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Preface

A wireless communication network can be viewed as a collection of nodes, located in some domain, which
can in turn be transmitters or receivers (depending on the network considered, nodes may be mobile users,
base stations in a cellular network, access points of a WiFi mesh etc.). At a given time, several nodes
transmit simultaneously, each toward its own receiver. Each transmitter—receiver pair requires its own
wireless link. The signal received from the link transmitter may be jammed by the signals received from
the other transmitters. Even in the simplest model where the signal power radiated from a point decays in
an isotropic way with Euclidean distance, the geometry of the locations of the nodes plays a key role since
it determines thaignal to interference and noise rat{8INR) at each receiver and hence the possibility of
establishing simultaneously this collection of links at a given bit rate. The interference seen by a receiver is
the sum of the signal powers received from all transmitters, except its own transmitter.

Stochastic geometry provides a natural way of de ning and computing macroscopic properties of such
networks, by averaging over all potential geometrical patterns for the nodes, in the same way as queuing
theory provides response times or congestion, averaged over all potential arrival patterns within a given
parametric class.

Modeling wireless communication networks in terms of stochastic geometry seems patrticularly relevant
for large scale networks. In the simplest case, it consists in treating such a network as a snapshot of a
stationary random model in the whole Euclidean plane or space and analyzing it in a probabilistic way.
In particular the locations of the network elements are seen as the realizations of some point processes.
When the underlying random model is ergodic, the probabilistic analysis also provides a way of estimating
spatial averageswvhich often capture the key dependencies of the network performance characteristics
(connectivity, stability, capacity, etc.) as functions of a relatively small number of parameters. Typically,
these are the densities of the underlying point processes and the parameters of the protocols involved. By
spatial average, we mean an empirical average made over a large collection of 'locations' in the domain
considered; depending on the cases, these locations will simply be certain points of the domain, or nodes
located in the domain, or even nodes on a certain route de ned on this domain. These various kinds of



spatial averages are de ned in precise terms in the monograph. This is a very natural approach e.g. for
ad hoc networks, or more generally to describe user positions, when these are best described by random
processes. But it can also be applied to represent both irregular and regular network architectures as
observed in cellular wireless networks. In all these cases, such a space average is performed on a large
collection of nodes of the network executing some common protocol and considered at some common time
when one takes a snapshot of the network. Simple examples of such averages are the fraction of nodes
which transmit, the fraction of space which is covered or connected, the fraction of nodes which transmit
their packet successfully, and the average geographic progress obtained by a node forwarding a packet
towards some destination. This is rather new to classical performance evaluation, compared to time averages.

Stochastic geometry, which we use as a tool for the evaluation of such spatial averages, is a rich branch
of applied probability particularly adapted to the study of random phenomena on the plane or in higher
dimension. Itis intrinsically related to the theory of point processes. Initially its development was stimulated
by applications to biology, astronomy and material sciences. Nowadays, it is also used in image analysis
and in the context of communication networks. In this latter case, its role is similar to that played by the
theory of point processes on the real line in classical queuing theory.

The use of stochastic geometry for modeling communication networks is relatively new. The rst papers
appeared in the engineering literature shortly before 2000. One can consider Gilbert's paper of 1961 (

) both as the rst paper on continuum and Boolean percolation and as the rst paper on the analysis
of the connectivity of large wireless networks by means of stochastic geometry. Similar observations can
be made on ( ) concerning Poisson-Voronoi tessellations. The number of papers using some
form of stochastic geometry is increasing fast. One of the most important observed trends is to take better
account in these models of speci ¢ mechanisms of wireless communications.

Time averages have been classical objects of performance evaluation since the work of Erlang (1917).
Typical examples include the random delay to transmit a packet from a given node, the number of time steps
required for a packet to be transported from source to destination on some multihop route, the frequency
with which a transmission is not granted access due to some capacity limitations, etc. A classical reference
on the matter is ( ). These time averages will be studied here either on their own or in
conjunction with space averages. The combination of the two types of averages unveils interesting new
phenomena and leads to challenging mathematical questions. As we shall see, the order in which the time
and the space averages are performed matters and each order has a different physical meaning.

This monograph surveys recent results of this approach and is structured in two volumes.
Volume | focuses on the theory of spatial averages and contains three parts. Part | in Volume | provides a
compact survey oglassicalstochastic geometry models. Part Il in Volume | focusesStiiR stochastic
geometry. Part Il in Volume 1 is an appendix which contains mathematical tools used throughout the
monograph. Volume |l bears on more practical wireless network modeling and performance analysis. It is
in this volume that the interplay between wireless communications and stochastic geometry is deepest and
that the time—space framework alluded to above is the most important. The aim is to show how stochastic
geometry can be used in a more or less systematic way to analyze the phenomena that arise in this context.
Part IV in Volume 1l is focused on medium access control (MAC). We study MAC protocols used in ad
hoc networks and in cellular networks. Part V in Volume Il discusses the use of stochastic geometry for the
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guantitative analysis of routing algorithms in MANETSs. Part VI in Volume Il gives a concise summary of
wireless communication principles and of the network architectures considered in the monograph. This part
is self-contained and readers not familiar with wireless networking might either read it before reading the
monograph itself, or refer to it when needed.

Here are some comments on what the reader will obtain from studying the material contained in this
monograph and on possible ways of reading it.

For readers with a background in applied probability, this monograph provides direct access to an emerg-
ing and fast growing branch of spatial stochastic modeling (see e.g. the proceedings of conferences such as
IEEE Infocom, ACM Sigmetrics, ACM Mobicom, etc. or the special issue (

)). By mastering the basic principles of wireless links and of the organi-
zation of communications in a wireless network, as summarized in Volume Il and already alluded to in
Volume |, these readers will be granted access to a rich eld of new questions with high practical interest.
SINR stochastic geometry opens new and interesting mathematical questions. The two categories of objects
studied in Volume II, namely medium access and routing protocols, have a large number of variants and of
implications. Each of these could give birth to a new stochastic model to be understood and analyzed. Even
for classical models of stochastic geometry, the new questions stemming from wireless networking often
provide an original viewpoint. A typical example is that of route averages associated with a Poisson point
process as discussed in Part \V in Volume Il. Reader already knowledgeable in basic stochastic geometry
might skip Part | in Volume | and follow the path:

Partllin Volume 1) Part|VinVolumell ) PartVin Volume ll,

using Part VI in Volume Il for understanding the physical meaning of the examples pertaining to wireless
networks.

For readers whose main interest in wireless network design, the monograph aims to offer a new and
comprehensive methodology for the performance evaluation of large scale wireless networks. This method-
ology consists in the computation of both time and space averages within a uni ed setting. This inherently
addresses the scalability issue in that it poses the problems in an in nite domain/population case from the
very beginning. We show that this methodology has the potential to provide both qualitative and quantitative
results as below:

Some of the most important qualitative results pertaining to these in nite population models
are in terms ofphase transitionsA typical example bears on the conditions under which the
network is spatially connected. Another type of phase transition bears on the conditions under
which the network delivers packets in a nite mean time for a given medium access and a given
routing protocol. As we shall see, these phase transitions allow one to understand how to tune the
protocol parameters to ensure that the network is in the desirable "phase” (i.e. well connected and
with small mean delays). Other qualitative results are in terms of scaling laws: for instance, how
do the overhead or the end-to-end delay on a route scale with the distance between the source
and the destination, or with the density of nodes?

Quantitative results are often in terms of closed form expressions for both time and space aver-
ages, and this for each variant of the involved protocols. The reader will hence be in a position

\Y



to discuss and compare various protocols and more generally various wireless network organiza-
tions. Here are typical questions addressed and answered in Volume Il: is it better to improve on
Aloha by using a collision avoidance scheme of the CSMA type or by using a channel-aware ex-
tension of Aloha? Is Rayleigh fading bene cial or detrimental when using a given MAC scheme?
How does geographic routing compare to shortest path routing in a mobile ad hoc network? Is
it better to separate the medium access and the routing decisions or to perform some cross layer
joint optimization?

The reader with a wireless communication background could either read the monograph from beginning to
end, or start with Volume Il i.e. follow the path

Part IV in Volume Il ) PartVinVolumell') Partllin Volume |

and use Volume | when needed to nd the mathematical results which are needed to progress through
Volume 1.

We conclude with some comments on what the reademwilind in this monograph:

We do not discuss statistical questions and give no measurement based validation of certain
stochastic assumptions used in the monograph: e.g. when are Poisson-based models justi ed?
When should one rather use point processes with some repulsion or attraction? When is the sta-
tionarity/ergodicity assumption valid? Our only aim is to show what can be done with stochastic
geometry when assumptions of this kind can be made.

We will not go beyond SINR models either. It is well known that considering interference as noise

is not the only possible option in a wireless network. Other options (collaborative schemes, suc-
cessive cancellation techniques) can offer better rates, though at the expense of more algorithmic
overhead and the exchange of more information between nodes. We believe that the methodology
discussed in this monograph has the potential of analyzing such techniques but we decided not
to do this here.

Here are some nal technical remarks. Some sections, marked with a * sign, can be skipped at the rst
reading as their results are not used in what follows; The index, which is common to the two volumes, is
designed to be the main tool to navigate within and between the two volumes.
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Preface to Volume |

This volume focuses on the theory and contains three parts.

Part | provides a compact survey olassicalstochastic geometry models. The basic models de ned
in this part will be used and extended throughout the whole monograph, and in particular to SINR based
models. Note however that these classical stochastic models can be used in a variety of contexts which
go far beyond the modeling of wireless networks. Chapter 1 reviews the de nition and basic properties of
Poisson point processes in Euclidean space. We review key operations on Poisson point processes (thinning,
superposition, displacement) as well as key formulas like Campbell's formula. Chapter 2 is focused on
properties of the spatial shot-noise process: its continuity properties, its Laplace transform, its moments
etc. Both additive and max shot-noise processes are studied. Chapter 3 bears on coverage processes,
and in particular on the Boolean model. Its basic coverage characteristics are reviewed. We also give a
brief account of its percolation properties. Chapter 4 studies random tessellations; the main focus is on
Poisson—\Voronoi tessellations and cells. We also discuss various random objects associated with bivariate
point processes such as the set of points of the rst point process that fall in a Voronoi cell w.r.t. the second
point process.

Part Il focuses on the stochastic geometry of SINR. The key new stochastic geometry model can
be described as follows: consider a marked point process of the Euclidean space, where the mark of a
point is a positive random variable that represents its “transmission power”. The SINR cell of a point
is then de ned as the region of the space where the reception power from this point is larger than an
af ne function of the interference power. Chapter 5 analyzes a few basic stochastic geometry questions
pertaining to such SINR cells in the case with independent marks, such as the volume and the shape of
the typical cell. Chapter 6 focuses on the complex interactions that exist between cells. Chapter 7 studies
the coverage process created by the collection of SINR cells. Chapter 8 studies the impact of interfer-
ences on the connectivity of large-scale mobile ad hoc networks using percolation theory on the SINR graph.

Part Ill is an appendix which contains mathematical tools used throughout the monograph.
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It was our choice not to cover Gibbs point processes and the random closed sets that one can associate
to them. And this in spite of the fact that these point processes already seem to be quite relevant within this
wireless network context (see the bibliography of Chapter 18 in Volume Il for instance). There are two main
reasons for this decision: rst, these models are rarely amenable to closed form analysis, at least in the case
of systems with randomly located nodes as those considered here; second and more importantly, the amount
of additional material needed to cover this part of the theory is not compatible with the format retained here.
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Classical Stochastic Geometry



The most basic objects studied in classical stochastic geometry are multidimensional point processes,
which are covered in Chapter 1, with a special emphasis on the most prominent one, the Poisson point
process. Our default observation space in this part will be the EuclideanRpacelimensiond 1. Even
if for most of the applications studied later, the pldRe(2D) suf ces, it is convenient to formulate some
results in 3D or 4D (e.g. to consider time and space).

Shot noise elds, which are used quite naturally to represent interference elds, are studied in Chapter 2.
Chapter 3 is focused on coverage processes, with the particularly important special case of the Boolean
model. Chapter 4 bears on Voronoi tessellations and Delaunay graphs, which are useful in a variety of
contexts in wireless network modeling. These basic tools will be needed for analyzing the SINR models
stemming from wireless communications to be analyzed from Part Il on. They will be instrumental for
analyzing spatio-temporal models when combined with Markov process techniques.



1

Poisson Point Process

Consider thed-dimensional Euclidean spad®. A spatial point procesgp.p.) is a random, nite or
countably-in nite collection of points in the spa&¥, without accumulation points.

One can consider any given realizatiorof a point process as a discrete subset fXx;g Iﬁd of
the space. It is often more convenient to think ofis acounting measurer a point measure = "y,
where"y is the Dirac measureat x; for A RI, "W(A) = 1 if x 2 A and"x(A) = 0 if x 62A.
Conseqt,gantly, (A) gh{es the number of “points” of in A. Also, for all real functiond de ned onRY,
we have ;f(xj) = Raf(x) (dx). We will denote byM the set of all point measures that do not have
accumulation points ilR%. This means that any 2 M is locally nite, thatis (A) < 1 for any bounded
A RY(asetis bounded if it is contained in a ball with nite radius).

Note thata p.p. can be seen as a stochastic processf ( A)ga2s With state spachl = f0;1;:::9 3
( A) and where the indeR runs over bounded Borel subsetsRSf. Moreover, as for “usual” stochastic
processes, thdistribution of a p.p. is entirely characterized by the family of nite dimensional distributions
(( A1):::1; ( Ax)), whereAq;:::; Ay run over the bounded subsetsRt.

1.1 De nition and Characterizations
1.1.1 De nition

Let be alocally nite non-null measure orC.

De nition 1.1.1. The Poisson point process of intensity measure is de ned by means of its nite-

1 We do not discuss here the measure-theoretic foundations of p.p. theory; we remark that each time we talk abolg asRSset a function
f de ned onRY, we understand that they belong to some “nice class of subsets that can be measured” and to some “nice class of functions that
can be integrated”. A similar convention is assumed for subsé¥s afid functions de ned on this space (typically, we want all events of the type
f 2M: (A)= kg,A RY k 2 N, to be "measurable”). See ( ) or (
) for details.



dimensional distributions:

" _ oY o (Ap (AT

for everyk = 1;2;::: and all bounded, mutually disjoint seAg fori = 1;:::;k. If (dx) = dxisa
multiple of Lebesgue measure (volume)RA, we call ahomogeneous Poisson p.and s its intensity
parameter.

It is not evident that such a point process exists. Later we will show how it can be constructed. Suppose
for the moment that it does exist. Here are a few immediate observations made directly from the above
de nition:

is a Poisson p.p., if and only if for evely = 1;2;::: and all bounded, mutually disjoint

Aj RAfori = 1;:::;k, (( Aq);:::: ( Ay)) is a vector of independent Poisson random
variables of parametef A;);:::; ( Ag), respectively. In particulag&(( A)) = ( A), for all
A.

. n! 1Y _
Pf (A)=ngy:i (A= ngj (W)= ng= o (W) (A" (1.1)

[
The above conditional distribution is the multinomial distribution. This last property shows that
given there aren points in the windoww, these points are independently and identically dis-

tributed (i.i.d.) inW according to the Iaw((T)).

Example 1.1.2 (Locations of nodes in ad hoc networks)Assume that nodes (users), who are supposed
to constitute an ad hoc network (see Section 25.3.1 in Volume 1), arrive at some given Védimisubset

of the plane or the 3D space) and independently take their locatiovs & random according to some
probability distributiona( ). This means that each user chooses locationwih probability a(dx); the
uniform distribution corresponds to a “homogeneous” situation and non-uniform distributions allow us to
model e.g. various “hot spots”. Then, in view of what was said above, the con guratiorusérs of this

ad hoc network coincides in law with the conditional distribution of the Poisson path intensity ( dx)
proportional toa(dx) onW, given ( W) = n.

Suppose now that one does not want to x a priori the exact number of nodes in the network, but only
the “average” numbef (dx) of nodes per ® is known. In such a situation it is natural to assume that the
locations of nodes iV are modeled by the atoms of the (hon-conditioned) Poisson process with intensity
( dx) = A(dx). 2.

The observation about conditional distribution suggests a rst construction of the Poisson p.p. in a
bounded window; sample a Poisson random variable of paranfet¥r) and if the outcome i, sam-
ple n i.i.d. random variables with distributim?% onW. The extension of the construction to the whole

2 One can make the story of nodes arrivingib more complete. Assuming a spatio-temporal Poisson arrival process of nodes, independent
Markovian mobility of each node and independent exponential sojourn time of each node in the network before its departure one obtains a spatial
birth-and-death process with migrations, who has Poisson p.p. as its stationary (in time) distribution; see ( ,Ch.9)
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spaceRY can then be done by considering a countable partitidR%ihto bounded windows and an inde-
pendent generation of the Poisson p.p. in each window. We will return to this idea in Section 1.2. Before
this, we give more terminology and other characterizations of the Poisson p.p.

1.1.2 Characterizations by the Form of the Distribution

Say that has axed atomatxg if Pf ( fxgg) > 0g> 0. =
Callap.p. simpleif Pf ( fxg) =0 or1forallxg=1;i.e.,ifwith probability 1, = i xi
where the point§x;g are pairwise different.

Proposition 1.1.3. Let  be a Poisson p.p. with intensity measure

has a xed atom afxog if and only if has an atom atp 2 RY (i.e. ( fxog) > 0).

A Poisson p.p. is simple if is non-atomic, i.e. admits a density with respect to Lebesgue
measure irRY,

Proof. The rst part is easy: use De nition 1.1.1 to writef ( fxeg) > 0g=1 e (%09 > Qifand
only if ( fxog) > O.

The second part can be proved using the conditioning (1.1) along the following lines. Let us take a
bounded subse&t RY.

Pf issimpleinAg

bS

= Pf ( A) = ngPfalln points of are differenj ( A) = ng
n=2

_ o (a(CAY" 1
- nt o ((A)"

zZ Z
1(x; all differen ( dxg)::: (dxn)=1":

An

We conclude the proof th&f is simpleg = 1 by considering an increasing sequence of bounded sets
Ay % RY and using the monotone convergence theorem.

O

We now give two characterizations of the Poisson p.p. based on the form of the distribution of the variable
( A)forall A.

Theorem 1.1.4. is a Poisson p.p. if and only if there exists a locally nite measum@n RY such that for
all boundedA, ( A) is a Poisson random variable (r. v. ) with parameged.).

Proof. We use the following fact that can be proved using moment generating functions (cf. (

, Lemma %,3.I)): suppéxeX 1;:::; Xn) is a random vector with Poisson marginal dis-
tributions and such that = i”:l Xi;thenXyq;:::; X, are mutually independent. O



Theorem 1.1.5. Suppose that is a simple p.p. Then is a Poisson p.p. if and only if there exists a locally
nite non-atomic measure such that for any subsét, Pf ( A)=0g=¢e (A,

Proof. This is a consequence of a more general result saying that the distribution of the p.p. is completely
de ned by itsvoid probabilities see ( , Th. 3.3) for more details. O

1.1.3 Characterization by Complete Independence

De nition 1.1.6. One says that the p.p. has the property afomplete independendefor any nite fam-

independent.

Theorem 1.1.7. Suppose that is a p.p. without xed atoms. Then is a Poisson p.p. if and only if

(1) issimple and
(2) has the property of complete independence.

Proof. The necessity follows from Proposition 1.1.3. For suf ciency, one shows that the measije=
log(Pf ( A) =0 g) satis es the assumptions of Theorem 1.1.5. (cf. ( , Section 211)).

1.2 Laplace Functional

De nition 1.2.1. ThelLaplace functionalL of a p.p. is de ned by the following formula
R
L f)=E e rd F(X) (dx)

wheref runs over the set of all non-negative functionsith

Note that the Laplace functional completely characterizes the distribution of the p.p. Indeek )fer
k
Lo til(x 2 Ay,
i=1 ™ |

P
L fy=E e (A .

bounded subsets of the space, one obtains a characterization of all nite-dimensional distributions of the p.p.
Here is a very useful characterization of the Poisson p.p. by its Laplace functional.
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Proposition 1.2.2. The Laplace functional of the Poisson p.p. of intensity measuse

R e f0)( d
L (f)=e rold e (). (1.2)

Proof. For a given non-negative functidr(x), consider the functiog(x) = f (x)1(x 2 A), whereA 2 B
is bounded. We have

oAy 1 2% e,
L (g = e (A ciroe = T (Cdxg) o (Cdxy)
o (AT
Z R
e T L i () e e (.
=0 n! A

We conclude the proof by considering an increasing sequence of boundedséts RY and using the
monotone convergence theorem. O

Takingf (x) = sg(x) withs Oand withg() 0in (1.2) and differentiating w.r.s ats = 0, we get the
following corollary: 7 7

E f(x)(dx)= fx)(dx): (1.3)

Rd Rd

Construction of the Poisson p.p. in a Bounded Window. Given an intensity measure and a bounded
subseW of the space, consider the followingdependentandom object§N; X 1; X 2;:::g, where

N is a Poisson r. v. with paramet¢rW),
X 1;X ;111 are identically distributed random vectors (points) taking value#/in RY with
PfX12 g=( )=(W).

In corlymectlon with the remark at the end of Section 1.1.1, we show below using Laplace functionals that

= k 1 "x; is a Poisson p.p. with intensity measurgy () = ( \ W), the restriction of to W.
Evidently isarandom set of points W . We now calculate the Laplace functional ofFor a non-negative
functionf , we have

P
E 1(N =0)+ 1(N> 0)e k= f(X0)

(i CWE E gy () K

" K we o (W)

R R
e (W) e ™ (d)_ o @ e ®)(d).

L (f)

= e

which shows that is the announced Poisson p.p. The above construction can be extended to the whole
space. We will do it in the next section.

In the following example we show that De nition 1.1.1 fdr= 1, i.e. of a Poisson p.p. in 1D, is equiva-
lent to frequently used de nition based on independent, exponentially distributed inter-point distances.
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Example 1.2.3 (Homogeneous Poisson p.p. in 1Dgonsider a Poisson p.p= i «'s. on the real line
R with intensity measure dx, where0 < < 1 . Assume that the atoms of are humbered in such
a way thatSy 1 < Si for k 2 Z (by Proposition 1.1.3 the atoms of are pairwise different) an8; =
maxfx > 0 : ((0 ;x)) = 0gis the rst atom of in the open positive half-lin€0; 1 ). V\{g will show
thatf Skg can be censtructed as a renewal process with exponential holding timeS ize., X, Fifor

k 1andSg = i0=k Fi fork 0, wherefFy : k = :::; 1,0;1:::gis a sequence of independent,
identically distributed exponential random variables. Indéxdy, >tg= PfS; >tg= Pf ((0 ;t]) =
0g= e ! soS; = F; is exponential random variable with parameteBy the the strong Markov property
(Proposition 1.5.3), forak 2,

)
—
T

=~
\Y
~—+
T

o
T

=~

=

«Q

|

PfSKk Sk 1>t ]S1;:::;Sk 10
= PfSy Sk 1>t jsk 19
= Pf(( Sk S 1+t])=0]jSk 10

= e t

and similarly fork 0, with f Fxgx o andf Fxgx 1 being independent.

Remark: In the last example, we have evaluated the probabilities of the events of thlgf farm tg,

fSk Sk 1 > tg. This was done under the tacit assumption that in the representation | "s, , the
variabled Syg arerandom variablesi.e.; that the corresponding events belong to the “nice class” of events
whose probabilities can be measured. This is true in this particular case and, more generally, points of any
p.p. can always be numbered in such a way that the location of the point with a given number is a random
variable (see ( )). I what follows, we assumefthig are random variables any time we

use a representation of the form KX -

1.3 Operations Preserving the Poisson Law

1.3.1 Superposition

I.J
De nition 1.3.1. The superposition of point processegis de ned as the sum= K k-

Note that the summation in the above de nition is understood as the summation of (point) measures. It
always de nes a point measure, which however, in general, might not be locally nite (we do not assume
the last sum to have nitely many terms). Here is a very crude, but useful condition for this to not happen.

P P
Lemma 1.3.2. The superposition=  kisap.p.if | E[ k()]isalocally nite measure.

A re ned suf cient condition may be found by the Borel-Cantelli lemma.

Proposition 1.3.3. The superqpsition of independent Poisson point processes with intensities Pois-
son p.p. with intensity measure,  if and only if the latter is a locally nite measure.




Proof. ) By the de nition.
( By Lemma 1.3.2 the superposition is a p.p. One evaluates its Laplace functional as follows

P R R Y R .
Ee «krif k) —-E e rdf(X) «(dx) rd(1 e Ty (dx)
k k

R f(x) P
e rat e TN (@)

e

O

Construction of Poisson p.p. on the Whole Space.We return to the construction of the Poisson p.p. with
given intensity measure. Let f Wy gx=1 - be a countable partition of the space wih bounded for all
k. Following the arguments described in Section 1.1.1, we construct inégaen l'gpdependent copy of the

Poisson p.p. with intensi_r,y measurg( ) = ( \ Wy). By Proposition 1.3.3,= k kisaPoisson p.p.
of intensity measure= .
1.3.2 Thinning

Consider a functiop : R 7! [0; 1]and a p.p. .

De nition 1.3.4. Thethinning of with theretention functiorp is a p.p. given by
X
P= k"Xk ; (14)
k
where the random variablésy gk are independent given, andPf (=1 g=1 Pf y=0j g=

P(Xk)-

Less formally, we can say that a realization df can be constructed from that of by randomly and
independently removing some fraction of points; the probability that a given pointlotated aix is not
removed (i.e. is retained inP) is equal top(x).

It is not dif cult to verify that the above construction transforms a Poisson p.p. into another Poisson p.p.

Proposition 1.3.5. The thinning of the Poisson p.p. of interﬁity measungith the retention probability
yields a Poisson p.p. of intensity measprewith (p)( A) =, p(x) ( dx).

Proof. The Laplace functional of P atg = f 15 with A bounded is

% ((apn 1 LY |
Lo@ = e (07 LA ot T pe (el o) ()i ( )
n=0 ! an 0=l
1 z n R
= e (M7 S pe Ml px) (dog e e 00,
n!
n=0 A



Example 1.3.6 (Aloha). A typical application is that of some ad hoc network made of nodes distributed
according to some Poisson point process and using Aloha as medium access control (see Chapter 25.1.2 in
Volume I1). The principle of this protocol is that each node tosses a coin independently of everything else to
decide whether it accesses the shared wireless medium or not. The bias of this coin may depend on the local
density of nodes. The last result shows that the set of transmitters is a Poisson p.p. The set of nodes which
refrain transmitting is also Poisson.

Corollary 1.3.7. The restriction jyw of a Poisson p.p. of intensity measureto some given setV is a
Poisson p.p. with intensity measute \ W)= jw( ).

1.3.3 Random Transformation of Points

Consider a probability kerngd(x; B) from RY to R%’, whered® 1, i.e. for allx 2 RY, p(x; ) is a
probability measure oR%",

De nition 1.3.8. The transformation P of a p.p. by a probability kernep( ; ) is a point process iRd”
given by X
P= "V (1.5)
k

where theR%-valued random vectofyy gy are independent given, with Pf yi 2 B®j g= p(xx;B9.3

In other words, P is obtained by randomly and independently displacing each pointfadm RY to some
new location inR%’ according to the kerngl. This operation preserves the Poisson p.p. property as stated in
the following theorem.

Theorem 1.3.9 (Displacement Theorem)The transformation of the Poiﬁson p.p. of intensity measure
by a probability kernep is the Poisson p.p. with intensity measur¥A) = ra POGA) (dx), A RY.

Proof. The Laplace functional of P is

X Z Z Y
L »(f)= Eexp f(Y) = E e TO0 T p(Xdyy)
i RYdO fdo J
= E ef(yi)p(Xj;dyj)
j . d0
R ) 13

X Z
Eexpﬁ Iog%) e fW)p(X,-;dy)E{%:

J y2 RdO

3We use the same notatior? for the p-thinning and the transformation by kermelThe context indicates what is meant.
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R
Evaluating now the Laplace functional ofatg with g(x) = log y2Rd0 € Fp(x; dy) , we get
z

R
L p(f): L (g) = exp 1 elog rd0 € PO p(x; dy) ( dX)

i z

= exp 1 e "Wpx;dy) ( dx)
Yz

= exp @ e ")p(x; dy) ( dx)
R RY

= exp 1 e'W) Yady) :
Rd°

Example 1.3.10 (Random walk and random waypoint mobility). Consider some Mobile Ad hoc NET-
work (MANET) — see Section 25.3.1 in Volume Il. Assume the MANET nodes to be initially distributed
according to some Poisson p.p. Assume each node then moves according to some discrete time, continu-
ous state space Markov chain with kerpék; dy) on RY. More precisely, at each time slot, each node is
displaced from its initial position 2 RY to a new positiory 2 RY, independently of everything else. The
displacement is random and its law depends only on
The last result shows that the displaced points still form a Poisson p.p. The joint Laplace functional of
= fX;g (the initial p.p.) and %= fY;g (the displaced p.p.) dfg, wheref andg are positive functions,
is de ned as P P
L . of;g)=E e B a9

Using arguments similar '%) thosezin the last proof, one gets that

L of;g) = exp 1 e Wpxdy) (dx)
Rd Rd
Z Z OZ 1
= exp @ e ) qdy) exp 1 e Y@ e IV px;dy)A (dx) :
Rd Rd Rd

This displacement scheme can of course be iterated further while preserving the Poisson property.
Notice that if the initial Poisson p.p. has an intensity measure which is O outside a nite wMtiamne
can use this Markov model to 'maintain’ all displaced point&\ihby appropriate choices of the displace-

ment laws.
Here are a few particular cases of this general model:

Therandom walkmodel is that where the displacement consists in addingdn independent
random variabl® with some xed lawH onRY n f0g which does not depend on

The random waypoinimodel is similar to the latter, but with the displacement equal to 0 with
probability and to a non null random vector with a xed distributiéh on RY n f0g with
probability 1 . A node either 'stops' with probability or moves in some new direction with
the complementary probability.

11



Thehigh mobilityrandom walk case features a small parameterO and consists in adding the
random variabl®= to x to get the new position; here, the lawbfis as in the rst case above.
Then 0 1

z z

L ofig) = Logexp (1 e ™)@ e Y DH@E)K () :

Rd Rdnf Og
Let us show how to use this formula to prove that for homogeneous Poisson p.p., this high mo-
bility case leads to independence betweeand °when ! 0. For this, it is enough to prove
that for all functiongy which te8d to O atin nity in all dirfctions,

Z 4

z
im (1 e ()8 ey igEanKdx= @ e T™)dx:

Rd Rdnf Og Rd
But for all x and ally 6 0, g(x + y=) tends to O when tends to 0. This and the dominated
convergence theorem allow one to conclude the proof of independence.
Notice that this independence property does not hold in the high mobility random waypoint model
as de ned above.

Example 1.3.11 (Transformation of space).Consider a functiorG : RY 7! R, Note that the mapping

G can be seen as a special case of a probability kernel from one space to the other, which transforms
x 2 RYinto G(x) witB probability 1. Suppose is a Poisson p.p. with intensity measureon RY. By
Theorem (1.3.9), °= | "g(x,) is @ Poisson p.p. oR® with intensity measure () = ( G ().

Example 1.3.12 (Dilation). A special case of a trans{grmatiﬁﬁ' onto itself is adilation by a given factor
1 G(x) = x,x 2 RY Bythe above result® = =, ", is a Poisson p.p. with intensity measure
YA)= ( A= ),whereA= = fy= :y2 Ag.

