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Abstract

W e are in terested in the n umerical appro ximation of non linear h yp erb olic problems. The particular

class of sc hemes w e are in terested in are the so�called Residual Distribution sc hemes. In their curren t

form, they rely on the Lagrange in terp olation of the p oin t v alues of the appro ximated functions. This

in terpretation of the degrees of freedom as p oin t v alues pla ys a fundamen tal role in the deriv ation of the

sc hemes. The purp ose of the presen t pap er is to sho w that some non Lagrange elemen ts can also do the

job, and ma yb e b etter. This op ens the do or to isogeometric analysis in the framew ork of RDS sc hemes.

W e are in terested in the n umerical appro ximation of linear and non linear h yp erb olic problems. The

particular class of sc hemes w e are in terested in are the so�called Residual Distribution sc hemes. They can b e

traced bac k to the early w ork of P .L. Ro e [1 ] and Ni [2], but also to the stabilized �nite elemen t sc hemes suc h

as the Hughes' SUPG sc heme [3 , 4, 5 ]. Their main c haracteristics are the follo wing : (i) they ha v e a natural

form ulation on unstructured meshes, (ii) their stencil is the most p ossible compact one to reac h a giv en

order of accuracy , (iii) their parallelization is straigh tforw ard. These three prop erties are shared in common

with the Discon tin uous Galerkin sc heme, but here, thanks to the conformal nature of the appro ximation,

the n um b er of degrees of freedom is reduced b y a large factor, as this can b e seen on table 1.

2D 3D

Order DG RDS DG RD

2 6ns ns 24ns ns

3 12ns 4ns 40ns 8ns

4 20ns 9ns 80ns 27ns

T able 1: Num b er of degrees of freedom for third and fourth order appro ximation in the case of a triangular/tet

mesh. DG stands for Discon tin uous Galerkin, RD for Residual Distribution.

In previous pap ers, w e, and others [6, 7, 8 , 9, 10 , 11 , 12 , 13 ], ha v e sho wn ho w to com bine monotonicit y

preserving prop erties and v ery high accuracy ( � 2) on general conformal meshes, or non conformal meshes

[14 , 15 ]. One of the k ey ingredien t in the construction is that the degrees of freedom can b e in terpreted as

p oin t v alues. The purp ose of the presen t pap er is to sho w that some non Lagrange elemen ts can also do the

job. This op ens the do or to isogeometric analysis [16 ] in the framew ork of RDS sc hemes.

The format of the pap er is as follo ws. In a �rst part, w e recall what are these Residual Distribution

sc hemes, and sho w the construction of high order sc hemes. A monotonicit y principle, or v ariation diminishing

one, pla ys a k ey role. In the second part, w e pro vide examples for scalar steady non linear h yp erb olic

equations. The third part discuss the extension to the unsteady case for a w a v e mo del. Conclusion follo ws.
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1 The residual distribution sc hemes

1.1 In tro duction

Let us consider the follo wing scalar mo del equation,

div f (u) = S(x) x 2 
 � Rd

u = g w eakly on the in�o w b oundary � �
(1)

where � � = f x 2 @
 ; r u f (u) � ~n(x) < 0g, ~n(x) is the out w ard unit normal of 
 at x . In (1), u and g b elong

to R, and the �ux f has d comp onen ts, namely f = ( f 1; : : : ; f d) . W e assume that f is C1
and g b elongs to

L 1 (�) . The discussion will b e dev elop ed using that scalar mo del, with d = 2 , ho w ev er extensions to systems

and the case d = 3 are rather straigh tforw ard.

W e consider a triangulation of 
 denoted b y Th . The triangles are f Tj gj =1 ;:::;n e . W e denote b y 
 h =
[ j =1 ;:::;n e Tj . The v ertices of the mesh are denoted b y f M i gi =1 ;n v . Besides the usual regularit y assumptions

w e need, w e also mak e the standard assumption that if an elemen t T has a part of an edge on � h := @
 h ,

this full edge is included in 
 h .

In eac h elemen t T , w e need an appro ximation of the solution, sa y uh
, and w e assume the follo wing form

uh
jT =

X

� ` 2 T

u� `

�
 � `

�
jT : (2)

In (2), the sum is indexed b y degrees of freedom that are seen as p oin ts in T . A t ypical example is a Lagrange

in terp olan t. W e will assume that the function uh
is con tin uous across edges, i.e. the  � ` are con tin uous

across the edges of Th , so that w e write

uh =
X

� `

u� `  � ` :

More precisely , giv en k 2 N, w e assume that for an y function smo oth enough u 2 Ck+1 (
) , w e can de�ne

uh = � h (u) of this t yp e, suc h that if u is a p olynomial of degree k , w e ha v e u = uh
. Then, standard

appro ximation results, se for example [17 ], sho w that in L p
norms, w e ha v e jju � � h (u)jj � C(u)hk+1

.

These prop erties are true for example using Lagrange p olynomials, Bezier, spline represen tations or NURBS

[18 , 19 ]. W e assume that degrees of freedom also liv e on the b oundary of T , this is true for an y of these

examples. Note that this assumption is consisten t with the con tin uit y assumption.

Thanks to this, w e de�ne, in eac h elemen t T , the total residual � T as

� T =
Z

@T
f h (uh ) � ~ndl �

Z

T
S(x)dx (3)

where f h
is some appro ximation of the �ux f . W e precise the assumptions on f h

a bit latter in the text.

