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Abstract. The separation of concerns has been a core idiom of soft-
ware engineering for decades. In general, software can be decomposed
properly only according to a single concern, other concerns crosscut the
prevailing one. This problem is well known as “the tyranny of the domi-
nant decomposition”. Similarly, at the programming level, the choice of a
representation drives the implementation of the algorithms. This article
explores an alternative approach with no dominant representation. In-
stead, each algorithm is developed in its “natural” representation and a
representation is converted into another one only when it is required. To
support this approach, we designed a laziness framework for Java, that
performs partial conversions and dynamic optimizations while preserv-
ing the execution soundness. Performance evaluations over graph theory
examples demonstrates this approach provides a practicable alternative
to a naive one.

1 Introduction

The separation of concerns is a basis of software engineering. In general, each
concern imposes its own decomposition to the whole software: once a primary
concern has been chosen, the others become hard to modularize. This problem
is well known as “the tyranny of the dominant decomposition”. Similarly, at
the programming level, the choice of a representation drives the implementation
of algorithms. For instance, consider the case of the Cartesian or polar repre-
sentations of a point. The first one fits with translations while the second with
rotations, but neither efficiently implements the two operations simultaneously.

In this case, one possibility is to maintain several representations at the same
time. This promotes reusability of algorithms specialized for a given representa-
tion. However, the synchronization of multiple representations has drawbacks:
(1) a significant amount of computation can be required to maintain all repre-
sentations up to date; (2) the space complexity increases with the number of
co-existing representations; (3) the benefit in terms of expressiveness are annihi-
lated by the complexity of the data structure manager. Another possibility is to
maintain only one representation at a time and to convert the current represen-
tation into another one when an operation is simpler to program or more efficient
in the other representation. This limits memory waste and avoids consistency
problems. However it can be quite inefficient because of frequent conversions of
the whole data structure.



In this article, we explore the last approach and we make it practical. Pre-
cisely, each algorithm is programmed in its “natural” representation. A wrapper
is responsible to delegate incoming calls only to the “natural” representation and
to convert a representation into another one. For the sake of efficiency, conver-
sions are performed lazily and sequences of delayed conversions are dynamically
simplified when possible. This article presents the following contributions. First,
we show how to make practical the collaboration of several representations of
the same data structure. Second, we provide a general framework for laziness
and dynamic optimization in Java. It lets the programmer declaratively spec-
ify dependencies between computations and it makes safer the programming of
subtle algorithms. These specifications can be used to automatically generate
tedious infrastructure code.

The article is structured as follows. Section 2 details the motivations of the
paper, through an example based on directed graph representations, and intro-
duces the contributions of our solution. Section 3 presents an optimized scheme
to implement collaborative representations. Section 4 introduces a new way to
support laziness in an imperative language like Java. Laziness makes collabora-
tive representations efficient in practice. Section 5 proposes an evaluation of the
framework on a graph based example. Then, we review related work (Section 6)
and conclude (Section 7).

2 Motivation and Contribution

The choice of a data structure is mainly driven by the complexity of its most
frequent operations. Unfortunately, when a new operation has to be developed,
such a representation may not fit with it, both theoretically (time and space
complexity) and practically (architecture design). Then, an option is to maintain
several appropriate representations. Nevertheless, such duplication is expensive
to store and to maintain. In the following, Section 2.1 illustrates our purpose with
an example based on directed graph representation, even if our work goes beyond
the scope of graph representations. Next, Section 2.2 discusses the contribution.

2.1 Example: Direct Graph Based Representation

Most of the practical applications using graph based representations require var-
ious properties like connected components, path existence between two nodes,
cost of a minimum spanning tree, etc. However, the time and space complexity
to compute these properties differ from one graph representation to another,
and no best one exists when several operations are used. The authors of [1] ex-
plain on pages 172 to 173 that several representations of graph “are suitable for
different sets of operations on graphs, and can be tuned further for maximum
performance in any particular application. The edge sequence representation is
good only in specialized situations. Adjacency matrices are good for rather dense
graphs. Adjacency lists are good if the graph changes frequently.” Futhermore,
they also observe that “no graph representation is best for all purposes. How can



1 desc ( Graph G , Node s ) : set of nodes

2 mark and enqueue node s ;
3 while the queue is not empty do

4 dequeue a node x ;
5 for y in next (G , x ) do

6 i f node y is not marked then

7 mark and enqueue node y ;
8 return the set of marked nodes ;