Example 1.3.13 (Homogenization) Another special case consists in nding some transforma@avhich
makes of °a homogeneous Poisson p.p. For this, assume(titii) = (x)dx and suppose th&(x) is a
differentiable mapping frorRY to RY, which satis es the functional equation & given by

(x) = JFe(X)i;
where is some constant anl; is th%Jacobian ab. T%en, note that for al% Rd
(G 1(A) = (x) dx = jJde(x)jdx = dx;
G 1(A) G 1(A) A
which proves that the intensity measure &fis Ydx) = dx; sge ( )

for more details. In particular in 10d(= 1), the functionG(t) = g (s) ds transforms the inhomogeneous

Poisson p.p. of0; 1 ) into the homogeneous one of intensity (parameten [0; 1 ). This construction can
easily be extended t& by considering the analogous transformation on the negative half-line.

12



Example 1.3.14 (Polar coordinates) Consider a homogeneous Poisson p.mn R? with constant inten-
sity andletG(x): R? 7! R*  [0;2 ) be the mapping(x) = (jxj;\ (X)), where\ (x) is the argument
of x) (i.e.the angle between vectorand theX axis). Then the transformatior’of by G(x) is a Poisson
p.p. with intensity measure

olo:r);[0;) = r 2=2);, r 00 < 2:

The point process ° can also be seen as Poisson p.p[@r ) with intensity measure 1(dt) = t 2,
independently marked in the spd@e2 ), with uniform mark distributiorfcf. Section 2.1).

1.4 Palm Theory

Palm theory formalizes the notion of the conditional distribution of a general p.p. given it has a point at some
location. Note that for a p.p. without a xed atom at this particular location, the probability of the condition
is equal to 0 and the basic discrete de nition of the conditional probability does not apply. In this section we
will outline the de nition based on the Radon—Nikodym theorem.

We rst de ne two measures associated with a general point process:

De nition 1.4.1. Themean measuref a p.p. is the measure

M(A) = E[( A)] (1.6)
onRY. Thereduced Campbell measuref is the measure
z
C'(A )= E 1( "x2)( dx) (1.7)
A

onRY M, whereM denotes the set of point measures.

Note thatM (A) is simply the mean number of points ofin A. The reduced Campbell meas@&A ) is
are nement of this mean measure; it gives the expected number of pointsi@ such that when removing
a particular point from , the resulting con guration satis es property. The fact that one measure is a
re nement of the other, or more formally, thax'( ) for each is absolutely continuous with respect
to M (), allows us to express the former as an integral of some fun&jgncalled the Radon—Nikodym
derivative with respect to the latter:

C(A )= PiM(dx) forallA RY: (1.8)
A

The functionP,, = P, () depends on. Moreover, ifM () is a locally nite measureP,( ) can be chosen
as a probability distribution oM for each giverx.

De nition 1.4.2. Given a point process with a locally nite mean measure, the distribuign) is called
thereduced Palm distributionf given a point ak.

The following central formula of Palm calculus, which is called @@mpbell-Mecke formujas a mere
rewriting of the above de nition wheh(x; )= 1(x 2 A; 2 ) . Its extension to generélfollows from
classical monotone class arguments.
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Theorem 1.4.3 (Reduced Campbell-Little-Mecke Formula).For all non-negative functions de ned on
RY M z zz
E f(x; "¥) (dx) = f(x; )P)!((d )M (dx): (1.9)

Rd Rd M

In what follows we will call formula (1.9) the (reduced) Campbell formula.
One can de ne the (non-reduced) Campbell measure by repla¢ing "x)byl( 2 ) in(1.8)
ie.
z

X
CAA )= E 1( 2)( dx) =E 1(xi2A)1( 2) =E (AI( 2) : (1.10)
A i

This leads to a (non-reduced) Palm meagtyevhich can also be de ned by
Px() = P)i(f D+ "% 2 Q)

We callPy the Palm distribution of .
Takingf (x; )= g(x; + ") and substituting in (1.9), we obtain the followifgon-reduced) version

of Campbell's formula
z ZZ

E  ox)( dx) = g(x; ) Px(d )M (dx): (1.11)
Rd Rd M

We now focus on Poisson point processes. Directly from De nition 1.1.1, we have:

Corollary 1.4.4. The mean measure of a Poisson p.p. is equal to its intensity medgure ().

We now state a central result of the Palm theory for Poisson p.p. It makes clear why the reduced Palm
distributions are more convenient in many situations.

Theorem 1.4.5 (Slivnyak—Mecke Theorem)Let be a Poisson p.p. with intensity measure For
almost allx 2 RY,
Pi()=Pf 2 g;

that is, the reduced Palm distribution of the Poisson p.p. is equal to its (original) distribution.

In what follows we will call the above result for short the Slivnyak's theorem.

Proof. of Theorem 1.4.Fhe proof is based on a direct veri cation of the integral formula

z
C'(A )= Pf 2 gM(dx)=( APf 2 g:
A
By Theorem 1.1.4 it is enough to prove this formula for abf the formf : (B) = ng. For all such

X
CA )= E  1( "x)B)=n
Xi2A

14



X
E 1( "x;)(B)=n) =E[(A)L((B)=n)]=( APf (B)=ng:
Xi2A
If A\ B 6 ;,
X
E 1( "x;)(B)=n)
Xi2A
= E[(AnB)1(( B)=n)]+ E[( B\ A)1(( B)= n+1)]
= (AnB)Pf (B)=ng+E[( A\ B)X(( BnA)=n (B\A)+1)]:
But

E[( B\ A)I(( BnA)=n ( A\ B)+1)]

- e (A\B)X+1 (C AN B))kke (Bna)(( BnA))" K

- k! (n k+1)!

= e (5 X" ((AVB)K((BnA)" KD
(k 1) (n (k 1))

k=1
_ (e) ( A\ B) X n! K n ok
- ¢ o K AV B)T(BNA)
= ( A\ B)e (B>((5»n = ( A\ B)Pf ( B)= ng:

O

Before showing an application of the above theorem, we remark that it is often usefulRg(spand
P..( ) as the distributions of some p.px and | called, respectively, thealmandthe reduced Palm version
of .Onecan alwaystake, = |+ "x, however for a general point process it is not clear whether one can
consider both and ; } on one probability space, with the same probability meaBurBut Slivnyak's

theorem implies the following result which is a popular approach to the Palm version of Poisson p.p.s:

Corollary 1.4.6. For Poisson p.p. onecantake , = and y= + ", forallx 2 R,

Using now the convention, according to which a p.p. is a family of random variabtesf x;g;, which
identify the locations of its atoms (according to some particular order) we can rewrite the reduced Campbell
formulafor Poisson p.p.
X Z
E f(Xi; nfxjg) = E[f(x; )] M(dx): (1.12)
Xi2 Rd
Here is one of the most typical applications of Slivnyak's theorem.
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Example 1.4.7 (Distance to the nearest neighbor in a Poisson p.pFor a givenx 2 RYand 2 M,
de ne the distancdRk (x) = R (X; ) =miny,2 jXi Xjfromx to its nearest neighbor in 2 M. Note
that themin is well de ned due to the fact thatis locally nite, evenifarg mig , jXj Xj is not unique.
Let be a Poisson p.p. with intensity measurand letP, be its reduced Palm measure given a point.at
By Slivnyak's theorem

Py(f tR(x )>rg=Pf (Bx(r)=0g=e (&)

whereBy(r) is the (closed) ball centeredxaand of radius . InterpretingP,, as the conditional distribution
of "x given has a point ax, the above equality means that for a Poisson p.ponditioned to have a
point atx, the law ofthe distance from this point to its nearest neighithe same as that dfie distance
from the locatiorx to the nearest point of the non-conditioned Poisson Nqie that this distance can be
equal to 0 with some positive probability if has a xed atom ak. Note that this property becomes an a.s.
tautology when using the representatiogp=  of the reduced Palm version of theRPmsson p.pindeed,

in this caseR (x; §) = R (x; ) trivially. The mean value oR (x; ) isequalto , e (Bx(M dr. In
the case of Poisson p.p. & of with intensity measure dx

E[R (x; )] = ?}%: (1.13)

A surprising fact is that the property expressed in Slivnyak's theorem characterizes Poisson point pro-
cesses.

Theorem 1.4.8 (Mecke's Theorem).Let be a p.p. with a - nite mean measuré/ (i.e. there exists a
countable partition oRY such thaM is nite on each element of this partition). Thenis the Poisson p.p.
with intensity measure= M if and only if

P,()=Pf 2 g:

Proof. ) By Slivnyak's theorem.
( By Theorem 1.1.4 it suf ces to prove that for any boundgd

n
Pf(B)=ng=Pf(B)=OgW: (1.14)
From the de nition of the reduced Palm distribution witk f : (B)= ng,
X
c'B f : (B)=ng) = E 1xi2B)1(( B)=n+1) =(n+1)Pf (B)=n+1g:
Xi2
Using now the assumption thef ()= Pf 2 ;g, forall
Z Z
c'B ) = Pi() M(dx)= Pf 2 gM(dx)= M(B)Pf 2 g:
B B
Hence
(n+1)Pf (B)=n+1g=M(B)Pf ( B)=ng;
from which (1.14) follows. ad
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1.5 Strong Markov Property

Consider a point process We callS  RY arandom compact sétvith respectto ) whenS = S() isa
compact set that is a function of the realization ofWe give an example in Example 1.5.2.

De nition 1.5.1. A random compact se$() is called astopping setif one can say whether the event
f S() K g holds or not knowing only the points of in K .

Remark: It can be shown that & = S() is a stopping set, then for all2 M,
S()= S \sO) [ \Ss°0)

whereS€ is the complement d. In other words, all modi cations of outside the se5() have no effect
onS() .
Here is a very typical example of a stopping set.

Example 1.5.2 k th smallest random ball). Consider the random (closed) bBl(R, ) centered at the ori-
gin, with the random radius equal to tkeéh smallest norm ok; 2 ;i.e.,R, = R, () =min fr O0:

( Bo(r)) = kg. In order to prove thaBo(R,) is a stopping set let us perform the following mental ex-
periment. Given a realization of and a compact sé&t , let us start "growing' a baBy(r) centered at the
origin, increasing its radius from 0 until the moment when either (1) it accumulakesr more points or
(2) it hits the complemerK © of K . If (1) happens, theBo(R,) K. If (2) happens, theBo(R,) 6 K.

In each of these cases, we have not used any information about points &f¢; soBg(R,) = Bo(R,())

is a stopping set with respect ta

Remark: The above example shows a very useful way to establish the stopping property: if there is a
one-parameter sequence of growing compact sets which eventually leads to the construction of a random
compact, then this compact is a stopping set.

Suppose now that is a Poisson p.p. By the complete independence (see De nition 1.1.6) we have

h i
Ef()= Ef ( \B)[( 2\ B% ; (1.15)

where Cis an independent copy of.
The following result extends the above result to the case \Bhierna random stopping set.

Proposition 1.5.3 (Strong Markov property of Poisson p.p.).Let be a Poisson p.p. arfd = S() a
random stopping set relative ta Then (1.15) holds witl8 replaced bys() .

Proof. The Poisson process is a Markov process. Therefore it also possesses the strong Markov property;
see ( , Theorem 4). O
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Example 1.5.4 (Ordering the points of a Poisson p.p. according to their norms)Let

fRe = Re() ok 1

be the sequence of norms of the points of the Poisson papranged in increasing order (ife, is the norm

of thek-th nearest point of to the origin). We assume that the intensity measucé has a density. One

can conclude from the strong Markov property of the Poisson p.p. that this sequence is a Markov chain with
transition probability

e (Bo()) (Bo(s) jft>s

PfFR, >t |R = sg=
k I i1 g 1 ift s:

1.6 Stationarity and Ergodicity
1.6.1 Stationarity

n

P
Throughout the section, we will use the following notation: fonal RY and = i
X X

v+ = v+ Xi: IV+Xi:
i i

De nition 1.6.1. A point process is stationaryif its distribution is invariant under translation through any
vectorv 2 RY;i.e.Pfv+ 2 g=Pf 2 gforanyv2 R%and .

Itis easy to see that

Proposition 1.6.2. A homogeneous Poisson p.p. (i.e. with intensity measube for some constard <
< 1) is stationary.

Proof. This can be shown e.g. using the Laplace functional. O

It is easy to show the following properties of stationary point processes:

Corollary 1.6.3. Given a stationary point process its mean measure is a multiple of Lebesgue measure:
M (dx) = dx.

Obviously = E[( B)] for any setB 2 RY of Lebesgue measure 1. One de nes the Campbell-Matthes

measure of the stationary p.p.as the following measure d®® M:
z

X
CA )= E 1( x2)( dx) = E 1(xi 2 A)1( Xi2) (1.16)
A i
Notice that this de nition is different from that in (1.7) or in (1.10). In particular, in the last formula x
is thetranslationof all atoms of by the vector x (not to be confused with ", the subtraction of the
atom", from ).
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If < 1 ,byarguments similar to those used in Section 1.4, one can de ne a probability medsure
onM, such that

A )= JAPO() ; (1.17)

forall (see Section 10.2 in the Appendix).

De nition 1.6.4 (Intensity and Palm distribution of a stationary p.p.). For a stationary point process
we call the constant described in Corollary 1.6.3 thatensity parameter of . The probability measure
PO de nedin (1.17) provided < 1 is called thePalm—Matthes distributionf

Again, one can interpré®® as conditional probability given has a point at the origin (see Section 10.2).
Below, we always assunte< < 1 . The following formula, which will often be used in what follows,
can be deduced immediately from (1.17):

Corollary 1.6.5 (Campbell-Matthes formula for a stationary p.p.). For a stationary point process
with nite, non-null intensity , for all positive functiong
z ZZ
E a(x; X) (dx) = g(x; )PO(d )dx: (1.18)

Rd Rd M

Remark 1.6.6 (Typical point of a stationary p.p.). It should not be surprising that in the case of a station-
ary p.p. we actually de ne only one conditional distribution given a point at the ofigitne may guess
that due to the stationarity of the original distribution of the p.p. conditional distribution given a point at an-
other locatiorx should be somehow related ®. Indeed, using formulae (1.18) and (1.11) one can prove
a simple relation betweePy (as de ned in Section 1.4 for a general p.p.) &% More speci cally, taking
g(x; )= 1( +x2 ) weobtain

Z 4

Pf : 2 gdx= PO : +x2 gdx;

Rd Rd

which means that for almost all 2 RY the measur®y is the image of the measuR® by the mapping

7!  + x onM (see Section 10.2.3 for more details). This means in simple wordsthia&ibnditional
distribution of points of “seen” from the origin given has a point there is exactly the same as the
conditional distribution of points of “seen” from an arbitrary locationx given has a point ak. In this
context,P? (resp.Py) is often called thelistribution of seen from its “typical point” located a® (resp.
at x). Finally, note by the Slivnyak Theorem 1.4.5 and Corollary 1.4.6 that for a stationary Poisson p.p.
PO corresponds to the law of+ " under the original distribution.
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In what follows we will often consider, besides other stochastic objects related to“. Then, one
may be interested in the conditional distribution of these objects “seen” from the typical point°dh
these situations it is more convenient to de ne P@m—Matthegor shortly Palm) probability P° on the
probability space where the p.p.and all other objects are assumed to be de ned, rather than on (some
extension of)M as above®. Expectation with respect 8° will be denoted byE®. We will return to this
idea in Sections 2.1.2 and 4.3. Here note only Bhts the distribution of underP 9. Thus theCampbell-

Matthes formula (1.18) can be rewritten as
z z

E ol  x)(dx) = E°lo(x; )] dx: (1.19)
Rd Rd
1.6.2 Ergodicity

Consider a stationary p.p.. Letf be some functioM ! R, .We are interested igpatial averagesf the

form
Y4

f(v+) dv; jAL'L (1.20)

whenever the limit exists. Roughly speakingis ergodic if the last limit exists and is equal E]f ()]
for almost all realizations of , for all integrable functiong and for some “good” seté,, for instance
An = Bo(n). As we see, ergodicity is a requirement for simulation.

Several other types of averages can be de ned like e.g. directional averages

1 X
im = f(vk+) (1.21)
n!l n K=l

wherev 2 RY, v 6 0. Note that the existence of the limit in (1.21) would follow from the strong law of
large numbers if (vk + ) ,k =1;:::were independent random variables.

De nition 1.6.7. We say that a stationary p.p.
is mixingif
Pfv+ 2 ; 2 g! Pf 2 gPf 2 g whenjv!l ;

for all for con guration sets and that depend on the realization of the p.p. in some bounded
set;

4 Two typical examples of such situations are:

random marks attached to each point o&nd carrying some information, (to be introduced in Section 2),
another point process on the same space (considered e.g. in Section 4.3).

Another, slightly more complicated example, is the cross-fading model mentioned in Example 2.3.9 and exploited in many places in Part IV in
Volume |1 of this book (see in particular Section 16.2 in Volume II).

5 For example, the distribution of the mark of this typical point, or points of other point processes located in the vicinity of the typical point of

6 For this, one has to assume that this probability space is endowed with an abstract “shift” operator (see Remark 10.2.3 for the details) that says
how the translation of the “observation point” by some veota?2 RY impacts the “observed picture” of all considered objects. In the simple
scenarios considered above, this consists in translating, by the vextdhe points ofall the considered point processes while preserving their
original marks.
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is ergodicif

1v+ 2 ; 2 dv=Pf 2 gPf 2 qg;

for all such ;

By the dominated convergence theorem we have the following fact:

Corollary 1.6.8. A mixing point process is ergodic.

Also

Proposition 1.6.9. A homogeneous Poisson p.p.is mixing and hence ergodic.

Proof. For and as in De nition 1.6.7, v=f v+ : 2 gand dependonthe con guration
of points in disjoint subsets &Y. Thus, by the very de nition of the Poisson p.pi(v+ 2 )= 1( 2
v) andl( 2 ) areindependent. O

Coming back to our ergodic postulates, call a sequdigg of convex sets @onvex averaging se-

quencef A1 A i Rd andsupfr : A, contains aball ofradiusg! 1 whenn!1 .One
can can prove the following result for general stationary point processes cf. (
Section 10.3) and ( ).

Proposition 1.6.10. Suppose that is translation invariant. Then the following statements are equivalent.

(1) isergodic.

(2) For anyf such thaE[f ()] < 1 and for all vectorsy 2 RY, possibly off some countable set
of hyperplanes iflRY (a hyperplane is not assumed to contain the origin), the limit (1.21) almost
surely exists.

(3) For anyf such thate[f ()] < 1 and any convex averaging sequefégg the limit in (1.20)
is equal toE[f ()] almost surely.

(4) Any functionf of that is translation invariant (i.e. such that fora2 RY, f (v+ )= f()
almost surely), is almost surely constant.

In many problems, rather than (1.20), one is interested in another kind of spatial average that will be
referred to aspatial point averagei what follows, and which are of the form

lim - X f jApj! 1 1.22

| Xi), ! X .

n!1 ( An) ‘2A, ( I) JAR] ( )
whenever the limit exists. The foIIowing result can be found in e.g. ( , cf. Propo-

sition 12.2.VI).
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Proposition 1.6.11.1f istranslation invariant and ergodic, for iland for any convex averaging sequence
fAng Z

: 1 X 0\ — 0 — 0
e f(  x)= f()Pxd)=EO[f() a:s; (1.23)

Xi2An
providedEC®[f ()] < 1 .

The above ergodic property says that the distribuBdnof the point process “seen from its typical point”
(cf. Remark 1.6.6) is also the distribution of‘seen from its randomly chosen point”.

In Part VV in Volume 1l we will also consideroute averagesssociated with certain multihop routing
algorithms. A routing algorithm is de ned throughamap : RY M ! RY whereAp(X; ) 2 ,for
X 2, isthe next hop fronX on the route. This next hop depends on the destination Boded also on
the rest of the point process

Within this setting, when denoting by then-th order iterate oAp and byN (O; D) the number of
hops from originO to destinatiorD, route averages are quantities of the type

1 N{o:D)

ooy TABO) A MO
N(O;D) b D
wheref is some functiorR? ! R*. One of the key questions within this context is the existence of a limit

for the last empirical average whg@d Dj!1

1.7 Extensions
1.7.1 Doubly Stochastic (Cox) Paoint Processes

Under this name one understands a point process which can be constructed (o%some probability space) as
follows. Consider aandom measure on RY. (For example we may havé B) = rd X (X)dx, where
X (x) is some non-negative integrable stochastic procesR%onAssume that for each realizatios
an independent Poisson p.p. of intensity is given. Then s called adoubly stochastic Poissanr
Cox(point) process. Moment measures and Palm probabilities for Cox process can be evaluated explicitly.
For example

M(B)=E[ (B)I=E[E[ (B)] = 1I1=E[(B):

1.7.2 Gibbs Point Processes

Another important extension of the class of Poisson p.p.s consists of Gibbs processes. Here we give the
de nition of a Gibbs point process on laoundedset D RY (the de nition for unbounded is more
involved). For a given non-negative functiéh : M ! R, and a (deterministic) measureon D, the
distribution of theGibbs p.p.with energy functiorE and Poissomweight process of mean measure,

is the distribution onM dened by () = Z E[1( 2 ) E(N)], wherez = E[E()] is the
normalizing constant (it is also called tipartition functionor the statistical su Observe then that the

Gibbs point process as de ned has densitwith respect to a Poisson p.p.
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2

Marked Point Processes and Shot-Noise Fields

In a marked point process (m.p.p.), a mark belonging to somemeasurable space and carrying some informa-
tion is attached to each point.

2.1 Marked Point Processes

Consider a dimensional Euclidean spa&, d 1, as the state space of the point process. Consider a
second spacR ,~ 1, called the space of marks. A marked pSp(with points inRY and marks irR ) is
alocally nite, random set of points iRY, with some random vector iR attached to each point.

One can represent a marked point process either as a collection ofpairs(xi; m;)g;, where =
fxjgis the set of points anfim; g the set of marks, or as a point measure

X
€= "(Xi mi) (2.1)

[
where" x.m) is the Dirac measure on the Cartesian prodfct R with an atom afx; m). Both representa-
tions suggest th& is a p.p. inthe spad®® R, which is a correct and often useful observation. We denote
the space of its realizations (locally nite counting measure®8n R ) by . As a point process in this

extended spac& has one important particularity inherited from its construction, namely@hat R') is
nite for any bounded se&  RY, which is not true for a general p.p. in this space.

2.1.1 Independent Marking

An important special case of marked p.p. is the independently marked p.p.

De nition 2.1.1. A marked p.p. is said to be independently marked (i.m.) if, given the locations of the points
= fx;g, the marks are mutually independent random vectoR jrand if the conditional distribution of

the markm of a pointx 2  depends only on the location of this pointt is attached to; i.eRPfm 2 |j
g= Pfm2 j xg= Fy(dm) for someprobability kernel or mark$ () fromRYtoR .
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An i.m.p.p. can also be seen as a random transformation of points by a particular probability transition
kernel (cf. Section 1.3.3). This leads to immediate results in the Poisson case.

Corollary 2.1.2. An independently marked Poisson p&with intensity measure on RY and marks with

distributionsFy (dm) onR is a Poisson p.p. oRY R’ with intensity measure
Z

A K)= pxK)(d); A RLK R;
A

R
wherep(x;K ) = Fx(dm): Consequently, its Laplace transform is equal to
X z z
Le( = E exp ©(xi;m;) =exp 1 e ®ME(dm) (dx) ; (2.2)

: Rd R

for all functionsf€: R4*!'1 R*,

Proof. Taked®= d+ *, and consider the following transition kernel frdd{ to RY:
pP(;A K)=1(x2A)pX;K) x2RY:A RY;K R: (2.3)

The independently marked Poisson p.p. can be seen as a transformation of the (non-marked) Poisson p.p. of
intensity on RY by the probability kernel (2.3). The result follows from the Displacement Theorem (see
Theorem 1.3.9). O

Remark: Animmediate consequence of the above result and of Slivhyak's theorem is that the reduced Palm
distributionP(!X;m)( ) of i.m. Poisson p.p€ given a point ak with markm is that of the i.m. Poisson p.p.
with intensity measure and with mark distributiorx (dm). Moreover, a mere rewriting of the reduced
Campbell formula for Poisson point processes yields
z ZZ i
E f(x;m; nfxg) € dix;m)) = Ef(x;m;§ Fyx(dm)M (dx): (2.4)

Rd R Rd R

In the general case, independent marking leads to the following results:

Corollary 2.1.3. Let € be ani.m.p.p.

(1) The mean measure 8fis equal to
z

E[$A K)= F((K)M@) A RLYK R; (2.5)
A

whereM (A) = E[( A)] is the mean measure of the pointof €.
(2) The reduced Palm distributidh(‘x;m)() of € given a point atx with markm is equal to the

distribution of the i.m.p.p., with points distributed according to the reduced Palm distriion
of and with the same mark distributiofg (dm).
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(3) (Reduced Campbell's formula for i.m.p.p.) For all non-negative functiorf de ned onRY

R 4,
4 Z7ZZ7Z
E fOGm; ~n"emy) € dix;m)) = f (O m; €) Py (d€)Fx(dm) M (dx) :
R¢ R RIR
(2.6)
Proof. We only prove the rst statement; for the remaining ones see e.g. ( ).
Conditioning on we have
ZZ
E[® AK) = E 1(x 2 A)1(m 2 K) € d(x;m))
YR z
= E  1(x2A)F(K) (dx) = Fx(K)M(dx);
Rd A
which proves (2.5). O

2.1.2 Typical Mark of a Stationary Point Process

Many stochastic models constructed out of independently marked point processes may also be seen as
marked point processes, however, they are often no longer independently marked. €he mtadel con-
sidered below in Section 2.1.3 is an example of such a situation; the Voronoi tessellation of Chapter 4 is
another.

Consider thus a general marked p-pas in (2.1). In general, it is not true that, given the locations of
points of , the markm of somex 2 is independent of other marks with its distribution determined only
by x. However, it is still interesting and even of primary interest to the analysistofknow theconditional
distributionPf m 2 j x g of markm given its point is located at. In what follows we treat this question
in the case of a stationary p.p.

De nition 2.|:_I,.4. A marked point process (2.1) is said to $tationaryif for any v 2 RY, the distributions

ofv+ = i "(v+x;:m;) and~ are the same. The constant E[( B)] = E[T B R )], whereB has
Lebesgue measure 1, is callediftgensity

Note that in the above formulation the translation by the vect@cts” on the points of and not on their
marks, thus ensuring that shifted points “preserve their marks”.

De ne the Campbell-Matthes measu®eof the marked p.p€ as
ZZ

€B K)=E 1(x 2 B)1(m 2 K) € d(x;m)) : 2.7)
Rd R

If < 1 ,byarguments similar to those used in Section 1.4, one can show that it admits the representation

€B K)= jBj (K): (2.8)
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De nition 2.1.5 (Palm distribution of the marks). The probability measure( ) on the space of mark®
given in (2.8) is called th@alm distribution of the marks

The Palm distribution of the marks may be interpreted as the conditional distribution= Pfm 2 |
02 gofthe markm of a point located at the origin O, givén2 . Not surprisingly, takind (x; m; 7) =
1(x 2 B)1(m 2 K) in (2.6) and comparing to (2.8) we nd that

Corollary 2.1.6. Consider a stationary i.m.p.p. For (almost a&l))the probability kernel of markBy( ) =
() is constant and equal to the Palm distribution of the marks.

In view of the above observation we shall sometimes say that the points of a stationary i.m.p.p. are indepen-
dently anddenticallymarked.

Under the Palm probabiliti © of a stationary p.p. , all the objects de ned on the same space dsve
their distributions “seen” from the typical point of the process, which is located at 0 (cf. the discussion at
the end of Section 1.6.1). In the case of a stationary m.p.p., lifjehe mark attached to the point at 0 has
the distribution ; this explains why it is also called thikstribution of the typical markin this context, the

Campbell-Matthes formula (1.18) can be rewritten to encompass the marks
Z Z

E  ogx;~ x)(dx) = E°lg(x; 7] dx: (2.9)
Rd Rd
Note that in the above formula, in contrast to (2.6), the m.p.jis not treated as some p.p. in a higher
dimension but rather as a point proceson a probability space on which marks are de ned as well.
This approach is more convenient in the case of a stationary m.p.p. since it exploits the property of the
invariance of the distribution of with respect to a speci ¢ translation of points which preserves marks (cf.
De nition 2.1.4).*
The following observation is a consequence of Slivnyak's theorem 1.4.5:

Remark 2.1.7. Consider a stationary i.m. Poisson ppwith a probability kernel of mark&, such that
Fx() = F(). One can conclude from Corollary 2.1.6 and the Remark after Corollary 2.1.2 that its distri-
bution under the Palm probabilif§° is equal to that of+ " (0:mo)» Where ™ is taken under the original
(stationary distribution)P and the markng of the point at the origin is independent 6fand has the same
distributionF (') as for any of the points of .

Almost all stochastic models considered throughout this monograph are constructed from some marked
point processes. Here is a rst example driven by an i.m. Poisson p.p.

2.1.3 Matéern Hard Core Model

Hard core models form a generic class of point processes whose points are never closer to each other than
some given distance, séiy> 0 (as if the points were the centers of some hard balls of ra%iil)sFor the
Poisson p.p. there exists ho> 0 such that the p.p. satis es the hard core propertyhfor

1The Palm probability? © can be de ned as the Palm distribution of the marks in the case when the whole con guration of points and all other
random objects existing on the probability space “seen” from a given poin®of is considered as a mark of this point — the so calieiversal
mark This requires a more abstract space of marks Bhaconsidered above; see Section 10.2 for more details.
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We now present a hard core p.p. constructed from an underlying Poisson p.p. by removing certain points
of the Poisson p.p. depending on the positions of the neighboring points and additional marks attached to
the points.

Let be a Poisson p.p. of intensityon RY:

Let us consider the following independently marked version of this process:
X
= T
[
wheref U;g; are random variables uniformly distributed [@n1]. De ne new markd m; g of points of by
m; = 1(U; < Uj forally; 2 By, (h) nfx;g): (2.10)

InterpretingU; as the “age” of poink;, one can say tham; is the indicator that the poin is the “youngest”
one among all the points in its neighborhddg (h).
The Maérn hard core (MHC) point process is de ned by:
X
MHC = m;“x;: (2.11)
[
mHc IS thus an example of dependenthinning of . In contrast to what happens for an independent
thinning of a Poisson p.p. as considered in Section 1tB& resulting MHC p.p. is not a Poisson p.p.
Nevertheless some characteristics of the MHC p.p. can be evaluated explicitly, as we show shortly. Consider
also the “whole” marked p.p. X
TMHC = T(x(uimy) ¢ (2.12)
[
Clearly “muc is not independently marked, because of;g. Nevertheless ync (as well as ync) is
stationary. This follows from the following fact. Létynuc (§ denote the (deterministic) mapping fron
to “muc . Then for allv 2 RY,

“mHc(V+ §= v+ Tuuc (§

with v + € interpreted as in De nition 2.1.4.