Once this has b een done, w e consider split-residuals, � T
� , for � 2 T , so that they satisfy the conserv ation

prop ert y: X

� 2 T

� T
� = � T : (4)

In order to handle b oundary conditions, w e need to consider b oundary residuals. Let � b e an edge of

some triangle T whic h is on � h , w e consider the b oundary residual

� � =
Z

�

�
F (uh ; u� ; ~n) � g(x) � ~n

�
dl (5)

where (F (uh ; u� ; ~n) is a n umerical up wind �ux that dep ends on the trace of uh
on � , the b oundary condition

u� = g, with the understanding that the n umerical �ux v anishes on the non up wind parts of the b oundary .

Then, w e consider split-residuals � �
� , for � 2 � , so that they satisfy the conserv ation prop ert y:

X

� 2 �

� �
� = � � : (6)
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Once this has b een done, the sc heme writes : �nd uh
suc h that for an y degree of freedom � ,

� If � 62@
 h ,

�( uh ) :=
X

T 3 �

� T
� = 0 : (7a)

� If � 2 @
 h

�( uh ) :=
X

T 3 �

� T
� +

X

� � @
 � ;� 3 �

� �
� = 0 : (7b)

W e can summarize (7a) and (7b) b y

�( uh ) =
X

E 3 i

� T
� = 0 (7c)

where E stands either for an y triangle T or edge � that shares � .

1.2 Design principles

1.2.1 Consistency with (1)

What are the design principles on the sc heme (7) with (4) so that w e ha v e a con v ergen t sc heme ? The answ er

to this problem has b een pro vided in [13 ], and w e repro duce the result.

Prop osition 1.1. Assume that the mesh is r e gular, that the �ux appr oximation f h (uh ) is c ontinuous acr oss

e dges and de�nes a c onver gent appr oximation (in L 1
of the C1

�ux f . Assume that the r esiduals satisfy the

c onservation r elations (4) and (6) . Assume that the scheme (7) de�nes a unique uh
such that

1. ther e exist a c onstant C(g) indep endent of h such that jjuh jjL 2 � C(g) ,

2. ther e exists v 2 L 2(
) such that a subse quenc e of uh
c onver ges to v in L 2

,

then v is a we ak solution of (1)

The result of [13 ] w as ab out a �rst order in time appro ximation of

@u
@t

+ div f (u) = 0

with initial condition. The adaptation to the steady case (1) with b oundary conditions and source term is

straigh tforw ard, and uses exactly the same argumen ts.

1.2.2 A ccuracy

Again, w e recall previous results, see [13 ] The k ey remark is to see that if one c an solve (7) ac cur ately , the

sc heme is formally r order accurate if the split-residual satisfy

� T
� = O(hr + d); � �

� = O(hk+ d� 1):

The reason follo ws from a simple error analysis. If ' is a compactly supp orted test function, let us denote

' h
its Lagrange in terp olation de�ned b y ' h (� ) = ' (� ) . Sa ying that, w e assume that within eac h triangle,

the set of degrees of freedom is unisolv an t. The examples of section 2 will mak e that p oin t clearer. Then w e
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m ultiply the relations (7) b y ' h
� and add, then using the conserv ation relations w e obtain

E(uh ; ' h ) =
X

� 2 


' (� )

 
X

T 3 �

� T
� +

X

� � @
 � ;� 3 �

� �
�

!

=
Z




�
div f h (uh ) � Sh (uh )

�
' h (x) dx +

X

T � 


1
# f � 2 Tg

X

�;� 02 T

�
' (� ) � ' (� 0)

� �
� T

� � � T;c
�

�

+
Z

@


�
F (uh ; u� ; ~n) � f h (uh ) � ~n

�
' h (x)dl+

X

� � @


1
# f � 2 � g

X

�;� 02 �

�
' (� ) � ' (� 0)

��
� �

� � � � ;c
�

�

= �
Z



r ' h (x) � f h (uh ) +

Z

@

' h (x)f h (uh ) � ~ndl +

Z



' h (x)Sh (uh )dx

+
Z

@


�
F (uh ; u� ; ~n) � f h (uh ) � ~n

�
' h (x)dl

+
X

T � 


1
# f � 2 Tg

X

�;� 02 T

�
' (� ) � ' (� 0)

� �
� T

� � � T;c
�

�

+
X

� � @


1
# f � 2 � g

X

�;� 02 �

�
' (� ) � ' (� 0)

��
� �

� � � � ;c
�

�
:

(8)

where ' h = � h (' ) ,

� T;c
� =

Z

T
 �

�
div f (uh ) � S(uh )

�
dx; � � ;c

� =
Z

�
 �

�
F (uh ; u� ; ~n) � f (uh ) � ~n

�
dx

and  � 2 Pk (T ) suc h that  � (� 0) = � �
� 0 .

F ollo wing again [13 ], ha v e the follo wing result:

Prop osition 1.2. If the solution u is smo oth enough and the r esidual, applie d to the Pk interp olant of u
satisfy

� T
� (uh ) = O(hk+ d) (9a)

and

� �
� = O(hk+ d� 1); (9b)

if mor e over the appr oximation f h (uh ) is k + 1 -or der ac cur ate, then the trunc ation err or satis�es

jE(uh ; ' h )j � C('; f; u ) hk+1 :

The c onstant C('; u ) dep ends only on ' and u .