1 ance ( Graph G , Node s ) : set of nodes

2 mark and enqueue node s ;
3 while the queue is not empty do

4 dequeue a node x ;
5 for y in pred (G , x ) do

6 i f node y is not marked then

7 mark and enqueue node y ;
8 return the set of marked nodes ;

Fig. 1. Detecting the descendants (desc(G, s)) or the ancestors (ance(G, s)) of node s

in a directed graph G independently of the graph representation.

on cope with the zoo of graph representation?”. This observation is highlighted
in applications that require graph representations to systematically compute
several graph properties. This is the case for the implementation of global con-
straints [2]. However, the complexity of this application lead us to introduce a
simpler example with only two properties and two representations.

Consider the representation of a n-nodes m-arcs directed graph as a set of ad-
jacency lists over the successors of each node. This representation allows to easily
express a search over the descendants of a given node by using the well-known
breadth first search algorithm. Such an algorithm is depicted by Figure 1, its
time complexity is related to the complexity of the next(G, x) operation (line 10)
which provide the successors of node x in G. In the case of a representation of
the directed graph by an adjacency lists over the successors, next(G, x) can be
done in O(1), and the desc(G, s) operation is achieved in O(n + m) time. But,
if the ancestors of a node have to be computed then, the pred(G, x) operation is
achieved in O(n) time and the ance(G, s) requires O(n2) time. The problem is
similar when the directed graph is represented by an adjacency lists over the pre-
decessors of each node. Then, the next(G, x) operation complexity increases to
O(n) time, and consequently desc(G, s) has an amortized complexity of O(n2).

Thus, the complexity of a given operation differs from one representation to
another, and the representation choice affects the efficiency of the operations.
However, practical applications are based on several operations (e.g., compute
both descendants and ancestors of nodes). For instance, our application uses
several graph properties then, the procedures implementing the properties have



to coexist. Precisely, if the graph representations support the reachable proce-
dure both for the descendants and the ancestors of node s then, each of the two
implementations are efficient for one of the two procedures, but not for both.

2.2 Contributions

The duplication of the data structures must be avoided because of the related
memory waste and the time complexity enhancement due to the data structure
management. Thus, a collaborative representation framework has to address the
following aspects: (1) the data structures related to the representations should
not be duplicated (to avoid memory waste), (2) systematic total conversion from
one representation to another should be avoided when the required procedure
is in the wrong representation (to limit time complexity waste). In this con-
text, providing such a solution is a tedious task. However, we propose a Java
framework to conciliate these two points.

Our solution proposes a declarative language to specify the dependencies be-
tween the representations and the procedures. The dependencies are used by a
general scheme that inserts the conversions when and where they are required.
In order to avoid useless conversions from one representation to another, our
framework introduces a lazy approach to implement a partial conversion strat-
egy. Thus, each time a procedure is executed, only the required information is
converted according to its specifications.

Most often in practical applications, the execution of some procedures can
be delayed until another one requires its effective execution. Our framework ad-
dresses this point by managing lazy execution of the procedures. Thus, during
the execution, a call to a “delayable” procedure results in only recording its cor-
responding closure in a generic trace. On the other hand, a “strict” procedure
may require the execution of some delayed procedures in the trace to be safely
executed. Finally, dynamic optimizations allow to limit the trace size during
the execution. We provide an optimization that can detect outstanding patterns
among the closures (e.g., invertibility between closures, complementarity of a
closure set), and operates simplifications (e.g., closure removals, closure substi-
tutions). In the following, we detail and evaluate these features of our framework.

3 Collaborative Representations

In this section we present our approach. It enables us to compose pieces of
software (i.e., several data representations and their corresponding algorithms)
without modifying them. For the sake of simplicity, we use a toy running ex-
ample but in Section 5 we evaluate a realistic example. Section 3.1 presents a
simple (and inefficient) collaborative scheme. Section 3.2 and 3.3 introduce two
optimizations of this scheme. Finally, Section 3.4 offers a language to define how
several representations collaborate thanks to these optimizations.