We now identify the distribution of marks by rst nding the distribution of the typical mark Qfinc
and then calculating the intensityyyc of the p.p. mnc . ForB RYand0 a 1, by Slivnyak's
theorem (see Proposition 1.4.5)

Z Z
C(B (0;a] f 1g9) = E 1(u<Uj forally; 2 By(h)\ nfxg) § d(x;u))
B [0;a]
Z Za X
= |Bj P 1Yy u)'x;, Bx(h) =0 dudx
B 0 (xj;U;)2e
. .Za d 1 e @ dh
= jBj e Y adh dUZJBJT;

0
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P— . . .
where 4 = d=(1+ d=2)is the volume of the baB (1) of RY. Comparing the last formula with (2.8),
we nd that
(du f 1g)= P% Up2 dumg=1g=e Y a"du;

for0 u 1, where(Up; mo) is the mark of the point located at 0 und®?. In this formula we recognize
that Ug has the original uniform distribution of mark$ and, givenUg = u, the point at O is retained in
wuc (i.e.mg = 1) with probabilitye Y ¢,
In order to calculate the intensitync of the Maérn p.p. we take a s& with volumejBj = 1 and
obtain
1 e d

muc = C(B  [0;1] f 1g) = P Of mp=1g= o

Notice thatwhen '1 |, pmpc % dlhd . Hence the MHC process packs hard spheres of rddisvith a
volume fraction (proportion of space covered by spheres — see Section 3.1.8 for a general de nition) of
1 h 9 1
= —— - = = 2.13
p dhd d 2 2d ( )

Remark 2.1.8. The valuel=29 is a good lower bound (sometimes called the “greedy” one) for the volume
fraction obtained by angaturatedhard sphere packing. A con guration of non-overlapping (hard) balls
with the same radius is calleshturatedif no further ball with this radius can be added without violating
the no-overlap constraint. Lg@tbe the fraction of the space (say, in some empirical mean sense) covered
by a saturated con guratiohBy, (R)g; of balls with radiusR. The saturation condition implies that all
points of the space are at distance no larger ®Rrfrom the center of some ball of this con guration
(otherwise a new ball could be added there). This implies that when goubling the radius of each ball of the
original con guration, one obtains a full coverage of the space: i. —; By, (2R) = RY. The volume
fractionplof is thus equal to 1. On the other hand, when denoting the volume fraction of the original

con guration, we get thap®  29p (when using the multiplication of the radius Byand the inequality
stemming from the overlapping). Thass p® 29, which impliesp  1=29.

For comparison, an upper bound given in ( ) for the volume fractiamyhard sphere
model valid for alld  1is (d=2 + 1)2 92 and the best currently known upper boun@ i§-59°0d(1+ o(1))
whend!1 ( ).

Table 2.1 gives the volume fractions of some classical hard-sphere moddls fbr2; 3.

Example 2.1.9 (Carrier sense multiple access)lhe above MHC model can be used as a (very) simple
model of the instantaneous repartition of active nodes in an ad hoc network using carrier sensing mutiple
access (CSMA) protocol (see Chapter 25.1.3 in Volume Il). In this protocol, a node which wants to access
the shared wireless medium senses its occupation and refrains from transmitting if the channel is already
locally occupied. Hence, each active node creates some exclusion region around itself preventing other
nodes located in this region from transmitting. The simplest possible model taking such an exclusion is the
MHC with a radiush equal to the sensing (exclusion) range of CSMA. Note that in this moget =

mHc (;h) corresponds to the spatial density of active nodes in the ad hoc network of denstign this
network uses CSMA with a sensing rangehof
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. mo<_jel saturated Mdirn RSA densest packin
dimension
1 0.5 0.747598..[ 1.
2 0.25 0.54700 0.90689...
3 0.125 0.38278 0.74048...

Table 2.1 Volume fractions of some classical hard-sphere models. The left column gives the exact value (2.13) for the satemateddéhtThe

center column gives the value of the saturated RSA (Random Sequential Addition) modik Hoithis model, known as thRényi car parking

problem has an exact solution; for= 2 ; 3 we used simulated values taken from ( ). It should be mentioned that
the construction of the RSA model on the whole space is not trivial; see ( ; ) for a rigorous proof
of the convergence of the empirical volume fractions when the observation window tends to in nity. The densest packing is given orbthe rightmost
column. On the plane the densest packing is that of the hexagonal lattice (cf. Section 19.3.2 in Volume Il), the volume fraction ofwhich3s

Ford = 3 it was conjectured by Kepler in 1611 and proved only recently that the cubic or hexagonal packings (which both have volume fraction

= (3" 2)) are the densest possible.

2.2 Shot-Noise
2.2.1 General Point Processes

A shot-noise (SN) eld is a non-negative vector random élg(y) de ned for all y in some Euclidean

space and which is a functional of a marked point pro&sdHere is a list of the spaces involved in its
de nition:

The eld is de ned onR® i.e. for ally 2 RY";
The vector eld takes its values ifR* )X i.e. | P(y) 2 R**for all y;

Itis generated by a marked point proc&ss ;" (y,.m;) On RY with marks inR .

R RI R 7! (R

De nition 2.2.1. Under the setting described above, the SN eld associated with the marked point process

€ and the response functidnis de ned by
ZZ

X 0
le(y)=(la(y):ioilk(y)) = L(y;x;m) & d(x;m)) = L(y;xi;mi); y2RY;
RI R (xi;mj)2¢€

where the integral and the sum are evaluated component-wise for the vector response function

Remark: The case where the eld lives in the same space as the point pr8ogss, d®= d) is the most
common. The term "Shot-Noise” comes from this special caseavithl . It describes a stochastic process
with 'shots' taking place at the epochi¥X g of a Poisson point process on the real line, which represents
time. The shot aK; has an effect over time of the forlt  X;), wherel : R! R is a function which
is usually such thdt(x) = 0 for x < 0 (non anticipativeness) and decreasingXor 0. The Shot-Noise at
timet, X
L(t)y=I(t Xi);

|
is then the 'sum’ of the effects of the shots that took place beforetime
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Sincel is positive,l ¢ (y) is well de ned but can be in nite. In the sequel we require this random eld
to be a.s. nite and moreover to have nite expectation. Using the Campbell formula (2.6) we can easily
express this expectation in the case of an i.m.g.p.

Proposition 2.2.2. Let | ¢ (y) be the SN eld as above and assume tfas an i.m.p.p. Then

z
Elle(W]= L(y;x;m) F(dm j x)M (dx) (2.14)
RS R

componentwise.
Proof. We have by (2.6)

ZZ z

Elle(W]= E L(y;x;m) § d(x;m)) = L(y;x;m) F(dm j x)M (dx) :
RI R RS R

O

Assuming that the right-hand side in (2.14) is nite for gll we guarantee that each random vector
I «(Y) has nite expectation and thus is nite almost surely. This however is not suf cient to be able to say
that with probability 1 the whole eldlo(y) 1y 2 Rdog is nite. For this latter as well as for a continuity
property of the paths of this eld (which will be useful later on) we prove the following technical result.

Proposition 2.2.3. Let | ¢ (y) be the shot-noise eld de ned above and assume that an i.m.p.p. If for
eachy 2 R™, there existsy > 0 such that

ZZ

sup L(z;x;m)F(dmjx)M(dx) < 1 (2.15)

RI R z2By(y)
componentwise, then with probability the eld | ¢(y) is nite forall y 2 R®. If moreover the response
functionL (y; x; m) is a continuous (lower semi-continuous) functioryifior any xed (x; m), then with
probability 1, the eld | . (y) has continuous (lower semi-continuous) paths.

Proof. From the open coveringBy( y) 1y 2 Rdog of R% one can choose a countable covefiiy, ( v, ) :
w=1;2;:::g(this is possible sincRY is separable). From (2.15), there exists a sub8eff the space on
which is de ned and having probability one, such that forlalz  °

ZZ

IO(yW)= sup  L(z;x;m)& d(x;m)) < 1;

RA R ZZBYW( yw)

forallw = 1;2;::: Consequently, forall 2 %andz 2 RY, le(2) IO(yW(Z)) < 1 componentwise,
wherew(z) denotes the center of the ball of radiyg, ,, of the countable coverage which coversi.e.,
z 2 By, ,,( yu()- This proves the rst statement.
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For continuity (lower semi-continuity), take amy2 RY andz, ! z(z, & z). For sufciently largen,
zn andz belong toBy,, ., ( y,,.,,)- Then by dominated convergence,
ZZ
n||i1m le(zn) = nIli{n L(zn;x;m) € d(x;m)) = 1¢(2);
RI R
becausd. is continuous (lower semi-continuous) in its rst argument. ad

2.2.2 Poisson Point Processes

In the case of a SN(y) = | (y) generated by an i.m. Poisson pf.the distribtijjtion of the SN vectdr(y)
is known in terms of its multivariate Laplace transfokyyyy(t1;:::;tk) = E[e R ()],

P
Ligyy(te;iiite) = exp 1 e (tatLiOXM) Eo(dm) (dx) : (2.16)

Rd R

Proof. Observe ttbatl y(tLiiit) = Le(f) whereL ¢ () is the Laplace transform &t at the function
f=f(xm)= i1 tiLi(y; x; m). Equation (2.16) follows from Corollary 2.1.2 and Proposition 1.2.2.
O

One can evaluate explicitly the higher moment$ by differentiating the above formula at 0.

Joint Distribution of the Field at Several Points. Letl (y) = 1¢(y) be a SN eld with response function
L asin De nition 2.2.1 and let be a linear transformatiofR* )% " 7! (R’“)"O for some integera andk®
Then

I°(y1;:::; n) = ( Ty (yn)

LY(ye;::s n)Px m)= ( L(yux;m);:iii;L(yn;x;m)):

In partlcular taking( ai;:::;a0) = o g, wesee that tha-dimensional aqgregat@e (Y1;::5;¥n) =
J - 1Y) |saSN onR?’ EWlth associated functioh” ((y1;::5:9n);x;m) = i=1 L(yj;x;m). Simi-
larly, the integrald e(A) = 1 (y)dy can be interpreted as a shot-noise eld on the space of (say) closed

subsetA  RY. As another immediate consequence of the above formulation, we have the next result by
settingk®= k n, using the identity transformation and appealing to Proposition 2.2.4:

Corollary 2.2.5. Let| = I¢(y) be as in Proposition 2.2.4. Then the joint Laplace transfdry,(t) of
the vectord (y) = (1 (y1);:::;1 (yn)% is given by
P n P e
Ligy)(t) =exp 1 e Ja iatiLixm) Fx(dm) ( dx) ;
Rd R

wheret = (tj :j =1;::0n 0 =1;:::,K).
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Absolute Continuity. In the following proposition we give simple conditions for the Poisson SN vector

| «(y) to have a probability law which is absolutely continuous (has a density) with respect to Lebesgue
measure. This property can be used to derive the distribution function of the shot-noise from its Laplace (or
Fourier) transform via the Plancherel-Parseval Theorem (cf. Section 12.1).

Proposition 2.2.6. Letl = 1¢(y) be as in Proposition 2.2.4.
If (RY =1 andif, foreaclA (R")X of Lebesgue measure 0,
Z
1(L(y;x;m) 2 A)Fy(dm) ( dx) =0 ; (2.17)
RI R

then, for ally 2 R®, the random vectare (y) is absolutely continuous with respect to thelimensional
Lebesgue measure (i.e. has a density).

Proof. Fix y 2 RY; without loss of generality ley = 0. TakeA  (R:)¥ of k-dimensional Lebesgue
measure 0. For any> 0
Pfle(0)2Ag=Pfl, +I1f2Ag;

R R
wherel, = ixi r R L(0;x;m) &€ d(x;m)) andI® = x>t R L(0;x;m) ( d(x;m)). By the Poisson
assumptiori; andl © are independent. Moreover
X n o n o
Pfls(0)2 Ag= P I,+If2Aj € x:jxj r =n P € x:jxj r =n :

n=0

Recall from the discussion at the end of Section 1.1.1 that conditioned®n jxj r = n,withn > 0,
the random variablé, can be represented as the sutmahdependent random variables, distributed as
L (0; x; m) wherex andm have joint distribution

Fy(dm) ( dx):

X:jxj r
Thus, by (2.17) n o
P I,+If2A€ x:jxj r =n =0:
Consequently, n 0

Pfle(0)2Ag P X:jxj r =0 ! 0 whenr!1l

because( RY) = 1 . This completes the proof. ad

2.3 Interference Field as Shot-Noise

Consider a collection of transmitters distributed in the space and sharing a common radio medium. Following
the observations made in Chapter 23 in Volume I, assume that signal attenuation depends on distance (cf.
Section 23.1 in Volume Il) and some stochastic ingredients (cf. Section 23.2 in Volume II).

The total power received from this collection of transmitters at a given location is in essence a shot-noise
eld at this location. For instance in the case of a planar model with omni-directional antennas, the simplest
model consists of
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a collection of pointd x;g representing the locations of transmitters on the pRA¢d = 2 in
De nition 2.2.1);

marksm; = p; representing the powers of the transmittérs (L); and

a scalar kK = 1) response functioh (y; x; p) = p=I(jx Yj), wherel is the omni-directional
path-loss function (cf. Section 23.1.2 in Volume II).

As we shall see, ne elements of the radio wave propagation model (antenna azimuth, random fading model,
etc.) can be taken into account by enriching the marks of the p.p.

As outlined in Section 24.3.4 in Volume I, the total power received from a set of transmitters scattered
in the plane can often be considered as interference or noise with respect to the signal received from one
(or more) transmitter(s) not belonging to this set. Within this setting, this total power plays a key role in
detection theory as explained in Section 24.3.4 in Volume Il. The fact thattiwderence eldof such a set
of transmitters can be interpreted as a shot-noise eld opens new ways of assessing its statistical properties.
In the same way as Rayleigh fading was shown to be an ef cient statistical model better suited to assessing
the uctuations of a multipath channel than solving the electromagnetic eld equations, the shot-noise model
can be seen to be an ef cient statistical model for predicting the uctuations of the interference eld. This
is often more practical than evaluating exactly the power of interference.

2.3.1 Standard Stochastic Scenario

Consider a marked point proce§8s  fx;:pig with points on the planéx;g 2 R? and marksp; 2

R* . Points represent transmitter locations and marks emitted powers. Consider some isotropic or ommi-
directional path-loss (OPL) functidn for example models OPL 1-OPL 3 described in detail in Exam-

ple 23.1.3 in Volume Il and de ned as follows:

(OPL 1) I(r) = (Amax(rg;r)) ,
(OPL2)I(r)=(@+ Ar) ,
(OPL3) I(r)=(Ar) ,

forsomeA > 0,rp > Oand > 2, where is called thepath-loss exponenfAssuming the signals are
transmitted and received by omni-directional antennas, the total power received at some josation
X .
_ _ Pi . 2.
L(y) = le(y) = — Y2R~% (2.18)
° Gy xi)
(xi;pi)2€
We shall often consider the following standard stochastic scenario for the above interference shot-noise

eld:

(1) © is a stationary i.m.p.p. with points R? and intensity :
(2) the marks have some distributi®f p sg = G(s) that does not depend on the location of the
point.

Notice that this model excludes power control as described in Section 25.2 in Volume Il where powers are
functions of the transmitter locations.
Kendall-like Notation for the Standard Interference Model Mimicking Kendall's notation in queuing

theory, we call the above standard stochastic scenario of SN a GI/GlI interference model, where the rst
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Gl denotes a general independently marked stationary p.p. and the second Gl stands for a general mark
distribution. Some special cases are:

M/ if the underlying i.m.p.p€ is Poisson;

D/ if the underlying i.m.p.p€ is deterministic;

/M if the marks are exponentially distributed; i@(s) =1 e S with 0.
/D if the marks are deterministic (constant).

For instance, the interference eld in a MANET with nodes located according to a Poisson p.p. and without
power control (see Section 25.3.1 in Volume Il) can be seen as 8NI/Similarly, the famous honeycomb
model used in certain cellular network models for representing the location of base stations leads to a down-
link interference eld which falls in the D/SN class provided no power control is used (see Section 25.3.2

in Volume II).

Remark 2.3.1. Assume that emitted poweps = p are constant and that we have some Rayleigh fading
(see Section 23.2.4 in Volume I1). Then the power received at the locafimm a transmitter at; is equal

to pFi=I(jxi vj), whereF; is an exponential random variable with mean 1. Thus, interprgtificas a

“virtual power” (which is hence exponential with meah the GI/M model may be used to describe the
interference in the presence of Rayleigh fading. In what follows, we shall most often work directly with the
virtual power, or equivalently assume that Rayleigh fading is represented by an exponential random variable
of parameter = p 1.

The independence betweéh for different transmitters, which is assumed in the GI/M model, can be
justi ed if the point process is sparse on the scale of the coherence distance (see Section 23.3 in Volume II).
However this SN representation is valid only for one given location. Indeed, using the same value of the
fadingF; from pointx; to different locationsy 2 R? would not be a reasonable assumption as the channel
conditions change signi cantly when varies more than the coherence distance. We will return to this
problem in Section 2.3.3.

Corollary 2.3.2. The mean total received power in the GI/GI model is constant and equal to

z 1 2 2 ;
E[l (y)]= E[l]1= E[p] ) @) dy = (1 G(g))ds2 0 I(r)dr' (2.19)
The Laplace transform of the received power in the M/GI model is equal to
2
Lip®=L{t)=exp 2 riL pt=l(r) dr ; (2.20)

0

R
whereL p(t) = 01 e ' G(ds) is the Laplace transform of the transmitted power. The second moment in

the M/GI model is equal to
2

E[I%(y)] = (E[I])?+ E[p?]2 o Wdr'

(2.21)
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Example 2.3.3. For the M/M model, these values are equal to

2 2 r
E[I] = — mdr; (2.22)
0
2 r
0
Below, we use the fact that
2 1
T+ x0 dx=1=u(1l=u)(1 1=u): (2.24)
0
Assuming OPL 3 fot, one obtains
Y.
L, (t) =exp — A ; (2.25)
with
_ 22 _2(2=)@ 2=),
K()= sn@=) : (2.26)

Assuming OPL 1 fot with =4, one obtains
r_ r_ r__

t t
—arctan (Arg)? T a2

L) = exp w2~ St (Argt

= (2.27)

Corollary 2.3.4. Consider a M/GI model with the non-null marks (i.&(0) < 1), for which at least one
of the following conditions is satis ed: the distribution functi@of the mark admits a density or the OPL
functionl(r) is strictly decreasing. Thenf@ a b

2 e 2i bs e 2ias
Pfa | bg= Li(2is) s ds; (2.28)

1

R
provided ; jL;(2is )j?ds< 1.

Proof. Under our assumptions, by Proposition 2.2.6, thd 3ids a density that is square integrable provided
the Fourier transform of is square integrable (see ( , p.510)). Then the result follows by the
Plancherel-Parseval theorem (see Lemma 12.2.1). ]
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R
Remark 2.3.5. For the GI/GI scenario with OPL 1 and OPL 2 aBfp] = 01 sG(ds) < 1 we can con-

clude from Proposition 2.2.3 and formula (2.19) with) replaced by(max(r ; 0)) that, with probability
1, the SN eldl¢(y) is nite for all y 2 R2. For OPL 3 one has to be more careful. Note that by (2.19) the
integral expressing[l ] is in nite in this case for > 2 due the pole at the origin (cf. also Example 23.1.3
in Volume II). Consequently, the simpli ed isotropic path-loss function OPL 3 cannot be used to model the
mean interference eld created by a homogeneous i.m.p.p. on the plane. However, with probakil{ty) 1,
is nite for all y 2 R? except fory 2 . One can prove this by considering the mean of the shot-noise
created by transmitters outside some vicinity of the receiver (which is nite) and knowing that the number
of transmitters within this vicinity is nite with probability 1.

Using the explicit formula (2.20) one can also check that in the M/GIl model with OPL &ébd< 1
the Fourier transformy; (2i ) of I is square integrable.

Note that for the M/GI model, Proposition 2.2.4 allows one to calculatgding Laplace transform of
the received power at several locations.

2.3.2 *Directional Antennas

In the case of directional transmitter antennas, one can enrich the marked point fraxfets® previous

section by taking as marKg;; i), wherep; is, as above, the power transmitted by poinand where ; is

its antenna azimuth. We assume all the antennas have the same radiation gatterf (cf. Section 23.1.2

in Volume I1). If this is not the case, one has to consider the whole radiation pattern function as the mark of

a point. Using the model (23.3 in Volume II), it makes sense to model the total power receivéy Hie

shot-noise

X p % \y xi)
IGy  xij)

L(y) = le(y) = , y2RY: (2.29)

(xi;(pi; i))2¢€

Corollary 2.3.6. The mean total received power in a GI/GI interference model with directional antennas
having the same radiation patter and having independently, uniformly distributed azimuils constant
iny and equal to

2 x 2
ENWI=Ell= @ GePds5—  *()d 2 T
0 0 0

The Laplace transform of the received power in the M/GI model with the above directional antennas is equal

fo
z2

Ligy(® = Ly (t) =exp r 1Lt 2()=lGrj) drd
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E)ﬁ\mple 2.3.7.Continuing Example 23.1.4 in Volume I, note that for the radiation pattern RPO we have

L 2()d =1, whereas for RP1, this integral can be expressed in terms &ftiesintegral
1 z sin(! ) 1 z sin Si(! )
2 1 9 d ==

0
Numerical integration for = 1:81(so as to have ?( = 3) = 1=2 = 3dB) gives

i(!
325 ) _.3068
R
For a general radiation pattern RP2, the integral ?( ) d can be easily evaluated analytically

z 2()d—i 61 +9 % 93+18, 42
2 6( 31) '

2

The above value fory = 13, 2= % is equal t019=48 = 0:39583

2.3.3 Fading Field

We return to the question of the joint law of the interference eld at several locations of the space in the case
of a Rayleigh fading, already alluded to above. We consider this question in the omni-directional path-loss
function case.
In order to model the actual received power, one introduces a random fadindr etd F (x;y) on
R? RZ?, whereF (x;y) re ects the multipath signal propagation fronto y (cf. Chapter 23 in Volume ).
It is then natural to introduce the response function
L(y;x;p) = PF(xy)=I(jx yij)
in the SN description of the interference eld. Consequently, a fading-aware SN model takes the form
- _ X piFi(y) . d.
L(y) = le(y) = Gy xi)’ y 2 RY; (2.30)
(xi;(pisFi))2@
whereF;( ) = F(X;; ). Note the above formula remains compatible with De nition 2.2.1 with manks-
(pi; Fi()) which comprise the emitted power and the fading elds of transmittgwe admit however that
the space of this mark is more complex tHanas assumed in De nition 2.2.1).
As far as probabilistic assumptions are concerned, it is dif cult to describe completely the distribution
of the fading eldF( ; ), and thus of the marks;( ). However, inspired by what is said in Section 23.2.4
in Volume Il it is reasonable to assume the followiiagling process postulates

(1) The stochastic proce$y ; ) is independent of the other elements of the standard scenario for
SN described in Section 2.3.1 and has a constant marginal distributions with mean 1.

(2) Ifjy1  y2j> orjxi1 Xpj> ,where issome constant, thdn(xy;y;) andF (x2;y2) are
independent random variables.

3) Ifjyr y2j < andjxi Xpj< ,where < issome constant, thén(xi;y1) = F(X2;V2).

Remark: Typically the constants , which are related to the coherence distance, are of the order of the
wave-length, and so are very small compared to the typical distance between transmitters and/or receivers.
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2.3.3.1 Interference at a Single Location

The above fading process postulates, together with the exact form of the marginal distribufiomref
enough to evaluate (or to reasonably approximate) the characteristics of the interference eld at one location,
sayyo. In this case only the distribution of the vectdt; = F;(yo) = F(Xi;Yo) : Xj 2 is required. Our
postulates on the fading process and the remark following them justify the assumption that this is a vector of
independent and identically distributed (i.i.d.) random variables. This agsumption is reasonable at least if the
mean nearest neighbor distance for the point proce@shich equalsl=(2" ) in the case of the Poisson

p.p. with intensity ) is much larger than the constantin the second postulate. Thus, taking a standard
model with pi0 = piF; captures the fading effect well. Recall in particular that a constant emitted gower
and Rayleigh fadingf; are equivalent to taking exponential “virtual powep§'(and no fading).

2.3.3.2 Fading at Discrete Locations

We now focus on the value of the interference eld at several locations of the plang;;say; yk.
Our standard model for SN (see Section 2.3.1) can be enriched by random variables representing fading
in the channel fronx; 2 toy;, for each pair(i;j ) of transmitteri = 1;::: and receiver locations,

j =1;:::;k. For this, one considers marks;; (F.1;:: 15 FX))) 2 (RT)1K, wherep; denotes the power of
transmitteri and(F1;:::; Fik) the random vector representing the vaIueFfbf: F(Xi;yj), the fading in
the channels from transmitteto receiversy;,j = 1;:::;k
Consider the vector shot-noise e{tl1(y);:::;1k(y)) de ned onR? K by
X i
piF;
i (y) = — 2.31
) Gy %) .

(Xis(pi;(FLusFfy 2@

Note that due to our assumption on the fading, the value of this vector eld takéat:;yk), i.e.;

fading fromx; toy; isF/.
As far as probabilistic assumptions are concerned we assume that

(1) © is a general stationary i.m.p.p. R with intensity (note that the i.m. assumption is reason-
able in view of our postulates for the fading process, at least for point processes with a mean
nearest neighbor distance suf ciently large compared }pand

we denote byFpower (dp) the distribution ofp.

When appropriate, we also assume the following:

A Rayleigh fading channel would consist in assumifigexponential random variables (cf. Section 23.2.4
in Volume 11).

Kendall-like Notation (cont.). By analogy with queuing theory, we call the model (2.31) a GK@EN,
wherek stands for the number of different channels represented. If the underlying point process is Poisson,

2Assumption 3 is reasonable if the locations : : : ; yi , are well separated in space.
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we denote it by M/k, while /M/k stands for the model witmdependent exponential received powers in
each of the&k channelge.g. constant emitted power and Rayleigh fading).
As above, using (2.5), we can calculate the mean value of the total signal recejyeit dhe GI/Glk
model: Z
Ellj]1= E[pIE[F]
R2
whereE[F ] is the mean fading of the channel.
For the M/Glk model, i.e. under the assumption tifats an i.m. Poigson p.p., by Corollary 2.2.5, we
can evaluate the joint Laplace transfobm, ..., ) (t1; 11 tk) = E[expf jk:l tjl;ql.

l .
Gy

.....

Corollary 2.3.8. For the M/Glk SZN

pta. ... ptk
IGyr  xi)" T lHGyk X))

Fpower(dp) (dx) ;

Rd
wherelL¢ (t1;:::;tk) isdhe Laplace transform of the fading vectolf f consists of independent components
..... — Yk .
thenL¢(ty;:::t) = i=1 Lt (tj).

Example 2.3.9 (Random cross-fading model)ln the previous example we considered some nite set of

xed locations and a random pattern of transmitters. Consider now a more general situation, when one has a
random pattern of transmitters, and another, possibly in nite, random set of receivers. This model is

very exible and does not exclude the case where certain transmitters and receivers are located at the same
points, i.e. possibly ¢\ [ 6 ;;inthe extreme case, one can considger= ;. In this context it is useful

to attach tak; marks of the form(p;; fij ; X; 2 ) wherep; denotes the power of transmitterandf;; the

fading of the channel froms; toy;. This model could be denoted by Gl/Gl/and is related to the so called
random connection modebnsidered in continuum percolation (see ( ).

2.3.4 Time-space Shot-Noise

This section is concerned with a time—space model which leads to a vector shot-noise eld., namely to a
eld which takes its values ifR* )k with k > 1 (see the beginning of Section 2.2.1). The basic data in this
model are

a collection of points x; g representing the locations of transmitters on the pRthed = d°= 2

in De nition 2.2.1);

a collection of mark®; 2 R* I(; thei-th coordinate oP;, denoted byp;. ; is the power/fading
of transmitteti attimel n  k (the dimension of the mark space of De nition 2.2.1 is hence
here equal t&); and

ak-dimensional response functitriy; x; P) with n-th coordinatd_, (y; x; P) = pn=I(jx Vj),
wherepy, is then-th coordinate oP and wherd is some omni-directional path-loss function.

This time—space model is a natural extension of the standard model of Section 2.3.3.1: transmitters are xed
but their power/fading conditions change o)\(/er time and

I (y) = L(y;xi;Pi)2R+k
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is then the vector oR* ¥ the n-th coordinate of which, denoted by (y), gives the interference at lo-

Ele " ()] of I (y).
A natural instance of the model is that where the transmitter locations form a Poisson p.p. of intensity
the marksP; are i.i.d. and the coordinates Bf are i.i.d. Then
2 Y
Ligy(te;iiite) =exp 2 rl Lo th=I(r) dr ; (2.32)
0 n=1

whereL p(u) denotes the Laplace transformmf; atu.

2.4 Extremal Shot-Noise

We now introduce a shot-noise model in which instead of adding the impact of all points (and their marks) we
look for points having extremal impact. For simplicity we consider here only a scalar extremal shot-noise
eld ga ned on the same space as the point-procBsdvlore precisely, consider a marked point process

&= ' " .m; OnR?with marksinR and some non-negative response functiarR®” RY R 7! R*.

De nition 2.4.1. Given a marked point proce§sand response function as above éxtremal shot-noise
(ESN) eld is de ned by
0
Xe(y)= sup L(y;xi;m); y2R®:

(xi;mj)2¢€

Sincel is positive,X ¢ (y) is well de ned but can be in nite.
Interestingly, the nite-dimensional distributions of the efdX(y) = X (y) : y 2 Rdog can be ex-
pressed via the Laplace transform of certain associated (additive) shot-noise variables. For this note that

PfX(y1) t1;::5;X(Y) tkg

PfL(yj;xi;mi) tforallj =1;:::;k; (xi;m;) 2 €g
X YK

E exp og  LL(yixim) t) (233
(xi;mi)2¢€ j=1

Consequently, for i.m. Poisson p.p. we can express these nite-dimensional distributions explicitly.

Proposition 2.4.2. Suppose thaf is an i.m. Poisson p.p. with intensity measur@nd mark distribution
Fx (dm). Consider the ESX (y) = X ¢ (y) with the response function. Then

zZZ
PfX(y1) tiiiniX(y) tkg=exp 1 L(L(yjsx;m) 1)) Fx(dm) ( dx)
R R 1=1
In particular 7 7
PfX(y) tg=exp L(L(y;x;m) >t) Fx(dm) ( dx)
R R
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Proof. The results follow from (2.33) and (2.2). O

The extremal shot-noise model is often used in situations where one looks for some optimal transmit-
ter/receiver. For instance, the extremal shot-ndisgy) represents the strongest signal power received

aty.
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3

Boolean Model

In this chapter we introduce the most celebrated model of stochastic geometry — the Boolean model (BM).
It is also a basic model of continuum percolation.

3.1 Boolean Model as a Coverage Process

In the simplest setting, the BM is based on (1) a Poisson p.p., whose points are alsgeattsdand
(2) on anindependensequence of i.i.d. compact sets called ¢n@ins The Poisson set of germs and the
independence of the grains make the BM analytically tractable. The BM is often used as the null hypothesis
in stochastic geometry modeling.

We de ne the BM as a model driven by an i.m. Poisson p.pRén

= "(Xi; i) (3.1)

with marks ; being independemindom closed se{RACs) ofRY, representing the grains. One can make
the set of closed subsets Bf a measurable space (see ( )). Note that in Section 2.1 we
considered (for simplicity) only marks; in some Euclidean spaé® . To handle more general mark spaces
we can think of subsets; as being chosen from some family of closed sets2 f ( m): m 2 R g, by

a random sampling of some parameter2 R . Perhaps the simplest example is the following family of
random closed balls:

Example 3.1.1 (Random closed balls)By a random closed ballve mean a closed ball m) = Bo(m)
of random radiusn 2 R*, centered at the origi 2 RY.

More general, non-parametric RACs, modeling possibly very irregular random grains, can also be considered
using the measure-theoretic formalism (see ( ).
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Let us introduce the following operations on the subge® 2 RY of the Euclidean space:

A B = fx+y:x2Ay2Bg;
x+B = fx+y:y2Bg; forx 2 RY
B = f x:x2Bg;
rB = fry:y2Bg; forr 2 R:

De nition 3.1.2. Let be a Poisson p.p. of intensity ) onRY and let™ be given by (3.1) for some inde-
pendent and i.i.d. sequence of mafksg which are RACs oRY. We assume that the common distribution
of these RACs satis es the condition that

E[( K) <1 foreachcompad RY: (3.2)

where is a generic RAC with this distribution. The associaBsblean modelis the union

[
BM = (Xi+ i): (3.3)

Lemma 3.1.5 below shows that condition (3.2) guarantees that almost surely, in each bounded window, there
are at most nitely many grains. This desired local structure of the model implies thaothgable in nite
union gy of closed setg; + | is a closed seaind thus that the BM is also a RAC.

