
P

i " (x i ;k i ) ; thenSx e� =
P

i " (x i � x;k i ) :

De�nition 10.1.1. A marked p.p.e� is stationary if its law is invariant by all translations, i.e. ifP(Sx e� 2
�) = P( e� 2 �) for all x 2 Rd and� 2 fM .

10.1.2 Rotations

On eM, we de�ne therotation operator

Rr e� (A � K ) = e� (rA � K ) ; (10.2)

whererA = f ry 2 Rd : y 2 A g and wherer is a rotation (w.r.t. the origin ofRd) if r : x 7! Ax with A
an orthogonal matrix (i.e. a matrix such thatAT A = I anddet A = 1 ). Note that ife� =

P
i " (x i ;k i ) , then

Rr � =
P

i " (r � 1x i ;k i ) .
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De�nition 10.1.2. The p.p. � is isotropic if its law is invariant by all rotations, i.e. ifP(r e� 2 �) =
P( e� 2 �) , for all rotationsr and� 2 fM .

The homogeneous Poisson point process and its associated hard core Matérn point process are both station-
ary and isotropic.

10.2 Palm–Matthes Distribution of a Marked Point Process

10.2.1 Campbell–Matthes Measure of a Marked Point Process

The intensity of a stationary marked p.p.e� is

� = E[e�( U � K)] = E[�( U)] ; (10.3)

whereU = (0 ; 1]d and�( �) = e�( � � K). In what follows, we assume that0 < � < 1 .
The Campbell–Matthes measureeC of the marked p.p.e� is de�ned as

eC(B � K ) = E
� Z

E

Z

K

1(x 2 B )1(z 2 K ) e�( d(x; z))
�

: (10.4)

It admits the representation
eC(B � K ) = � jB j� (K ) : (10.5)

The probability measure� (�) on (K; K) is called thePalm distribution of the marks.
Using classical monotone class arguments, (10.5) gives:

Corollary 10.2.1. For all functionsf : Rd � K ! R+ ,

E
� X

xn 2 �

f (xn ; kn )
�

= �
Z

Rd

Z

M

f (x; k ) � (dk)dx : (10.6)

The last formula is the Campbell–Matthes formula for stationary marked p.p.

10.2.2 Palm–Matthes Probability of a Stationary Point Process

Let � be a stationary p.p. It is easy to check that

e� =
X

i

" x i ;Sx i � =
X

i

" x i ;� � x i

is a stationary marked p.p. with marks taking their values in the measurable space(M; M ). These speci�c
marks are called the universal marks of� .

By de�nition, thePalm–Matthes distribution of the stationary p.p.� on(M; M ) is the Palm distribution
of the marks of this stationary marked p.p. It is denoted byP0. When making use of (10.5), we get that it
can be de�ned by

P0(�) =
1

� jB j
E

� Z

Rd

1(x 2 B )1(Sx � 2 �) �( dx)
�

=
1

� jB j
E

� Z

Rd

1(x 2 B )1(� � x 2 �) �( dx)
�
; � 2 M ; (10.7)
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whereB is any bounded Borel set ofRd.
Using classical monotone class arguments, (10.5) gives:

Corollary 10.2.2. For all functionsf : Rd � M ! R+ ,

E
� Z

Rd

f (x; Sx (�))�( dx)
�

= E
� X

xn 2 �

f (xn ; � � xn )
�

= �
Z

Rd

Z

M

f (x; � ) P0(d� )dx : (10.8)

The last formula is the Campbell–Matthes formula for stationary p.p.
The distributionP0 is often interpreted as that of the point process “seen from a typical point” or “seen

from a randomly chosen point” of� . This latter interpretation is justi�ed when

P0(�) =
1

� jB j
E

� X

xk 2 �

1(xk 2 B )1(� � xk 2 �)
�

= lim
B n " Rd

1
� jBn j

X

xk 2 �

1(xk 2 Bn )1(� � xk 2 �) : (10.9)

Remark 10.2.3. It is often better to de�ne the Palm–Matthes probability on the probability space(
 ; A )
where the p.p.� is assumed to be de�ned, rather than on(M; M ) as above. For this, one has to assume that
this probability space is endowed with an abstract shift operator� x , x 2 Rd, such that

�( � x ! ) = Sx �( ! ): (10.10)

If the probabilityP on (
 ; A ) is such thatE(f � � x ) = E(f ) for all x, then any p.p. satisfying (10.10) is
stationary. One then proceeds as above; one de�nes the Campbell-Matthes measure onRd � 
 by

C(B � F ) = E
� Z

Rd

Z




1(x 2 B )1(� x ! 2 F ) �( d(x))
�

; (10.11)

for all F 2 A . It admits the representation

C(B � F ) = � jB jP0(F ) : (10.12)

The probability measureP0 is called thePalm–Matthes probabilityof � on (
 ; A ). It can also be de�ned
by the relation:

P0(F ) =
1

� jB j
E

� Z

Rd

1(x 2 B )1(� x ! 2 F ) �( dx)
�

: (10.13)

The associated Campbell–Matthes formula reads

E
� X

xn 2 �

f (xn ; � xn ! )
�

= � E0
� Z

Rd

f (x; �) dx ;
�

(10.14)

with E0 the expectation w.r.t.P0 on (
 ; A ).
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10.2.3 Relation with the De�nition Given in the Non-stationary Case

The aim of this section is to clarify the relationships between

� the Palm distributions de�ned in Section 1.4, which was denoted byPx ;
� the Palm distribution of order 1, de�ned in Section 9.2, which was denoted byP1

x ;
� the Palm–Matthes distributionP0 which was de�ned above,

whenever the underlying p.p.� is stationary.
We havePx = P1

x (this is just a matter of notation). The relationship betweenPx andP0, which are two
probability measures onM, is clari�ed by the following lemma:

Lemma 10.2.4.For almost allx in Rd and for all� in M ,

Px (�) = P0(S� 1
� x (�)) ; (10.15)

whereS� 1
a (�) = f � 2 M : Sa� 2 � g, a 2 Rd.

Proof. Applying the Campbell–Matthes formula to the function

f (x; � ) = 1(x 2 B )1(� 2 S� 1
� x (�)) = 1(x 2 B )1(S� x (� ) 2 �) ;

we get that for all bounded Borel setsB and all� 2 M

�
Z

B

P0(S� 1
� x (�)) dx = E

� Z

Rd

1(x 2 B )1(Sx � S� x (�) 2 �) �( dx)
�

= E
� Z

Rd

1(x 2 B )1(� 2 �) �( dx)
�

= C1(B � �) ;

whereC1 is de�ned in Section 9.2. Hence, from (9.7) in Chapter 9,

�
Z

B

P0(S� 1
� x (�)) dx = �

Z

B

Px (�) dx :
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11
Fairness and Optimality

Here we brie�y remind the basic notions and facts concerning the fairness and optimality in resource allo-
cation.

We assume that we haveN entities (think of mobile users in a given cell). The goal is to allocate some
positive real valued resource (think of rates)R = ( R1; : : : ; RN ) to these entities respecting some constraint
of the formR 2 R , where the set of feasible allocationsR is some given subset ofRN . An allocation
R 2 R is called

� (globally) optimalif it maximizes
P N

n=1 Rn .
� (strictly) Pareto optimalif there is no solutionR 0 2 R dominating it, i.e. such thatR0

n � Rn for
all n = 1 ; : : : ; N andR0

n0
> R n0 for somen0 2 f 1; : : : ; N g.

� max-min fairif for eachn 2 f 1; : : : ; N g increasingRn must be at the expense of decreasingRm

for somem such that initiallyRm < R n . If a max-min fair allocation exists, then it is unique and
strictly Pareto optimal (for a uni�ed treatment see (Radunovic and Le Boudec 2002)).

� proportionally fair if for each other allocationR 0 2 R we have
P N

n=1 (R0
n � Rn )=Rn � 0. If a

proportionally fair allocation exists onR, then it is unique and it is the solution of the following
maximization problemmaxR 2R

P N
n=1 logRn ( (Maulloo, Kelly, and Tan 1998)).

Consider the maximization problem

max
R 2R

NX

n=1

R1� �
n =(1 � � );

where� is a real number. Its solution is called the� –fair optimal. The following relations hold (see (Mo
and Walrand 2000) for the proof).

Proposition 11.0.5.An � –fair optimal policy is globally optimal when� ! 0, proportionally fair when
� ! 1, and max-min fair when� ! 1 .
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12
Lemmas on Fourier Transforms

12.1 Fourier Transforms

For all functionsf from R to R we will denote by

bf (s) =
Z

R

e� 2i�ts f (t)dt

its Fourier transform ats 2 R when it exists.
Below, we will make use of the fact that the Fourier transform is an isometry on the space of square in-

tegrable functions (Plancherel-Parseval Theorem, (Brémaud 2002)). Namely, for all square integrable func-
tionsf andg, Z

R

f (t)g(t)dt =
Z

R

bf (s)bg(s)ds; (12.1)

whereg(s) denotes the complex conjugate ofg(s).

12.2 Lemmas

The following lemma and its corollaries establish representations of the mass that a (square integrable)
density puts on an interval (possibly a random interval) in terms of the Fourier transform of this density.

Lemma 12.2.1.Let f be a square integrable function. Then for all real numbersa < b,
bZ

a

f (t)dt =
Z

R

bf (s)
e2i�bs � e2i�as

2i�s
ds: (12.2)

Proof. This immediately follows from the isometry property and from the fact that the Fourier transform of
the square integrable functiong(t) = 1(a � t � b) is

bg(s) =
e� 2i�bs � e� 2i�as

� 2i�s
:
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Note that iff is a bounded probability density, then it is square integrable.

