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Abstract: The data integration and sharing activities carried on in the framework
of the Semantic Web lead to large knowledge bases that must be queried, analyzed,
and exploited efficiently. Many of the knowledge representation languages of the
Semantic Web, starting with RDF, are based on directed, labeled graphs, which
can be also manipulated using graph algorithms and tools coming from other do-
mains. In this paper, we propose an analysis approach of RDF graphs by reusing
the verification technology developed for concurrent systems. To this purpose, we
define a translation from the SPARQL query language into XTL, a general-purpose
graph manipulation language implemented in the CADP verification toolbox for
asynchronous concurrent systems. This translation makes it possible to extend the
expressive power of SPARQL naturally by adding XTL temporal logic formulas char-
acterizing sequences, trees, or general subgraphs of the RDF graph. Our approach
exhibits a performance comparable with that of dedicated SPARQL query evaluation
engines, as illustrated by experiments on large RDF graphs.
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Une extension de SPARQL
avec logique temporelle

Résumé : Les activités d’intégration et de partage des données effectuées dans
le cadre du Web sémantique conduisent a des bases de connaissances de grande
taille, qui doivent étre interrogées, analysées et exploitées efficacement. Beaucoup
des langages de représentation des connaissances utilisés dans le Web sémantique
sont basés sur des graphes orientés et étiquetés, qui peuvent également étre ma-
nipulés au moyen d’algorithmes et d’outils provenant d’autres domaines. Dans ce
rapport, nous proposons une approche pour analyser les graphes RDF en réutilisant
la technologie de vérification développée pour les systémes concurrents. Dans ce
but, nous définissons une traduction du langage d’interrogation SPARQL vers XTL,
un langage général de manipulation de graphes implémenté dans la boite a outils
CADP pour la vérification des systémes concurrents asycnchrones. Cette traduction
permet d’étendre naturellement le pouvoir expressif de SPARQL en rajoutant des
formules de logique temporelle XTL caractérisant des séquences, des arbres ou des
sous-graphes généraux d’un graphe RDF. Notre approche a une performance com-
parable avec celle des moteurs d’évaluation SPARQL spécialisés, comme il est illustré
par des expériences sur des graphes RDF de grande taille.

Mots-clés : RDF, systéme de transitions étiquetées, évaluation de propriétés,
SPARQL, logique temporelle, vérification
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1 Introduction

During the last decade, the research and development activities performed within the
framework of the Semantic Web [H] led to large and complex knowledge bases repre-
sented using the languages standardized by the World Wide Web (W3C) consortium,
such as OWL [[I] and RDF [20]. As the quantity of information contained in struc-
tured ontologies grows, the need for expressive languages and efficient tools perform-
ing consistency checking, querying, and exploration becomes more stringent. Several
technologies dedicated to these aspects are now well-established, taking their roots in
description logics (reasoners for OWL ontologies, such as FACT++ [31]), relational
databases (query languages for RDF documents, such as SPARQL [29]), or graph ma-
nipulation (navigation languages for XML [30] documents, such as XPATH [3]). The
recent research efforts are oriented towards the integration of different semantic fea-
tures into the same language, as illustrated by the XQUERY [6] language for querying
XML documents, which combines the path description constructs of XPATH and the
relational database operators of SQL [T9].

The knowledge bases built using the Semantic Web languages share a common
underlying semantic model, namely the directed, labeled graphs provided by their
representation as RDF documents. This allows the manipulation of knowledge bases
by means of graph-based algorithms and tools available from other domains, such as
the formal verification of concurrent systems. In this paper, we propose an exten-
sion of the SPARQL language with temporal logic properties enabling to characterize
sequences, trees, and/or cycles in RDF graphs. We achieve this extension by reusing
the technology available in the CADP [T5] verification toolbox for asynchronous, con-
current systems. First, we give a scheme for encoding RDF graphs into the compact
Bca format used by CADP for representing the state spaces of concurrent programs.
Then, we devise a translation of SPARQL queries into the XTL [27] language used
by CADP for exploring graphs encoded in the BcG format. Although originally de-
fined for the model checking of temporal logic operators extended with data, XTL
is a general-purpose functional language able to describe various kinds of graph ex-
plorations, and proves to be useful also for encoding relational algebraic operators.
Finally, we propose to extend the SPARQL syntax with two new clauses enabling to
evaluate temporal logic properties on nodes of the RDF graph.