We often consider the following example of a BM.

Example 3.1.3 (Homogeneous BM ifRY with random spherical grains). Let be a stationary Poisson
process with intensity onRY (i.e., ( dx) = dx). Assume that ; = Bo(R;) whereR; are i.i.d. and
distributed as the generic random variaRleThe random set given by (3.3) is called thomogeneous
BM with random spherical graindNote that condition (3.2) is equivalent B[R] < 1 , which is always
assumed. Figure 3.1 shows a realization of a BM with random spherical grains in dimension 2.

We now study some basic characteristics of the BM.

3.1.1 Capacity Functional

The capacity functional plays for RACs a role analogous to that of the (cumulative) distribution function for
random variables. It is a key characteristic of a RAC that uniquely de nes its distribution.

De nition 3.1.4. Let be a RAC. Thecapacity functionalT (K) of is de ned as
T(K)=Pf \ K6 ;g

for all compactk  RY.
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Fig. 3.1 Boolean Model with random spherical grains.

Remark: Obviously we havel (;) =0 andingenerad T (K) 1. These properties can be seen as
analogous to the properti€{ 1 )=0;0 F(x) 1ofadistribution functiorF of a random variable.
One can complete the above two properties by another couple of properties, analogous to monotonicity and
right continuity of a distribution function, and then de neClhoquet alternating capacity functionas any
functionalT (K ') of the compact sets satisfying the four conditions. A celebrated theorem of the theory of
RACs (Choquet's theorem; see (Matheron 1975)) states that each such capacity functional uniquely de nes
some RAC distribution, exactly as each d.f. de nes the distribution of a random variable.

Before calculating the capacity functional of the BM, we prove the following very useful lemma.

Lemma 3.1.5. Let gy be the BM with intensity of germs and the generic grain. Then, the number of
grains of the BM intersecting a given comp#ct

Nk =#fxi:(xi+ )\ K6 ,9;

is a Poisson random variable with paraméig( K)I.

Proof. Let ~ be a marked Poisson p.p. generating the BM as in De nition 3.1.2. For a given coipact
de ne the point process X

K = "Xil((Xi+ i)\K@;)Z
(xiy )2~

Note that  is an independent thinning of the pointso{germs of the BM) with the thinning probability
pk (x)= Pfx+ \ K®6;9=Pfx2 Kg:
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By Proposition 1.3.5, ¢ is a Poisson p.p. |\_Q/ith intensity measyge(x) ( dx). MoreoverNk = ¢ (RY)
is a Poisson random variable with parametgrpx (x) ( dx). By Fubini's theorem

z z z
pk(X) (dx)= Pfx2 Kg(dx)=E 1(x 2 K)(dx) =E[( K)I;
Rd Rd Rd
which completes the proof. O

We can now calculate the capacity functional of the BM.

Proposition 3.1.6. The capacity functional of the BMgy with intensity of germs and the generic grain
is equal to
T, (K)=1 e EIC K.

Proof. Note thatT (K) = Pf Nk 6 0 g, whereNx =# fx; : (Xi+ )\ K 6 ;g. The result follows
from Lemma 3.1.5. |

3.1.2 Characteristics of the Homogeneous BM

De nition 3.1.7. We say that the BM gy is homogeneous the underlying Poisson p.p. is stationary.
The intensity of the latte < < 1 , is also called the intensity of the homogeneous BM.

Remark: Note that thedistribution of the homogeneous BM is invariant with respect to any translation in
RY. Indeed, the homogeneity assumption implies that the capacity functionghpfis translation invariant
ie.T,, (@+ K)= T,, (K)foranya 2 RY This follows from Proposition 3.1.6 and the simple
observationthgt (a+ K)j= ja+( K)j=j K j, whergj j denotes Lebesgue measure (volume)
in RY. The fact that

T,w(@+K)=Pf gu\ (a+ K)6 ;9 =Pf( Bwm a\K6;9=T,, aK)

and the remark after De nition 3.1.4 imply that the same holds true for the distributiogaf.

In the sequel we will de ne some important characteristics of a RAC whose distribution is invariant with
respect to any translation R? (for short, we will speak of a translation invariant RAC) and evaluate these
characteristics for the homogeneous BM.

De nition 3.1.8 (Volume fraction). Thevolume fractionp of the translation invariant RAC is de ned
as themean fraction of the volume occupied by
_ Elj \ Bj]
jBj
for jBj > 0, which, by translation invariance of, can be shown not to depend on the particular choice of
boundedB.
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Remark: Due to the translation invariance of the RAC, the volume fraction can also be expresbed as
probability that a given point (say the origin) is covered byindeed

: . Z

= M= i E[1(x2 )] dx=Pf02 g=Pf \fOg6;g=T (fOg);
iBj iBj
B
which is nothing but the capacity functional ofevaluated on a singleton.
By the above remark and Proposition 3.1.6, we immediately obtain that:

Corollary 3.1.9. The homogeneous BM with intensityand generic grain has the volume fraction

De nition 3.1.10 (Covariance function). The covariance functiorC(x) of the translation invariant RAC
sm is de ned as the probability that two points separated by the vec®RY belong to gw ; i.e. by

C(X): Pf0o2 BM ;XZ BM J:

This de nition can be extended to any translation invariant RAC.

Note thatC(x) = E[1(02 ) 1(x 2 )] , so itis a “non-centered” covariance of the random variables
1(02 ) andl(x 2 ) ;the “true” centered covariance is equald¢x) (P(02 )) 2= C(x) p>

If the distribution of the RAC is invariant with respect to all translations and rotationBfrthenC (x)
depends only ofxj. In this case we will writeC(x) = C(jX]), with a slight abuse of notation.

Corollary 3.1.11. The covariance function of the homogeneous BM with intensignd the generic grain
is equal to _ _
C(x)=2p 1+(@ p)%eBU'C il

Proof. We write

C(x) = Pf02 \( X)g
= Pf02 g+Pfx2 g Pf02 [ ( X)g
= 2p Pf02 [ ( X)g
= 2p Pf \f O;xg#8 ;g
= 2p T (f0;xg)
= 2p 1+e EU fOxdl
= 2p 1l+e EL It xii VC xil
= 2p 1+(1 p)?eBOVC il

which completes the proof. O
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Fig. 3.2 The radius of the smallest sphere centerédaatd intersecting the BM and the shortest segment joifiimgth the BM in the direction
of ( 1;0). The conditional distribution functions of the radius of the sphere and the length of the segmen@ igivent covered by the BM, are
called, respectively, the spherical and linear contact distribution functions.

De nition 3.1.12 (Contact distribution function). Consider a translation invariant RAC. Let B be a
given bounded convex set containing the origin D&, B. Thecontact distribution functiofCDF)Hpg (r)

of  with respect to theestsetB is de ned as the conditional probability that the dilation of the Beby
the factor is included in the complement® = RAn of the RAC given02 ¢ i.e.,

Pf \rB=;g; ¢ o
1 p

Hg(r)= PfrB jo2 Cg=

wherep is the volume fraction of .

Different instances of contact distribution functions can be considered, depending on the choice of the test
setB. The most popular cases are as follows:

The spherical CDF. This is the case wheB = Bo(1); in this case the CDHg (1) (r) is theconditional
distribution function of the distance fro@ito given0 62 ; see Figure 3.2.

The linear CDF. This case arises wheB = [0;V], a segment from the origin with direction 2 RY,
jvj = 1;in this case the CDFo.,(r) is theconditional distribution function of the distance from
0to in the direction of the vectov, given0 62 . If is invariant with respect to rotations,
then the linear CDF does not depend on the directi@mdH o.,1(r) = H(r) can be seen as the
conditional distribution function of the distance from the origin tm arandomly chosen directign
see Figure 3.2.

Note that the CDF can be expressed in terms of the capacity functional. In particular, the CDF of the
homogeneous BM can be evaluated using Proposition 3.1.6.
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De nition 3.1.13 (Coverage probability). The coverage probability of the compact sek by a RAC
(not necessarily translation invariant) is de ned as the probability khas included in , i.e. asPf K

a.

The coverage probability is in general dif cult to evaluate. Obviously
PfK g T (K)

and equality holds for a singletdt = f xg.

More explicit results can be obtained for some hard-core germ—grain models, in which points (“germs”)
of some point process are centroids of some non-intersecting closed sets (“grains”); c.f. e.g.@&he Mat
model in Example 2.1.3. For such models, for any connektethe evenf K g is equal to the event
thatK is entirely contained in one of the grains.

For the BM, the following easy result holds.

Proposition 3.1.14.Let gy be the BM given by (3.3) driven by a stationary Poisson p.p. with intensity
0< < 1 and with typical grain . The random setgy covers any given subsét  RY of non-null
d-dimensional volumgK j > 0 with probability 1iffE[j j]= 1 .

Proof. Assume that the BM covet$ for all K with positive volume. Then, by De nition 3.1.8, its volume

fraction isp = 1. Using the explicit formula given in Corollary 3.1.9, one nds that necesskifily j]= 1 .
Conversely, if the latter is true, we hape= 1 and consequently thd-dimensional volume of the

complement of the BNRYn gy is almost surely nullln order to conclude thatgy covers alK as above,

we show that gy = RY. For this consider the following-dilation gy () = i Xi+( i Bo()) of
sm , and note thaiR4n gy j = 0 implies gm ( ) = RYforany > 0. By monotone convergence

Pf su = R'g=lim Pf gy ()=Rig=1;
which completes the proof. O

More informative results for the coverage of the BM are known only in asymptotic form. In this regard,
consider the following parametric family of homogeneous BMs on the @R&naith spherical grains with
random radiu® of nite second moment (cf. Example 3.1.3).

Bm (1) = [_ (Xi + Bo(rRj)) : (3.4)

Proposition 3.1.15. Let K be a compact set iR whose boundary@Khas zero 2-D Lebesgue measure,
i.e.j@K = 0. Consider the family of BMs (3.4) with intensity of germsand assume th&[R?* ] < 1
for some > 0. Denote
iKj IKj E[R]?
—————  2loglog—5——- :
r2eR7] <997 2Ry YERZ

(;r)= r? E[R?’ log

1strictly speaking, in this case, the seafy is no longer a BM since the conditid®[j j] < 1 is not satis ed; cf. condition (3.2).
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Then
Pf K evw(r)g=exp[ e ")]+0(1) as !1 ;r! O; (3.5)

provided (;r ) tendsto some limit (possibit ).

The original proof of the above result (which is very technical and more general — dimehsid) more
general grains, and multiple coverage — can be found in ( , cf. Lemma 7.3).

Note that the above result gives approximations of the coverage probability for dense BMs with small
grains. The following two particular parameterizations are of interest if one wants to design a BM with
some given (approximate) probability of coverage of a giverks€fhe rst one shows how many germs of
a given size are needed, while the second one indicates how large grains should be if the density of germs is
given.

Corollary 3.1.16. Foragivenu (1 <u< 1 )take
iK | iKj E[R]?

= 0= 2[R 2109100 ToE R * 10 ERy

log + U (3.6)

r 2E[R?]

or s

r=r()=

log +loglog +log jKjE[R]>=E[R?] + u
E[R2] '

3.7)

Then
Pf K g=exp[ e "]+ o(1)

asr! Oor !1 | respectively.

Proof. Note that (3.6) is a solution of the equality ;r ) = uin while (3.7) implies (;r ( )) ! wu
when !1 . The result follows from Proposition 3.1.15. ad

The following bounds have been shown in ( , Theorem 3.11) in the case of the BM with grains of
xed (deterministic) radius

Proposition 3.1.17.Let g (r) be the homogeneous BM given by (3.4) with consint 1 and intensity
of grains . LetB = Bg(1) denote the unit disc. Then
. 2 n 0 1 . 2
1 minfL,3(1+ r? 2%e ""g<P B (xi+ ) <1 Zominfl(1+ rz2e " g:
i:xj2B

Note that the above result gives bounds for the probability that the unit disc is included in the union of grains
whose germs belong to this diand not to the whole uniongy .

The BM is often considered as a model for the total coverage obtained by a deployment of an irregular
radio network. One can think of an access network, or a sensor network. Points denote locations of access
points or sensors, whereas the grains model communication or sensing regions of the antennas. In this
context one can use level sets of the path-loss function (see Section 2.3.1) as these grains.
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3.2 Boolean Model as a Connectivity Model

One says that two nodes andx; of the BM at (3.3) ar&onnectedf (x; + )\ (x; + ;)6 ;.

The random geometric graph is the graph associated by Boolean connectivity: its nodes are the points of
the point process and there is an edge between two nodes if they are connected.

Continuum percolation (also referred to as Boolean percolation) is about the existence of in nite con-
nected components of the BM (or equivalently in nite components in the random geometric graph).

In this section, we restrict our attention to a BM with spherical grains.

3.2.1 Connectivity in a Compact Set

De nition 3.2.1 (Conne@'vity in a nite window). Given a compact sdé{ , we say that the BM gy is
connected iKK ifthe set ., (Xi + ) is connected.

Only an asymptotic result is known for the probability of the above event in the case of the BM with spherical
grains all of the sameonstantradius.

Proposition 3.2.2. Let K be a square ifR? and consider the parametric family of BMgy (r) on R?
given by (3.4) with constarR;  1and intensity . Let (;r )=4 r 2=jKj log .Then

Pf gwm (r) is connected in the squakeg=exp[ e (")]+o0(1) as !1 ;r! O; (3.8)

provided ( ;r ) tends to some limit (possibiL ).

Proof. We use Proposition 13.1.4 concerning the Minimal Spanning Tree (MST) of the Poisson p.p. (see
Chapter 13) . The key observation is thaty (r) percolates in the squake iff the longest edgdl ¢ of the
minimal spanning tree of \ K is not longer tharr, which is equivalent to

M 2 log 4r 2 log:
Scaling down the radius of the grains and the side of the sqUdrg the factorp jKj, we obtain
M 2 log 4r 2?5Kj log ;

whereM is the longest edge of the MST of in the unit square. The result now follows from Proposi-
tion 13.1.4. O

Corollary 3.2.3. Foragiveru (1 <u< 1)take

_ _ K] K] K]
= (r)= TR Iogm +loglog T +u (3.9)
or r
F=r()= JKJ('ZQ tu), (3.10)

Then
Pf gm (r) is connected in the squakeg = exp[ e Y]+ o(1)
asr! Oor !1 | respectively.
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Proof. Note that (3.10) is a solution of the equatiof;r ) = u with unknown , while (3.9) implies
( (r);r)! uwhenr! 0. The result follows from Proposition 3.1.15. ad

3.2.2 Percolation inRd

In this section we restrict our attention to homogeneous BMs with spherical grains of randomRddfus
Example 3.1.3). Assume th&[RY] < 1 . With probability 1 the BM with spherical grains (3.4) is not
connected iRY. In fact, one can prove the following stronger fact. Denote pthe volume of a unit-radius
ball in RY. Denote byBo(Ro) the grain (ball) centered at 0 under the Palm proballity(call it a “typical
grain”; cf. Section 2.1.2).

Proposition 3.2.4. Consider the homogeneous BMyy in RY given by (3.4), withr = 1 and intensity .
Assume thaE[RY%] < 1 . Then

the probability that a typical grain is isolated is equal to

[ P
P® Bo(Ro)\ xi+Bo(Ri)) =: =E e ¢ ko(IRC “ER . (3.11)
Xi50

and
the number of isolated grains ok is in nite with probability 1.

Proof. Conditioning on the radiu®y = r of the typical grainBo(Ro) located at the origin unde??®,

all other points whose gBairaTe not disjointfrom Bo(r) form an independent thinning (cf. Section 1.3.2)

of the marked p.p=° = %60 | (xiBo(Ri)) - The retention probability for positior; and radiusR; is
pr(Xi;R;) = Pfr+ R; | xijg. By Slivnyak's theorem (see Proposition 1.4.5), ung8é&r ~%is homoge-
neous Poisson with intensity and by Proposition 1.3.5, the thinning is a non-homogeneous Poisson p.p.
with intensity measure such that

Z 7

(R)— p(X'S)dXF(dS)—
r ’ d
k=0

d

d k Ky .— )
kr E[R*]:= (r);

Rd R*

whereF is the distribution oR. Consequently, the probability thBi(r) is isolated is equal te (") and
(3.11) follows when de-conditioning with respect to the radgs= r.

In order to prove the second statement, denotédNby N (7 the number of isolated grains of the
BM gm, Where™ is a Poisson p.p. that generategy (cf. De nition 3.1.2). By the ergodicity of the
homogeneous Poisson p.p. (this is easily extended to i.m. Poisson p.p.s; cf. proof of Proposition 1.6.9), it
follows from Proposition 1.6.10 (4) thét is almost surely constant. In what follows, we show tRais not
bounded, implyingN = 1 almost surely. Indeed, by Campbell's formula (1.19) and (3.11) we have

z
EIN()] = P Bo(Ro) is isolated sefdx = 1 ;
Rd
which implies thalN cannot be bounded. ad
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Remark: From the above considerations it should be clear that even very “strange” but possible (i.e. of
positive probability) local con gurations of points of the Poisson p.p. can be observed in nitely many times
in the whole pattern.

We now continue on percolation, which, in view of what was said, cannot be reasonably de ned as a
total connectivity of gy .

De nition 3.2.5. The BMpercolatesonRY if there exists an in nite connected component gy .

Just as with isolated grains, one is also interested in the event that, under the Palm disttieitigpical
grain Bo(Rp) belongs to an in nite component

Remark: By “in nite component” we understand a component which consists of an in nite number (
of grains. Note that such an in nite component is almost surely an unbounded set in the sense that it is not
contained in any bounded window, because the number of grains visible in a compact window is a.s. nite
(as a consequence BfRY] < 1 , cf. Lemma 3.1.5). Denote by the maximal (in the sense of inclusion)
connected subset ofgyy which includesB(Rg). We callC the clump

Let our homogeneous BM with spherical grains (see Example 3.1.3) be parameterized by the intensity

of the stationary Poisson p.p. Denote hythe following “critical” intensity
n 0
¢ = inf 0:P%#C=1g >0 ; (3.12)

where# C denotes the number of grains in the clu@@nd the notatio® ® makes explicit the dependence
of the model on the intensity of grains

Remark: Note that the probabilityp°f # C = 1g is increasing in . This can be easily seen using the
results on thinning and superposition of Poisson p.p.s (see Section 1.3). Conse@{¥rfiy; = 1g =0
forall O < ¢ (which might be the empty set if; = 0).

One of the central questions of percolation theory for BMs concerns the non-degeneradymvbich
here mean® < < 1 ). The following “phase transition” type results are known on the matter.

Proposition 3.2.6. Let ¢ be the critical intensity (3.12) of the family of BMs with spherical grains of
random radiusR.

Ifd 2andPfRg=0g< 1(i.e.if R isnotalmost surely equal to 0), theg< 1 .
If E[R?d 1< 1 ,then > 0.

Remark: For a one-dimensional BM witB[R] < 1 ,we have . = 1 (i.e,# C is almost surely nite for
all ), whileif E[R]= 1 we have . = 0: the BM covers the whole line for any> 0.2

Proof. The proof of the niteness of the critical intensity exploits some discretization and known results for
discrete site percolation (cf. Section 14.2). Namely, consider some constanGandpg > 0, such that
PfR g = po > 0; such positive constaBts exist under the assum@ibRo = 0 g < 1. Consider a
square lattice (ifR%) with side of length=(2d d). Note that this value is chosen so that any two balls of

2Strictly speaking in this case it is no longer a BM, for whiEfR] < 1 is required; cf. Example 3.1.3.
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radius not less than, centered at some points of any two adjacent sites of the lattice, are not disjoint. We
declare a site of the lattice open if there is a poinfdf it marked with a ball of radiug . Otherwise,
we declare the site closed. Note that the probalylity p( ) for a given site to be open is positive and tends
tolwhen ! 1 . Moreover, the sites are declared open independently. It is known that in this discrete
model withp large enough, but sti < 1, the origin belongs to an in nite connected set of opened sites with
a positive probability; see Proposition 14.2.2. By the construction of our discrete model, this implies that
Bo(Ro) belongs to an in nite connected component with non-null probability fdarge enough, thereby
ensuringthat ;< 1 .

In order to prove that. > 0, consider the followingyenerationsof grains connected tBo(Rp). The
rst generation consists of all the grains directly connected to it. Given 1 generations, thén + 1) -st
generation consists of all grains directly connected to some grain of dtegeneration and which do not
intersect any grain of generatidn: ::;n 1. We say that any graix; + B(R;) isoftypekifk 1 R; <Kk
(k =1;2:::). Note that the number of grains of tygeof the (n + 1) th generation, directly connected to
a given grain of type of then th generation, but not totally contained in it, is not larger than the number of
all grains of radiuRR, k R <k + 1 intersecting this given grain and not totally contained in it, which is
in turn dominated by a Poisson random variable of parameter

(i; k) E[# f points of Poisson p.p. iBBg(i + k) nBo((i k)+) markedby Rk R <k +1q]
= 4 (@{+KY ( KI Pfk R<k+1g:

The process of generations of grains connectdiidro) is not a branching process due to the dependence
between generations; however it can be stochastically bounded by a multi-type branching (Galton-Watson)
process with a Poisson number of children of tjpborn to a parent of type this Poisson number has
mean (i; k). It is not dif cult to see that theexpected numbe|50f aIIF;nd|V|duaIs in all generatiaofsthis
branching process, given the root is of tyipds equal tol + +_, ., m}, wherem} ik is thejk th

entry of then th power of the matrix my, = (i;k)g. It is a matter of a direct calculatlon (see the details

in ( , proof of Theorem 3.3)) that the (unconditional) expectation of the total number

of individuals is nite for suf ciently small > 0providedE[R% 1]< 1 . o

The critical intensity . is related to the size of a clump generated by a typical grain uRfeiThe
following result says that it is also critical for percolation as de ned in De nition 3.2.5.

Proposition 3.2.7. Let . be the critical intensity (3.12) of the family of BMs with spherical grains of
random radiuR.

Assume > 0.1f0< < thenP f BM percolateg =0.
Assume < 1 .If < thenP f BM percolateg=1.
The number of in nite connected component$is-almost surely constant and equal to 0 or 1.

Proof. Assumed < < .. We have by the Campbell formula

P f BM percolateg E 1 x; Bpg(Rj) belongs to an in nite component
= Pf#C=1g dx=0
Rd
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By the ergodicity of the homogeneous Poisson p.p. (that can be easily extended to independently marked
Poisson p.p.; cf. proof of Proposition 1.6.9), it follows from Proposition 1.6.10 (4) that the number of in nite
connected components is almost surely constant.

Assume now that; < < 1 . Note that the BM percolates iff the numbir of grains which be-
long to an in nite component is not less than 1. As before, it can be shown by the Campbell formula
thatE [N] = 1 . ConsequentiyP f N 1g > 0, which implies by ergodicity thaP f N 1g =
P f BM percolateg = 1.

Proving that the number of in nite connected components is at most 1 is trickier. The arguments are
based on the ergodicity of the BM (see ( , Section 3.6)). O

Example 3.2.8 (Connectivity in ad hoc networks).Consider an ad hoc network. Following Example 1.1.2
we assume that the locations of the mobile nodes are modeled by some homogeneous Poisson p.p.
Assume that two nodes;;X; 2  can communicate directly with each othenxf  X;j , Where

is some constant communication range. This is equivalent to saying that these nodes are connected in
the BM based on and with spherical grains of radius= =2 (cf. the de nition of connectivity at the
beginning of Section 3.2). Assume that the nodes of this network can relay packets and that multihop routing
is used. Then, nodes can communicate through some multihop route if and only if they belong to the same
connected component of this BM.

A rst question concerning the performance of this network concerns its connectivity. One can distin-
guish two scenarios:

Limited network casdf we assume a bounded winddd then, it makes sense to ask for the
probability offull connectivity i.e. the probability that any two nodes in the network can com-
municate with each other (through a multihop route). The results of Proposition 3.2.2 and its
corollary can be used to approximate this probability if the node denggyarge (i.e. if there

are very many nodes ik ) and the communication rangeis small compared to (the side of the
squareX .

Large network casd-or networks in a large domain, it is more appropriate to adopt a model based
on the BM on the whole plane (or space). Then, in view of the negative result of Proposition 3.2.4,
full connectivity cannot hold and the best one can hope for is that a node can communicate with
an in nite number of nodes. In other words, the in nite ad hoc network is said to be “connected”
if the corresponding BM percolates. Note that in this case, the BM has a unique in nite connected
component (Proposition 3.2.7). The latter can be interpreted as the “main part” of the network.

We conclude from the above models that one can bring a disconnected (non-percolating) network to the
percolation regime by increasing the density of nodes or by enlarging the communication range. We shall
return to this problem in Chapter 8 where we show that this method for connecting a network does not
always work when interference is taken into account.
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A

Voronoi Tessellation

4.1 Introduction

In this chapter, we introduce an important random tessellation of the EuclideanRpaBg de nition, a
tessellation is a collection of open, pairwise disjoint polyhedra (polygons in the cd&&®,ahe union of
whose closures cover the space, and which is locally nite (i.e., the number of polyhedra intersecting any
given compact set is nite).

De nition 4.1.1. Given a simple point measureon RY and a poinx 2 RY, the Voronoi cellG( ) = G
of the pointx 2 R4 w.r.t. is de ned to be the set

G()=fy2R%:jy xji< _inf jy xig:
Xi2 ;X i6X

. . . : : P
The Voronoi cell is often de ned as the closure of the last set. Given a simple point proeess ; "y, on

RY, theVoronoi Tessellation (VT9r mosaicgenerated by is de ned to be the marked point process
X
V= Tisi 0 x)

The Voronoi cellG( ) as de ned above is an open set; it is often de ned instead as the closure of this set.
Observe that, with our de nition, not every pointRf is covered by some Voronoi cell: given two points
andx; say of that have Voronoi cells that abut each other, there are some pdimds are common to the
boundaries of both cells but are not in either (cf. Figure 4.1 which shows the Voronoi tessellation generated
by some realization of a point process).

Note that the celG,, () of the atomx; is the set of all those points & that are closer to this atom
Xi than to any other atom of. Note also that we consider these céllx, x;g shifted to the origin as
marks of the point§xjg of . This extends slightly the concept of marked point processes considered in
Chapter 2.
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Fig. 4.1 Voronoi tessellation generated by a random sample of points.

One can easily see that each Voronoi cell is a convex polyhedron, but it may be unbounded. It is not
dif cult to prove, by considering the typical celly( ) under the Palm distribution, that in the case of a
Voronoi tessellation generated by a homogeneous Poisson p.p., all cells are bounded with probability 1.

The Voronoi tessellation is an important model for the theory of point processes as well as for applica-
tions. In the remaining part of this chapter we will show it “in action” in a few theoretical and more practical
contexts.

4.2 The Inverse Formula of Palm Calculus

In Section 1.6 (and in more detail in Chapter 10) we de ned the Palm—Matthes distrilftioha stationary
point process ; it can be interpreted as the conditional distribution ofiven ( fOg) 1. We will now
show how the stationary distributidh of  can be retrieved fror® © using Voronoi cells.

Theorem 4.2.1.Let be a simple stationary point process with intenfity < 1 . For all non-negative
functionsf : M ! R*,
Z
Eff(O)]= E° f(  x)1(x2Co()) dx :

Rd

Proof. Let us take
h(x; )= 1  Bo(jxj)) =0 ;

whereB,(r) = fy :jy xj <r gisthe open ball of radius centered ak. Let us take for granted the
property (proved below in Lemma 4.2.2) that among the points,afith probability 1 w.r.t.P, there is a
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unique point which is closest to the origin. Using this property, we can state that with probability 1,
Z

h(x; ) ( dx)=1;
Rd
and consequently by the Campbell-Matthes formula (1.19) (see also Section 10.2.2),
z

E[f()] = E f(+ x x)h(x; + x x)( dx)
id
= EO[f ( + x)h(x; + x)]dx
4
= EO[f ( x)h( x; + X)]dx
Rd Z
= EY f(  x)1(x2Cy()) dx :
Rd
]
It remains to prove:
Lemma 4.2.2. For a simple stationary non-null point process
Pf there exist two or more distinct points equidistant to the origin=00 :
Proof.
Pf therezexist two or more distinct points equidistant to the omgin
E 1 (fyéx:jyj=jxjg) 1 (dx)
p4
E 1 ( x)(fy’60:jy°+xj=jxjg) 1 ( dx)
Rd 7
= E° 1 (fy°60:jy%+ xj=jxjg) 1 dx
Y oz
E° 1(jy®+ xj = jxj) ( dy9dx
Rdfdnmg
= E° kf x :jy%+ xj = jxjgk ( dy9 =0;
Rdnf 0g
wherek k denotes the-dimensional volume. O

Letus nowtakd 1, this yields the following formula, which determines the mean value of the volume
of the typical cell:
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Corollary 4.2.3.
1= E°[Co() I

There are no closed form expressions for the distribution of the volume of the typical cell except for dimen-
sion 1.
Let us call nonC(0; ) the cell of the stationary tessellatidhthat covers the origin (i.&@2 C(0; ) ).
In view of Lemma 4.2.2C(0; ) is uniguely de ned for almost all realizations of w.r.t. P. Let us take
f = g(C(0; )) if C(0;) isunique and 0 if not, wherg is some non-negative function €f(0; ) (e.qg.
its volume, perimeter, number of sides, etc.). We obtain the following corollary.

Corollary 4.2.4.
E[g(C(0; NI=  E°[9(G()) iCo() il:

In particular,
1 a 1

co)] T EGO 11

By Jensen's inequality, one obtains the following result that can be seen as yet another incarnation of the
waiting time paradox (see ( ), Vol. 2)

E[CO;) i1 E°H(G() il:

This paradox is explained by the fact that the cell which covers the origin is sampled with some bias with
respect to the distribution of the typical c€() underP®, namely, this sampling favors large cells (as
having more chance to cover a given xed point). For more on this bias, see e.g. ( ).

The next example shows how Theorem 4.2.1 can be used to construct a stationary periodic point process.

Example 4.2.5 (Stationarization of the honeycomb)Consider a regular hexagonal grid 8% with the
distance between two adjacent vertexes of this grid. (The set of vertexes of this grid can be described on
the complex plane bidex= f ( u1 + uxe' = 3); u=(uy;ux) 2f0; 1;:::0%g). Consider a (deterministic)

point process pex Whose points are located on this grid. Consider this deterministic scenario as the Palm
distribution P° of some stationarkg point process. Note that the surfaé:e area of the typical cell (hexagon)
of this process is equal to2=(2 = 3). Thus its intensity is yex = 2 = 3= 2. By Theorem 4.2.1, the
stationary version of this periodic p.p. can be constructed by randomly shifting the deterministic ldaitern
through a vector uniformly distributed in the Voronoi cell (hexagon) of the origin. The Voronoi tessellation
generated by this (Palm or stationary) p.p. is sometimes called the honeycomb model.

4.3 The Neveu Exchange Formula

In this section we will prove another useful formula of the Palm calculus connecting the Palm distributions
of two stationary point processes. Again, the Voronoi tessellation will be used as a tool. The formalism for
Palm probabilities is that de ned in Remark 10.2.3 which allows one to de ne several Palm probabilities on
a common probability space that carries several point processes. The key tool is again the Campbell-Matthes
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formula that in the case of two stationary (not necessarily independent!) point processes has the following
incarnation

Z Z
E gx x % x)(d) = E%x ; 9dx; (4.1)

Rd Rd

where < 1 isthe intensity of andE? is the expectation with respect to its Palm probabiify; i.e., in
particular,P°f ( fOg) 1g=1.