Corollary 12.2.2. Let X be a non-negative real valued random variable with a square integrable density
f ; let Y be a non-negative and integrable real-valued random variable with a square integrable densityg.
Assume thatX; Y are independent. Then

P(X � Y ) =
Z

R

bf (s)
bg(s) � 1

2i�s
ds: (12.3)

Proof. We deduce from (12.2) that the L.H.S. of (12.3) is equal to

1Z

0

g(y)
Z

R

bf (s)
e2i�ys � 1

2i�s
dsdy:

Equation (12.3) follows provided one can swap the two integrals. This is licit provided the function

(s; y) ! g(y) bf (s)
e2i�ys � 1

2i�s

is absolutely integrable. For largejsj this function is integrable as a corollary of the Cauchy-Schwarz in-
equality and the integrability off 2(�), which in view of (12.1) is equivalent to the integrability ofj bf (s)j2

(see also (Feller 1971, p.510)). For smalljsj the modulus of this function is bounded from above by the

functiong(y)
�
�
� bf (s)

�
�
� yK for some constantK so that absolute integrability holds wheng has a �rst moment.

For instance, if bothX andY are exponential with parameters� and� , resp., then we can use the Cauchy
residue theorem to check that

P(X < Y ) =
Z

R

�
(� + 2 i�s )( � � 2i�s )

ds =
�

� + �

as expected.
The next lemma extends the previous representations to the Laplace transform of the positive part of a

real valued random variable.

Lemma 12.2.3.Let X be a real valued random variable with a square integrable densityf . Let X + =
max(X; 0). Then, for allu > 0,

E(e� uX +
) = P(X < 0) +

Z

R

bf (s)
u � 2i�s

ds: (12.4)
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Proof. The integral to be evaluated for obtaining the second term is

I (u) =

1Z

�1

f (t)1(t > 0)e� stdt:

Since the Fourier transformbg(s) of the functiont ! 1(t > 0)e� ut is 1=(u + 2 i�s ), it follows from the
isometry property that

I (u) =
Z

R

bf (s)
u � 2i�s

ds:

A naive use of (12.4) would lead to the result that

P(X > 0) = lim
u! 0

I (u) = �
Z

R

bf (s)
2i�s

ds:

As we shall see below, this is wrong.
A �rst question anyway is the sense to give to the last singular integral (it is called singular because of

the singularity ats = 0 ).
Let � (:) be some complex valued function which satis�es the following assumptions (referred to as A

below):

� it is differentiable, with �nite derivatives;
� it is such thatj� (s)j � 1=jsj � , whenjsj tends to1 , for some� > 0.

One can then give a sense to the singular integral

J =
Z

R

� (s)
s

ds; (12.5)

(note that thanks to our assumption on the tail behavior of� , the only singularity that matters here is that at
s = 0 ) as the principal value form which is de�ned as

J = lim
� ! 0

Z

R=[� �;� ]

� (s)
s

ds: (12.6)

For more on the evaluation of singular integrals and their principal value, see (Ghakov 1966).

Corollary 12.2.4. If f is a square integrable probability density with a �nite �rst moment, then for all real
numbersa

1Z

a

f (t)dt =
1
2

�
1

2i�

Z

R

bf (s)e2i�as

s
ds; (12.7)

where the singular integral is de�ned as above.
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Proof. First, it is enough to prove the formula fora = 0 since the functionf (t � a) has for Fourier transform
bf (s)e2i�as :

The formula fora = 0 is a direct corollary of Lemma 12.2.3 and of the so called Sokhotski formula (see
(Ghakov 1966)) which states that for all functions� as above, for allu > 0,

lim
u! 0

Z

R

� (s)
s + iu

ds =
Z

R

� (s)
s

ds + i�� (0):

Equation (12.4) and the last relation applied to� (s) = � (1=2i� ) bf (s) immediately give (12.7). Equivalently

lim
u! 0

I (u) =
1
2

�
Z

R

bf (s)
2i�s

ds:

We can use the Sokhotski formula because the Fourier transform of a density admitting a �rst moment is
differentiable and has �nite derivatives. In addition the fact that the density is square integrable implies that
its Fourier transform is square integrable, so that the tail decay of Assumption A holds.

Here is another proof based on more elementary arguments. When lettingbgo to1 in (12.2), the L.H.S.
tends to

R1
0 f (t)dt. We rewrite the R.H.S. as the sum of three terms

I 1 = �
Z

R

bf (s)
2i�s

ds

I 2 =
Z

R

e2i�bs
bf (s) � 1(s 2 [� �; + � ])

2i�s
ds

I 3 =
Z

R

e2i�bs � 1(s 2 [� �; + � ])
2i�s

ds =
1
2

;

where� is a positive real number.
The Riemann-Lebesgue lemma (Brémaud 2002) states that for all integrable functionsg,

lim
b!1

Z

R

g(s)e2i�bs ds = 0 :

So, in order to prove thatI 2 tends to0 whenbtends to1 , it is enough to show that