3.1 Automatic Conversions

Let us consider a point in a two dimensional space. The coordinate of such a
Point can be represented either using Cartesian coordinates or using polar coor-
dinates. Some operations, for instance translations, are simpler to program and
more efficient to execute in the Cartesian representation. On the other hand,
other operations, for instance rotations, are simpler to program and more effi-
cient to execute in the polar representation. We propose to use both representa-
tions. Each operation is programmed only in the more appropriate representation
(e.g., translation is implemented for Cartesian coordinates, and rotation is im-
plemented for polar coordinates) and two conversions functions (from Cartesian
to polar and from polar to Cartesian) are written once for all operations.

A wrapper is generated in order to make both representations collaborative.
We arbitrarily choose the Cartesian representation to be the initial representa-
tion. When an operation implemented in Cartesian representation is called, the
wrapper delegates the call to the Cartesian representation. When an operation
implemented in the polar representation is called, the wrapper first converts the
Cartesian coordinates into polar coordinates, then delegates the call to the polar
representation, and finally converts back the polar coordinates into Cartesian co-
ordinates. Figure 2 illustrates this behavior. In this figure, a box is a Java object
and a line is a reference from an instance to another: a wrapper hides the two
representations, pc (a PointCart) and pp (a PointPol). At each point in time, the
representation colored gray is valid. Initially, the point is in its Cartesian repre-
sentation. Upon a call to be performed in the second representation (e.g., rot(a)
at time k), the wrapper first converts pc into the polar representation by calling
toPointPol, performs the operation in pp (time k + 1) and finally converts pp

back into pc by calling toPointCart.

 

 

   

 
 

Fig. 2. Automatic conversion



3.2 Invertible Conversions

The scheme described in the previous section systematically introduces conver-
sions when an operation in the non default representation is called. This ensures
that when an operation is executed the corresponding representation is up to
date. However, when we consider a sequence of operations, some conversions
could be suppressed. For instance, to perform two successive rotations, there
is no need to convert the coordinates (from polar to Cartesian and then from
Cartesian to polar) between the two rotations. Such a scenario is depicted by
Figure 3. A call to the rot(a) method leads to convert pc into pp. Then, the
automatic conversion directly restores pc. When a new call to rot(a) is immedi-
ately performed, pc must be converted back into pp. So the sequence of inverse
conversions pp.toPointCart(pc); pc.toPointPol(pp) can be suppressed.

 

 



 





 

 
 





 












 


Fig. 3. Invertible conversion

Our goal is to get a general scheme that can be applied to any representation
and conversion algorithm. To avoid these useless conversions, we propose the
following scheme. First, we delay the conversions as late as possible. Second,
we dynamically detect and suppress sequences of two inverse conversions when
they occur. This technique is not as simple at it may appears. First, to delay
the conversions, we have to detect when a delayed conversion must be forced
(otherwise the computation would be incorrect). Second, calls to conversions
can be interleaved with any other code in the program. This must be taken into
account to detect sequences of two inverse conversions.

3.3 Incremental Conversions

If a representation is huge, its conversion into another one could be expensive.
When a complete conversion is not required, then an optimization consists in
a partial conversion of the representation. For instance, let us now consider
colored points. A color can be represented either in the RGB model or in the



HSB model. We assume a colored point is represented either by a PointCartRgb

or by a PointPolHsb. We can apply our collaborative technique to wrap these
representations. However, note that the coordinate representation and the color
representation are coupled: when a colored point coordinates are represented by
Cartesian coordinates, then its color is represented by a RGB value. On the other
hand, when a colored point coordinates are represented by polar coordinates,
then its color is represented by a HSB value.4 In the case of PointCartRgb and
PointPolHsb, the coupling can introduce useless conversions. For instance, the
sequence rot(a1); setRed(r) in Figure 4 requires converting a RGB color to a
HSB color when rot is called (although rot does not use the color).

 

  


 



 













Fig. 4. Coupled representations

If the coordinate representation and the color representation were decoupled,
only the required conversions would be performed. For instance, in Figure 5,
when a rotation is performed, the coordinates are converted to the polar repre-
sentation but the color remains a RGB value. Then, when setRed is called the
color does not have to be converted.

 

  


   







 



Fig. 5. Decoupled representations for incremental conversions

4 This coupling can be easily avoided: a colored point could aggregate a coordinate
and a color. In general, it is not possible to avoid such a coupling (see Section 5).