Theorem 4.3.1 (Exchange formula).Let and %be two simple stationary point processes (de ned on
the same probability space) with intensity, respectively, < 1 and0< °< 1 .LetE® andE?,
denote the Palm-Matthes probabilities oaind °respectively. If

E% (@ 9 =0; (4.2)

where@denotes the boundary, then for any non-negative funétign 9 of the point measures; 9 we
have

h i z
ECf(; 9 = E% f( x % x)1 x2C( 9 (dx) :

Rd

Proof. It suf ces to prove the formula for a bounded function, so in what follows we assumsupét 1.
Foranyx 2 Rylet Fy = Fy( ; 9 = f( x; 9 x). By the Campbell formula (4.1) (see also
Section 10.2.2) and due to (4.2)

z
EOf( ; 9 = E Fy ( dx)
[o%]d 2
= E Ady) Fxl(x2Cy( 9) (dx) +A B;
[0;1]d Rd
where
z z
A = E Ydy) Fxl(x2Cy( %) ( dx) ;
W?DJP ?ﬂP
B = E Ydy) Fxl(x2Cy( 9) ( dx) :
[0;17d Rdn[0;1]d
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Note rst that

Z

E Ady)  Fxl(x2Cy( 9) ( dx)
[0;1] Z Rd Z
= E Uy) Fdx y2G y( ° y) ()
[0%]d F%’
= E Ady)  Fusyl(x2Co( © y)(  y)(dx)
[O;l]dZ Rd
= ®% Fa1x2C(9Y (dx) :
Rd
In order to show thaA B = 0, knowing thatA  E[ ([0 ;1]d)]S= < 1 ,itsufces to prove that

A = B. For this, we congider a partition 8¢ by hypercube®R? = ~ ( + V), where =[0 ;1Y andv

runs over all vectory =
have

and for eactv 6 0,

d
i=1

i€, where | 2 Z, andg are the unit vectors of the Euclidean base. We

X Z Z
= E Ady) Fxl(x2Cy( 9) ( dx) ;
v60 v
x Z z
= E Ady)  Fx1(x2C( Y ( dx) ;
v60 + v
Z
Ady) Fxl(x2Cy( 9 ( dx)
Z Z
(% v)(dy) Fxl(x2Cypsv( 9) ( dx)
Z Z
(% v(dy) F x1(x2C( ° v)+v) ( dx)
Z Z
(% v(dy) Fl(x v2C( % v)( dx)
Z Z
(% wv)(dy) FeevI(x2C( % v)(  v)(dx)
Z Z Y

Uy)  Fx1(x2C( Y (dx) ;

\'

where the last equality is due to the stationary of both point processesAThu8 , which concludes the

proof.

O
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4.4 Neighbors in the Voronoi Tessellation, Delaunay Triangulation

Let G( ) be the Voronoi cell ok 2 RY generated by the point patternthat is always assumed in this
section to be simple (fzg) = 0 or 1). We will call any pointy 2 suchthaly 6 x andja xj=ja Vj
for somea 2 G ( ), whereG( ) denotes the closure € ( ), aVoronoi neighboof x.

De nition 4.4.1. TheDelaunay triangulatiorgenerated by a simple point measuris a graph with the set
of vertices and edges connecting eagl2  to any of its Voronoi neighbors.

Example 4.4.2 (Neighborhood in ad hoc networks)ln a periodic (say hexagonal or square) grid, it is ob-
vious to de ne the neighbors of a given vertex. However, for irregular patterns of points like a realization of
a Poisson p.p., which we use below to model the set of nodes of ad hoc networks (cf. Example 1.1.2), this
notion is less evident. The Delaunay triangulation offers some purely geometric de nition of 'neighborhood'
in such patterns.

De ne, for x 2 RY,
n 0

Ny( )= y2 : B(xy;z) =0forsomez=fz;:::;29 102 ; Xy, fzg; distinct ;

whereB (x;y; z) is the open ball circumscribed on the poimts/; f zig. The following geometric result
allows us to identify the Voronoi neighbors &fin  or equivalently the edges from in the Delaunay
triangulation:

Lemma 4.4.3. Assume thaG,( ) is bounded. Then, fax in , Nx( ) coincides with the set of Voronoi
neighbors ok.

Proof. De ne a vertex of the celG ( ) to be any location iz 2 RY equidistant tox and (at leastyl 1
other pointsys;:::;yqg 1 2 . We use below the fact that # is such a vertex, then each of the points

y is a Voronoi neighbor oX.

Conversely, ify is a Voronoi neighbor ok, since the celG( ) is nite, its boundary contains a nite
domainD ¢, included in the hyperplane of dimensidn 1 equidistant tox andy; the boundaries d 4, are
nite domains contained in hyperplanes of dimensibrn2. LetD4 » be one of the latter. There exists a triple
of points(x;y; z1) which are equidistant to any element of hg ,. More generally, foral2 k d 1,
there exists a nite domaily4 ¢ included in some hyperplane of dimensidn k and such that all the

elements oDy ¢ are equidistant t@x;y;z1;:::;2z¢ 1) for somezy;:::;z¢ 1 2 . In particular, there
exists a locatiorz of the boundary of5( ) and pointszy;:::;zg 1 2 such thatz is equidistant to, y
andzi;:::;zg 1. Thatisy 2 N4( ). m]

The open ball centered at a vertex@f ) and havingx on its boundary is empty of points of The
union of these balls over all vertexes of the cell is calledftimelamental regiorfor theVoronoi ower) of
the cellG( ). Itis easy to see that the Voronoi ower contains the Voronoi cell.
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Proposition 4.4.4. Assume thaG,( ) is bounded. Then the Voronoi ower @ ( ) is a random stopping
set.

Proof. For a given compact s&t, consider balls centered at the vertexe€df ) with radii growing until
they hitx or any of them hits the complemekit® of K . Use a similar argument as in Example 1.5.2. O
4.5 The Voronoi Tessellation Model for Cellular Access Networks

We give an example of VT based model of cellular access networks (see Section 25.3.2 in Volume 1) which
will be used later.

Example 4.5.1 (Cellular Access Network).The model components are as below:

UsersandAccess Point®cated on the planR? are represented by two independent stationary
point processes, denoted respectively yand .
Each access poixt 2 4 serves users in a geographical zone which is modeled by its Voronoi
cellG, ( a). Note that this assumption is equivalent to the hypothesis that each user is served by
the nearest access point.
The model parameters are the intensitigs 4 of the p.p.s y; a, respectively. Typically , >

a, but this assumption is not essential for our analysis.

Consider now the following mean additive characteristic associated with the typical cell of the access net-
work model: Z
I =E% 1(x2Co( a)g(X a) u(dX) ;
R2
whereE©° , is the expectation w.r.t the Palm distribution of andg is a non-negative function of the location
x 2 R? and the pattern , of access points. Taking different functiogsone gets the following examples
of such additive characteristics:

if g(x; ) 1,thenl = M represents the mean number of users in the typical cell;

if g(X; ) = jxj, thenl = L is the mean total length of connections in this cell (which is more
pertinent in a wired access network);

if g(x; ) = 1=I(jxj), wherel(r) is some omni-directional path-loss function as considered in
Example 23.1.3 in Volume Il, thein= P represents the mean total power received by the access
point from all the users attached to it (assuming all users transmit with a constant power 1);

if g(x; ) = I(jxj) with I() as above, theh = (PL) represents the mean total path-loss “re-
ceived” at the acqgss point from all the users it serves;
if g(x; )= 1(xj) vi2 1=I(jx  v;j) with I() as above, theh = (RP L) represents the mean
total relative path-loss ratio “received” at the access point from all its users.

Leth(x; ) be de ned as in the proof of Theorem 4.2.1 and take
z

f(uw a=1(a)= g y; a Yh(y; a) aldy):
R2
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Recall from the de nition ofh thatf ( 3) = g( Y ; a Y )whereY = argmirfjyij:y 2 agis
the access point nearest to the origin (a.s. uniquely de ned due to stationarity and the fact that the p.p. is
simple). Moreover, on the sét ,(f0g) 1gforx 2 Co( a) we havef ( 5 X) = g(X; a). Thus, by
Neveu's exchange formula (Theorem 4.3.1) we obtain that
h [
= —E% g( Y; a Y): (4.3)
a
We see that the Neveu exchange formula allows us to transform the “access-point centric” scenario into
a dual “user-centric” scenario. This transformation shows that the mean number of users per access point
(caseg(x) 1)isequalto
M= Y

a
When , is a Poisson p.p. one can explicitly evaluate (4.3) for various types of additive characteristics.
Under Poisson assumptions (fog only) one knows the distribution function &f , namerPOafj Y >
rg= PO f a(Bo(r)) =0g=exp[ ar?, anditis not difcult to see that the argumen(Y ) is
uniformly distributed orf0; 2 ). Moreover, givenY j = r, all points of 5 which are farther away from 0
thanr form a non-homogeneous Poisson p.p. with intensity measur§yj > r ) dy (see Section 1.5). We
denote this Poisson process byjsr . Consequently

1ZZZL h i
szzf rE g (rcos;r sin ); asr € ar’drd : (4.4)

Forg(x; )= jxj, we obtain
L= —2 .
2 3
The mean received pow® with I(r) given by OPL 1 or OPL 2 in Example 23.1.3 in Volume Il can be
given in terms of some special functions (note that for OPL 3, 1 due to the pole at the origin). The
mean path-loss expression is explicit and, for OPL 3, it takes the form

LA+ =2
py= v~ &F =9,
(PL) a (a)7?

Under the same assumption, the mean relative path-loss is equal to
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Bibliographical Notes on Part |

Chapters 1 and 2 cover classical topics in point process theory. A classical reference on the matter is (

). Most results are well known. The approach.bfis borrowed from ( )
For more on hard-sphere packing problems mentioned in Example 2.1.3 see e.g. ( ).
We did not nd references for the discussion of Example 1.3.10 but it is likely that these simple observations
were already made.

Shot noise processes and Boolean models as considered in Chapters 2 and 3 respectively are core topics
in stochastic geometry. For a comprehensive treatise on the matter, see ( )
For an analysis of the tail behavior of Shot Noise elds, the reader might consult ( ).
For a history on the use of Shot Noise elds to represent interference, see the introductory paper of (

). We did not nd earlier papers on the joint distribution
of the time-space SN proposedxi2.3.4.

For the class of random tessellations discussed in Chapter 4, the reader could consult ( ). For
a general book on tessellations, see ( ). The mwdelsaaime
from ( ) and ( ). Fora
recent survey on the matter, see ( ).

Point processes and stochastic geometry models are widely uspatial statistics see e.g. (
) for a recent book on this subject.
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Part Il

Signal-to-Interference Ratio Stochastic
Geometry

69



This part bears on stochastic geometry models de ned by SINR. More precisely, we de ne and analyze
a random coverage process of thdimensional Euclidean space which stems from the wireless communi-
cation setting described in Part VI in Volume Il. As for the Boolean model, the minimal stochastic setting
consists of a point process on this Euclidean space and a sequence of real-valued random variables consid-
ered as marks of this point process. In this coverage process, the cell attached to a point is de ned as the
region of the space where the effect/response of the mark of this point exceeds an af ne function of the
shot-noise process associated with the other points of the marked point process.

Chapter 5 describes the typical cell: its volume, its shape etc. Chapter 6 is focused on the interaction
between cells within this setting. Chapter 7 studies the coverage process created by the collection of SINR
cells. Finally, Chapter 8 studies the connectivity of this coverage process and in particular the conditions
under which it percolates.
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5

Signal-to-Interference Ratio Cells

5.1 Introduction

P .
Let €= i "(xi:m;) be a marked point process, with poirfits g in RY and markd mjg in R . Consider

a scalar shot-noise eldle (y) de ned on the same space 8g(i.e. onRY), and generated b§ and by the
response functioh : RY RY R 7! R* (cf. Section 2.2). Letv(y) 0 be some external or thermal
noise eld.

De nition 5.1.1. We de ne theSignal to Interference and Noise Ratio (SINR) adlboint (X; M ) for

thresholdt Oas
n 0]

Cixm) = Coemy(Bswit) = Y2 RT: L(y;X;M )t le(y)+ w(y) (5.1)

For more on the physical meaning of SINR, see Section 24.3.4 in Volume II.

Example 5.1.2 (Bit-rate level sets in interference and noise eld)The simplest scenario is that where

the mark of pointX is the powerP 2 R* emitted by the antenna located ¥t 2 R? and where
L(y;x;P) = P=I(jx yj), with | the mean omni-directional path-loss function (see Section 23.1.2 in
Volume Il). More general scenarios can be described with richer marks (such as antenna azimuth, fading
etc.). Other cases of interest are those where some interference and/or noise cancellation techniques are
used. This results in models where the cell is de ned with a more general af ne function:

n 0
Cixm) = Coemy(Eiwit) = y2RU: L(yiXiM)  t | o(y)+ w(y) (5.2)

where and are factors smaller than one (cf. Section 24.3.4 in Volume |l where we discuss the dse
and small in Equation (24.20 in Volume II).

ThenCx.p  represents the set of locatiopsvhere the SINR of the channel fro¥ toy is larger than
the threshold as illustrated by Figure 5.1.
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Fig. 5.1 Locatiory belongs to the celC of pointx because the SINR fromexceedd aty. The cellC is the set of locations of the plane where a
minimum bit rate can be guaranteed from transmitter

d
X4

Within the setting of Section 24.3.4 in Volume I, this translates into some bit-error probability, and
consequently into some channel goodput. The exact relation betveeeithe bit-rate depends on particular
modulation and coding used.

Some instances of SINR cells are given in Figures 5.2, 5.3, 5.4, 7.1. Notice that the SINIgejlis
not always a convex set. In some cases it can even be not connected.

5.2 The Signal-to-Interference Ratio Cell is Well-De ned

There are two levels at which the de nition of the SINR cell can be treated.

Firstly, recall from Section 2.2 that the shot-noise eld with non-negative response function is always
well de ned but may be in nite. At a second, more theoretical level, one may ask whether the SINR cell,
which is a random set, is almost surelglased setThis is a natural question in stochastic geometry, where
the space of closed sets is a standard observation space for random objects. The following result, which
immediately follows from Proposition 2.2.3 gives some suf cient conditions for this to hold.

Corollary 5.2.1. Let € be an i.m.p.p. Assume that the thermal noigg) has almost surely continuous
trajectories. IfL(y;x; m) is continuous iny and if for eachy 2 RY, there exists a balB (y; y) such
that (2.15) holds, thehe (y) is almost surely nite and has continuous trajectories. Consequently the SINR

cellCix.m y(€; w;t) is a (random) closed set with probability 1.
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5.3 Standard Stochastic Scenario and First Order Cell Characteristics

Following the assumptions of Section 2.3.1 we will often consider the following standard stochastic scenario
for SINR cells:

(1) © is a general stationary i.m.p.p. with pointsRd and intensity > 0;

(2) the markg; have a distributioPf p  sg = G(s) that does not depend on the location of the
point;

(3) The markM = P of the pointX generating the celC x.p ) is independent of and has also
distribution functionG.

(4) The thermal noise eldv(y) = W is constant in space and equal everywhere to some non-
negative random variabM/ 0 independent of andP.

A slightly more general case is that where

(3) themarkM = P of the pointX generating the ceCx.p ) is independent of but has a different
distribution functionG°than the marks of the point process.

Remark: More general scenarios are considered in other chapters. For instance power control, studied in
Chapter 19 in Volume I, requires powers which are dependent marks of the p.p.; similarly, the case of space
and/or time dependent thermal noise is studied in 17 in Volume II.

Kendall-like Notation cont. Developing our previous Kendall-like notation for SN (see Section 2.3.1),
we call the above scenario t% model, where the Gl in the numerator denotes a general distribution
for P and the GI/GI in the denominator denotes the SN interference model. Special cases of distributions
marks are deterministic (D) and exponential (M). We recall thatdéhotes a SN model with a Poisson
point process.

This contains two important particular cases:

The% model, which will be referred to as theterference limiteanodel (since the thermal
noise is not present);

The %5 model, where the interference is absent, and which will be referred to amtbe
limited model, and which boils down to the Boolean (or to the conditional Boolean) model under
natural assumptions on the attenuation function (see Section 5.5).

5.3.1 One Point Coverage Probability

Assume the standard SINR cell scenario of Section 5.3. We are interested in the probability that the SINR
cell Cx.p ) generated by a point located, say, at the oriir 0, covers a given locatioy;, i.e.,

n (0] n (0]
Po(y)= P y2Cpp)(&;W;t) =P P Iyt W+ le(y) (5.3)

Note that this probability is the value of the capacity functiong) .., (f yg) of the random (assume closed)
setCo.p) evaluated on the singletdiyg (cf. De nition 3.1.4).

Here is a general result for the S~ case.
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Proposition 5.3.1. Assume th% standard scenario of Section 5.3 with condition (3") (Pecan
have a distribution which differs from that of the marks®f Assume the following:

at least one of the random variabM§ 1. or P has a Fourier transform which is square inte-
grable;
each of the random variabl®g; | . andP has a nite rst moment.

Then

2 . . S
Bo(y) = % % E exp( 21 | e(y)) Elexp( 20 W )JE[exp( 2i P= (tl(jyj)))] d: (54)

1

where the singular contour integral in the right-hand side, which has a pole &, is understood in the
principal value sense; i.e., one has to calculate this integral over the dorhain ][ [; 1 ) and then let
decrease t0.

Proof. SinceX is the sum of independent random variables, it suf ces that one of the terms of the sum has
a density forX to have one. If this density has a square integrable Fourier transform, s ddfes| terms

in the sum have nite rst moments, so ha&. The result follows from applying Corollary 12.2.4 in the
Appendix to the density of the random variable= P=(tl(jyj)) W 1¢(y). ad

The above proposition is useful when one knows the Fourier transform of the shot-goias is the
case in particular for the M/GI SN; i.e, whéhis an i.m. Poisson p.p. (and more generally some doubly
stochastic Poisson process). Indeéefe 2 ' <] = Li.(2i )andthe Laplace transforim _ of the Poisson
shot-noise is known in closed form (see Proposition 2.2.4 and Example 2.3.3).

Some suf cient conditions fof (y) to have a density are given in Proposition 2.2.6.

There are several interesting cases where the shot-hoisas an in nite mean. Even in the M/GI SN
case, this is the case when one adopts the OPL 3 attenuation model (see Remark 2.3.5 of Chapter 2). For
such scenarios, the assumptions of the last proposition do not hold. We can then use the following result.

Proposition 5.3.2. Assume th% standard scenario of Section 5.3 with condition (3") (Pecan
have a distribution which differs from that of the marks®f Assume the following:

at least one of the random variabMk | o has density with a Fourier transform which is square
integrable;

the random variabl® has density with a Fourier transform which is square integrable;

the random variabl® has a nite rst moment.

Then

Elexp( 2i P= (t(yp)l 1
2is

po(y)= E exp( 2i | ¢(y)) Elexp( 2 W )] ds: (5.5)

Proof. The proof follows immediately from Equation (5.3) above and Corollary 12.2.2 in the Appendix.

74



Proposition 5.3.3. For theers; model

Po(y) = Lw tl (jyi) L, t (yi) ;

whereL y is the Laplace transform o# .

Proof. We have
n o 2 N
po(Y)=P P tGy)(W+1e) = e " WDRy (du)=Lw t Gyj) Li, t Gyi) ;
0

where the last equality relies on the fact that the Laplace transform of the sum of independent random
variables is equal to the product of the Laplace transforms of the terms. O

Example 5.3.4. For ;M model with OPL 3 andV = 0, po(y) = e M K whereK = K( ) =
2 2=)1 2=) =.

Example 5.3.5. Consider theWJrG”GI model, where PH means th&t has the phase-type distribution
PH(; B;b).Recallthatitis de ned as the distribution of the time until absorption of the pure-jump Markov
chain on the state spa€®; 1;:::; bg with in nitesimal generatoiB (whichis a(b+1) (b+ 1)-matrix),
where0 is an absorbing state and wherés the vector describing the initial distribution o;:::; bg. The
tail-distribution function ofP is known to be equal to

PfP ug= e'®=

whereeB is the matrix exponential de ned by the corresponding power series. For this model we have

o b3 ViYB )N
po(y) =  PEP  ti(jyJugP(W +1 = du) = MP(V\H | = du)
0 0 n=0
= * (tl(jyj)B)nZ[UnP(W+|:du): X WE[(W+I)]
n=0 ! 0 n=0 n!

Note that for the M/G SN model, the moments of the shot-noise can be obtained from the closed form
expression of the Laplace transform. Hence it is possible to evaluate (at least numerically) all terms of the
above expansion.

5.3.2 Mean Cell Volume

The one-point coverage probability is related to the mean cell volume by the following simple relation:
z z

Vo E [Copy =E 1 y2Cpp) dy = po(y)dy: (5.6)

75



Example 5.3.6. For the; Yirr model with OPL 3

: . 1
Vo EJCop) = 1% 2@=)0 2=)

5.4 Fading in Signal-to-Interference Ratio Cell and Higher Order Characteristics

A simple higher order characteristic of a random closed set is its covariance function de ned as the two-
point coverage probabilitfy; 2 C(o.py; Y2 2 Co,p)g for two given pointsy; z (cf. De nition 3.1.10). In
general, it is dif cult to evaluate this probability analytically even for %Q'\ﬂ,w model. A special, but very
important case, is when the fading is appropriately taken into account in the SINR cell model.

We have seen in Section 2.3.3 that a precise description of reality requires a response function of the
formL(x;y;p) = pF(x;y)=I(jx yj) whereF (x;y) is a random fading eld orR> R?2.

Moreover, in Section 2.3.3.2 we have introduced the GK@hbodel for SN, which is useful when a

considered point towards tlkereceivers. Now we adopt this approach in the SINR cell model.

Kendall-like Notation cont. We consider th% model, where th& in the numerator means that
the mark attached to poiX consists of the emitted powdt and a fading vecto(F;:::; F¥), with

denominator means that the fading conditions are taken into account for all interfering signals as well. In
this model we assume that all fading variables are independent.
5.4.1 Covariance Function

We now analyze the covariance functips(y1;y2) = Pfy1 2 C:py; Y2 2 C(o.,p)g of the SINR cell with
fading.

Proposition 5.4.1. For the @2 model, we have

Po(y1;y2) = Lw t 1(ys)) + 1GY2i) Laqay, t Gya)s th (y2)

whereL ;. .1,y (t1; t2) is the joint Laplace transform of the vectdn;12) = (1(y1);1e(y2)) of the SN in
the GI/GI2 model.

Proof. When using the same type of arguments as in the proof of Proposition 5.3.3, we have
n 0

P PF1 tI(jyd)(W + 11); PF2  ti(jy2))(W + I2)

AAA
= e ut (I(jyaj)+ l(JyZJ))e v 1l (JYIJ)e v 2tl (jyz2)) P W= du’ | 1= dVl, |2 = dv2

Po(Y1;Y2)

000
Lw t 1Gy)) + 1Gy2)) Loy, t Gyd)s o (y2))
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where the rst equality uses the fact that in the2uodel, the received powePsF1; P F, are independent
exponential random variables with parametewhile the second equality uses the fact tfiat | ;) andW
are independent. ad

Example 5.4.2. Fortheo+",<',|7’,f3,2 model with deterministic emitted powpr= 1=, Proposition 2.2.4 implies

that
2 A

Po(y1;Y2) = exp rl e
00
wherery = jyi1j,r2 = jyzj ands = jyr  yaj.
For theg; 2. model, we get from Corollary 2.3.8 that

L= 1T A eos =) g

z 2 1

p drd
1+tl(r)=I(ry) 1+t( r2+s?2 2rscos )=I(ry)

Po(Y1;Y2) = exp

5.5 Noise or Interference Limited Cell: Towards a Boolean or Voronoi Shape

We focus now on the shape of the SINR cell. In general it is very complicated and few things can be said
about it. However in some special cases, it takes a “classical” form. These cases consist in:

(noise limited cell) diminishing the in uence of the interference eld in such a way that the noise eld
becomes predominant; in this case, the SINR cell takes the formBoioéean cell(the Boolean
model could then be seen as a Signal to Noise Ratio (SNR) cell model);

(interference limited cell) in the absence of noise eld, and when the power attenuation is strong, then the
impact of the nearest-neighbor interferers becomes predominant; in this case the SINR cell takes
the form of aVoronoi cell

(noise and interference limited cell) when the power attenuation is strong and related in an appropriate
way to the thermal noise eld, then the cell expands like the Voronoi cell in the directions towards
the interferers which are close enough, and it expands like the Boolean cell in directions where the
nearest interferers are farther away than some threshold distance. This case can be related to the so
calledJohnson—Mehl celksee e.g. ( ,S.10.7, p. 333-334).

Before starting let us formalize the notion of convergence of closed sets (see ( , Th. 1-2-2,
p. 6)),

De nition 5.5.1 (Painlevé—Kuratowski convergence of closed sets)\/e say that the sequené&,g of
closed subsets dRY converges to a closed st  RY (we write lim, F, = F) if the following two
conditions are satis ed:

(1) For anyx 2 F, there exists a sequengg, wherex, 2 F, foralln 1 except for at most a
nite number, such thax,, converges ta in RY.

(2) For any sub-sequence of sétg , k 1, and any sequence of pointg 2 F,, converging tox,
we havex 2 F.
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The following results are useful when studying the above convergence (see ( , Cor. 3,
p. 7).

Corollary 5.5.2. LetFy;F be closed subsets &¢:

T
IfF1 F :::andSn Fn
IfFy Fo ::rand | Fy

n

F, thenlim, Fy,
A, thenlim, F,

F.
A, whereA is the closure oA.

5.5.1 Noise Limited Cell: Towards the Boolean Case

Assume the following parametric dependence of the SINR cell on the SN generafed by
o]

n
COXM)= yiL(y;XM)  t(1 o(y)+ w(y)) (5.7)

where 0 andL is a generic response function as de ned in Section 2.2.1 (hered®ithd).

Example 5.5.3. See the end of Section 24.3.4 in Volume Il for an example of such an interference cancel-
lation based on spread spectrum techniques.

Obviously the seC((?(),\,I )

longer depends ofi; this limiting case is easy to analyze. In what follows, we study the following continuity
and differentiability problems, when! 0.

which we call theSignal to Noise Ratio (SNR) cells a Boolean celt and no

In what sense and under what conditions does the SINR:{:)@?M tend to the SNR ce([:(?()M )’7

Assuming this continuity and taking small, what rst (or a hlgher) order perturbatlon should
one apply to the characteristics of the SNR cell to get the characteristic of the SINR cell?

Convergence in the Space of Closed Setsln order to prove convergence theorems, we need the following
technical condition on the response function

(1) for eachx;y 2 RYandm 2 R, there exists a sequengg such thatl (yn:x;m) > L (y;x;m)
andlimpy, = v.

We also suppose for simplicity that the condition (4) of the standard scenario of Section 5.3 for SINR holds,
i.e., that the thermal noise eldi(y) = W is constant in space (but the vaMé can be random).

Proposition 5.5.4. Assume that the conditions of Corollary 5.2.1 witly) = W > 0 and Condition (1)
are satis ed. Then almost surel
’ - [ ()

©
c¥ Chwy

Sy = (5.8)

IRecall that in the Boolean model the cell (grain) attached to a given point, sy meither depends on the locations of the points of the point
process nor on their grains.
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where C denotes the closure &. Consequently, since{,)

(XiM)
((X;)M )= C((g();M ) in the space of closed sets (PairdeKuratowski convergence).

is an increasing family of closed sets,
lim oC

Proof. Sincec') . = c() C((?()_M )= C©® andC© is closed,

(Xm) —
o0 co.

It remains to show thaE© C(). For this, take any 2 C©@. This meand. (y; X;M )  tw.
Condition (1) above then guarantees the existence of a sequehcey such that for alh, L(yn; X;M ) >
w, which implies thay, 2 C( ») for some , > 0. So

. =
y:“rr?Ynz CCn);

n

which completes the proof. O

Figure 5.2 illustrates this convergence.

Convergence of Characteristics. We now consider the convergence of certain characteristics of the SINR
cell to those of the SNR cell, including the probability for a point to be covered (volume fraction), the capac-
ity functional, and the volume of the typical cell. This can only be done under some additional conditions,
because these characteristics are not continuous functions on the space of closed sets. Here is an example of
such a result.

Denote by

Dxm)y= Yy:L;X;M)=1tW
the set of locations where the signal-to-noise ratio (without interferenegpigtly equato t. One can think

of it as the boundary of the SNR céll((?();M X however this is not always true.

Proposition 5.5.5. Suppose the conditions of Proposition 5.5.4 are satis edKLé&e a compact set and
denote the largest open set containel{ inf

P D(X;M)\ K#§6; andD(x;M)\ K=; =0 (5.9)
then we have the following convergence of the capacity functional of the SINR cell on tKe set

; () . 0)
Il!mOP K\ C(X;M)e ;. =P K\ C(X;M)

Proof. The result is a consequence of the following facD .y )\ K 6 ; impliesD x.v y\ K 6 ; then

; () .o— 0) (y- .
lim 1 K\ Ciyiyy 6 =1K\COX;M)6; : (5.10)
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Fig. 5.2 The SINR cells limited by the noise (converging to a Boolean model). Standard stochastic s#ﬂaﬁp (the sequence of symbols
U;:::; U corresponds to a multi-cell scenario; see Section 6.3) Wittmiform distribution on0; 2], w(y) = W = 0:1,t = 1, and OPL with
path loss exponent = 3. On successive gures = 0 :4;0:2; 0:2 and0:0001. For more discussion see Example 7.5.4.

In order to prove (5.10) we assert the following inequalities:

© g- . _ .
1 K\ CRyy 8 1 K\ Dpw)8:iK\ Dix) = ;
- O g-
im 1 K\ Cily )6 ; (5.11)
© g -
1K\ CRy,6: ¢ (5.12)

Inequality (5.12) is immediate from the fact tI@#X?M ) C((g)_M ) for 0. In order to prove (5.11), itis

enough to show that K \ C((g);M ) 6 ; and if in addition, forall > 0,K \ C((X?M )= then the second
indicator in the left-hand side of (5.11) is equal to 1. But under these two assumptions, therg exists
such that (y; X;M ) tW andL(y; X;M ) <tW +  for any positive 1, and soL(y; X;M ) = tW.
This meanK \ Dx.v ) 6 ; and by our assumption al$6 \ Dxv) 6 ;. Lety 2 K\ Dx.m ). By

Condition (1) we can ndy® 2 K in the neighborhood of, such that_ (y® X;M ) > tW . This gives
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O
K\ Cixm )

6 ; forsome > 0, contradicting our assumption and concluding the proof of (5.11). O
Remark: Note that in the case of a translation invariant functigme., wherL (y;x;m) = L(y x; 0;m)

for all x; y; 2 RY, the condition (5.9) is equivalent to

n o
P X2 D(O;M) K n D(O;M) K =0; (5.13)

whereD = f y:y 2 Dg. In particular for the standard SINR scenario and for the path-loss models OPL 2
and OPL 3, the assumptions of Proposition 5.5.5 are satis ed. ThelK fer fyg, Condition (5.9) reads
PfP=tWI(y Xjg=0.

Let

p5 (y)= Pfy2Cih g and v§' = E[Cy il (5.14)

From Proposition 5.5.5 we can easily derive the following results.