Z

R

�
�
� bf (s) � 1(s 2 [� �; + � ])

�
�
�

2� jsj
ds < 1 :

But this follows from the following two bounds:

Z

R=[� �;� ]

�
�
� bf (s)

�
�
�

jsj
ds �

0

B
@

Z

R=[� �;� ]

1
s2 ds

Z

R

�
�
� bf (s)

�
�
�
2

ds

1

C
A

1
2

< 1 ;

where we used the Cauchy-Shwarz inequality and the fact thatbf (s) is square integrable becausef (s) is, and

Z

[� �;� ]

�
�
� bf (s) � 1

�
�
�

jsj
ds � � 2j bf 0(0)j;
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where we used that fact that ifX has a �nite �rst moment then its Fourier transform is differentiable and has
a �nite derivative.
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13
Graph Theoretic Notions

Let (� ; E) be a connected undirected graph with the set of vertices� and edgesE. The neighbors of vertex
(node)x 2 � are de�ned as the set of nodesy 2 � such that the edge(x; y) 2 E.

Let w be a collection of non-negative weights associated with the edges of the graph (i.e., a non-negative
function described onE). De�ne the weight of a subgraph of(� ; E) as the sum of the weights of its edges.

13.1 Minimum Spanning Tree

A spanning treeof this graph is a subgraph which is a tree and which connects all the vertices of this graph.
A Minimum Weight Spanning Tree(or Minimum Spanning Tree (MST)for short) is a spanning tree with
weight no larger than that of all other spanning trees.

Given a connected weighed graph(� ; E; w), a MST can be constructed using Prim's algorithm:

� Initialize 	 = f xg, wherex is any node andF = ; ;
� Repeat until	 = � :

– Choose an edge(u; v) from E with u 2 	 andv =2 	 and with minimum weight (if there
are multiple solutions, pick one arbitrarily);

– Add v to 	 and(u; v) to F .

The proof of the fact that the output(	 = � ; F ) of this algorithm is a MST of(� ; E; w) is classical.
Assume the MST is unique. Here are two useful properties.

Lemma 13.1.1.Assume that for allx, there is a unique neighborx � of x such thatw(x; x � ) < w (x; y), for
all other neighborsy of x. Then(x; x � ) 2 F ; i.e., this is an edge of the MST.

Proof. When initializing Prim's algorithm withx, we see that(x; x � ) is an edge of the MST. Uniqueness
concludes the proof.
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Lemma 13.1.2 (Cycle property).For all x andy neighbors, if the edge(x; y) belongs to the MST, there
is no sequence of verticesz0; z1; : : : ; zn ; zn+1 in � , with n � 1, x = z0, y = zn+1 , (zk ; zk+1 ) 2 E for all
k = 0 ; : : : ; n, and for whichw(zk+1 ; zk ) < w (x; y), for all k = 0 ; : : : ; n.

Proof. The above sequence de�nes a cycle of the graph. Assume(x; y) is in the MST andw(zk+1 ; zk ) <
w(x; y), for all k = 0 ; : : : ; n. If we delete edge(x; y) in the MST, this breaks it into two subtreesTx andTy

with x 2 Tx andy 2 Ty . Since each node of� is either inTx or in Ty , there is an integer0 � k � n such
that the nodesz0; : : : ; zk all belong toTx and the nodeszk+1 ; : : : ; zn all belong toTy . Consider now the tree
obtained by adding the edge(zk ; zk+1 ) to Tx [ Ty . Then this tree has a weight strictly smaller than that of
the initial MST, which is a contradiction.

13.1.1 Nearest Neighbor Graph

For any vertexx 2 � call anyx � 2 � satisfyingw(x; x � ) � miny2 � w(x; y) aw-nearest neighborof x. We
call thenearest neighbor graph (NNG) of� the graph on the set of vertexes� for which edges are drawn
between anyx and any of its nearest neighbors.

The following statements are simple consequences of the de�nition of the NNG and of Lemma 13.1.1.

Corollary 13.1.3. Suppose each nodex 2 � has a unique nearest neighbor. Then the NNG has at most
card(�) edges. Moreover, NNG is a subgraph of the MST.

13.1.2 Euclidean MST of the Poisson Point Process

Let � be a realization of a homogeneous Poisson p.p. onRd with intensity � . Consider� as the set of
vertices of the complete graph (i.e., for anyx; y 2 � , (x; y) 2 E). Let w(x; y) = jx � yj be the Euclidean
distance.

Let K be a compact subset ofRd. Consider the MST(� K ; FK ) of (� K ; EK ; w), where� K = � \ K and
EK = f (x; y) : x; y 2 � K g; it is unique with probability 1. Denote byM = M K (� ) = max (x;y )2F K

jx � yj
thelongest edge in the MSTof � \ K .