W e start b y a lemma

Lemma 1.3. F or the ste ady pr oblem (1) , if the solution u is smo oth, we have

Z

@T

f h (uh ) � ~ndl �
Z

T
S(x)dx = O(hk+ d)

and Z

@T

�
F (uh ; u� ; ~n) � f h (uh ) � ~n

�
dl = O(hk+ d� 1)

pr ovide d that the appr oximation f h (uh ) is k + 1 th or der ac cur ate and the numeric al �ux F is Lipschitz

c ontinuous.
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Pr o of. W e ha v e, using the fact that (1) is a steady problem,

Z

@T

f h (uh ) � ~ndl �
Z

T
S(x)dx =

Z

@T

�
f h (uh ) � ~n � f (u)

�
dl

= O(hk+1 ) � j @Tj = O(hk+ d):

On the b oundary , w e ha v e

Z

@T

�
F (uh ; u� ; ~n) � g(x) � ~n

�
dl =

Z

@T

�
F (uh ; u� ; ~n) � g(x) � ~n

�
dl +

Z

@T

�
F (u; u� ; ~n) � g(x) � ~n

�
dl

=
Z

@T

�
F (uh ; u� ; ~n) � F (u; u� ; ~n)

�
dl

and the result follo ws b ecause of the appro ximation inequalit y and since the n umerical �ux is Lipsc hitz

con tin uous.

Pr o of of pr op osition 1.2. This inequalit y is a consequence of (8) b ecause w e ha v e

�
Z



r ' h (x) � f h (uh ) +

Z

@

' h (x)f h (uh ) � ~ndl +

Z



' h (x)Sh (uh )dx =

 

�
Z



r ' h (x) � f (u) +

Z

@

' h (x)f (u) � ~ndl +

Z



' h (x)Sh (u)dx

!

+

 

�
Z



r ' h (x) �

�
f (u) � f h (uh )

�

+
Z

@

' h (x)

�
f (u) � f h (uh )

�
� ~ndl +

Z



' h (x)

�
Sh (u) � Sh (uh )

�
dx

!

(10)

where uh = � h (u) . F rom standard in terp olation results [17 ], w e ha v e j' h j � C and jr ' h j � C0
, jf h (uh ) �

f (u)j � C(u; f )hk+1
and jSh (uh ) � S(u)j � C(u; S)hk+1 : so that (10) is in norm smaller that C(u; f; S )hk+1

for a suitable constan t C(u; f; S ) .

F rom lemma 1.3, for an y T and � , j� T;c
� j � C(u; f; S )hk+ d

and j� � ;c
� j � C(u; f; S )hk+ d� 1

where d is the

space dimension.

Then, F or an y T ,

j
X

�;� 02 T

�
' (� ) � ' (� 0)

� �
� T

� � � T;c
�

�
j �

X

�;� 02 T

�
j' (� ) � ' (� 0)j

� �
j� T

� j + j� T;c
� j

�
j

� # of elemen ts � N � jjr ' jj1 h � C('; f; S )hk+ d

where N is the n um b er of degree of freedom in eac h elemen t. In a regular mesh for a b ounded domain, the

n um b er of elemen ts sizes lik e h� d
so that in the end, w e can �nd a constan t (again denoted b y C ) whic h

dep ends on u , f , S and 
 suc h that

j
X

�;� 02 T

�
' (� ) � ' (� 0)

� �
� T

� � � T;c
�

�
j � C(u; f; S; 
) hk+1 :

The last estimation is to b e done for the b oundary terms. Using the consistency of the n umerical �ux,

w e �rst ha v e

�
�
�
�

Z

@


�
F (uh ; u� ; ~n) � f h (uh ; ~n)

�
' h (x)dl

�
�
�
� �

Z

@


� �
�
�
�F (uh ; u� ; ~n) � F (uh ; uh ; ~n)

�
�
�
�

�
' h (x)dl

� L
Z

@

juh � u� j � C(u; f; @
) hk+1
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Similarly , w e ha v e, for an y b oundary edge, j� � ;c
� j � C(u; f )hk+ d

. If the b oundary of 
 is regular, the n um b er

of b oundary faces is of the order of h� (d� 1)
.

Th us, w e get, using again the same argumen ts,

�
�
�
�

X

� � @


X

�;� 02 �

�
' (� ) � ' (� 0)

��
� �

� � � � ;c
�

�
�
�
�
� � C(u; f; @
) h� d+1 hk+ d = C(u; f; @
) hk+1 :

This completes the pro of.

Let us conclude this paragraph b y t w o imp ortan t remarks.

Remark 1.4. W e se e that the pr o of uses two key elements:

� The pr oblem (1) is ste ady,

� One is able to c ompute uh
. This is done in pr actic e via an iter ative algorithm b e c ause the system (7)

is in gener al non line ar. In al l the numeric al examples, we wil l c onsider a simple Jac obi-like iter ation,

uk+1
� = uk

� � ! k
� �(( uh )k ) (11)

wher e ! k
� is a r elaxation p ar ameter that c an b e thought as the r atio of a time step (c onstr aint by a CFL

c ondition) and an ar e a. The se quenc e (uh )k
is initialize d to some value (say uh = 0 ) and mar che d up

to c onver genc e. The c onver genc e issue of the se quenc e is a subtle one, as it wil l b e se en.