It is possible to decouple the coordinate representation and the color repre-
sentation without modifying the program. Indeed, let us consider the following
conversion method:

1void toPointPolHsb ( PointCartRgb pcr ) {
2 this . toPointPol ( pcr ) ;
3 this . toColorHsb ( pcr ) ;
4}

This method calls toPointPol to convert the coordinates to the polar represen-
tation, then it calls toColorHsb to convert the color to its HSB value. In order to
decouple representations, we only have to make lazy and invertible the conver-
sion submethods (i.e., toPointPol and toColorHsb). This way, coordinates and
color conversion becomes independent.

Our general scheme for representations collaboration relies on laziness and
dynamic detection and suppression (i.e., simplification) of sequences of inverse
conversions. This requires developers to declare the dependencies between rep-
resentations (and their associated methods). In the next section, we show how
such dependencies can be specified by the user.

3.4 Collaboration Specification

We have defined a language to declare collaborative representations. This lan-
guage provides what is required to generate the boilerplate code that implements
a collaborative representation. Figure 6 presents the grammar of our language.

1wrapper class {
2 representation (class ∗ ) ;
3 conversion (method ∗ ) ;
4 inverse (method ,method ) ; ∗
5 partition {pi ∗} ;
6 lazy (method , {pi ∗} , {pi ∗} ) ;∗
7 strict (method , {pi ∗} , {pi ∗} ) ;∗
8}

Fig. 6. Specification language for automatic conversions

This language enables to specify a collaborative representation as follows. The
keyword wrapper specifies the class identifier of the wrapper to be generated. The
keyword representation lists the two (or more) representations to be wrapped.
The keyword conversion lists the corresponding conversions. Note that, these are
the top level conversion methods to be called by the wrapper (e.g., toPointPolHsb
and toPointCartRgb but not toColorHsb in the previous example). The keyword
inverse lists pairs of inverse methods. The keyword partition introduces a set



of atoms that represent a partition of the representations. Each atom represents
a part of a representation (e.g., a cartesian colored point can be decomposed
into an atom for the coordinate and an atom for the color, or a single atom can
represent both). The finer the decomposition is, the more precise the closure
dependencies are. The keyword lazy specifies that a method is lazy. The next
two arguments specifies which atoms are read and written when the lazy method
is finally forced (i.e., executed). The keyword strict specifies that a method is
strict. The next two arguments specifies which atoms are read and written when
the strict method is executed. These atoms are used to compute dependencies
between lazy and strict methods and to force evaluation of a delayed lazy method
before a strict one reads or write the same part of the memory. Methods anno-
tated as strict start by checking for delayed computation to be forced. Methods
without strict or lazy annotation are plain Java (strict) methods that do not
interfere with delayed computation.

The Figure 7 shows a specification of collaborative representations for col-
ored points. We choose to partition the state in two atoms : a1 (which represents
x, y, r, g and b) and a2 (which represents rad, teta, h, s and b). This makes the
coordinates and the color representation coupled. Indeed, the accessor getR reads
the memory part corresponding to a2, and the conversion method toPointPolHsb

writes the memory part corresponding to a2. So, these two methods are depen-
dent, and when the red component of the color is accessed, it first forces delayed
calls to toPointPolHsb (that convert colors and coordinates).

1wrapper ColoredPoint {
2 representations ( PointCartRgb , PointPolHsb ) ;
3 conversions ( toPointCartRgb , toPointPolHsb ) ;
4 inverse ( toPointPolHsb , toPointCartRgb ) ;
5 partition {a1 , a2 } ;
6 lazy ( toPointPolHsb , {a1 } , {a1 , a2 } ) ;
7 lazy ( toPointCartRgb , {a2 } , {a1 , a2 } ) ;
8 strict ( getX , {a1 } , { } ) ) ;
9 strict ( setX , {} , {a1 } ) ) ;

10 strict ( getR , {a2 } , { } ) ) ;
11 strict ( setR , {} , {a2 } ) ) ;
12}

Fig. 7. Collaborative (coupled) representations of colored points (excerpt)

In order to decouple the coordinate representation and the color represen-
tation we only have to define a different specification based on a more precise
partition. This specification would have four atoms: a1_1 corresponding to the
Cartesian coordinates, a1_2 corresponding to the polar coordinates, a1_2 corre-
sponding to the RGB colors, and a2_2 corresponding to the HSB colors. This



enables to specify, for instance, setR() modifies only the RGB representation
(i.e., a1_2) but not the Cartesian coordinates a1_1.