The following result was proved in (Penrose 1997) for the BM inR2 (and for the BM in higher dimension
on the torus):

Proposition 13.1.4.Given a unit squareK = [ � 1
2 ; 1

2 ]2 � R2 and a homogeneous Poisson p.p.� with
intensity� on the planeR2. Denote byM = M (� ) the longest edge of the MST of� \ K . Then

lim
� !1

Pf ��M 2 � log � � u g = exp[ � e� u ] u 2 R : (13.1)

Proof. We will only give a sketch of the reasoning presented in (Penrose 1997): Denote by~M = ~M (� ) the
longest edges of the NNG of� \ K . Because the NNG is a subgraph of the MST,~M � M . Conversely, one
gets that all edges(x; y) of the MST of� \ K which satisfy the condition�� jx � yj2 � log � > u (we call
themu-long) belong to the NNG of� \ K with a probability converging to 1 when� ! 1 . Consequently

Pf ��M 2 � log � � u g � Pf �� ~M 2 � log � � u g

� Pf ��M 2 � log � � u g + Pf 9 edgeu-long in MST that is not in NNGg
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and for allu,
lim

� !1
Pf ��M 2 � log � � u g = lim

� !1
Pf �� ~M 2 � log � � u g:

Now, let us study the followingsurrogate model of the longest edge in the NNG. Consider� (assumed to be
an integer) i.i.d. random variablesS1; : : : ; S� , with a genericS having for distributionP(S � u) = e� ��u 2

,
and de�ne cM = cM (� ) = max( S1 : : : ; S� ). Note that the distribution ofS corresponds to the distribution
of the length of the distance form a typical point of the homogeneous Poisson p.p. with intensity� to its
nearest neighbor; so the surrogate model ignores the boundary-effects of the “true” NNG. Moreover, in the
true NNG, the number of points inK (jK j = 1 ) is Poisson with mean� rather than deterministic and equal
to � , and their nearest neighbor distances are not independent. Despite this, it is shown in (Penrose 1997)
using the Chen–Stein method that

lim
� !1

Pf �� ~M 2 � log � � u g = lim
� !1

Pf �� cM 2 � log � � u g:

Thanks to independence it is easy to show that the latter limit of the surrogate model is equal to

lim
� !1

Pf �� cM 2 � log � � u g = lim
� !1

�
1 �

e� u

�

� �
= exp[ � e� u ] :
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14
Discrete Percolation

14.1 Bond percolation on Zd .

Consider the integer latticeZd in d dimensions. In what follows we will considerd � 2. Denote byL the set
of edges joining any two adjacent points ofZd (which are at distance 1 from each other). Consider a family
of random variablesf X (e)ge2L which are identically distributed withPf X (e) = 1 g = 1 � Pf X (e) =
0g = p for somep 2 [0; 1]. We assume that this family isergodicwith respect to the natural shift onZd,
however,we do not assumeX (e) to be mutually independent. We will say that the edgee 2 L is openif
X (e) = 1 andclosedotherwise. This model is known asbond percolationonL ; see Figure 14.1.

De�nition 14.1.1. We say that the bond percolation modelpercolatesif the set of open edges contains an
in�nite connected subset.

Denote byC the maximal connected component in the set of open edges containing the origin (as the
endpoint of one of the edges). De�ne� (p) = Pf # C = 1 g , where# C denotes the number of edges in
the setC.

Remark 14.1.2. If � (p) = 0 , then the probability that the model percolates is 0 (we say that ”it does not
percolate”). Indeed, the probability that some edge belongs to an in�nite component can be bounded by
the sum of these probabilities over all edges, which is 0 due to the assumption. By ergodicity of the family
f X (e)g, the converse is also true: if� (p) > 0, then with probability 1 the model percolates.

Let pc = supf [0; 1] 3 p : � (p) = 0 g. By stochastic monotonicity, the model percolates with probability 1
for p > pc and does not percolate forp < pc.

Remark 14.1.3. Another important monotonicity, with respect to dimensiond, implies thatpc(d + 1) �
pc(d), where we mark in the notation the explicit dependence of the critical probabilitypc on the dimension.
To realize this it is enough to embedL d in L d+1 considering the natural projection ofL d+1 onto the subspace
generated by the �rstd coordinates and noting that any in�nite component inL d is also an in�nite component
in L d+1 .

135



Fig. 14.1 Left: bond percolation on the square lattice inR2 . Right: Closed circuit surrounding(0; 0) on the dual lattice.

Note thatpc may be degenerated (i.e., equal to 0 or 1). A �rst question answered in the theory of perco-
lation is that of the conditions under which0 < p c < 1.

14.1.1 Upper Bound for the Critical Probability

We will give now some suf�cient condition forpc < 1. We will state and prove the result ford = 2 . By
Remark 14.1.3 this will be also a suf�cient condition in all higher dimensions.