Corollary 5.5.6. Assume the standard SINR scenario and a path-loss model OPL 2 or OPL 3. Assume that
either the distribution functio of P or that of W has a density. TheRf P = tWI(jzj) g = 0 for all
z2 R%and

() =1 E[G (tWIGy)):

2
lim v©) - = v =2 r1 E[G (wI(r)] dr;
0

im pt)
lim po “(y)

whereG (u) = lim o,y G(V) is the left-continuous version @ and the expectation is taken with respect
to the random nois&/ .

The second relation follows from (5.6).

Perturbation Formulae. Assume the standard SINR scenario. Note that Corollary 5.5.6 gives the follow-
ing approximation of the one point coverage probability

pi)y)=1 E[G (tWI(jyi)]l+ ol);

when ! 0, for OPL 2 or OPL 3 and provided the distribution functiGnof the emitted poweP has a
density. Now we brie y show how to derive the rst and higher order expansionré 8)(y).
Let F denote the left-continuous version of the distribution function of the random variable

P=(tl (jyj)) W,ie. . o
F(u=P Pt(yj) W<u : (5.15)

We suppose thdt admits the following approximation at 0

im F_F O _

forsome O;f < 1: (5.16)
u& 0 u
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Proposition 5.5.7. Assume tha{5:16) holds forsome  Oandf < 1 .ThenwherE[(l.(y)) < 1],
h i
pS)(y)=1 E[G (tWIGy))] f E (le(y) 1(I (y)>0) +0of ): (5.17)

Remark: Note that if eitherG or the distribution function of¥ has a density, theR (u) admits the
densityf (u) at the origin (which however might be in nite) and=1,f = f (0). On the other hand,
if P=(tl(jyj)) W has an atom at 0; i.e.,, Pf P = tWI(jyj) g % O (which is not gossible under the

assumptions of Corollary 5.5.6), then (5.16) holds fer 0, f = P P =tl(jyj) W ,andthus (5.17)

yields
n 0 n 0

P P t(jyhw P P =1l(jy)W,; le(y) > 0 + o(1)
n 0 n 0

P P>tl(y)yWw +P P=1(ypW; le(y)=0 + 0(1):

pS (y)

Proof. (of Proposition 5.5.7). We have
) n 0 n 0
P (Y)=P P t@lypWw P 0 PU(y)) W< e(y) : (5.18)

SinceP;W andl. are independent, the second term in (5.18) is equ&[® (I «(y)) F (0)]. If
E[(le(y)) 1< 1 and(5.16) holds then

F(ley) FO h |
E : 1(1e(y) > 0)(Ie(Y)) E(f +A)(le(y) <1;
(1 e(y)
for some constarh < 1 and all > 0, and thus by the dominated convergence theorem
L o o] h [
lim —P 0 pti(y])) W<l ely) =fE(Ie(y) 1(le(y)>0) ;
which completes the proof. ad

If the distribution functionF admits a higher order approximation, then we can give a higher order
approximation obg )(y). Here we brie y state the result assuming tikathash derivativesF (k) 0);k =

xh (k)
F (u)= F (0)+ F7|(0)uk+ R(u) and R(u)= ou") u& O (5.19)

k=1

Proposition 5.5.8. Assume that5:19) holds for somér 1. Then

X FY0

ki E (le(y))* +o( M); (5.20)

pS)(y)=1 E[G (tWI(yi)]

k=1

providedE[(I s (y))"] < 1 .
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The proof goes along the same lines as the proof of Proposition 5.5.7.

From (5.6) we see that, in principle, any approximation of the coverage probability also yields an ap-
proximation of the mean cell volume, simply by integration of the terms of the latter expansion with respect
toy. In what follows we show how to justify the interchange of the integral and the expansion for the case
of formula (5.20), assuming, as before, the standard scenario for SINR.

In order to express the dependenceyowe writeF (u;y) andF (k)(u; y) to denote de ned in (5.15)
and its derivatives with respect to Similarly, we denote the remainder term in (5.19)Rgu; y). Assume
now that (5.19) holds for aif 2 RY and moreover

iR(uy)j H 1(u)H2(y) (5.21)
whereH ;(u) is a nondecreasing function satisfying
- Ha(u) _
lIjlgrtn0 o 0 (5.22)
and
p3
Ho(y)dy < 1 : (5.23)

Proposition 5.5.9. Assume thaf5:19) and(5:21)+5:23) hold for someh 1. Then the mean cell volume

IS
2

X
VO =v0 T EO0 ) dyE (1O)F + o M) 524
k=1 "0

EHilo(0) 100" <1 : (5.25)

Proof. By (5.6), (5.18) and (5.19), it suf ces to show that
2 i

lim h E R(I o(y)y) dy=0:
0

For xedy, by Proposition 5.20 we have poinp.‘;vise convergenceE[:::]! 0. We establish the conditions
of the dominated convergence theorem|for hE[:::]dy. For this, thanks to (5.22), take any > 0
andug such that 1 (u) foru ug. Now, by monotonicity oH 1(u), for 1

A
" ER(Ile(y)y) dy
0
2 h i h .(0)

i
Ha()dy E  16(0) "1 1.(0) up +E Hi I¢(0)

h
1 1e0>uo

0
which is nite by (5.23) and Assumption (5.25); this completes the proof. ad

83



Example 5.5.10.Consider the standard stochastic scenario with OPL 2 (#ith 1) and assume that the
distribution functionG of P admits a densitg. Then the conditions of Proposition 5.5.7 are satis ed if

 _ g 9awl(y))
tW1(jyj)
Assume in addition that | (jyj) andW are strictly positive. Direct computations give the following rst
order expansion for the mean volume of the typical cell (provided the moments used in the expansion are all
nite):

P 1= + 2
() = Rl
v E W 1 | |
2Elle©] Np =T __ hp _
2Ol T P ey e BT e T v o),

Note that the existence of the negative monter® 1*1= is guaranteed by Condition (5.16) and that

4 4 A

r 2
E[lc(0)]= sg(s)ds2 a+n dr 3+ 242
0 0 0

sg(s) ds:

5.5.2 Interference Limited Cell: Towards the Voronoi Case

Consider for simplicity the standard SINR scenario. Recall that from De nition 4.1.1, the Voronoi cell
Gx = G () attached to poinK of , is determined by some “neighboring” pointsXf 2  only. Itis
quite reasonable to expect that if we let the OPL functioi increase fast im, we get the same effect for
the SINR cellCx.p ). We formalize this observation taking appropriate families of OPL functions.

Convergence in the Space of Closed SetsLetl,(r) = (1 + r)",W =0, P > 0almost surely. Denote
by C(”X;P )= (”X;P )(e; 0;t) the SINR cell corresponding to the OPL

Proposition 5.5.11. AImost surely the following convergence holds on the space of closed sets (Rainlev
Kuratowski convergence)

nlli:[n C(nX;P) =&
whereG; = G¢ () isthe Voronoi cell of poinX 2 w.r.t.

Proof. Denote byl g‘)(y) the SN associated with the OPL functibn Note that we havdefa”)(y) > 0 for

all n provided ( R?) > O; otherwiseCxp) = G = R? and the result trivially holds. Moreover, since we
assumedP > 0 almost surely, we have

") 1=n X . - 1=n
le " (Y) = Pc@+jy  Xkj)
(Xk:pk)2©
nl1 . N1 - 1
! sup(l+jy X¢j) ~= 1+minjy Xgj (5.26)
X 2 Xk 2
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(this property differs from the standard calculus exercise in that the number of terms in the sum is in nite; it
uses the property that a.s. the above supremum is reached by a unique pgimflofeover the convergence
is locally uniform iny. Note now thaC(”X;P) =fy:jy Xj fn(y)g, where

P 1=n
n(y) = (n) 1
the ' (y)
By (5.26)
lim fq(y) = min- Jy X]
locally uniformly iny. We now formally prove thalim, C(”X;P) = fy:jy Xj ming 2 jy Xgj0.

According to De nition 5.5.1 we have to show that the following two conditions hold:

(i) Foranyys.t.jy Xj miny 2 jy Xgj, there exists a sequence of poigs! y such that
iyn  Xj  fn(yn) for all suf ciently largen.

(i) If a sequence of pointyy,, such thagyy, Xj f«, (Yk,) for all n, converges tg, then
jy Xj mingo jy  Xgj.

Supposg is in the interior of the Voronoi cell; i.ejy X j < miny 2 jy Xgj. Thenjy Xj fp(y)for
all suf ciently large n becausé,(y) ! miny,2 jy Xgj. So Condition (i) is satis ed with the constant
sequencg, = Y. If y is on the boundary of the Voronoi cell, i.ejf Xj=miny, > jy Xgj, thenthere
exists a sequence of points converging toy and such that for ah, jy,  Xj < miny, > jyn  Xkj. One
can use this sequence to construct the one required in (i).

Letyy, be as given in (ii). For alh

ke XJ o i (Ykn):

Lettingn!1 ,theleft-hand sidetendsjp X | and the right-hand side (because of the uniform conver-
gence off ) tominy, 2 jy Xgjandwegety Xj miny2 jy  Xgj. O

Remark: A result similar to (5.5.11) can be proved for any family of OPL functibnsatisfying

1
min; X;

X
lim 1 * pi=l (x;) !
: 0 .
|
for any (positive) coef cientg;. For example fot (y;) =exp[ y iJand o= 1.

We show some shapshots in Figure 5.3. Note also that the above result suggests that the VT access model
considered in Section 4.5 may be a reasonable model, at least for high path-loss exponents.

Convergence of Characteristics. As in the Boolean case, one can prove the convergence of various func-
tionals. We consider here only the cell volume.

Proposition 5.5.12. The volume of the ceIC(”X,P ) converges in distribution to the volume of the Voronoi

cellG¢ () provided the boundary a@dx () has volumed almost surely.
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4
Fig. 5.3 The SINR cells limited by increasing impact of interference in the absence of noise (converging to the Voronoi tessellation). Standard
stochastic scenarig=: Y (the sequence of symbols U : ; U corresponds to a multi-cell scenario; see Section 6.3), Witmiform distribution

+ M/U
on[0; 2], w(y) = 0,t = 0:2; OPL with path loss exponent = 3 ; 5; 12 and100. For more discussion see Example 7.5.8.

0 2 [ ] 10 0 2 2 6 ] 10

Proof. This can be done using the following inequalities

, S , . n
1 z2Cx() 1jz Xj= kalzn iz Xkj Ilrr]pllnf 1 22 Cxp,
limsupl z2 Cjy.
n1i P (X:P)
1 z2C()

which hold for allz 2 RY. Then, representing volumes as integrals with respect to Lebesgue measure, using

the Fatou lemmas fdiminf andlim sup, we get the conclusion provided that
Z

1jz xj=minjz Xy dz=0
Xk2
Rd
almost surely.
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Fig. 5.4 The SINR cells limited by strong interference and increasing noise (Johnson—Mehl grain growth model). Standard stochastic scenario

V\L/J+7M/Uu (the sequence of symbols U : ; U corresponds to a multi-cell scenario; see Section 6.3), Witimiform distribution or0; 2],t = 0:5,

OPL with path loss exponent = 30. Increasing noisev(y) = W = (1+ R) 30, whereR = 0:4;1:2;2 and1 (i.e., W = 0). For more
discussion see Example 7.5.9

The last condition of the proof is true e.g. for the Poisson p.pvith a diffuse intensity measure, in
particular for any stationary Poisson p.p.
5.5.3 Noise and interference limited cell: towards the Johnson—Mehl cell

We also have convergence to intermediate states of the Johnson—Mehl grain growth model (see e.qg. (
,S.10.7, p. 333-334),

Corollary 5.5.13. Under the assumptions of Proposition 5.5.11, if, instead/of 0, we takeW = (R +
1) " for some xed or random variablR, then

lm Clpy= &) \ Bx(R);

whereBx (R) is the ball centered & of radiusR.
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We give an illustration of this convergence in Figure 5.4.
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6

Interacting Signal-to-Interference Ratio Cells

6.1 Introduction

P
We consider now the relationships between several SINR cells. As in Chapte®5 let ;" (,,.m,) be an
i.m.p.p. with pointd x;gin RY and marks m;gin R . Letl . (y) be a scalar shot-noise eld & generated

by € and the response functitn: R RY R 7! R*.

collection ofn marked points. Let; 0,i =1;:::;n be a collection ofi thresholds. We de ne the SINR
cells of this collection of marked points and thresholds in the shot-noisd ghhd the thermal noise eld
w(y) Oas

Coamn = Comp(%if(XjiM;)ij 6 igiW;(ti) o

y: L(y;Xi;m)  ti(le(y) + L(y; Xj; Mj) + w(y)) ; (6.1)
i6i

where0 < 1is some constant.

If =1, thisis the collection of SINR cells of the poins,i = 1;:::;n for the SN created by the p.p.

If 61, the response of the poinks and that of the points d¢ are weighted differently.

Example 6.1.2 (Downlink in a Code Division Multiple Access cell with several users).et € be ani.m.
Poisson p.p. representing the location of base stations using Code Division Multiple Access (CDMA) — see
Section 25.1.4 in Volume Il). LeX be the location of a tagged base station withsers. Since ah users

the locations where uséy when served by the tagged base station with pdwyereceives a signal strong
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enough to sustain the goodput that corresponds to the SINR thrdsholthis case the factor might stem
from the fact that orthogonal signatures are used within a cell. Another essential feature of CDMA is power
control (addressed in Section 25.2 in Volume II).

Remark 6.1.3. Note that when changing the threshotdso

o_ i
; tI,D— 1+t (6.2)
one can replace i6i L(y; Xj;Mj)in (6.1) by Jn:l L(y; Xj;Mj). Indeed,
X
L(y;Xi;m)  ti(le(y) + L(y; Xj5Mj) + w(y))
j6i

if and only if

pd
L(y;Xism)  ti=(1+ ti)(le(y) + L(y; Xj; M)+ w(y)):
i=1

6.2 Constraints on Cell Intersections

We now comment on a basic algebraic property which sheds some light on the fact that the SINR cells are
typically deformed and may have holes, and this happens even in the case of a simple isotropic response
functionL.

Proposition 6.2.1. Consider the collection of SINR Ce@qxi;lvli) = C(Xi;Mi)(e;f(Bj 'Mj);j 6 ig;t;) of
De nition 6.1.1. For any subset f 1;:::;ngofcells,if ;,, Ciximy) 6 ; ,then 5 ti0 1=, where
tis given by (6.2).

T
Proof. Assumey 2 ;,; Cx;.m;) & ;. Then, then by Remark 6.1.3, we have the set of inequalities

X
L(y;Xizm) t? L(y;Xj:Mj); 123,

j23
Summing them up, we obtain
X X 0 X
L(y; Xj;Mj) tr Ly X Mj);
j23 2 j23
P
which is equivalentto ;,,t0 1= . O

Remark 6.2.2. Note that the above result is purely algebraic (no stochastic assumptions are made). It says
that by increasing the signdlqy; Xi; M;) that one cannot cover a given poinby arbitrarily many cells.

In particular, in the case of constant= t no location can be covered by more tteas bt=(1+ t )c,

cells, whatever the location§; of the transmitters and whatever the strength of their signéfsX;; M;).

For example, on Figure 58= 4, while on Figure 5.4 = 1 inhibits any overlapping of cells.
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Example 6.2.3 (Pole capacity of the downlink CDMA cell).Let us continue Example 6.1.2 and consider

one given antenna, say locatedXat which transmits a compound signal of total power+ ::: + Py for

servingn users with respective bit-rates correspondingytok = 1;:::;0. Since the possible locations

of these users are described by the c€|lgp, ), by Proposition 6.2.1, if ", t9> 1= then these cells

cannot simultaneously cover any given location. This means that if all the users are at the same location,
they cannot be served simultaneously by the tagged base station, no matter how strong the emitted powers
are. If one assumds = t, this mean that no morethann, (1 + t )=(t) users can be served. This upper
bound for the number of users is called ffwe capacity of the CDMA cellt gives the maximal number of

users that can be served at a given location with a bit-rate corresponding to the SINR thtreshold

6.3 Stochastic Scenarios and Coverage Probabilities

By the standard stochastic scenario for collections of SINR cells, we understand the framework described in
Section 5.3, with the response functibgy; x; p) = p=I(jy  xj), wherel is an omni-directional power at-
tenuation function (see Section 23.1.2 in Volume II), with assumption (3) of the single cell scenario replaced

by:

independent, independent ®f and have the same distribution functi@ras the marks of.

In a slightly more general case one can consider the scenario where

distributionG°

Kendall-like Notation cont. Extending our previous notation for SINR, we call the above framework for

collections of SINR cellgoZCL model, where Gl's in the numerator denote the general distribution of the

Pj 's.

6.4 Joint Point-Coverage Probability

Assume the standard scenario for collections of SINR cellsyLet : ; y, ben locations. We are interested

in the probability that for al] =1;:::;n the cellC(x, .p,) covers locatiory; :
\n n 0
PXimxa (Y15:iyn) = P Yi 2 Cix; e (8T (X1 P1); 1 6 jgWiti) (6.3)
j=1
\nn X 00
= P P til(y;  Xji) Te(yj)+ P=l(y; X))+ W
j=1 16

.....

.....

ple 6.2.3). Recall, that in all these cases, the poWefer | 6 j are considered as interference with respect
to the transmissio.
. . .. . P =M .
The following result gives the joint point-coverage probability for {{ez5; model, where the received
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a situation wherP; = Pfl, whereP is some constant emitted power aildis an exponential random
variable modeling Rayleigh fading in the channel frdmtoy; . For simplicity we state and prove the result
for two cells.

Letlix = I(Gyk  Xji), kiJ =1;2and letL(,.,)(s1;s2) be the joint Laplace transform of the vector
(Ie(y1);1e(y2)) andLw (s) the Laplace transform af .

Proposition 6.4.1. Consider the standarg . model. If

tity 2lq4l
— 1t2 1122<l (6.4)

I21112
then the joint point-coverage probability is equal to

1 1t 2 1 2
. : = L L, — ;
Prax2 (Y13 ¥2) (2 + taly Ylo+ tale ) ' 1 il 171 ’
where ; = tiliil; (I + tjl; ),i;j =1;2,i 6 j.Otherwisepx ,;x,(y1;y2) =0.

Proof. Note rst that the condition (6.4) is necessary for the inequalities in (6.4) withl ; 2 andn = 2 to
hold whenW  Oandl, 0. Soitis necessary fqux, x,(y1;y2) > O. In what follows we assume it is
satis ed. Similarly as in the proof of Proposition 5.4.1 we have

AAZA
Px 12 (Y1:Y2) = A(U;vi;v2) P W = du;lg = dvg; = dve
000
with
A(v;u1;up)
A
= 1pr tila(u+ vi+ pozln) 1 po talop(u+ vo+ pa=hy) 2e (PP dpidp,:
00
Forai;b  0,i =1;2andbyb, < 1, we have
AZA
1(py  ar+ bip)l(pz @z + bppy) %e (Pr*P2)dpydp,
00
1 bibp exp ai(l+ )+ ax(1+ by)
(1+ b))+ byp) 1 bbp
Takingay = tilij(u+ vi), b = tl; =l withi;j =1;2,j 6 i, we observe thab, < 1is equivalent

to (6.4) which we assume to be satis ed. Thus we have

Px 1:x 2 (Y1 Y2)
1 AAZA

- ((v+u1) 1+(v+uz) 2)=(1 ) =dul.= 1, = .
= e P W=4du;l;=dvylo=dvo ;
(l21 + talan )(l2 + tal2z ) -

and the result follows. O
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7

Signal-to-Interference Ratio Coverage

7.1 Introduction

P .
Let b= i "(xi:mit;) b€ a marked point process, with poirfts;g in RY and mark%mig in R (as

in Chapter 5) and; 2 R* . As in Chapter 5, let (y) be the SN orRY, generated b= O (X
b without the markg;) and by the response functian: RY R4 R’ 7! R*.

De nition 7.1.1. We de ne theSINR coverage procegenerated b)b and the thermal noise eld/(y)
0, as the following union of SINR cells:
sk = ( b[' w)
= Coam (€ "eimiiWiti) (7.1)
%i;miiti)zb o
y : there exis(xi;mi;ti) 2 B L(y;xi;mi)  ti(le(y) Ly;xi;mi)+ w(y)) :

Remark: From Remark 6.1.3Cx,:m)(€  "(x;:m;): Wi ti) in (7.1) is equal taC y,:m,) (€; w; t9) with

t.
0_— ! .
0= : 7.2

Moreover if'[i0 > Oforalli, then gngcan also be expressed as

sinrR = FY 1 Xp(y)  le(y)+ w(y)g;

where .
G
Xb(y) - max (y1X|1 |)
(xi;misti)2P ti
is a max-shot-noise process generated?’band the response functid®(y; x;m;t) = L(y;x;m)=t (cf.
Section 2.4), provided thmax is well de ned, for example when there is an a.s. nite number of cells

covering pointy.
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Fig. 7.1 SINR coverage model without fading. Fig. 7.2 SINR coverage model with point dependent fading.

Standard Stochastic Scenario and Kendall-like Notation. We shall often consider the following stan-
dard scenario for the coverage process.

(1) We assume thdl is a general stationary independently marked point process with poiRfs in
and intensity > 0;

(2) The markdm; = (pi;tj)) have some given distributiddf p  u;t  vg= G(u;v) that does
not depend on the location of the corresponding point;

(8) The thermal noise eldv(y) = W is constant in space and equal everywhere to some non-
negative random variabM 0 independent oP.

Note that assumptions (1)—(2) correspond to some natural extension (tnarksadded) of the standard
scenario for SN, for which the following isotropic response functidg; x; p) = p=I(jy  Xj) is assumed,
with | some omni-directional power attenuation function (see Section 23.1.2 in Volume II).

Extending our previous Kendall-like notation to SINR coverage, we call the above scen%&%
model.

Figure 7.1 shows a realization of the SINR coverage m@@é‘ﬁ,—D while Figure 7.1 shows the same
situation with an independent fading for each point.

7.2 Typical Cell of the Coverage Process

Let P(!X_m_t) denote the reduced Palm distributiontbf(see Section 1.4). Recall that one can consider this

distribution as the conditional distribution Bf " (x.m:) given that f(x;m;t)g) > 0. UnderP( ... . the
SINR cellCy.m:)(€; w; t) is calledthe typical cell of the coverage procesginr at (X; m;t).t

1The name “typical cell” is natural in the stationary case.
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From Corollary 2.1.3, in the case of an i.m.p.B(’X;m;t) is also the distribution of an independently
marked point process with marks having the original distribution.

If moreoverb is an i.m. Poisson p.p. then by Slivnhyak's Theorem (see Theorem 1.4.5) the reduced Palm
distributionP(!X;m;t) is equal to the original Poisson distribution®f Moreover, the moment measuk of
b is equal to

M (d(x;m;t)) = F(d(m;t)) ( dx);

where is the intensity measure of the Poisson p.pThis allows us to interpret many results obtained in
Chapter 5 for a single SINR cell as concerning the typical cell of the SINR coverage progggsvith
(possibly) a randomized maiR. Note also that Assumption (3) of the standard scenario for SINR cells
states thaP is randomized according to its original generic distribution.

7.3 Nearest Transmitter Cell

Consider a% model. We are interested in the probability that a given location, say the grigifl,

is covered by the cell of theearesttransmitter:
n 0 n 0
P =P y2Cuop)(® "xopoy;Wit) =P p° I(x°Dt W+ Te(y) p°=I(x%)

wherex® = arg min , jxij (by Lemma 4.2.2x° is almost surely well de ned) anpP is the mark o in
€. In the case of Poisson p.p., the joint distributiorfof; p ) and® " (40.50) is known. Thus, conditioning
onx , one can evaluage by similar arguments g®(y) (see Section 5.3.1). These calculations are explicit

i M/M
in the ym Model.

Proposition 7.3.1. For theW'\f’% model with deterministi¢; = t
0 1

4 4
p= 2r exp( r ADLw(tl (r))exp@ 2
0
whereE[p°] = 1= .

u .
EATOECD) duA dr; (7.3)

Proof. Recall thatPfjx% >rg= e ' °. Moreover, giverx® = r, € " (xo:p0) IS @n i.m. Poisson p.p.
with intensity 1(jxj >r ) and independent gf . Thus conditioning ofx°j = r, by the same arguments as

in the proof of Proposition 5.3.3, the coverage probability is equal to

0 2 1
u

1+ 1(u)=(ti(r))

Lw(tl (r))exp@ 2 duA : (7.4)

We obtain the result by integrating with respect to the layx6f. ad

Example 7.3.2. Consider OPL 3with =4 andW 0. Then using the fact that

2 u _r<p

_ b
1+ I(u)=(tl (r)) du = t 2arctan(l= t) ;

r2
4
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we get that

1+ =t 2 arctan(1=IO t) dr: (7.5)

7.4 sink @S a Random Closed Set

We now consider some stochastic-geometry theoretic properties of SINR coverage processes. We require
that the typical cell be a closed set fdir(d(x; m;t)) almost all(x;m;t) 2 RY R R*.By Campbell's
formula, one can then conclude that under the original (unconditional) distributiorQg, all the cells
Cixi:m)(®  "x;:mi);W;t;) are almost surely closed sets. In the case of an i.m.p.p., conditions for the
typical cell to be a closed set can hence be found in Corollary 5.2.1.

In stochastic geometry it is customary to requirgng to be a closed set (note that the countable union
of closed sets need not be closed). In fact we require the stronger property that for any given bounded set
in RY (with compact closure), the number of cells that have non-empty intersection with it is almost surely
nite. 2

Denote byNk the random number of cells

Ci= C(Xi:mi)(e " (ximi)s Wi i) (7.6)

that hit a given bounded skt «
Nk = 1 K\C 6; : (7.7)

|

In what follows we assume th8tis an i.m. Poisson p.p. and we give several instances of moment-conditions
(bearing on the distributioR (d(m;t)) of the generic markm;t) and the intensity measureof the p.p.)
for E[Nk ] to be nite for arbitrary largeK . Later on we will comment on the general stationary case as
well.

Note rst that the required property is always satis ed(fR%) < 1 (i.e. whenb has almost surely a
nite number of points inRY). In the following we will assume one of the two following conditions on the
response function:

(A1) There exists a nite real numb@ , such that. (y;x;m) =0 forallm 2 R andy;x 2 R? with
Iy xji>R .

(A2) There exist positive constardsand such thal(y;x;m)  Ajsjjzj ,forally;x 2 R9;s2
R, wherej j denotes the Euclidean norm.

Note that condition (A2) is satis ed for the standard scenario with OPL 1 and OPL 2.

2An equivalent statement is that thellection of cellds a.s. a Radon point measure on the space of closed sets, so that it can be treated as a point
process X

e,
(Ximisti)
on the space of closed sets. This is a typical assumption for coverage processes (in particular for the Boolean model, see e.g. (
), eq. (3.1.1), p. 59.).
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Proposition 7.4.1. Let b an be i.m. Poisson p.p. with intensity Assume that; > 0 a.s. We have
E[Nk]< 1 (7.8)
for an arbitrary larg& if one of the following conditions holds:

(i) Condition (A1) is satis ed anav(x) > 0 for all x 2 RY with probability 1,
(i) Condition (A2) is satis edw(t) W > 0a.s. for some (possibly random) variablg, and for

alR> 0 Aimoi 1
JMoJ =

E B OR + <1: 7.9

toW (7.9)

(iii) Condition (A2) is satis ed,L (y;x;m) > Oa.s. forally 2 RY, and for allR > 0
Z o
(i Ajmy] 1=
( B@G:ixj) ‘R + - < ; .
e E B O;R LL(R X o) (dx) <1 ; (7.10)

Rd
wheremyg is independent ofmyq;t1), with both having the distribution of the marginals of a
typical mark, andL(r; x;m) =inf y; + L(y;X;m).

Proof. In order to prove (7.8), we construct various Boolean models dominating our coverage pragess
and we use Lemma 3.1.5 to ensure that the number of cells of the Boolean model which iteisedt
nite mean, which is equivalent to

E[( K)]<1; (7.11)

where is the generic grain of the BM.

(i) Under (A1), we have€; B (X;; R ) and the result follows from the fact that (7.11) is obviously
nite for the Boolean model with deterministic cells.
(i) Under (A2) we have

Ci = y:Ly:xismi)  ti(le(y) L(y:xi;mi)+ w(y))

y: L(y;xi;mi)  tW

y : Ajmijjy  Xij tiW

Ajmij 1=
tiW

Yy X (7.12)

Thus we have€; B(X;; i);a.s., where

Ajmij 1=

tiwW '

There is no loss of generality in assuming that the bounded sistthe ballB (0; R) and the
result now follows from the simple observation tia{0; R) B(0; i) = B(O;R + ).

97



(iii) Now we do not assume anything abauft) (thus it may by positive or null). Instead we use one
of the points of the process to guarantee a suf cient level for the variallg and thus bound
cell sizes from above. Letg denote the point of which is nearest to the origin, and sty be
its mark. We have

X X
Nk = 1(K\Cp6;)+ 1K\ Ci6;) 1+

1K\ C6;): (7.13)
i60

i60
For any poinx; 6 xg (i.e.,jXij > jXoj) of the point process, with mark;;t;, andKk = B(0;R)
L. . . Ajmij 1=
Ci \ K : R and Xi —_
i() y:jyj YoXi Ty %o mo)

yiiy i Al il
’ : t infy; ivi R L(y;XO; mO)

B Xxi; (R;mj;ti;Xo; Mo)

where Aimi L
Jjmi] =
(Rimi; ti; Xo; Mo) tiL (R; Xo; mo)
Using now (7.13) and the assumption tRatis the point nearest to the origin, we get
X
E[Nk] E 1+ 1K\ Ci6;)
N i60
Z X
= E 1 (B°0;xp)=0 1+ 1(K\ Ci6;) ( dxo)
Rd } i60
Z
e (BOXIE 1+ 1(K \ B(xi; (R;m;i;ti;xo;mg)) 6 ;) ( dxo):
Rd |, jxij>X0

So by (7.11) for the Boolean model wi@® = B (0; (R;m;j;t;;Xp; Mg)) conditioned orkg; mg
Z

E[Nk] e (BOXME 1+ K B 0 (Rimytiixe;mo)  ( dx):
Rd

The proof is concluded by observing t&0; R) B(@©O; ( ))= B(O;R+ ( )).

O
Corollary 7.4.2. Let be an independently marked amdmogeneouBoisson p.p. with intensity dx) =
dx. Then(7:9) is equivalent to the following condition
ho o g i
jmoj d=
E — < 1; 7.14
toW ’ ( )
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whereagq7:10) is equivalent to the conjunction of the following two conditions
Z d=

. d= imoi
e axif E[L(R;x; mo)] dx< 1; E 1Mo

<1: (7.15)
to

Rd

Remark: Conditions analogous to parts (i) and (ii) of Proposition 7.4.1 can be observed in the stationary
ergodic case; (7.9) and (7.14) have the same form Bijth:] replaced withE o[: : :], whereE is the expec-

tation w.r.t. the Palm distribution of the mafko; tp). The proof is based on Campbell's formula. Part (iii)

has no generalization due to the lack of an explicit form of the joint distributiorydthe point which is
nearest to the origin) and the remaining part of a general point process.

7.5 The Coverage Process Characteristics

Our goal in this section is to analyze the coverage procegss, and more speci cally, the distribution

of the number of cells covering a given point. From this, the volume fraction and other characteristics of
sINr Can be derived. Lelly = Ny,q (cf. (7.7)) denote the number of cells covering a given prirfeor

all integersk, letk™ = k(k 1):::(k n+1)*, wherek* = max(0;k). Below we give formulae for

factorial momentE[Nﬁ”)] of Nx. From this, the distribution dfly can be derived using the formula

1R E[NLTR
PN, =m= " (e,

" k=0

(7.16)

which follows from the well-known expansion of the generating function. Of course, these expansions usu-
ally require strong conditions (existence of all moments and convergence of the series). However, these
issues disappear whéty is bounded.