The finer the decomposition is, the more precise the closure dependencies
are. However, the finer the decomposition is, the more expansive the closure
dependencies computation are and the more memory they require. The choice of
a decomposition in atoms should be guided by a tradeoff between precision and
efficiency (in particular it is not worth spending more time to decide a closure
evaluation can be delayed than evaluating it).

Here we summarize the steps required by our collaborative representations:

1. Programmers provides different implementations of a data structure.
2. The collaborative representations programmer implements conversion func-

tions from a representation to another and specifies these methods are lazy as
well as their side effects. He also specifies the strict methods (e.g., accessors).

3. The wrapper class and the closures classes are automatically generated. They
rely on our framework for safe laziness in Java.

4. Users transparently calls the resulting library. The execution of lazy meth-
ods is delayed. When a strict method is called, our framework forces the
evaluation of delayed methods required to compute the result of the strict
one. As the application progresses the data get scattered in the different
representations.

4 A Framework for Safe Laziness in Java

In order to support our specification language introduced in the previous section,
we offer a framework that deals with the most difficult and error-prone tasks of
collaborative representations: laziness in an imperative language. Hence, users
can focus on writing those representations. Our framework features both lazy
evaluation for the Java programming language and dynamic optimizations.

4.1 Laziness in Imperative Language

While laziness is a natural feature of functional programming languages, the im-
plementation of lazy evaluation in imperative languages such as Java is complex:

– In order to delay a method call, the method, its receiver and its arguments
must be stored in data structure (i.e., a closure) so that the method can
actually be called later.

– The execution of a lazy method can be delayed until its result is required
by a strict computation. A lazy framework is able to detect when a delayed
method result is required in order to force its evaluation. In an imperative
language, a method can have side effects and modify variables (e.g., assign
x with 0). When a strict method has to read the value of the variable x, the
closure of the delayed computation (that assigns x with 0) must be forced.
Our framework provides means to specify the side effects of methods and to
automatically decide when a delayed computation must be forced.



– In an imperative language, two method calls are not in general commutative
(e.g., “increment x, then square it” is not equivalent to “square x, then
increment it”). So, our framework uses a trace in order to maintain the
order of the closures. Dependencies between them also take into account the
trace: sometimes, evaluating a closure requires to evaluate another before.

– When two computations are inverse one of another (e.g., “increment x” and
“decrement x”) and both are delayed, the two closures can be suppressed
without being evaluated and without changing the result of the program.

Our framework requires the user to specify closure side effects. These specifi-
cations could be automatically generated by abstract interpretation. This would
still require the user to specify a partition of the representation (i.e., the cor-
responding abstract domain). However, such an analysis can be quite expansive
in general. The side effect specifications can be used to compute closures depen-
dencies. Next, we describe this aspect of our framework.

4.2 Closure Dependencies

In our framework, delayed computations are represented by subclasses of the
class Closure. Closure classes can be automatically generated from their side
effect specifications shown in the previous section. Closures must provide an
evaluation method eval that actually calls the delayed method. Each closure
must also provide two methods reads and writes. These methods are used to
compute the dependencies between closures. They return a set of atoms imple-
mented, in our experiment, by a BitSet. Let us considers two closures c1 and
c2, with c1 is older than c2. When c2 is to be evaluated, c1 must be evaluated
first if either the evaluation of c2 reads memory written by the evaluation of
c1, or the evaluation of c2 writes memory read by the evaluation of c1, or the
evaluation of c2 writes memory written by the evaluation of c1.

When a method call is delayed, the corresponding closure is created and
pushed on a stack trace. (When a closure is pushed, if the inverse of the closure
is already in the stack, both closures are removed. Due to space constraints, we
do not detail here this dynamic simplification phase). When a strict method is
called, the method force in Figure 8 is called to compute dependencies and force
evaluation of some closures in the trace before the strict method is evaluated.

The method force visits the trace from the most recent closures to the oldest
ones. In order to keep track of its position in the trace this method uses a second
stack ecart and transfers closures from one stack to another, one at a time. If
the current closure is required to be evaluated (line 5) it is tagged (line 6) but it
is not evaluated immediately because older closures may require to be evaluated
before, so the sides effects of the current closure are taken into account (lines 7-
8). The memory written by this closure c is added to the memory written by
all the closures to be evaluated s.writes. The memory read by this closure c

is added to the memory read by all the closures to be evaluated s.reads and
the memory written by c is removed from s.reads. Then, the visit continues.
When the beginning of the trace is reached, the second half of the method force



(lines 12-15) visits the closures from the oldest one to the most recent one. If a
closure is tagged then it is evaluated, otherwise it is pushed back in the trace.