Assume thusd = 2 . Denote byL 0 the shift of the square latticeL by the half of its side-length hori-
zontally and vertically. The latticeL 0 is calledthe dual toL . Note that for each edgee 2 L there exists a
unique edgee0 2 L 0, intersectinge at its center. Thus, one can de�ne uniquely a dual �eldf X 0(e0)ge02L 0 by
puttingX 0(e0) = X (e); see Figure 14.1. Denote by� (n) the number of self-avoiding circuits (closed paths)
of lengthn in the dual latticeL 0surrounding the origin. The proof of the following results is often referred
to as Peierls's argument (see e.g. (Grimmett 1989, pp.16–19)).

Proposition 14.1.4.Consider the bond percolation modelf X (e) : e 2 Lg on the square latticeZ2. Suppose
that for someq (0 � q < 1)

Pf X (e1) = 0 ; : : : ; X (en ) = 0 g � qn (14.1)

for any set ofn different edgese1; : : : ; en . If

1X

n=1

� (n)qn < 1; (14.2)

then the bond percolation model percolates.

Proof. The origin belongs to an in�nite connected component iff it is not surrounded by any closed circuit
of the dual bond percolation de�ned onL 0. We will show that this last probability is positive by proving
that its complement is strictly less than 1. For this, note that the probability that there exists a closed circuit
surrounding the origin is bounded by the expected number of such circuits, which in turn is bounded byP 1

n=1 � (n)qn < 1.
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Remark: For the square latticeL on the plane, we have the following bound:� (n) = 0 for n = 1 ; 2; 3 and
� (n) � 4n3n� 2 for n � 4. Thus condition (14.1) reads

4=9
1X

4

n(3q)n =
4(3q)4(4 � 9q)

9(3q � 1)2 < 1;

which is true forq < 0:2075: : :.

Example 14.1.5 (Independent bond percolation).In the case of independent bond percolation onZ2, i.e.
whenX (e) : e 2 L are independent, condition (14.1) is obviously satis�ed byq = 1 � p. Thus condi-
tion (14.2) is satis�ed forp > 1� 0:2075: : : = 0 :7924: : : or, in other words,pc(2) � 0:7924: : :. However,
in this case some re�nement of the proof of Proposition 14.1.4 can be used to show that percolation holds
provided the series in (14.2) is onlyconvergent. Indeed, in this case, some numberN can be found such
that

P 1
n= N � (n)qn < 1. Thus, with positive probability there is no closed circuit surrounding the origin of

length larger thanN . Moreover, for any rectangle containing the origin, the con�guration of bonds outside
the rectangle is independent of the con�guration of bonds inside the rectangle, and with positive probability
all the bonds inside it are open. This shows that the probability that the origin belongs to an in�nite open
connected component is positive. This new condition implies that the independent bond percolation model
percolates forp > 2=3 or, in other words, thatpc(2) � 2=3. In fact, in this case, using some more �ne
arguments concerning the symmetry of the model one can prove thatpc(2) = 1 =2 (see e.g. (Grimmett 1989,
Ch. 9)).

14.1.2 Lower Bound for the Critical Probability; Independent Percolation Case

In the case of independent bond percolation, it is also relatively easy to show thatpc(d) > 0 for anyd.
Denote by� (n) = � (n; d) the number of self-avoiding paths of lengthn onZd starting at the origin and

let � (d) = lim n!1 (� (n; d))1=n.

Proposition 14.1.6.For independent bond percolation onZd we havepc(d) � 1=� (d).

Proof. Denote byN (n) the number of open paths starting at the origin and of length at leastn. If the origin
belongs to an in�nite open path then obviously for alln we haveN (n) � 1. Thus

� (p) � P f N (n) � 1g � E[N (n)] � pn � (n)

for all n. If � (p) > 0 thenlimn p(� (n))1=n = p� (d) � 1, i.e.;p > 1=� (d), which completes the proof.

The exact value of� (d) is not known, however a simple observation gives� (n; d) � 2d(2d � 1)n� 1 and
thus� (d) � 2d � 1.

Concluding what was said about the independent bond percolation we have proved the following result.

Theorem 14.1.7.For independent bond percolation onZd with d � 2 we have0 < � c < 1.
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Fig. 14.2 Left: site percolation on the square lattice inR2 . Right: dual bond percolation.

14.2 Independent Site Percolation

In site percolation, one opens or closes the vertexes of a given graph rather than its edges. Consider again
Zd as the set of vertexes (called here “sites”) and edgesL de�ned exactly as in Section 14.1.

Let f Y (v)gv2 Zd be a family of i.i.d. random variables withPf Y (v) = 1 g = 1 � Pf Y (v) = 0 g = p.
We will say that the sitev 2 Zd is openif Y (v) = 1 andclosedotherwise. This model is known assite
percolationon Zd; cf. Figure 14.2 Two sites are saidadjacentif they are connected by some edge (bond).
A subset of sites is saidconnectedif the corresponding sub-graph is connected.

De�nition 14.2.1. We say that the site percolation modelpercolatesif it contains an in�nite connected
sub-graph with open vertexes.