7.5.1 BoundedN
Suppose now that the distribution of the marks is suchtihate bounded away from O i.e.
(B) ti a.s. for some constant O.

Using the result of Proposition 6.2.1 we immediately have the following property of the coverage process:

Corollary 7.5.1. If Condition (B) is satis ed therN, < 1= almost surely.

P
Proof. Assume thah = Ny cells cover poinx. Then from Proposition 6.2.1, Ezl ti, 1, wheret;, ,
k = 1;:::n are marks of the cells covering Sincet;, ,son 1=. O

Remark: This bound suggests an analogy with queueing theory. One can think of queueing theory as a
way of sharing time between customers arriving at a queue according to some point process on the line,
and requiring some given service times. We can also think of our coverage process as a way of sharing
space between the points of a spatial point process with given marks. Under the condition mentioned in
the last lemma, the coverage process can be seen as a spatial analogue-sdrires queue, with =
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minfn integer: n 1= g, in that no point in space can be covered by more theglls; in the same way,
the™-server queue forbids that at any pointin time, more thanstomers could be served. Note thlaaring

actually means quite different things here and there: in queues, the sharing of time is implemented by shifting
customers in excess to later times, while keeping their service times unchanged. In contrast, for this coverage
process, sharing of space is obtained by shrinking the marks: if one de nepdbe requesif pointxg as

the setC(()O) = fy:L(y;Xo;mg) tow(y)g, which would be the share of space obtainecpif there were

no other points, then one can see theGet y: L(Y;Xo;mg) to(le(y) L(Y;Xo;mg)+ w(y)) ,as

a shrunken version cﬁiéo) resulting from the competition with the other points.

In the same vein, the Boolean model, which is a limiting case of our coverage process (see Section 5.5.1),
can also be seen as a spatial analogue of the in nite server queue, and that in this case, the analogy is quite
strong, with in particular the same Poisson distribution for the number of marks (customers or cells) covering
a given (time or space) point.

7.5.2 Factorial Moments ofN

We are now in a position to prove the following result.

Proposition 7.5.2. AssumeP is a simple i.m. Poisson p.p. with intensity measur& hen then-th factorial
moment of the numbeX  of cells of S|NR(I§ covering poinix is equal to
z \n X
EN"I= P x2  Cmg & "omyi W)t (dxa)iii (dxa) ;o (7.17)

(RY)" k=1 i=1;i6k

where® is distributed ad® without markst; andf (mj;tj)gL, are mutually independent vectors, indepen-
dent of b distributed as its generic mark. This relation holds provided the integral on the right hand side is
nite. In particular, if bisa homogeneous P%isson p.p. with intengitgx) =  dx then for eachx 2 Rd

[

ENx]= E C(x;mo)(e;w(y);to) ; (7.18)

wherejCj is thed-dimensional volume of the cel.

Proof. For a particular realizatioR of the marked Poisson p.p, denote'W‘) its n-th factorial power, that

is the following point measure oRY R R* "

X
b(n) = "

((Xiq 5z )i(mi g smmig )ity sstig)) -
distinct

In other words P(") consists of alh-tuples of distinct points oP (see Chapter 9). Now we can write the
factorial power(Ny)(™ of the number cells covering poirtas the following integral with respect R
Y
N = 1 X 2 Cixpmy (&;w(y);ti) PM d((xq;::15%n); (Mas 20 mn); (ta3::05tn)
(Riyn k=1
(7.19)
We get (7.17) by applying the re ned Campbell theorem to the (see Corollary 9.2.3) expectation of this in-
tegral and the fact that factorial moment measures of Poisson processes are Lebesgue measures (Proposition

9.1.3). ad
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Remark: For the niteness of the integral that appears in Prqposition 7.5.2, it is enough to assume exactly
the same conditions as for the niteness of the mean measure of; "¢, given in Proposition 7.4.1 parts (i)

and (ii). In the cas® (w(y) = 0) > 0 however, some integrals of the negative moments of ander of

L (y;Xo; m) have to be nite, where(q is the point which is nearest to the origin. Details can be found

in ( )-

7.5.3 Volume Fraction

Thevolume fractionp = P(0 2 gnR) iS a basic characteristic of a stationary coverage process. Strictly
speaking, it can be de ned and calculated for any coverage process, but then the notion might be misleading,
since it is only when we assume that the probab®itx 2 gnr) does not depend on that we can say that

the expected fraction of thé-dimensional volume of giyr per unit ball is equal t@ (cf. the remark after

De nition 3.1.8). Thus for the remaining part of this section we assume thiata homogeneous Poisson

p.p. with intensity , that the functiorL (y; x;m) = L(y Xx;0; ma,depends only ofjx yj;m)) and that

w(y) is stationary. Using the expansion (7.16) we can wpite ., ( 1)¥*2=kIE[(No)®)], where the

coef cients are given in Proposition 7.5.2, provided all moments are nite and the series is convergent. Note
however, that if we assume condition (B) of Section 7.%;1 ( > 0 a.s.), then the expansion has only
nitely many non-zero terms.

Note that the dependent marking of our coverage process (cells are dependent) makes it impossible to
calculate the volume fraction in the way typically used for Boolean models. Nevertheless using the factorial
moment expansion technique for a general class of functionals of spatial p.p.s presented in (

) (see also papers cited there), the rst order approximation of the volume
fraction can be represented asi

p= po(X)dx+ O( )= E[jCom)il+ O( ?); (7.20)
Rd
wherepo(x) is the single (typical) cell coverage probability aBdijC.m)j] is the expected volume of
the typical cell. The rst term in the last formula differs from the formula (7.18)E¢Ng] only in thatb is

replaced by the null measure (without points). More general approximation formulae (involving polynomials
in ) can be obtained via this expansion technique.

7.5.4 Noise or Interference Limited Coverage — Extremal Cases

The aim of this section is to extend the results of Section 5.5 on the convergence @;celgards e.g.
those of the BM or those of a VT to the convergence of the whole SINR coverage process.

Noise Limited Cells — towards a Boolean Model. By analogy to what was done in Section 5.5.1 con-
sider the following family of SINR coverage processes

() - ().
SINR — Ci ’
[
where n o
cl)= yiL(yixaim)  t( (le(y) L(y;xi;m)+ W) :
Note that (for simplicity) we have assumed a random nd#isavhich is constant in space, but possibly
random.
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Proposition 7.5.3. Assume that the conditions of Corollary 5.2.1 witlfy) = W are satis ed as well

as Condition (1) in Section 5.5.1. Then, almost surely on the space of closetinsetsy g”)\,R = (SO,)NR

(Painleve—Kuratowski convergence), provideél,)\IR is arandom closed set for2 [0; o] and some g > 0.

Proof. Observe that

[ [_[7
L L

- O.F~o_l .o.
cl)="clO=" c0;

()= Ci( ) =
[ i [ i
. (0
where the last but one equality follows from (5.8) and the last one from the assumptloélmb aclosed
set. O

Remark: Suppose thaP is an iqplependently marked I%oisson point process. Tli%;h givenW is a

Boolean model with grain@i(()) = y:L(y;xi;mi)  tiW

Example 7.5.4.We now illustrate Proposition 7.5.3 by showing some patterns of our coverage process
sINR “conforming” to a Boolean model pattern. We simulated a Poisson p.p. with 60 points on the square
[ 5;15F (so that = 0:15). While observing only the squaf®; 10F, we take all 60 points of the larger
square into account for evaluatihg. We assume the standard scenario for the coverage process with the
OPL function(1 + jyj)2. Thep;'s are uniformly distributed off0; 2], t; landW  0:1. The various
patterns result from taking various values fofFigure 5.2 presents the coverage procesgr “on its way”
to a Boolean model. We have: (a)= 0:4; note that2 < 1< 3 ; thus at most two cells could cover any
given point, although this is not observed; (by 0:2; since4 < 1 =5 , at most four cells could cover
any given point; (¢) = 0:1; cells occupy more and more of the nal space that they occupy under the
Boolean model regime; (d) = 0:0001 almost the limiting case where each cell is a disc with independent
radius distributed aglOp)*= 1 (with mean20'= 3=4 1 1:035).

Here is an extension of Proposition 5.5.5. Derg ) = fy : L(y;x;m) = tWg.

Proposition 7.5.5. Suppose that the conditions of Proposition 7.5.3 are satis ed. If for a given compact

K2R'" zzz n o

Pixmt) K\ Doxmit) 6 33K\ Digmy =5 M (d(x;m;t)) =0 ; (7.21)
R4 R R*

whereZ = (S;(a;b;q) is a generic mark, then as# 0, the number of cellfNk ( (S,,)\IR) hitting setkK

converges almost surely and in expectation to the number of cellg)lfq,_t{ hitting K .

Proof. Note that under assumption (7.21) the (expected) number of poirli’(snot satisfying (5.9) is equal

to 0. Thus by Proposition 5.5.5

) X () X ©)
“!mONK(st):“r!no 1 K\C "6, = 1 K\C™6;
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Corollary 7.5.6. Suppose thal is an i.m. Poisson point process. Then under the assumptions of Proposi-
tion 7.5.3 we have the following convergence of the capacity functional:
Z2277Z
im P Sur\ K 60 =1 exp 1k\cY?

(x;m;t)

8 ; M (d(x;m;t)) :

R4 R* R*

Nearest-interferer Limited Cells — towards the Voronoi Tessellation. For all integern > 2, let
&nr = [iC", whereC' is the SINR cellC" = C[ ..,(®  "(x;p,);0;ti) obtained for the OPL 2
functionl,(r) = (1 + r)" and forW 0. Similarly to Proposition 5.5.11 we have the following result:

Proposition 7.5.7. Assume thaP is simple. Then for ali
H n — .
nllllm G =G

almost surely on the space of closed sets (PagriEuratowski convergence), whe@z = G () is the
Voronoi cell ofx; generated by , providedC/" is a (random) closed set for suf ciently large

Also the mean volume of the SINR cell can be approximated by the mean volume of the Voronoi cell, as in
Proposition 5.5.12.

Example 7.5.8. We now illustrate Proposition 7.5.7 by showing some patterns of our coverage process
siNR “conforming” to the Voronoi tessellation of the plane (see Figure 5.3). The Poisson p.p., the obser-

vation and the simulation windows are as in Example 7.5.4. Mpyrkae uniformly distributed ofi0; 2],

W 0,t; 0:2thusallowingfor at most four cells to overlap at a given point. The various patterns result

from taking the OPL functioh(r) = (1 + r)" with variousn. We have: (apn =3, (b)n =5, (c)n =12,

(d)n = 100. The effect of overlapping is still visible. A more accurate tessellation can be obtained inhibiting

overlapping, e.g. by takiny  0:5.

Nearest-interferer and Noise Limited Cells — the Johnson—Mehl Model. When a strong attenuation
remains in some relation to the noise then the SINR coverage process might look like a sub-tessellations,
with each of its cellxonstrainedo remain within some disc with the diameter related to the noise.

Example 7.5.9. We now illustrate Corollary 5.5.13 by showing some patterns of our coverage proggss
“growing” to the Voronoi tessellation as in the Johnson-Mehl model (see Figure 5.4). The observation and
simulation windows and the Poisson p.p. are as in the previous examples.ylarkauniformly distributed

on[0; 2]and we takeé;  0:5, thusinhibiting any intersections. The OPL functibfy) = (1+ jyj)3Cis strong
enough to give a tessellation covering almost the whole plane When 0. We assum&V = (1 + R) 30

and take: (@R =0:4,(b)R=1:2,(c)R=2,(d)R =1 (equivalenttoN  0). The result is a sequence

of sub-tessellations, with each of the caltnstrainedo a disc of radiuRR (wherever a cell has diameter

less tharR it has its nal shape). All cells start growing at the same time.
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8

Signal-to-Interference Ratio Connectivity

8.1 Introduction

P
Consider a marked point proce*%s i "(xi:m;:t;) @sin Chapter 7 and the coverage procesgr = [ iCi
it generates, whei@; is the SINR cell of the pointx;; m;) for the SINR thresholt (see (7.6) in Chapter 7).

Suppose that the points of this point process constitute a network, in which one node is able to commu-
nicate with other nodes of the network, possibly via several hops (e.g. a MANET — see Section 25.3.1 in
Volume I1). Suppose that the communication framto x; is feasible ifx; 2 C;. Important questions then
arise about the connectivity of the SINR modejnr. They are similar to those concerning the connectivity
of the Boolean model studied in Section 3.2. Recall that the connectivity of the Boolean model in the whole
plane (space) is analyzed using percolation theory, in which setting the central question is the existence of
an in nite connected component.

8.2 Signal-to-Interference Ratio Graph

Consider the following graphs associated with the SINR modglr generated by a marked point process
b

De nition 8.2.1. LetC; be de ned by (7.6), Chapter 7.

The directed SINR grapB,, is the graph with vertices the atoms ofand with directed edges
fromx; tox; if xj 2 Cj;

The bidirectional SINR grapkesnr is the graph with vertices the atoms ofand with non-
directed edges betwean andx; if x; 2 Cj andx; 2 C;.

In this chapter we concentrate on the latter, which can be described in other words as the graph where
two points of are connected iff they cover each other by their respective SINR cells.
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De nition 8.2.2. One says that the SINR grafi g percolates if it contains an in nite connected compo-
nent.

Remark: As already explained, the interest of percolation is to maintain simultaneous links allowing one
to build routes between any pair of nodes belonging to the in nite component. Let us note that in spite of its
mathematical interest, this percolation model has one main practical drawback that stems from the technical
dif culty of having a node being at the same time a transmitter and a receiver on the same frequency band.
This problem is taken care of in Chapter 22 in Volume Il, where we consider time-space routing schemes
where receivers and transmitters form a partition of the set of nodes.

8.3 Percolation of the Signal-to-Interference Ratio Connectivity Graph

Consider thq,v'ﬁf’—,am model (see Chapter 7), i.e. the model generated by a homogeneous Poisson p.p. of the
plane with intensity , marked by constant emitted powgxs= p and SINR thresholdg = t. We assume
moreover that the noisg(y) = w is spatially constant and deterministic. We consider the response function
given byL(y; x;p) = p=I(jy Xj), wherel is some OPL function satisfying the following conditions:

@)y 1

(2) | is continuous and strictly increasing (when nite),
(3) KO) < p=(tw),

@) o r=l(r)dr< 1.

Note that the condition (3) is necessary for the SINR Cgllo contain some neighborhood of its nuclegs
(even in the absence of interference), while condition (4) guarantees that the SN generated by the underlying
marked p.p. and the response function is almost surely nite.

Under the above assumptions, we consider the parametric family of SINR coverage processes

[
Sar= (8.1)

where
cl)= yip=ly xi) t (le(y) p=lGy xi)+w : (8.2)

From Section 7.5.4 (see Proposition 7.5.3 and the remark following it), &9, the ceIICi( ) converges
monotonically to the spherical cell

cO= y:ijy xj | Y(p=tw))

S
of the Boolean model Q= =, C©, wherel 1is the inverse function df

Fixing all other parameters, we denote®ynr(; ) the SINR graph corresponding t(gl)NR. In what
follows we focus on the characterization of the two-dimensional set of parameter values

f(; ):Gsnr(; ) percolates with probabilityd

Since the underlying point process is ergodic, it should be obvious that for the valges 9fnot be-
longing to the above seGsinr(; ) percolates with probability O (i.e. does not percolate; cf. the proof of
Proposition 3.2.7 concerning the BM). Recall also that the parametimms from interference cancellation
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technique (see the discussion on the interference cancellation factor at the end of Section 24.3.4 in Vol-
ume Il). Thus, the above set describes the pairs (density of nodes, interference cancellation factor) for which
the in nite network contains an in nite connected component, the nodes of which are able to communicate
simultaneously with the bit-rate associated to the SINR threghold

By monotonicity in , for each value of > 0, there exists a critical value ( ), such thaGsinr(; )
percolates fod < ( ) and does not percolate for ( ). The main question is to show whether
(and when) this SINR percolation threshold ) is strictly positive.

Let NR be the critical intensity for the percolation of the Boolean modg ( ;r g) with spherical
grains of xed radiirg = | 1(p=(tw))=2 (see (3.12) of Chapter 3 for the de nition of the critical intensity).

Note thatrg is de ned as the half of the radius of the spherical grains gf\,R. Thus, any two grains of
sm (;r B) overlap iff the corresponding vertices G§nr( ; O) are connected by an edge.

Note that SNR represents the critical density of nodes for the existence of the in nite connected com-
ponent in the SNR network; i.e. in the network where interference between coexisting channels is perfectly
cancelled. From the previous observation on the relation betwém and its Boolean limit (SOI)NR, we
have the following immediate property:

Proposition 8.3.1.1f < $NRthen ( )=0,ie.foral 0 PfGsnr(; ) percolateg=0.

Proof. SinceCi( ) Ci(o) for all 0soGsnr(; ) G sinr(; 0); i.e. the graphs have the same set
of edges and the inclusion concerns the set of vertices. The result follows from the faGgtidt; 0)
percolates iff the Boolean model with spherical grains of the xed radkus | *(p=(tw))=2 percolates:

We now state the main result of this section.

Proposition 8.3.2. For any >  SNR| the critical () is strictly positive, i.e.PfGgnr(; )
percolateg = 1 for all 0 <

Proof. The main ideas of the proof given in ( ) are
as follows.

Assuming > SNR one observes rst that the BMgy ( ;r o) also percolates for somg <
rg. This means that the grajik,ng( ; 0) also percolates with any slightly larger constant noise
wl= w+ 0 forsome %> 0.
Moreover, one can show that the level-§gt : | o (y) M g of the SN eld | ¢ percolates
(contains an in nite connected component) for suf ciently lafgle Consequently, taking =

%M one has percolation of the level-$gt: | (y) %.
The main dif culty consists in showing th&sng( ; 0) with noisew®= w+ Opercolatesvithin
an in nite connected component oy : 1 ¢ (y) Y. This is done by some mapping of the model
to a discrete lattice.

Here are the details of the proof. Let  $NR. Then, by assumption, the BMgy (;r g) with intensity
and spherical grains of xed radiugs percolates. Denote by ( ) < r g the critical radius for the
percolation of the BM gy (;r ); the existence of such a critical radius follows from Proposition 3.2.7,
by a rescaling argument (cf. Example 1.3.12). In what follows we pick some ragligs(r ( );rg). By

assumption, gy (;r o) percolates.
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In what follows we prove the percolation of some bond-percolation model (cf. Section 14.1). Then we
show how this implies the percolation G§nr(; ) for some suf ciently small.

Consider a square lattice of side-lendth 0, whose value is speci ed later on. One de nes two random
elds A, andB 4 with values inf 0; 1g, wherea runs over the sdt 4 of all vertical and horizontal edges of
the above lattice. Lety = (Xa;Ya) 2 R? denote the geometric center of edge

Fora denoting a horizontal edge, I&t, be equal to 1 iff the following two conditions are satis ed:

— therectanglgx, 3d=4;xa+3d=4] [ya d=4;y,+ d=4]is crossed from left to right
by a connected component ogm (;r o),

— both squarepka 3d=4;x5 d=4] [ya d=4;ya+d=4]and[xy+ d=4;x5+3d=4] [ya
d=4;y, + d=4]are crossed from top to bottom by a connected componergiaf( ;r o).

Fora denoting a vertical edge, the vallg is de ned similarly, by swapping the horizontal and
vertical coordinates.

Fora2 L qletB, =1 iff B(za) <M , whereF(z) is the SN generated by the underlying marked
Poisson pg (the one generatingsyr) With the modi ed OPL function given by

( _ p__
1(0) ifo r ' 10d=4,

r)= _
) I(r p10d=4) otherwise.

The value of the constaM is speci ed later on.

Note that ifa anda®are not adjacent thefi, andA o are independent. Consequently, the random eld
fAs . a 2 Lgg de nes a one-dependent bond (edge) percolation process, where tha élgpen iff
A, = 1. Consequently, using the fact that the probability of the crossing of a given rectangle by a connected
component of a super-critical BM converges monotonically to 1 when the sides tend to in nity (see (
, Corollary 4.1)), we get that for any 0, one can nd some value for the lattice side-length
d large enough to ensure that
PfAa =0;:::;A,, =0g " (8.3)

A similar statement can be shown for the el Precisely, for any given side-lengthand any > 0,
one can nd a value for the constalt large enough for ensuring that

PfBa =0;:::;Bs, =0g " (8.4)

xw # h e
P[Ba =0;:::;Bs, =0] P B(z5,) > NM e SME ¢ =1 Aza) .
i=1
Note that the last expectation can be interpreted as the value of the Laplace transform of a Poisson p.p. (by
changing the order of summation”; and the sum which de nes the SN valz,, )). Using the known

form of this transform and assumption (4), one can show that for suf ciently smalD

P |
E e iy B(za) KD
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Fig. 8.1 Critical value of as a function of the node density.

for some constar{ which depends on andd and not orM . This completes the proof of (8.4).
Using (8.3) and (8.4) one can show by the Cauchy-Schwartz inequality that forsang, there exist
values of the lattice side-lengthand of the constari¥l large enough for ensuring that

Pf Az Ba, =0;:::;A3, By, =0g " (8.5)
1 1 n n

By Peierls' argument (see Proposition 14.1.4 in Section 14.1.1) this last statement implies that one can
nd values ofd andM such that we have percolation for the bond procesls grwhere the edga 2 L 4 is
openiffCy = AgBa=1.

It remains to show that the percolation of the above bond model implies ti@&g@f( ; ) for some
sufciently small = (). From the fact thato <rpg = | (p=(tw))=2 and from the strict monotonicity
of I, it follows that for all atoms;; x; of the Poisson p.p. such that their spherical grains of common radius
ro intersect each other, we ha\{gx; x;j p=tw)(1 ) forsome > 0.Consequenthp=I(jxi X;j)
tw=(1 )= t(w+ 9,forsome 9> 0. Moreover, the existence of the in nite connected component of
the bond percolation de ned by the elfiC,g implies the existence of an in nite connected component in
the intersection of gy ( ;1 o) and the regioriy 2 R? : 1.(y) M gwhere the original shot noide is
not larger tharM . Thus theGsing('; ) percolates for &M, which concludes the proof. ad

8.3.1 Bounds on the SINR Percolation Threshold ( )

We consider they¥'25 model Section 8.3. Note that if the OPL functibf) is bounded away from 0

(i.e. if the attenuation function is nite), then when the densitgf nodes increases, the right-hand side of

the inequality in (8.2) increases, while the left-hand side is bounded. Hence one may expect densi cation
(taking ! 1 ) to possibly destroy connectivity of the SINR graph. This is con rmed by simulation as
shown by Figure 8.1 where we plot the critical valug ) of that separates the super and subcritical
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phases in function of the node density
The aim of this section is to provide bounds or{ ). A rstimmediate bound follows from Proposi-
tion 6.2.1.

Corollary8.3.3. () 1=tforall

Proof. In order to have two different nodes communicating to one given node, this last node has to be
covered by two cells. By Proposition 6.2.1 this requires (as a necessary congitighy t) 1= which
is equivalentto  1=t. O

In ( ) the following asymptotic bound was proved in the case of an
OPL functionl which is in nite outside some bounded set.

Proposition 8.3.4. Under the assumptions of Proposition 8.3.2 and assuming that nite outside some

bounded set,
ALy Az

for some positive and nite constangs;; A».
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Bibliographical Notes on Part ||

Chapters 5-7 follow ( ). Approximations and bounds for the probability of
coverage are considered in ( ). Under the assumption of Rayleigh
fading, the SINR coverage probability for a class of Poisson-Poisson cluster p.p. known as Neyman-Scott
p.p. was studied in ( ). The direct analytical methods have been used to compare this

provability for both for stationary and Palm repartition of nodes in the considered Poisson-Poisson cluster
p.p. to the coverage probability in the Poisson p.p. scenario. In a more general scenario, relying extensively
on the theory of stochastic ordering, in ( ) one studies the effects of
ordering of random measures on ordering of shot-noise elds generated by the respective random measures.
Some applications to the comparison of SINR coverage probabilities are presented there.
The results of Chapter 8 stem from ( ) and (
). The percolation of the SINR graph is also studied and further developed

in ( ).
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9

Higher Order Moment Measures of a Point Process

In this chapter, is a p.p. onRY andB is the Borel -algebra orRY. We denote byM the set of point
measures oRY and byM the -algebra orM generated by sets of the fofim 2 M :  (A) = kg.

9.1 Higher Order Moment Measures

De nition 9.1.1. Forn 1, we de ne then-th power " and then-th factorial power (") of as the
following p.p. onRY":

"(Ar o An) = (A (An) (9.1)
n P n 1
ML Ay i Ap) = ::: " (dxn)
A1 Az i An
P n 2
k=1 "Xk (an 1)::: ( Xm): (92)

Here are a few immediate observations on these point processes:

N N
ForallAyg;:::; Ay pairwise disjoint, "( A= M L Ay).
MA 0 A)= (A (A 1::: (A n+1".

De nition 9.1.2. Forn 1, we de ne then-th momentM " and then-th factorial moment (™ of the
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p.p. as the following measures &f':

M"(B)
M(n)(B)

E[ "(B)] (9-3)
E[ ™(B)]; B2B": (9.4)

Here are some obvious observations on these measures:

M@ (A)= M1(A)= M(A) = E[( A)].

M2(A A) (M(A))?=Var(( A)) isthe variance of{ A).

M?(A B) M(A)M(Er\?z Cov (( 6); ( B)) is the covariance of A) and ( B).
ForAq;::i;An 2B, M"( Ay = Iﬂ « CAR];In pﬁrticularM”(én): E[( A)"].
ForAy;:::; Ay pairwise disjointM "(*  A)= MM A= E[7 ( AWl
MMA 0 A)= E[(A(A) 1D:::((A) n+1)*]

M2(A B)= M(A\ B)+ M@ (A B).

Proposition 9.1.3. For the Poisson p.p. with intensity measure, M = andM (™ = " foralln.

Proof. Since ( A) is a Poisson r.v. with parametérA),

MMAM = E[( A)(( A) 1):::((A) n+1)"]=(( A)"

P
Letng;:::;nkg 2 N,with . nj = nand letAy;:::; A be pairwise disjoint Borel sets. We have
(n) * ni = v M)Ay = v (M) ANy = v (i) (ahi
M Al = E (A" = E[ MAM]= MDA
i=1 [ i [
— Y nj niy — n d nj
= "(AV') = A
[ i=1

9.2 Palm Measures

De nition 9.2.1. Forn 1, then-th order Campbell measur€" and then-th order reduced Campbell
measureC(™ of are the following measures &' M:

ya

C'" ) = E 1( 2) "™d(x1;:::;%n) (9.5)
Z

cmB ) = E 1 "2 ) M(d(x1;::xn) ;B2B" 2M : (9.6)
B i=1

By the same type of arguments as in Section 1.4, we get:
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De nition 9.2.2. If M" is -nite, for all 2 M, there exist non-negative functio®y’ ..., () and

.....

Z

Cn(B ) = P)?l;:::;xn() Mn(d(xl;:::;xn)) (9-7)
5

cme ) = PM () MM (d(xq;::0%n)) (9.8)
B

Palm distribution of .

The following formulas, known as Campbell's formulas, are an immediate consequence of De ni-
tion 9.2.2:

Corollary 9.2.3. For all non-negative functiofson(R" M)
Z Z

R M Zz
= f(Xl;:::;Xn; )P)?l;:::;xn(d )Mn(d(Xl;:::;Xn)) (99)
zZz REM
f(x1;::0:%n; )CM (X1 X0 )
Rnd M Z Z
- f(xaiiisxng ) P{i, (A )M ™ (d(xaiz:5%0)) 0 (9.10)
Rd M
Forxi;iii;Xn 2 RAlet y .k, and ) .., be point processes dR" with laws P ... —and
P{"... respectively:
I:>>?1;:::;xn() = X 13X n(): Pf xixn 2 0

Z
X
E f(xy;000%ny ) = E[f (X150 Xns s )IM T (d(X15 2205 xn)) - (9.11)
X1;:5Xn 2 Rnd
¥ Z
E f (X000 %n; ) = EIF (X105 X0 ypmo I M M (A(X1; 2055 %n)) & (9.12)
X1;5Xn 2 Rnd
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If M (M is - nite, we have

PE e "2 9= PP S 2 9= P () (9.13)

Assume thaM ("* M) is - nite. For all (x1;::::Xn) 2 R, let

c{™™), . be them-th reduced Campbell measure of,...x, ;

M) . them-th factorial power of , ..x,;

..........

P iy them-th reduced Palm measure of, ..., .

...............

Here is the composition rule for Palm measures:

Corollary 9.2.4. ForallA2B",B 2B™

zZZ
MO*MA B) = 1 (x;0:5%0) 2A 1 (y13:::;ym) 2 B
EnN EM
MM Ay ym)) MM (d(x1; 205 Xn)) (9.14)
and
Pé?:’:r?&n;yl;:::;ym = P>£?;J:r::r;?<n;y1;:::;ym (9.15)
for M (M) _almost all(X1;::::Xn Y1 11 ym) 2 R™ M.

Here is a direct consequence and extension of Slivnyak's theorem to higher order factorial moment
measures:

Corollary 9.2.5. Let be a Poisson p.p. with intensity measureFor "-almost all(xy;:::;X,) 2 RY
distinct,
PM () = Pf 2 3 (9.16)
P)&;:::;xn() = Pf + "Xi 2 g: (9-17)

The proof follows from (9.13) and Corollary 9.2.4 and from Slivnyak's theorem.
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10

Stationary Marked Point Processes

10.1 Marked Point Processes

Let (K; K) be some measurable mark space. In this chapter, we consider thé®pdgmint measures on
(RY K;B K )suchthatforale 2 ®,e(B K) < 1 forall boundedB 2 B (B denotes the Borel
-eld of RY). LetM denote the - eld of ® generated by the mappings7! e(B K ) whereB;K are

sets ofB; K respectively.
A marked p.p.€ is a measurable application from some probability sgacé\;P) ! (; 17 ).
10.1.1 Translations
On M, we de ne thetranslation operatof vectorx 2 RY as
Sxe(A K)=e((A+x) K); (20.2)

P P
whereA + x = fy+ x 2 R9:y 2 Ag. Notethatife= = | "(x,k);thenSxe = " xk)):

De nition 10.1.1. A marked p.p.€ is stationary if its law is invariant by all translations, i.eP{S, € 2
)= P(€2 ) forallx 2 R%and 2 N1 .

10.1.2 Rotations

On M, we de ne therotation operator

Rre(A K)=e(rA K); (10.2)
whererA = fry 2 R :y 2 Agand where is a rotation (w.r.t. the origin oRY) if r : 5 7! Ax with A
an ortthonaI matrix (i.e. a matrix such t#atA = | anddetA = 1). Note thatife = = ; " (xi ki) then
Rr = "¢ k)
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De nition 10.1.2. The p.p. is isotropic if its law is invariant by all rotations, i.e. iP(r€ 2 ) =
P(€ 2 ), forall rotationsr and 2 N1 .

The homogeneous Poisson point process and its associated hard cene it process are both station-
ary and isotropic.

10.2 Palm-Matthes Distribution of a Marked Point Process

10.2.1 Campbell-Matthes Measure of a Marked Point Process

The intensity of a stationary marked p$is
=E[f U K)I= E[(VU); (10.3)
whereU = (0;1%and ( )= § K). In what follows, we assume th@ic < 1 .
The Campbell-Matthes measu@eof tiﬁeénarked p.p€ is de ned as

€B K)=E 1(x2B)1(z2 K) € d(x;2)) : (10.4)

It admits the representation
€B K)= jBj (K): (10.5)
The probability measure( ) on (K; K) is called thePalm distribution of the marks
Using classical monotone class arguments, (10.5) gives:

Corollary 10.2.1. For all functionsf : R K ! R* Y 5

X
E f (Xn:kn) = f (k) (dk)dx: (10.6)

Xn 2 Rd M

The last formula is the Campbell-Matthes formula for stationary marked p.p.