The ac cur acy r esult wil l b e true, in pr actic e, pr ovide d that one is able to c onstruct a c onver gent se quenc e

((uh )k )k2 N , that is, for any " > 0, one c an �nd N " such that

n � N " ; then j�(( uh )k )j � ":

The algorithm c an b e stopp e d pr ovide d that " = O(hk ) .

1.2.3 Monotonicit y preserv ation

In the previous v ersions of the RD sc heme, the degrees of freedom w ere Lagrange p oin ts, so that uh
� is the

v alue of uh
at � . In that case, the iterativ e sc heme is designed in suc h a w a y that for an y k 2 N,

max
�

juk
� j � max

�
max(jjgjj1 ; max

�
ju0

� j):

Indeed, the sc heme is designed so that for an y � ,

max
� 02 V ( � )

juk
� j � max

� 02 V ( � )
juk � 1

� j;

where V (� ) is the set of neigh b ors of � , � included. Note that in this case, w e are not asking for

jj (uh )k jj � C (12)

since it is w ell kno wn that the Lagrange in terp olation, for degree larger than 2, su�ers from the Gibbs

phenomena.

Another w a y of thinking is precisely to try to enforce the constrain t (12) globally . Assume that w e ha v e

a sc heme that writes :

� E
� =

X

� 02 T

cT
�� 0(u� � u� 0) (13a)

where E is either a triangle (case of an in ternal degree of freedom) or a b oundary edge � (case of a b oundary

degree of freedom), with

for an y �; � 0; cT
�� 0 � 0: (13b)
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Using the iterativ e sc heme (11), it is clear that

juk+1
� j � max

� 02 V�

juk
� 0j (14)

pro vided that

! � �

 
X

E 3 �

X

� 02 T

c�� 0

! � 1

where E is either a triangle or a b oundary edge.

If the basis functions  � are p ositiv e w e see that

j(uh )n +1 � max
�

max(jjgjj1 ; max
�

ju0
� j) (15)

An example of suc h a split-residual is giv en b y the follo wing Lax-F riedric h lik e residual: w e �rst appro x-

imate f (u) b y

f h (uh ) := f (uh ):

� T
� =

� T

NT
+ � T (u� � uT ) (16a)

with

uT =

P
� 02 T u� 0

NT
; � T � max

� 02 T

Z

T
???? (16b)

and NT b eing the n um b er of degrees of freedom in T . This family of split residuals de�nes a sc heme that is

only �rst order accurate.

1.3 Construction of high order sc hemes

Ho w can w e construct a sc heme that is b oth monotonicit y preserving and high order accurate. Using the

remark con tained in Lemma 1.3, one p ossibilit y is to lo ok for real n um b ers � E
� (uh ) ( E triangle or b oundary

edge) suc h that

� E
� = � E

� (uh )� T ; (17)

that are uniformly b ounded. This ensure that � T
� = O(hk+ d) and � �

� = O(hk+ d� 1) .

The question is to de�ne the � s suc h that the sc heme is b oth high order accurate and monotonicit y

preserving.

A �rst step is the follo wing : using a monotonicit y preserving sc heme (think of the Lax F riedric hs sc heme)

whic h residuals are denoted b y � L;T
� whic h satis�es (13) , w e formally write

� H;T
� =

� H;T
�

� L;T
�

� L;T
�

=
X

� 02 T

 
� H;T

�

� L;T
�

!

cL
�� 0(u� � u� 0)

=
X

� 02 T

cH
�� 0(u� � u� 0)

with cH
�� 0 =

�
� H;T

�

� L;T
�

�
cL

�� 0 . Hence, since cL
�� 0 � 0, w e ha v e cH

�� 0 � 0 pro vided that

� H;T
�

� L;T
�

� 0. Setting

x � =
� L;T

�

� T and � � =
� H;T

�

� T ; (18)
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the conserv ation and monotonicit y preserving condition b ecome

X

� 2 T

x � =
X

� 2 T

� � = 1 and for an y � 2 T; x� � � � 0: (19)

The problem is to �nd a mapping (x � )� 2 T 7! (� � )� 2 T that satis�es the conditions (19). This mapping

cannot b e linear according to Go duno v's theorem.

An extensiv e discussion of these relations is done in [13 ], in particular w e pro vide a geometrical in terpre-

tation of these relations. Among the man y mappings that satisfy (19), w e ha v e c hosen

� � =
x+

�P

� 02 T
x+

� 0

(20)

whic h is alw a ys w ell de�ned b ecause

P

� 02 T
x+

� 0 � 1.