Denote byCsite the maximal connected sub-graph with open vertexes containing the origin. De�ne
� site (p) = Pf # Csite = 1 g , where# Csite denotes the number of vertexes in the setCsite andpsite

c =
supf [0; 1] 3 p : � site (p) = 0 g. By stochastic monotonicity, the model percolates with probability 1 for
p > psite

c and does not percolate forp < psite
c .

Proposition 14.2.2.For all d we havepsite
c < 1; i.e. the site percolation model percolates for suf�ciently

largep < 1.

Proof. We will prove this result considering the followingdual one-dependent bond percolation. For any
edgee 2 L with end-points inv andw, de�ne X (e) = Y(v)Y (w); i.e., the edge is open iff its end-points
are both open as sites. Obviously, if the dual bond model percolates then the original site model percolates as
well. By Remark 14.1.3 it is enough to prove that the bond model percolates in dimensiond = 2 . For this we
will use Proposition 14.1.4. Note that the independence off Y (v)g implies the following one-dependence
of f X (e)g: variablesX (e1); : : : ; X (en ) are mutually independent if no two edges ine1; : : : ; en have a
common vertex. Any vertex in any edge inL (in dimension 2) has6 edges sharing some vertex with it. This
implies that condition (14.1) is satis�ed forq = (1 � p2)n=7 and, by the Remark after Proposition 14.1.4,
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condition (14.1) reads

4=9
1X

n=4

n
�

3(1 � p2)1=7
� n

< 1;

which is satis�ed for suf�ciently largep < 1.
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Table of Mathematical Notation and Abbreviations

jX j Euclidean norm of vectorX .
jB j Lebesgue measure of setB 2 B.
n set difference.
< X; Y > scalar product of vectorsX andY .
A parameter of the OPL attenuation models.
a.s. almost surely.
A (X ) (resp.A n (X )) radial point map atX (resp. time-space point map atX and at

timen).
A d(X ) (resp.A d;n (X )) d-directional point map atX (resp. time-space point map atX

and at timen).
B the Borel� -algebra of the Euclidean space.
BX (r ) ball of centerX and radiusr .
� attenuation exponent of the OPL attenuation models.
CX (�) Voronoi cell of pointX w.r.t. the p.p.� .
C(X;M ) (�) SINR cell of pointX w.r.t. the marks (fading, threshold, power,

etc.)M and the p.p.� .
D the destination node (in routing context; Part V in Volume II).
e (resp.e(n)) indicator of MAC channel access (resp. at timen).
E expectation.
E0 expectation w.r.t. the Palm probability.
� x Dirac measure atx.
F (resp.F (n)) fading variable (resp. at timen).
GSINR the SINR graph.
GSINR the time-space SINR graph.
GI General fading.

GI
W+ GI=GI Kendall-like notation for a wireless cell or network.
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iff if and only if.
i.i.d. independently and identically distributed.
I � shot noise �eld associated with the point process� .
K (� ) constant associated with Rayleigh fading SN. See (2.26 in Vol-

ume I) and (16.9 in Volume II)
L (X ) length to the next hop from pointX in a routing algorithm.
L (X ) local delay at nodeX .
l(:) attenuation function of the OPL models.
L � Laplace functional of the p.p.� .
L V Laplace transform of the random variableV .
� the intensity parameter of a homogeneous Poisson p.p.
�( :) the intensity measure of a Poisson p.p.
L.H.S. left hand side.
M exponential random variable (or Rayleigh fading).
M space of point measures.
� the mean fading is� � 1.
N the non-negative integers.
N (�; � 2) the Gaussian law of mean� and variance� 2 onR.
N C(0; � 2) the complex vauled Gaussian law.
O the origin of the Euclidean plane (in routing context; Part V in

Volume II).
p medium access probability in Aloha.
P(X ) progress from pointX towards destination in a routing algo-

rithm.
P probability.
P0 Palm probability.
pc probability of coverage.
� point process.
Rd Euclidean space of dimensiond.
S the source node (in routing context; Part V in Volume II).
R.H.S. right hand side.
T threshold for SINR.
Var Variance.
V (X ) (resp.V (X; n )) set of neighbors ofX in GSINR (resp. of(X; n ) in GSINR).
W (resp.W (n)) thermal noise (resp. at timen).
Z the relative integers.
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Index

access point, 64
ad hoc network, 4, 10, 55, 63
Aloha, 10
atom, 5
attenuation

omni-directional, 33
azimuth, 36

BM, seeBoolean model
bond percolation, 135
Boolean model (BM), 44

clump, 53
connectivity

in a �nite window, 51
homogeneous, 46
percolation, 53

bounded set, 3

Campbell
formula, 13, 14, 96

higher order, 100, 117
reduced, 14, 15

measure, 13
higher order, 116
reduced, 13, 116

Campbell–Little–Mecke formula,see Campbell
formula

Campbell–Matthes

formula, 19, 59, 120, 121
measure, 18, 25, 120

capacity functional,seeRAC ...
CDF,seecontact distribution function

spherical, 48
CDMA, 89
clump,seeBM ...
coherence

distance, 34, 37
complete independence, 6
connectivity

of a BM in a �nite window,seeBM ...
contact distribution function, 48
continuum percolation, 51
counting measure, 3
covariance function,seeRAC ...
coverage probability