1void force ( AbstractState s ) {
2 int i = this . ecart . size ( ) ;
3 while ( ! this . trace . isEmpty ( ) ) {
4 Closure c = this . trace . pop ( ) ;
5 i f (c . isRequiredBy (s ) ) {
6 c . eval = true ;
7 s . reads . diff (c . getWrites ( ) ) . union ( c . getReads ( ) ) ;
8 s . writes . union (c . getWrites ( ) ) ;
9 }

10 this . ecart . push (c ) ;
11 }
12 while ( this . ecart . size ( ) != i ) {
13 Closure c = this . ecart . pop ( ) ;
14 i f (c . eval ) c . eval ( ) ; else this . trace . push (c ) ;
15 }
16}

Fig. 8. Compute closure dependencies and force their evaluation

5 Evaluations

We now evaluate our approach over a realistic example related to the graph
theory in the context of global constraints implementation. Global constraints
represent invaluable modeling tools for Constraint Programming (CP). They
heavily rely on graph theory through properties like the connected components,
the strongly connected components or the transitive closure [2]. Nevertheless,
a global constraint has to combine efficiently several properties at a time. Our
framework offers a promising way to efficiently and safely combines several pro-
cedures related to the graph properties.

As explained in Section 2.1 when a graph is represented by adjacency lists
over the successors of each node (i.e., GraphSucc), it is easy and efficient to
express a search over the descendants of a given node. On the other hand, when
the graph is represented by adjacency lists over the predecessors of each node
(i.e., GraphPred), the same search over the descendants becomes more complex.
Symmetrically, it is easy and efficient to express a search over the ancestors in
GraphPred, but it is more complex for searching the descendants. In this case, we
can apply our collaborative representations scheme.



5.1 Conversion

Conversions between GraphSucc and GraphPred are based on two methods toNodePred(n)
and toNodeSucc(n) which behave as depicted in Figure 9. The toNodePred method
converts a column of the GraphSucc into a row of GraphPred. The notion of col-
umn is a logical view in GraphSucc (a list of lists of successor nodes) which has
no corresponding direct accessor, does not exist in GraphSucc, so the method
iterates for each node s, if the list of successors of s in GraphSucc contains n,
it removes it from that list (which frees its memory so that nodes only exist in
one representation at a time) and it adds s to the ancestors of n in GraphPred.
The reverse conversion (from GraphPred to GraphSucc) is symmetric, hence in-
vertible, that is, the back and forth conversions of a given node leaves both
representations unchanged). In order to convert all the nodes of a graph, the
method toGraphSucc (resp. toGraphPred) calls toNodeSucc (resp. toNodePred) for
each node of the graph.

 























 

 




 


 




Fig. 9. Partial conversion between lines and columns

This can be specified as in Figure 10. A class Graph can be automatically
generated to wrap an instance of GraphSucc and an instance of GraphPred (line 1
and 2). A representation is transformed into the other one by calling either
toGraphPred or toGraphSucc (line 3). We partition the toGraphSucc representation
into its columns ci (this is a conceptual notion that is not implemented by the
structure) and the toGraphSucc representation into its lines !j. The methods
toNodePred and toNodeSucc are inverse one of another (line 5). Both are lazy,
and we specify their side effect. For instance, toNodePred(n) reads cn, the nth

column in the successor representation, it erases (i.e., writes) it, and writes !n,
the nth line in the predecessor representation. The accessors are strict. We also
specify their side effects. For instance, getNodeSucc reads a line (i.e., all columns)
in the successor representation (line 8 and 9).