Unfortunately , as w e see in the next section, the resulting sc heme (i.e. (7) with (17) and (20) using

the Lax F riedric hs sc heme) is o v er compressiv e. The same problem w ould o ccur with other �rst order

spli=residuals, for example those constructed form standard �rst order �ux, see [10 ] for some examples. The

fundamen tal reason is that the limitation is done according to monotonicit y preserving constrain ts only , in

complete ignorance of what is the ph ysics of the problem, i.e. ho w up-winding has to b e triggered in to the

sc heme. Hence, w e need to add some dissipation mec hanism without destro ying the formal accuracy in order

to correct that dra wbac k. . One w a y of doing that is to add to (17) a dissip ative term, namely

dT (' h ; uh ) = jT j
X

x
quad

!
quad

" �
r u f (uh ) � r ' �

�
(x

quad

)
�

r u f (uh ) � r uh � S
�

(x
quad

)

#

(21)

suc h that the quadratic form

(vh ; uh ) 7!
X

�

vh
�

 
X

E 3 �

� E
� +

X

T

� T hT dT (' h ; uh )

is dissipativ e. Again, E stands for an y elemen t or edge that share � . In (21), hT is a the radius of the

circumscrib ed circle/sphere, and � T is a parameter that is of the order of 0 in discon tin uities and 1 elsewhere.

In (21), xquad can b e in terpreted as quadrature p oin ts and !
quad

as w eigh ts. Sa ying, w e in terpret (21) as a

discrete v ersion of Z

T

�
r u f (u)' �

�
�
�

r u f (u)r uh � S(x)
�

dx:

Ho w ev er, in [20 ], w e ha v e sho wn that, at least for linear �ux f (u) = ~�u , is that a necessary condition is

that the quadratic form

qK (vh ) :=
X

x
quad

!
quad

� ~� � r vh (x
quad

)
� 2

is p ositiv e de�nite whenev er the p olynomial � � r vh
is not iden tically zero. In the case of p olynomial

in terp olation, w e need only one quadrature p oin t (and !
quad

= 1 ), for quadratic p olynomials, w e need three

non aligned p oin ts (in practice the v ertices of the elemen t, and w e tak e !
quad

== 1
3 , and so on. Details can

b e found in this reference, w e will use this tec hnique in the presen t pap er.

There are man y p ossible c hoices for the parameter � T . F or example, � T is a go o d c hoice, ev en in the case

of discon tin uous solutions where w e ha v e exp erimen tally noticed that no (visible) spurious oscillation o ccur.

Ho w ev er, the b est c hoice w e ha v e exp erimen ted is

� T = max
� 2 T

 

max
T 3 �

max
� 02 T

ju� 0 � uT j
ju� 0j + juT j + "

!

(22)

with " � 10� 10
. Here, uT = (

P

� 2 T
u� )=N .
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1.4 Some commen ts

Let us conclude b y the follo wing remark : in the RD sc hemes, w e add a term that is dissipativ e. In con trast

to other high order sc hemes, the e�ect of this term is not to damp the solution but to increase the accuracy .

This is b ecause that more than dissipating the solution, the role of this term is to remo v e spurious mo des.

There is a v ery simple example where it can b e seen that spurious mo des do exist, unless something is done.

Consider the PDE on [0; 1]2 ,

@u
@x

= 0

u(0; y) = u0(y):

The solution is u(x; y) = u0(y) . Consider a mesh made of quadrangles, the elemen ts are K ij = [ x i ; x i +1 ] �
[yj ; yj +1 ] with x i = i=N and yj = j=N , 0 � i; j � N � 1. W e can construct linear preserving sc hemes, exactly

as w e ha v e pro ceed ab o v e. Consider the one whic h is constructed from a Q1
in terp olation.

If the set the b oundary condition to ui; 0 = ( � 1)i
w e exp ect the solution to b e an appro ximation of

ui;j = ( � 1)i
. Since w e ha v e an iterativ e sc heme, from (11), w e can initialize either b y

u0
ij =

�
(� 1)i

if j = 0
0 else

or

u0
ij = ( � 1)i + j

or something else. The second initialization is the c hec k-b oard mo de. The �rst initialization will giv e some

sequence. The second one is stationary b ecause

Z

K ij

@uh

@x
dxdy = 0

for the c hec k-b oard mo de.

This is an example of a RD sc heme that cannot con v erge. This is wh y w e need to add some selection

mec hanism, and as w e sho w in the next section, the e�ect of this �damping� is to impro v e a lot the accuracy

or the solution.

2 Numerical examples

W e consider t w o t yp e of appro ximations: Lagrange p olynomials and Bézier appro ximation. In the case

of a triangle with v ertices A1 , A2 , A3 , w e denote b y NA i the linear shap e functions at these v ertices

( NA i (A j ) = � j
i ). If, for k1 , k2 and k3 in teger suc h that k1 + k2 + k3 = n , � k1k2k3 the co e�cien t of X k1 Y k2 Z k3

in the dev elopmen t of (X + Y + Z )n
,

(X + Y + Z )n =
X

k1 � 0;k 2 � 0;k 3 � 0;k 1 + k2 + k3 = n

� k1 k2 k3 X k1 Y k2 Z k3 ;

the Bézier p olynomials of degree n are

B n
k1 k2 k3

= � k1 k2 k3 N k1
A 1

N k2
A 2

N k3
A 3

:

This p olynomial is asso ciated to the degree of freedom � de�ned b y the barycen tric co ordinates NA l (� ) = k l
n .

In the follo wing, w e drop the subscript k1 , k2 , k3 and set instead � the p oin t of T that corresp onds to

(k1; k2; k3) .