of a RAC, 49
Cox p.p., 22
CSMA, 28

Delaunay
triangulation, 63

Dirac measure, 3
distribution

multinomial, 4
phase type, 75

downlink, 34
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ergodicity, 20, 21, 121
ESN,seeextremal shot-noise
exchange formula, 60, 65

fading, 38
Fourier transform, 125

graph
Boolean connectivity, 51
nearest neighbor, 132
random geometric, 51
SINR, 105

connectivity, 105

hard core p.p., 26, 29
honeycomb model, 34, 60

i.m.p.p.,seeindependently marked p.p.
in�nite connected component, 53–55, 105–107
intensity

critical, 53, 107
measure, 3, 14
of a stationary p.p., 19, 120

interference
cancellation factor, 107
�eld, 33

isotropy, 120

Johnson–Mehl cell, 77, 87, 103

Kendall-like notation
for SINR cell, 73, 91
for SINR cell with fading, 76
for SINR coverage, 94
for SN, 33, 38

locally �nite measure, 3

m.p.p.,seemarked point process
MANET, seemobile ad hoc network, 34
mark of a point process, 119
Matérn p.p., 26

hard core, 26, 27
measure

Campbell m. of a p.p., 13
mean m. of a p.p., 13

MHC, seeMatérn hard core, 120
minimum spanning tree, 131
mobile ad hoc network, 11
mobility, 11

high, 12
moment measure

factorial, 116
higher order, 100, 116, 118

nearest neighbor
distance to, 16
graph, 132

network
cellular, 34, 64
interference limited, 73, 101
noise limited, 73, 101

NNG, seenearest neighbor graph

omni-directional path-loss, 33
OPL,seeomni-directional path loss
orthogonal signature sequence, 90

p.p.,seepoint process
Painlev́e–Kuratowski convergence, 77, 79, 84,

102, 103
Palm

distribution, 14
higher order, 117
of marks, 26, 120
reduced, 13, 117

version of a p.p.
reduced, 15

Palm–Matthes distribution, 19, 22, 58, 61, 120,
121

paradox
Feller's, 60

path-loss
exponent, 33
omni-directional, 33

Peierls' argument, 109, 136
percolation

Boolean, 51
of a BM, 53,seeBM
of bonds, 108, 109, 135
of sites, 136, 138
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SINR, 106
point average, 21
point measure, 3, 119
point process, 3

n-th factorial power, 100, 115
n-th power, 115
ergodic, 20, 21
isotropic, 120
Laplace functional, 6
marked, 23, 119

independently, 23
stationary, 25

point transformation, 10
Poisson, 3

homogeneous, 4
simple, 5
stationary, 18, 119
superposition, 8
thinning, 9

Poisson p.p., 3
doubly stochastic, 22
homogeneous, 4

pole capacity, 91
Prim's algorithm, 131
principal value, 74, 127

RAC, seerandom closed set
radiation pattern, 36
random

closed ball, 43
closed set (RAC), 43

capacity functional, 44, 73
contact distribution function, 48
covariance function, 47, 76
coverage probability, 49
translation invariant, 46
volume fraction, 46

compact set, 17
cross-fading model, 39
sequential addition, 29
walk, 11
waypoint, 11

Rayleigh fading, 34
response function, 29, 71, 78

retention function, 9, 52
rotation operator, 119
route average, 22
routing

multihop, 55
time-space, 106

saturated hard balls, 28
shift operator, 121
shot-noise, 29

extremal, 40
�eld, 29, 71, 107
time–space, 39

signal to interference and noise ratio, 71
signal to noise ratio, 77
singular integral, 74, 127
SINR,seesignal to interference and noise ratio

cell, 71, 89, 105
coverage process, 93
graph, 105

site percolation, 138
Slivnyak's theorem, 14, 24, 95

higher order, 118
Slivnyak-Mecke theorem,seeSlivnyak's theorem
SN,seeshot-noise
SNR,seesignal to noise ratio
SNR cell, 78
spanning tree, 131
spatial

average, 20
sphere packing, 28, 29
standard stochastic scenario

for SINR cell, 73
for SN, 33

stopping set, 17
strong Markov property, 17

tessellation, 57
theorem

Slivnyak's, 14–16, 24, 52, 95
higher order, 118

thermal noise, 71
space independent, 73, 94
time independent, 73
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thinning, 9, 27
time–space

shot-noise, 39
time-space

routing, 106
translation operator, 119

universal marks, 120

virtual power, 34, 38
volume fraction, 28, 46, 101
Voronoi

cell, 57
fundamental region, 63

�ower, 63
neighbor, 63
tessellation, 57

VT, seeVoronoi tessellation
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