10.2.2 Palm-Matthes Probability of a Stationary Point Process

Let be astationary p.p. Itis easy to cgl(eck that
€= “xiiSg = “xii o xi
| |
is a stationary marked p.p. with marks taking their values in the measurable(8pake). These speci c
marks are called the universal marks of
By de nition, the Palm—Matthes distribution of the stationary p.pon(M; M ) is the Palm distribution
of the marks of this stationary marked p.p. It is denotedPBy When making use of (10.5), we get that it

can be de ned by

Z
PO() = lejE 1(x 2 B)1(Sx 2 ) ( dx)
. %
= EE 1(x 2 B)1( x2)( dx); 2M (10.7)
Rd
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whereB is any bounded Borel set &¢.
Using classical monotone class arguments, (10.5) gives:

Corollary 10.2.2. For all functionsf : R M | R*,
z X YAV
E fxSx()( dx) = E f (Xn; Xp) = f(x; )Pd )dx: (10.8)
Rd Xn 2 Rd M

The last formula is the Campbell-Matthes formula for stationary p.p.
The distributionP? is often interpreted as that of the point process “seen from a typical point” or “seen
from a randomly chosen point” of. This latter interpretation is justi ed when

0 1 X
P°() = TE 1(xx 2 B)1( Xk 2 )
1Bl 02
1 X
= lim 1(xkx 2 Bp)1( Xk 2 ) : (10.9)

B0"RY 1Bnl

Remark 10.2.3. It is often better to de ne the Palm—Matthes probability on the probability spacé.)
where the p.p. is assumed to be de ned, rather than(®h; M ) as above. For this, one has to assume that
this probability space is endowed with an abstract shift operator 2 RY, such that

( x')=5S(!): (10.10)

If the probabilityP on( ;A) issuchthaE(f )= E(f) for all x, then any p.p. satisfying (10.10) is
stationary. One then proceeds as above; one de nes the Campbell-Matthes me&%ire orby
ZZ

CB F)=E 1(x 2 B)1( ! 2 F) ( d(X)) ; (10.11)
Rd

forall F 2 A . It admits the representation
CB F)= |jBjPYF): (10.12)

The probability measurB? is called thePalm—Matthes probabilitpf on( ;A). It can also be de ned
by the relation:
1 Z
POF) = EE 1(x2B)1( x! 2 F) ( dx) : (10.13)
Rd

The associated Campbell-Matthes formula reads
X VA
E f(Xn; x,!) = E° f(x) dx; (10.14)

Xn 2 Rd

with E© the expectation w.r.2%on( :A).
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10.2.3 Relation with the De nition Given in the Non-stationary Case

The aim of this section is to clarify the relationships between

the Palm distributions de ned in Section 1.4, which was denoteB,hy
the Palm distribution of order 1, de ned in Section 9.2, which was denotdd}by
the Palm—Matthes distributid®® which was de ned above,

whenever the underlying p.p. is stationary.
We havePy = P (this is just a matter of notation). The relationship betwBgmndP ©, which are two
probability measures oM, is clari ed by the following lemma:

Lemma 10.2.4. For almost allk in R9 and forall inM ,
P«()= P%S x()) ; (10.15)

whereS,1()= f 2M: S, 2 g,a2Rd

Proof. Applying the Campbell-Matthes formula to the function
fO6 )=1(x2B)1( 2S x())= 1(x2B)L(S x( )2 );

we get that for all bounded Borel sd@sand all 2 M

Z Z
POS L)) dx = E  1(x2B)1(Sx S «x() 2 ) ( dx)
B 4
= E 1(x2B)1( 2)( dx) =CYB ) ;
Rd

whereC? is de ned in Section 9.2. Hence, from (9.7) in Chapter 9,
z

PO(s L)) dx = Py() dx:
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11

Fairness and Optimality

Here we brie y remind the basic notions and facts concerning the fairness and optimality in resource allo-
cation.
We assume that we hal entities (think of mobile users in a given cell). The goal is to allocate some

of the formR 2 R, where the set of feasible allocatioRsis some given subset &N . An allocation
R 2R is called

=]
(globally) optimalif it maximizes r'\,':l Rn.
(strictly) Pareto optimalf there is no solutiorR°2 R dominating it, i.e. such tha&2 R, for

for somem such that initiallyR,, < R . If a max-min fair allocation exists, then it is unique and
strictly Pareto optimal (for a uni ed treatment see ( B ).
proportionally fairif for each other allocatioR°2 R we have 221 (RY Rp)=R, O0.lIfa
proportionally fair allocation exists oR, then it is unique and it is the solution of the following
maximization problenmaxg >r E=l logRn (( ).

Consider the maximization problem

X 1
max R- = ;
R2R n AL
n=1
where is a real number. Its solution is called thefair optimal. The following relations hold (see (

) for the proof).

Proposition 11.0.5. An —fair optimal policy is globally optimal when ! 0, proportionally fair when
I' 1, and max-min fair when ! 1
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12

Lemmas on Fourier Transforms

12.1 Fourier Transforms
For all functionsf from R to R we will denote bz
fXs)= e 2 f(t)dt

its Fourier transform &t 2 R when it exists.
Below, we will make use of the fact that the Fourier transform is an isometry on the space of square in-

tegrable functions (Plancherel-Parseval Theorent{ )). Namely, for all square integrable func-
tionsf andg, 7 7
f(hgdt = M(s)b(s)ds; (12.1)
R R

whereg(s) denotes the complex conjugategts).

12.2 Lemmas

The following lemma and its corollaries establish representations of the mass that a (square integrable)
density puts on an interval (possibly a random interval) in terms of the Fourier transform of this density.

Lemma 12.2.1.Letf be a square integrable function. Then for all real numbesd,
7Zb Z . .
e bs g?ias
f (t)dt = ﬂO(s)Tds: (12.2)
a R

Proof. This immediately follows from the isometry property and from the fact that the Fourier transform of
the square integrable functigit) = 1(a t b)is

g(s) e 2i bs e 2ias -
- 2i s
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Note that iff is a bounded probability density, then it is square integrable.

Corollary 12.2.2. Let X be a non-negative real valued random variable with a square integrable density
f; letY be a non-negative and integrable real-valued random variable with a square integrableglensity
Assume tha;Y are independent. Then

V4 -
P(X Y)= 1*3(5)9(;)8 L gs: (12.3)

Proof. We deduce from (12.2) that the L.H.S. of (12.3) is equal to

A Z 2iys
a(y) fO(s) Lisay:
0 R

Equation (12.3) follows provided one can swap the two integrals. This is licit provided the function

e2iys 1

COTIE ) O o

is absolutely integrable. For largsj this function is integrable as a corollary of the Cauchy-Schwarz in-
equality and the integrability of?( ), which in view of (12.1) is equivalent to the integrability jclﬁ’(s)j2

(see also ( , p.510)). For snjsgjlthe modulus of this function is bounded from above by the
functiong(y) fb(s) yK for some constari{ so that absolute integrability holds whgihas a rst moment.
]

For instance, if botlX andY are exponential with parameterand , resp., then we can use the Cauchy

residue theorem to check that
Z

P(X<Y )=

(+2is) 2as)>° ¥
R

as expected.
The next lemma extends the previous representations to the Laplace transform of the positive part of a
real valued random variable.

Lemma 12.2.3.Let X be a real valued random variable with a square integrable densitgt X * =
max(X; 0). Then, for allu > 0O,

Z
&ds:
u

R

E(e " )= P(X< 0)+ (12.4)
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Proof. The integral to be evaluated for obtaining the second term is

2
l(u=  f()1(t> 0)e Sidt;
1

Since the Fourier transforiy(s) of the functiont ! 1(t > 0)e Y is 1=(u + 2i s ), it follows from the
isometry property that

z
s)
I = ————ds:
(L) u 2is ds
R
O
A naive use of (12.4) would lead to the result that
z
P(X> 0)=lim I(u)= LOPN
ul o0 2is
R

As we shall see below, this is wrong.

A rst question anyway is the sense to give to the last singular integral (it is called singular because of
the singularity as = 0).

Let (:) be some complex valued function which satis es the following assumptions (referred to as A
below):

it is differentiable, with nite derivatives;
itissuchthaj (s)j 15jsj , whenjsjtendstol , for some > O.

One can then give a sense to the singular integral

J= gds; (12.5)
R

(note that thanks to our assumption on the tail behavior, dfie only singularity that matters here is that at
s = 0) as the principal value form which is de ned as

(Ss)ds: (12.6)

For more on the evaluation of singular integrals and their principal value, see ( ).

Corollary 12.2.4. If f is a square integrable probability density with a nite rst moment, then for all real

numbersa 2 .
117 g
f (t)dt = 5 o fds,

a R
where the singular integral is de ned as above.

(12.7)
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Proof. First, itis enough to prove the formula far= 0 since the functioffi (t a) has for Fourier transform
fys)e? as :

The formula fora = 0 is a direct corollary of Lemma 12.2.3 and of the so called Sokhotski formula (see

( )) which states that fgr all functionss above, for alll > 0,
im — P gs= Ogsri (0):
ul 0 S+ IU S
R R

Equation (12.4) and the last relation applied {g) = (1=2i )1*3(3) immediately give (12.7). Equivalently

O
2 as ™

R
We can use the Sokhotski formula because the Fourier transform of a density admitting a rst moment is
differentiable and has nite derivatives. In addition the fact that the density is square integrable implies that
its Fourier transform is square integrable, so that the tail decay of Assumption A holds.

Herq:\js another proof based on more elementary arguments. When kggtirtgl in (12.2), the L.H.S.
tends to 01 f (t)dt. We rewrite the R.H.S. as the sum of three terms

Z
@ds
2is

lIJi!m0 I (u) =

|1 =
R
£ o9 1s2[ i+ )
— e2|bs ) ds

2is
Z

P

e?bs  1(s2[ ;+ 1
l3 = (. L+ D ds= ;
2is 2
R
where is a positive real number.
The Riemann-Lebesgue lemma § y ) states that for all integrable functigns

li i bs =0:
Jim g(s)e’ P> ds=0
R
So, in order to prove thadb tends td0 whenbtends tol , it is enough to show that

Z fxs) 1s2[ ;+ 1))

275 ds< 1:
R
But this follows from the following two bounds:
0 1 L
Z fs) z z
1 2
—d —d d <1;
5o B 20 fys) * dsi

R[] R[] R
where we used the Cauchy-Shwarz inequality and the facf:’(lsaiis square integrable becausgs) is, and
Z fs) 1
IS)
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where we used that fact thatif has a nite rst moment then its Fourier transform is differentiable and has
a nite derivative. O
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13

Graph Theoretic Notions

Let( ;E) be a connected undirected graph with the set of verticaad edge&. The neighbors of vertex
(node)x 2 are de ned as the set of nodg®  such that the edgex;y) 2 E.

Letw be a collection of non-negative weights associated with the edges of the graph (i.e., a non-negative
function described o&). De ne the weight of a subgraph ¢f ; E) as the sum of the weights of its edges.

13.1 Minimum Spanning Tree

A spanning treef this graph is a subgraph which is a tree and which connects all the vertices of this graph.
A Minimum Weight Spanning Tre® Minimum Spanning Tree (MST9r short) is a spanning tree with
weight no larger than that of all other spanning trees.

Given a connected weighed graph; E; w), a MST can be constructed using Prim's algorithm:

Initialize = fxg, wherex is any node ané = ;;
Repeat until =

— Choose an edgay; v) fromEwithu 2 andv 2 and with minimum weight (if there
are multiple solutions, pick one arbitrarily);

— Addvto and(u;v)toF.

The proof of the fact that the outp(it= ; F) of this algorithm is a MST of ;E;w) is classical.
Assume the MST is unique. Here are two useful properties.

Lemma 13.1.1. Assume that for alk, there is a unique neighba&r of x such thatw(x;x ) <w (x;y), for
all other neighbory of x. Then(x;x ) 2 F ; i.e., this is an edge of the MST.

Proof. When initializing Prim's algorithm withx, we see thafx; x ) is an edge of the MST. Uniqueness
concludes the proof. O
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Lemma 13.1.2 (Cycle property). For all x andy neighbors, if the edgéx; y) belongs to the MST, there
is no sequence of vertic@s; z1;:::;zn;Zn+1 In ,Withn 1, X = 29,Y = Zn+1, (2k; Zk+1) 2 E for all

that the nodesgo; :: :; z all belong toTy and the nodez.1 ;:::;zn all belong toTy. Consider now the tree
obtained by adding the eddg; z+1 ) to Tx [ Ty. Then this tree has a weight strictly smaller than that of
the initial MST, which is a contradiction. |

13.1.1 Nearest Neighbor Graph

Foranyvertexx 2 callanyx 2 satisfyingw(x;x ) miny> w(x;y) aw-nearest neighboof x. We
call thenearest neighbor graph (NNG) of the graph on the set of vertexesfor which edges are drawn
between any and any of its nearest neighbors.

The following statements are simple consequences of the de nition of the NNG and of Lemma 13.1.1.

Corollary 13.1.3. Suppose each node2 has a unique nearest neighbor. Then the NNG has at most
card() edges. Moreover, NNG is a subgraph of the MST.

13.1.2 Euclidean MST of the Poisson Point Process

Let be a realization of a homogeneous Poisson p.pRBmwith intensity . Consider as the set of
vertices of the complete graph (i.e., foraxy 2 ,(X;y) 2 E). Letw(x;y) = jx Vj be the Euclidean
distance.

LetK be acompact subsetBf. Considerthe MST «;Fk)of ( k;Ex:;w),where x = \ K and
B = f(Xy):xy 2 kg itisunique with probability 1. Denote by = My () = maX (xy)or X Y]
thelongest edge in the MSaf  \ K.

The following result was proved in ( ) for the BiR#r(and for the BM in higher dimension
on the torus):

Proposition 13.1.4. Given a unit squar& = [ %; %]2 R? and a homogeneous Poisson p.pwith

intensity on the planéR?. Denote byM = M ( ) the longest edge of the MST of\ K. Then
lim Pf M 2 log ug=exp[ eY] u2R: (13.1)

Proof. We will only give a sketch of the reasoning presented in ( ): Denbte=bwr ( ) the
longest edges of the NNG of\ K. Because the NNG is a subgraph of the MBIT, M . Conversely, one
gets that all edge; y) of the MST of \ K which satisfy the condition jx yj*> log >u (we call
themu-long) belong to the NNG of \ K with a probability converging to 1 when! 1 . Consequently
Pf M 2 log ug Pf M? log ug

Pf M 2 log ug+ Pf9 edgeu-long in MST that is not in NNG
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and for allu,

lim Pf M 2 log ug= lim  Pf M? log ug:
Now, let us study the followingurrogate model of the longest edge in the NiIBnsider (assumed to be
an integer) i.i.d. random variabl&s;::: ;'S , with a genericS having for distributiorP (S u)= e Y °,
anddene = B ( ) =max(S; :::;S ). Note that the distribution d corresponds to the distribution
of the length of the distance form a typical point of the homogeneous Poisson p.p. with intetsitis
nearest neighbor; so the surrogate model ignores the boundary-effects of the “true” NNG. Moreover, in the
true NNG, the number of points K (jK j = 1) is Poisson with mean rather than deterministic and equal
to , and their nearest neighbor distances are not independent. Despite this, it is shown in (
using the Chen-Stein method that

||i1m Pf M2 log ug:IiIrln Pf ®2 log ug:

Thanks to independence it is easy to show that the latter limit of the surrogate model is equal to

u
lim Pf M2 log ug= lim 1 € cexpl e
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14

Discrete Percolation

14.1 Bond percolation on  Z9.

Consider the integer lattic2® in d dimensions. In what follows we will considdr 2. Denote byL the set

of edges joining any two adjacent pointsZst (which are at distance 1 from each other). Consider a family
of random variable§ X (€)geo.  Which are identically distributed witRf X(e) =1 g=1 Pf X(e) =

0g = p for somep 2 [0; 1]. We assume that this family &rgodicwith respect to the natural shift atf,
however,we do not assumX (e) to be mutually independeniVe will say that the edge 2 L is openif

X (e) = 1 andclosedotherwise. This model is known @&®nd percolatioronL ; see Figure 14.1.

De nition 14.1.1. We say that the bond percolation mogelrcolatesf the set of open edges contains an
in nite connected subset.

Denote byC the maximal connected component in the set of open edges containing the origin (as the
endpoint of one of the edges). De nép) = Pf# C = 1g , where# C denotes the number of edges in
the setC.

Remark 14.1.2.1f (p) = 0, then the probability that the model percolates is 0 (we say that "it does not
percolate”). Indeed, the probability that some edge belongs to an in nite component can be bounded by
the sum of these probabilities over all edges, which is 0 due to the assumption. By ergodicity of the family
f X (€)g, the converse is also true: ifp) > 0, then with probability 1 the model percolates.

Letpc = supf[0;1] 3 p: (p) = 04g. By stochastic monotonicity, the model percolates with probability 1
for p > p. and does not percolate fpr< pe.

Remark 14.1.3. Another important monotonicity, with respect to dimensaynmplies thatpe(d + 1)
pc(d), where we mark in the notation the explicit dependence of the critical probaghildy the dimension.
To realize this it is enough to embed in L9+ considering the natural projectionibf*! onto the subspace
generated by the rafl coordinates and noting that any in nite component fhis also an in nite component
in L4+,
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Fig. 14.1 Left: bond percolation on the square lattic®# Right: Closed circuit surroundin@; 0) on the dual lattice.

Note thatp, may be degenerated (i.e., equal to 0 or 1). A rst question answered in the theory of perco-
lation is that of the conditions under whiéh< p. < 1.

14.1.1 Upper Bound for the Critical Probability

We will give now some suf cient condition fop; < 1. We will state and prove the result fdr= 2. By
Remark 14.1.3 this will be also a suf cient condition in all higher dimensions.

Assume thugl = 2. Denote byl °the shift of the square lattide by the half of its side-length hori-
zontally and vertically. The latticeis calledthe dual toL . Note that for each edge2 L there exists a
unique edge2 L © intersectinge at its center. Thus, one can de ne uniquely a dual €X1qe%geo, o by
puttingX 4e% = X (e); see Figure 14.1. Denote byn) the number of self-avoiding circuits (closed paths)
of lengthn in the dual lattice. ° surrounding the origin. The proof of the following results is often referred
to as Peierls's argument (see e.g. ( , pp.16-19)).

Proposition 14.1.4. Consider the bond percolation mod& (e) : e 2 Lg on the square lattic8?. Suppose
that forsomeg(0 q<1)

PfX(e))=0;:::;X(en)=0g " (14.1)

(mg" < 1; (14.2)

then the bond percolation model percolates.

Proof. The origin belongs to an in nite connected component iff it is not surrounded by any closed circuit

of the dual bond percolation de ned dr. We will show that this last probability is positive by proving

that its complement is strictly less than 1. For this, note that the probability that there exists a closed circuit

E,ugrounding the origin is bounded by the expected number of such circuits, which in turn is bounded by
(mg" < L O

n=1
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Remark: For the square lattice on the plane, we have the following boundn) =0 forn =1;2;3 and
(n) 4n3" 2forn 4. Thus condition (14.1) reads

434 9% _

o@q 12 U

x
4=9 n(39" =
4

which is true forg < 0:2075: : ..

Example 14.1.5 (Independent bond percolation)In the case of independent bond percolatiorzdpi.e.

whenX (e) : e 2 L are independent, condition (14.1) is obviously satis edgoy 1  p. Thus condi-

tion (14.2) issatisedfop > 1 0:2075:::=0:7924::: or, in other wordsp¢(2) 0:7924:::. However,

in this case some re nement of the proof of Proposition 14.1.4 can be used to show that percolation holds
provided the series in (14.2) is onbpnvergentindeed, in this case, some numidércan be found such

that ,1]: N (Ma" < 1. Thus, with positive probability there is no closed circuit surrounding the origin of
length larger thaiN . Moreover, for any rectangle containing the origin, the con guration of bonds outside
the rectangle is independent of the con guration of bonds inside the rectangle, and with positive probability
all the bonds inside it are open. This shows that the probability that the origin belongs to an in nite open
connected component is positive. This new condition implies that the independent bond percolation model
percolates fop > 2=3 or, in other words, thap,(2)  2=3. In fact, in this case, using some more ne
arguments concerning the symmetry of the model one can provp:{Bat= 1 =2 (see e.g. ( ,

Ch. 9)).

14.1.2 Lower Bound for the Critical Probability; Independent Percolation Case

In the case of independent bond percolation, it is also relatively easy to showftiat- O for anyd.
Denote by (n) = (n;d) the number of self-avoiding paths of lengtion Z9 starting at the origin and
let (d)=1limng ( (n;d)*".

Proposition 14.1.6. For independent bond percolation Bfiwe havepc(d) 1= (d).

Proof. Denote byN (n) the number of open paths starting at the origin and of length athedfsthe origin
belongs to an in nite open path then obviously formlve haveN (n) 1. Thus

() PfN(n) 1g EN()] p" (n)

foralln.If (p) > Othenlim,p( (N)¥ =p (d) 1, i.e.;p> 1= (d), which completes the proof. O

The exact value of (d) is not known, however a simple observation givés; d) 2d(2d 1)" !and
thus (d) 2d 1
Concluding what was said about the independent bond percolation we have proved the following result.

Theorem 14.1.7.For independent bond percolation Bhwithd 2we haved< < 1.
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Fig. 14.2 Left: site percolation on the square lattic®h Right: dual bond percolation.

14.2 Independent Site Percolation

In site percolation, one opens or closes the vertexes of a given graph rather than its edges. Consider again
Z9 as the set of vertexes (called here “sites”) and edlgds ned exactly as in Section 14.1.

LetfY(v)g,,za be afamily of i.i.d. random variables witaf Y(v)=1g=1 PfY(v)=0g=p.
We will say that the site 2 Z9 is openif Y (v) = 1 andclosedotherwise. This model is known aite
percolationon Z¢; cf. Figure 14.2 Two sites are sadijacentif they are connected by some edge (bond).
A subset of sites is saicbnnectedf the corresponding sub-graph is connected.

De nition 14.2.1. We say that the site percolation mogwdrcolatesif it contains an in nite connected
sub-graph with open vertexes.

Denote byCsie the maximal connected sub-graph with open vertexes containing the origin. De ne
sie(P) = Pf#Csie = 19, where# Cgie denotes the number of vertexes in the Ggle andpgite =
supf[0;1] 3 p: site(p) = 0g. By stochastic monotonicity, the model percolates with probability 1 for
p > pdte and does not percolate fpr< pSte.

Proposition 14.2.2. For alld we havepS® < 1; i.e. the site percolation model percolates for suf ciently
largep < 1.

Proof. We will prove this result considering the followirdpal one-dependent bond percolatidfor any

edgee 2 L with end-points inv andw, de ne X (e) = Y (V)Y (w); i.e., the edge is open iff its end-points

are both open as sites. Obviously, if the dual bond model percolates then the original site model percolates as
well. By Remark 14.1.3 it is enough to prove that the bond model percolates in dimensianFor this we

will use Proposition 14.1.4. Note that the independenciYafv)g implies the following one-dependence

common vertex. Any vertex in any edgelin(in dimension 2) has edges sharing some vertex with it. This
implies that condition (14.1) is satised far= (1  p?)"=’ and, by the Remark after Proposition 14.1.4,
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condition (14.1) reads 2
n
49 n 31 pHY <1,
n=4
which is satis ed for suf ciently largep < 1.
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Table of Mathematical Notation and Abbreviations

iX]

iBj

n

<X:Y >
A

a.s.

A(X) (resp.An(X))

Ag(X) (resp.Agn(X))

B
Bx (r)

G ()
Cix:my()

D

e (resp.e(n))
E

EO

FX (resp.F (n))
Gsinr

Gsinr

Gl

Gl
W+ GI=GI

Euclidean norm of vectoX .

Lebesgue measure of 4&t2 B.

set difference.

scalar product of vectops andyY .

parameter of the OPL attenuation models.

almost surely.

radial point map aX (resp. time-space point map 4t and at
timen).

d-directional point map aX (resp. time-space point map &t
and at timen).

the Borel -algebra of the Euclidean space.

ball of centerX and radius.

attenuation exponent of the OPL attenuation models.
Voronoi cell of pointX w.r.t. the p.p. .

SINR cell of pointX w.r.t. the marks (fading, threshold, power,
etc.)M and the p.p. .

the destination node (in routing context; Part \V in Volume II).
indicator of MAC channel access (resp. at time

expectation.

expectation w.r.t. the Palm probability.

Dirac measure at.

fading variable (resp. at time).

the SINR graph.

the time-space SINR graph.

General fading.

Kendall-like notation for a wireless cell or network.
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R.H.S.

T

Var

V(X) (resp.V(X;n))
W (resp.W (n))

z

if and only if.
independently and identically distributed.
shot noise eld associated with the point process
constant associated with Rayleigh fading SN. See (2.26 in Vol-
ume 1) and (16.9 in Volume II)
length to the next hop from poit in a routing algorithm.
local delay at nod& .
attenuation function of the OPL models.
Laplace functional of the p.p..
Laplace transform of the random variable
the intensity parameter of a homogeneous Poisson p.p.
the intensity measure of a Poisson p.p.
left hand side.
exponential random variable (or Rayleigh fading).
space of point measures.
the mean fading is 1.
the non-negative integers.
the Gaussian law of meanand variance 2 onR.
the complex vauled Gaussian law.
the origin of the Euclidean plane (in routing context; Part \/ in
Volume ).
medium access probability in Aloha.
progress from poinX towards destination in a routing algo-
rithm.
probability.
Palm probability.
probability of coverage.
point process.
Euclidean space of dimensiohn
the source node (in routing context; Part \V in Volume II).
right hand side.
threshold for SINR.
Variance.
set of neighbors oK in Gg)nr (resp. of(X;n) in Gging).
thermal noise (resp. at tinrg.
the relative integers.
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Index

access point, 64
ad hoc network, 4, 10, 55, 63
Aloha, 10
atom, 5
attenuation

omni-directional, 33
azimuth, 36

BM, seeBoolean model
bond percolation, 135
Boolean model (BM), 44
clump, 53
connectivity
in a nite window, 51
homogeneous, 46
percolation, 53
bounded set, 3

Campbell
formula, 13, 14, 96
higher order, 100, 117
reduced, 14, 15
measure, 13
higher order, 116
reduced, 13, 116
Campbell-Little—Mecke formulasee Campbell
formula
Campbell-Matthes
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formula, 19, 59, 120, 121
measure, 18, 25, 120
capacity functionalseeRAC ...
CDF, seecontact distribution function

spherical, 48
CDMA, 89
clump,seeBM ...
coherence

distance, 34, 37
complete independence, 6
connectivity

of a BM in a nite window, seeBM ...

contact distribution function, 48
continuum percolation, 51
counting measure, 3
covariance functiorseeRAC ...
coverage probability

of a RAC, 49
Cox p.p., 22
CSMA, 28

Delaunay
triangulation, 63
Dirac measure, 3
distribution
multinomial, 4
phase type, 75
downlink, 34



ergodicity, 20, 21, 121
ESN, seeextremal shot-noise
exchange formula, 60, 65

fading, 38
Fourier transform, 125

graph
Boolean connectivity, 51
nearest neighbor, 132
random geometric, 51
SINR, 105
connectivity, 105

hard core p.p., 26, 29
honeycomb model, 34, 60

i.m.p.p.,seeindependently marked p.p.

in nite connected component, 53-55, 105-107

intensity
critical, 53, 107
measure, 3, 14
of a stationary p.p., 19, 120
interference
cancellation factor, 107
eld, 33
isotropy, 120

Johnson—Mehl cell, 77, 87, 103

Kendall-like notation
for SINR cell, 73, 91
for SINR cell with fading, 76
for SINR coverage, 94
for SN, 33, 38

locally nite measure, 3

m.p.p.,seemarked point process
MANET, seemobile ad hoc network, 34
mark of a point process, 119
Matérn p.p., 26

hard core, 26, 27
measure

Campbell m. of a p.p., 13

mean m. of a p.p., 13
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MHC, seeMatérn hard core, 120
minimum spanning tree, 131
mobile ad hoc network, 11
mobility, 11

high, 12
moment measure

factorial, 116

higher order, 100, 116, 118

nearest neighbor
distance to, 16

graph, 132
network
cellular, 34, 64

interference limited, 73, 101
noise limited, 73, 101
NNG, seenearest neighbor graph

omni-directional path-loss, 33
OPL, seeomni-directional path loss
orthogonal signature sequence, 90

p.p.,Seepoint process
Painlese—Kuratowski convergence, 77, 79, 84,
102, 103
Palm
distribution, 14
higher order, 117
of marks, 26, 120
reduced, 13, 117
version of a p.p.
reduced, 15
Palm—Matthes distribution, 19, 22, 58, 61, 120,
121
paradox
Feller's, 60
path-loss
exponent, 33
omni-directional, 33
Peierls' argument, 109, 136
percolation
Boolean, 51
of a BM, 53,seeBM
of bonds, 108, 109, 135
of sites, 136, 138



SINR, 106
point average, 21
point measure, 3, 119
point process, 3
n-th factorial power, 100, 115
n-th power, 115
ergodic, 20, 21
isotropic, 120
Laplace functional, 6
marked, 23, 119
independently, 23
stationary, 25
point transformation, 10
Poisson, 3
homogeneous, 4
simple, 5
stationary, 18, 119
superposition, 8
thinning, 9
Poisson p.p., 3
doubly stochastic, 22
homogeneous, 4
pole capacity, 91
Prim's algorithm, 131
principal value, 74, 127

RAC, seerandom closed set
radiation pattern, 36
random
closed ball, 43
closed set (RAC), 43
capacity functional, 44, 73

contact distribution function, 48

covariance function, 47, 76
coverage probability, 49
translation invariant, 46
volume fraction, 46
compact set, 17
cross-fading model, 39
sequential addition, 29
walk, 11
waypoint, 11
Rayleigh fading, 34
response function, 29, 71, 78
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retention function, 9, 52
rotation operator, 119
route average, 22
routing
multihop, 55
time-space, 106

saturated hard balls, 28
shift operator, 121
shot-noise, 29
extremal, 40
eld, 29, 71, 107
time—space, 39

signal to interference and noise ratio, 71

signal to noise ratio, 77
singular integral, 74, 127

SINR, seesignal to interference and noise ratio

cell, 71, 89, 105
coverage process, 93
graph, 105
site percolation, 138
Slivnyak's theorem, 14, 24, 95
higher order, 118

Slivnyak-Mecke theorengeeSlivnyak's theorem

SN, seeshot-noise
SNR,seesignal to noise ratio
SNR cell, 78
spanning tree, 131
spatial
average, 20
sphere packing, 28, 29
standard stochastic scenario
for SINR cell, 73
for SN, 33
stopping set, 17
strong Markov property, 17

tessellation, 57
theorem
Slivnyak's, 14-16, 24, 52, 95
higher order, 118
thermal noise, 71
space independent, 73, 94
time independent, 73



thinning, 9, 27
time—space

shot-noise, 39
time-space

routing, 106
translation operator, 119

universal marks, 120

virtual power, 34, 38
volume fraction, 28, 46, 101
\oronoi
cell, 57
fundamental region, 63
ower, 63
neighbor, 63
tessellation, 57
VT, seeVoronoi tessellation
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