Clearly B n
� � 0 and

P
� 2 T B n

� = 1 . The Bézier p olynomials also ha v e other prop erties suc h as a total

v ariation diminishing prop ert y , see for example [19 ]. These t w o prop erties are in con trast with the Lagrange

in terp olan t. Another di�erence is that the co e�cien ts u� in the dev elopmen t

uh
jT =

X

� 2 T

u� B n
�
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are not equal to uh (� ) , con trarily to what happ ens for the Lagrange expansion of the same uh
,

uh
jT =

X

� 2 T

uh (� )L n
� :

These prop erties are also shared b y NURBS.

In the n umerical examples, w e ha v e c hosen n = 2 . The metho d presen ted ab o v e has b een tested on t w o

examples, a steady Burger�lik e equation and a problem with a non-con v ex �ux.

2.1 Example of the Burgers equation

The �rst example is

@u
@y

+ 1
2

@u2

@x
= 0 if x 2 [0; 1]2

u(x; y) = 1 :5 � 2x on the b oundary :
(23)

The exact solution consists in a fan that merges in to a sho c k whic h fo ot is lo cated at (x; y) = (3 =4; 1=2).

More precisely , the exact solution is

u(x; y) =

8
>>><

>>>:

if y � 0:5
�

� 0:5 if � 2(x � 3=4) + ( y � 1=2) � 0
1:5 else

else max

 

� 0:5; min
�

1; 5;
x � 3=4
y � 1=2

� !

All the sim ulations are made using a regular mesh M 1 of 3192 v ertices and 6192 triangles. In Figure 1, w e

sho w, for comparison purp ose, the results of the second order sc heme on the mesh M 2 where eac h triangle

of M 1 is sub divided in to four sub-triangles de�ned using the v ertices and the mid p oin t edges. W e sho w the

results with (21) and (22) and those where � T = 0 .

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 1: Second order solution of (23) . The solution with the term (22) is (a), (b) is the solution without

this term.

Then, w e sho w the results obtained on M 1 using the Lagrange in terp olation and the Bézier p olynomials.

The �gure 2 sho w that there is almost no di�erence on the solutions (a) and (c). The solution (b) is more

wiggly than (d). Let us emphasis that these wiggles are not an y manifestation of instabilit y .

10



2.2 Guc k enheimer problem

The metho d also w orks on more complex scalar examples suc h as the Guc k enheim Riemann problem. Con-

trarily to the Burgers equation, the �ux are no more con v ex, this mo di�es the structure of sho c ks and fans.

W e pro vide this example for t w o reasons : the structure are more complex, in particular a fan is ended b y

a sho c k. The second reason is that, since w e do not ha v e an y mathematical analysis, it is in teresting to see

that, ev en for these non con v ex equations, it seems that the en trop y condition is prop erly met.

The problem is to solv e

@u
@t

+
1
2

@u2

@x
+

1
3

@u3

@y
= 0

u(x; y; 0) =

8
>>>>>>>><

>>>>>>>>:

0 if 0 < arctan
� y

x

�
< 3�

4

1 if

3�
4 < arctan

� y
x

�
< 3�

2

� 1 if

3�
2 < arctan

� y
x

�
< 2�

(24)

The solution is self similar, u(x; y; t ) = v( x
t ; y

t ) , and the function v satis�es

� �v � � �v � +
1
2

@u2

@�
+

1
3

@u3

@�
= 0 (25a)

with the b oundary conditions

lim
r ! + 1

v(r cos�; r sin � ) = u(cos�; sin �; 0): (25b)

Solving (25) amoun ts to solv e (24) at t = 1 .

This problem has b een discussed in [21 ] and dra wn to our atten tion b y M. Ben Artzi (Hebrew Univ ersit y

of Jerusalem). The �ux g(u) = u3

3 is non con v ex and this induces sonic sho c ks. The exact solution consists

in

� A sho c k coming out from the line y = 0 that mo v es at the sp eed 1=3 in the p ositiv e direction,

� a steady sho c k at x = 0 ,

� A sho c k coming out from the line x + y = 0 . The analysis of [21 ] b y a self similar analysis indicates

that the lo cation of this sho c k is x + y � 5=6t , with in our case, t = 1 .

F rom the n umerics, (25a) is rewritten as

@F(u)
@�

+
@G(u)

@�
+ 2 u = 0 (26)

with F (u) = 1
2 u2 � �u and G(u) = 1

3 u3 � �u . The total residual on T writes

� T =
Z

@T

�
F (u)nx + G(u)ny )dxdy + 2

Z

T
udxdy

that are ev aluated b y n umerical quadratures. The in tegral on @Tuses 3 p oin t Gaussian quadrature form ula.

The in tegral on T use the w eigh ts and p oin ts (in barycen tric co ordinates) of table 2. This quadrature

form ula, tak en from [22 ], page 184, is 4th order accurate (exact for cubic p olynomials).

The solution is displa y ed on �gures 3 and 4. W e see that ev en for this non con v ex problem, there

is no stabilit y problem. Again, w e notice that the Bézier solution, without the the additional term (22)

is less wiggly that the one obtained with Lagrange in terp olan t. The other in teresting observ ation is that

the correct en trop y solution is reco v ered in that case, as in all the other cases of this pap er, without an y

additional feature, ev en without the additional stabilization.
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m ultiplicit y co ordinates w eigh t

3 (x0; x0; 1 � 2x0) ! 0

3 (x1; x1; 1 � 2x1) ! 1

T able 2: Quadrature p oin ts and w eigh ts. The other p oin ts are obtained b y cyclic p erm utation of the barycen-

tric co ordinates. W e ha v e set x0 = 0 :445948490915965, ! = 0 :223381589678010, x1 = 0 :091576213509771,

! 1 = 0 :109951743655322.

