Performance Analysis of Work Stealing for Streaming Systems and Optimizations

Jonatha Anselmi 1 Bruno Gaujal 1, *
* Auteur correspondant
1 MESCAL - Middleware efficiently scalable
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : This paper studies the performance of parallel stream computations on a multiprocessor architecture using a work-stealing strategy. Incoming tasks are split in a number of jobs allocated to the processors and whenever a processor becomes idle, it steals a fraction (typically half) of the jobs from a busy processor. We propose a new model for the performance analysis of such parallel stream computations. This model takes into account both the algorithmic behavior of work-stealing as well as the hardware constraints of the architecture (synchronizations and bus contentions). Then, we show that this model can be solved using a recursive formula. We further show that this recursive analytical approach is more efficient than the classic global balance technique. However, our method remains computationally impractical when tasks split in many jobs or when many processors are considered. Therefore, bounds are proposed to efficiently solve very large models in an approximate manner. Experimental results show that these bounds are tight and robust so that they immediately find applications in optimization studies. An example is provided for the optimization of energy consumption with performance constraints. In addition, our framework is flexible and we show how it adapts to deal with several stealing strategies.
Type de document :
Rapport
[Research Report] RR-6988, INRIA. 2009
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00404223
Contributeur : Bruno Gaujal <>
Soumis le : mercredi 15 juillet 2009 - 17:22:35
Dernière modification le : jeudi 11 janvier 2018 - 06:21:39
Document(s) archivé(s) le : lundi 15 octobre 2012 - 15:21:21

Fichier

AnselmiGaujal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00404223, version 1

Collections

Citation

Jonatha Anselmi, Bruno Gaujal. Performance Analysis of Work Stealing for Streaming Systems and Optimizations. [Research Report] RR-6988, INRIA. 2009. 〈inria-00404223〉

Partager

Métriques

Consultations de la notice

328

Téléchargements de fichiers

146