1wrapper Graph {
2 representation ( GraphSucc , GraphPred ) ;
3 conversion ( toGraphPred , toGraphSucc ) ;
4 partition {c1 . . . cn, !1 . . . !n } ;
5 inverse ( gp . toNodeSucc (gs , n ) , gs . toNodePred ( gp , n ) ) ;
6 lazy ( gs . toNodePred (gp , n ) , {cn}, {cn, !n} ) ;
7 lazy ( gp . toNodeSucc (gs , n ) , {!n}, {!n, cn} ) ;
8 strict ( gp . getNodePred (n ) , {!n}, {} ) ) ;
9 strict ( gs . getNodeSucc (n ) , {call}, {} ) ) ;

10}

Fig. 10. Collaborative Representations GraphSucc and GraphPred (excerpt)

5.2 Conversion Strategies

Let us consider a graph with n nodes. The conversion method toGrapPred calls
toNodePred for each node of the graph. If toGrapPred is defined as a for loop, its
execution creates n closures (one for each call to toNodePred). Closure instantia-
tion, simplification (e.g., with inverse rules) and dependencies computation can
be expensive. We describe two alternative definitions of toGraphPred.

A first alternative is for the user of our framework to define a recursive and
lazy version of toGraphPred. In this case, a call toGraphPred(i) would create only
two closures corresponding to toNodePred(i) and toGraphPred(i+1). This recur-
sive scheme can be much more efficient when nodes with low index are converted:
the strict accessor call getNodePred(m) will require m closures of toGraphPred to be
evaluated until the right closure toNodePred(m) is created. Unfortunately, when
the last node of a graph is converted, a closure is still created for each node.

A better alternative is for the user of the framework to define a dichotomic re-
cursive and lazy version of toGraphPred. When toGraphPred(start,end) is called it
creates two closures corresponding to toGraphPred(start,mid) and toGraphPred(mid+1,end),
where start is the first node to convert, end is the last node to convert, and mid

is the middle of start and end. This recursive scheme builds at most 2log(n)
closures when a node has to be converted. This is the conversion scheme we use
in the evaluation below.

5.3 Benchmarks

We have evaluated our approach with a scenario related to graph theory (a short
example is provided by Section 2.1). We compare the execution time, on 43200
randomly generated graphs, of the standard single representation approach (ei-
ther list of successors GraphSucc or list of predecessors GraphPred) and of our
dichotomic lazy conversion approach. Each graph instance is benchmarked on 8
kinds of scenarios depicted in Figure 11. It depicts the patterns used for these
experiments: (ance{3}desc){6} means the method ance is called three times suc-
cessively, then the method desc is called once, this is repeated 6 times with



randomly picked arguments. All patterns contains 24 method calls, but they
vary in the frequency of the alternations between ance and desc calls. In this
experiment, our graphs are structured as lattices and each scenario is evaluated
on 5 kinds of arguments grouped by “zones”: zone 1 means the arguments are
chosen among all the nodes of the lattice, zone 2 means the arguments are chosen
inside the bottom half of the lattice and so on. The bigger the zone, the more
nodes will be converted to perform the ance or desc computation. In each case,
we measured the execution time for the lists of successors representation, the
lists of predecessors representation and of our approach.
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Fig. 11. Best of GraphSucc and GraphPred versus Collaborative Representations

For scenarios with the same number of calls of each operation (e.g., (ance; desc){12}),
successor and predecessor representations exhibit comparable execution time,
but for non symmetric pattern (e.g., ance{24}) one representation may be up to
150 times slower than the other. Figure 11 compares our approach with the best
of the two standard representations on each scenario. It shows that for all of the
patterns, our approach is less efficient than the best of the two standard rep-
resentations. However, note that when fewer nodes must be converted (zones 2
to 5), our approach gets close to the best representation. Moreover, measures
shows that compared to the worst of the two standard representations for each
scenario, our lazy approach has comparable performance but is at best up to



90 times faster. Because the number of conversions is more likely to be higher
when zone equals one, the difference of behavior of partial conversions observed,
around that point may be explained by the high number of closures correspond-
ing to delayed conversion. This makes it harder for the framework to simplify
invertible conversions.

A dedicated solution to this graph scenario would outperform our approach.
However, our proposal does not impose a higher space complexity and is gen-
erally more efficient than both naive approaches. Moreover, it offers a general
solution: it is less error prone (i.e., as long as side effects specifications are cor-
rect, no closure evaluation is forgotten), it reuses “natural” representations and it
could be extended to manage more than two representations. Thus, our approach
provides a good software engineering/performance trade-off, demonstrating the
applicability of collaborative representations.