3 Extension to the w a v e equation

The case of the w a v e equation can also b e set up in a similar w a y . The w a v e equation writes

@U
@t

+ A
@U
@x

+ B
@U
@y

= 0 in 


K +
~n (U � g) = 0 ~n out w ard unit normal at @


(27)

with U = ( u; v1; v2) ,

A = c

0

@
0 1 0
1 0 0
0 0 0

1

A
and B = c

0

@
0 0 1
0 0 0
1 0 0

1

A :

If ~n = ( nx ; ny ) , the matrix K ~n = nx A + ny B admits three eigen v alues, namely � = 0 ; cjjnjj ; � cjjnjj . It is

w ell kno wn that the system is h yp erb olic.

In order to discretize the system (27) using Residual distribution sc hemes, it is not p ossible to rely on

the metho d of lines. The k ey reason for that is that the accuracy of the metho d: as explained in prop osition

1.2 the structure of the equation m ust b e plugged in to the sc heme. Hence, w e need to preserv e the coupling

b et w een the time and space op erators.

In order to o v ercome this di�cult y , one solution is �rst to discretize in time and then to see the semi-

discrete problem as a steady one with a source term.

In the examples, w e appro ximate (27) as

3
2

Un +1 � Un

� t
�

1
2

Un � Un � 1

� t
+ A

@U
@x

n +1

+ B
@U
@y

n +1

= 0 (28a)

whic h is seen as

�U n +1 + A
@U
@x

n +1

+ B
@U
@y

n +1

+ S = 0

with

S = �
3
2

Un

� t
�

1
2

Un � Un � 1

� t
In the sp eci�c example w e consider for the n umerics, w e tak e g = 0 and

K +
n Un +1 = 0 (28b)

3.1 Sc heme description

W e extend the LD A sc heme describ ed for steady problems in [13 ]. W e use Bézier p olynomials b ecause

B 2
� � 0, hence, for an y of the sub triangles of �gure 5

Z

T �

 
3
2

Un +1 � Un

� t
�

1
2

Un � Un � 1

� t

!

dx =
X

� 2 T

! T �
�

�
3
2

Un +1
� � Un

�

� t
�

1
2

Un
� � Un � 1

�

� t

!
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with ! T �
� > 0. This ensure that e ach degree of freedom will ha v e a con tribution in the sc heme. This w ould

ha v e b een wrong for Lagrange in terp olation since the in tegral o v er T of the basis functions at the v ertices

of T is zero. Indeed, a simple calculation sho ws that a similar form ula can b e obtained, but here w e w ould

ha v e negativ e w eigh ts.

W e de�ne ~nT �
� as the scaled in w ards normal v ector to the edge of T� , � = I; II; III; IV , opp osite to

� 2 T� . F or eac h sub-triangle, w e de�ne the sub-residuals,

� T � =
Z

T �

�
3
2

Un +1 � Un

� t
�

1
2

Un � Un � 1

� t
+ A

@Un +1

@x
+ B

@Un +1

@y

�
dx (29)

and the split-residuals for � 2 T�

� T �
� = K +

~n
T �
�

NT � � T �
(30)

with

NT � =
� X

� 2 T �

K +

~n
T �
�

� � 1

(31)

Using the argumen ts of [10 ], w e can easily see that

P
� 2 T �

K +

~n
T �
�

is in v ertible b ecause the matrices A and B

do not comm ute. The last step of the sc heme de�nition is

X

� :T � 3 �

� T �
� = 0 : (32)

The sc heme (32) with the b oundary conditions (28b) with (29), (30), (31) is implicit in Un +1
. In order

to compute it, w e use an iterativ e tec hnique similar to what is done for the steady problems, this de�nes

a sequence Un +1 ;k
with k 2 N. W e tak e Un +1 ;0 = Un

. The b oundary condition (28b) is applied at eac h

iteration: K +
~n Un +1 ;k = 0 . The iterativ e pro cess is stopp ed once a giv en threshold (relativ e error of 10� 3

)

for some in teger k = kmax is reac hed and w e set Un +1 = Un +1 ;k max

3.2 Some n umerical results

W e ha v e used a regular mesh of 80� 80 quadrangles, eac h triangle is cut in to t w o triangles. The domain 

is [� 4; 4] � [� 4; 4] and the sp eed of sound is set to c = 1 .

W e ha v e plotted the u comp onen t of the solution. It is displa y ed in the �gures 6, 7, 8. The results are

v ery regular and compare w ell to those obtained b y M. Duru�é (U. Bordeaux I) with his co de Mon tjoie

1

.

4 Concluding remarks

W e ha v e dev elop ed a general metho d that enables to compute steady and unsteady solutions of linear and

non linear w a v e problems. It relies on a appro ximation tec hnique that can use either Lagrange or non

Lagrange appro ximation function. An example with Bézier p olynomial has b een giv en. The impro v emen t

with resp ect to previous Residual distribution sc hemes is that the degrees of freedom are no longer in terpreted

as p oin t v alues. This remark op ens the w a y to more general appro ximation metho ds suc h as the isogeometric

analysis as what is curren tly b eing dev elop ed b y Hughes and co w ork ers with sc hemes that has non oscillatory

prop erties without tuning parameters.