6 Related Work

The definition of aspect in the ASOD.Net wiki glossary [3] is based on the no-
tion of tyranny of the dominant decomposition attributed to IBM’s T. J. Watson
Research center’s research on Morphogenic Software. Multi-dimensional Separa-
tion of Concerns [4] shows how the software artifacts corresponding to different
concerns (a.k.a. hyperslices) can be merged to generate a full application. This
general and abstract model is instantiated by Subject-Oriented Programming
[5] where hyperslices are pieces of code (e.g., partial class hierarchies). Aspect-
Oriented Programming [6] is quite similar but it is asymmetric: it considers the
structure of a base program and it provides pointcut languages to specify where
another code crosscuts the base program and the corresponding pieces (i.e., ad-
vices) should be woven. All these static approaches enable to compose several
pieces of code (i.e., a base program and several advices). However, they focus
on the code structure, and the woven program executes the base code and the
advices “at the same time”. This do not help to compose different data repre-
sentations (and their corresponding algorithms) and to dynamically change the
representation at run-time.

Early work of Don Batory on data structure compilers and data structure
tailoring and optimization provide languages to describe and compose data struc-
ture representation and their corresponding algorithms. In particular, Section 3.2
of [7] introduces the notion of robust (i.e., interchangeable) algorithms versus
non robust algorithms. It should be further studied if and how our technique
could be used in this context in order to interchange non robust algorithms.

Our work shares similarities with views in database management systems
(DBMS) [8]. A view defines a table that is computed rather than stored. An
updatable view requires the DBMS to infer a reverse mapping. However, in our
framework, partial conversions dynamically scatter the data in the collaborative
representations, while views duplicate the data of the underlying tables. Views
have also be proposed for specification languages such as Z, but their collabora-
tion is defined by an invariant, which is declarative but does not help to build



a concrete solution [9]. Wadler [10] has studied how to have views and pattern
matching at the same time. This work is one of the main source of inspiration
of our approach although it is restricted to functional languages and it focuses
on pattern matching. Our dynamic simplifications of inverse closures is also in-
spired by a short cut to deforestation [11] that proposes such a dynamic scheme,
to complement the static one, to simplify the functions fold and build.

Hughes [12] argues laziness is a powerful tool to compose programs (i.e., func-
tions). Laziness has an intuitive semantics in pure functional languages but it is
tricky when sides-effects are introduced. So, lazy extensions of imperative lan-
guages are limited. For instance, LazyJ [13] extends Java’s type system with
lazy types. The programmer is responsible for introducing coercions that force
delayed evaluations, but there are no specification or propagation of dependen-
cies. Recent work have introduced dependencies into imperative languages. They
have been used to automatically incrementalize an invariant checks when a data
structure is modified [14] or to update a self-adjusting computation [15]. In both
cases, laziness is not involved and caching prevents from re-evaluating a compu-
tation. It should be studied how these techniques could complement ours.

7 Conclusion and Future Work

This article proposes a new approach to compose data structure representations
and their corresponding algorithms. It introduces a general scheme to replace
the dominant representation by multiple collaborative representations. Each al-
gorithm is programmed in the best representation (i.e., that fits), so that the
corresponding code is simpler or more efficient than in the other representations.
The conversions from one representation to another are automatically inserted
by a wrapper (so the original code does not have to be modified). A represen-
tation is partially converted by need: only the subparts of the representation
required by a computation are converted. This technique relies on lazy evalua-
tion and dynamic optimizations. We provide a framework to support it in Java.
It let the user declaratively specify dependencies and simplification rules. The
framework supports safer development (most of the code can be automatically
generated and the dependencies are systematically propagated). We have vali-
dated our approach with actual experiments for different graph representations.
Our evaluations shows that our approach is practical. It provides a good tradeoff
between software engineering issues and performances.

Our proposal offers many opportunities for future work. We list here a few
of them. First, our approach already requires the user to specify the memory
read and written by methods. Such a piece of information could be used to
dynamically check when a method call can be skipped (i.e., when the memory
m reads and writes has not been written since the previous call to m). Second,
our approach relies currently on dynamic analysis only, but it could benefit from
static analyses too. For instance, the automatic derivation of reads and writes

from the source code could be studied. It could also be interesting to statically
decide when two closures never interacts in order to have independent traces



instead of a single one (in our running example we could have a trace by graph
instance). This shorter traces would make the dependencies propagation less
expensive. In some cases the user could specify a conversion function and its
inverse could be automatically generated [16, 17]. Finally, other applications of
our framework for safe laziness in Java should be explored.
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