1

h ttp://www.math.u-b ordeaux1.fr/ duru�e/mon tjoie/index.php

13



A c kno wledgemen ts

RA has b een �nanced in part b y the EU Strep ADIGMA and the FP7 Idea A dv anced Gran t �ADDECCO�

No 226316. JK has b een �nanced b y the AER OCA V gran t of the INCA program of SNECMA. Marc Duru�é

(Institut P olytec hnique de Bordeaux, Institut de Mathématiques de Bordeaux) is w armly thanks enabling

us to c hec k our results against his DG co de.

References

[1] P . L. Ro e. Appro ximate Riemann solv ers, parameter v ectors, and di�erence sc hemes. J. Comput. Phys. ,

43, 1983.

[2] R.-H. Ni. A m ultiple grid sc heme for solving the Euler equations. AIAA J. , 20(11):1565�1571, 1981.

[3] T.J.R. Hughes, L.P . F ranca, and M. Mallet. A new �nite elemen t form ulation for CFD: I. symmetric

forms of the compressible Euler and Na vier-Stok es equations and the second la w of thermo dynamics.

Comp. Meth. Appl. Me ch. Engr g. , 54:223�234, 1986.

[4] T.J.R. Hughes and M. Mallet. A new �nite elemen t form ulation for CFD: I I I. the generalized streamline

op erator for m ultidimensional adv ectiv e-di�usiv e systems. Comp. Meth. Appl. Me ch. Engr g. , 58:305�

328, 1986.

[5] C. Johnson. In Numeric al Solution of Partial Di�er ential Equations by the Finite Element Metho d .

Cam bridge Univ ersit y Press, Cam bridge, 1987.

[6] R. Struijs, H. Deconinc k, and P .L. Ro e. Fluctuation splitting sc hemes for the 2D Euler equations.

VKI-LS 1991-01, 1991. Computational Fluid Dynamics.

[7] H. P aillère, J.-C. Carette, and H. Deconinc k. Multidimen tional up wind and supg metho ds for the

solution of the compressible �o w equations on unstructured grids. VKI-LS 1994-05, 1994. Computational

Fluid Dynamics.

[8] E. v an der W eide, H. Deconinc k, E. Issmann, and G. Degrez. Fluctuation splitting sc hemes for m ulti-

dimensional con v ection problems: an alternativ e to �nite v olume and �nite elemen t metho ds. Compu-

tational Me chanics , 23(2):199�208, 1999.

[9] Á. Csík, M. Ricc hiuto, and H. Deconinc k. A conserv ativ e form ulation of the m ultidimensional up wind

residual distribution sc hemes for general nonlinear conserv ation la ws. J. Comput. Phys , 179(2):286�312,

2002.

[10] R. Abgrall. T o w ard the ultimate conserv ativ e sc heme: F ollo wing the quest. J. Comput. Phys. ,

167(2):277�315, 2001.

[11] R. Abgrall and M. Mezine. Construction of second-order accurate monotone and stable residual distri-

bution sc hemes for steady problems. J. Comput. Phys. , 195(2):474�507, 2004.

[12] R. Abgrall and M. Mezine. Construction of second order accurate monotone and stable residual distri-

bution sc hemes for unsteady �o w problems. J. Comput. Phys. , 188(1):16�55, 2003.

[13] R. Abgrall and L. Ro e, P . High-order �uctuation sc hemes on triangular meshes. J. Sci. Comput. ,

19(1-3):3�36, 2003.

[14] R. Abgrall and C.W. Sh u. Dev elopmen t of residual distribution sc hemes for the discon tin uous galerkin

metho ds : the scalar case. Communic ation in Computational Physics , 9:376�390, 2009.

14



[15] M.E. Hubbard. A framew ork for discon tin uous �uctuation distribution. Int. J. Numer. Metho ds Fluids ,

56(8):1305�1311, 2008.

[16] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, �nite elemen ts, NURBS,

exact geometry and mesh re�nemen t. Comput. Metho ds Appl. Me ch. Eng. , 194(39-41):4135�4 19 5, 2005.

[17] P .G. Ciarlet and P .A. Ra viart. General Lagrange and Hermite in terp olation in Rn
with applications to

�nite elemen t metho ds. A r ch. R ation. Me ch. A nal. , 46:177�199, 1972.

[18] C. de Bo or. A pr actic al guide to splines . Num b er 27 in Applied mathematical sciences. Springer, 1978.

[19] Da vid F. Rogers. A n intr o duction to NURBS : with historic al p ersp e ctives . Morgan Kaufman, 2001.

[20] R. Abgrall, M. Ricc hiutto, and A. Larat. A simple construction of v ery high order non oscillatory

compact sc hemes on unstructured meshes. Computers and Fluids , 2008. in press.

[21] J. Guc k enheimer. Sho c ks and rarefactions in t w o space dimensions. A r ch. R ation. Me ch. A nal. , 59:281�

291, 1975.

[22] G. Strang and G.J. Fix. A n A nalysis of the Finite Element Metho d . Pren tice�Hall, Englew o o d Cli�s,

N.J., 1973.

15