To assess the usefulness of our approach, we carried out several query evaluation
experiments on RDF graphs of increasing size, by using both the BcG and XTL-
based approach and a specialized SPARQL evaluation engine. The results obtained
show that our approach yields comparable performance in memory and time w.r.t.
the specialized one, and therefore can provide a useful alternative for querying and
analyzing RDF graphs.

RR n’ 7056
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Related Work. Searching the information contained in graphs is a long-standing
problem in computer science. Since the early works on graph querying that led
to the languages G [9] and CEcCIL [23], regular expressions and extensions thereof
appeared as a handful means for characterizing and searching sequences in directed
graphs. Regular expressions have also been successfully used in the database field as
an extension of the traditional query mechanisms, for instance in the GRAPHLOG [§]
language for searching databases containing graphs or in the LOREL [I] language for
querying object-oriented databases containing semi-structured data.

In the field of Semantic Web, several approaches were proposed for query-
ing graphs, most of them having led to languages standardized by the W3C,
such as XPATH, XQUERY, and SPARQL. More specifically related to RDF, var-
ious extensions of SPARQL were proposed in order to increase its expressiveness.
SPARQLER. [2T] and PSPARQL [2] are extensions of SPARQL with regular expres-
sions involving data, which allow the characterization of paths of arbitrary length
in addition to the relational query mechanisms based on join operations. Other
extensions of SPARQL with XPATH operators, extended regular expressions (similar
to those of the egrep UNIX utility), and graph patterns, were incorporated into the
Ard] evaluation engine or in additional libraries, such as GLEEN[T2].

The applications of verification in this setting so far were mainly focused on
checking properties of the World Wide Web seen as a graph [T0] and on the usage
of model checking as evaluation engine for XPATH queries [I4]. Our approach relies
upon the BCG environment for compact graph representation equipped with XTL, a
general language able to describe arbitrary fixed point computations on graphs and
to extract and manipulate the data values contained in transition labels. From this
point of view, XTL offers graph manipulation primitives of the same nature as those
available in XQUERY for searching XML documents, and allows to freely integrate
relational and graph-based operations.

Paper Outline. Section Plgives a quick overview of RDF, SPARQL, and the verifi-
cation technology provided by the CADP toolbox. Section B describes the encodings
of RDF graphs as LTss in the Bca format accepted by CADP, the translation of
SPARQL queries to XTL, and their extension with temporal logic properties. Sec-
tion @l shows experimental results comparing the performance of our approach and
of dedicated SPARQL evaluation engines on large RDF graphs. Finally, Section
summarizes the results and gives directions for future work.

'http://jena.sourceforge.net/ARQ

INRIA



Extending SPARQL with Temporal Logic D

2 Background

RDF and SPARQL. RDF (Resource Description Framework) [20] is a knowl-
edge representation language dedicated to the annotation of resources within the
framework of the Semantic Web. An RDF document can be represented as a set
of triples (subject, predicate, object), where the predicate (denoted by an IRI, an
Internationalized Resource Identifier) expresses the relationship between a subject
(denoted by an IRI or a blank node) and an object (denoted by an IRI, a blank node
or a literal). Another equivalent representation is as a directed labeled graph in
which nodes are labeled by subjects or objects, edges are labeled by predicates, and
each edge connecting two nodes corresponds to a triple relating the subject label of
the source node to the object label of the target node via the predicate label of the
edge. The World Wide Web Consortium (W3C) defined two standardized syntaxes
for RDF graphs: the N3 [d] notation and the XML [30] serialization.

To search and extract information from RDF documents, the W3C defined the
SPARQL [29)] query language, which takes its roots in the SQL [19] language used for
querying relational databases.

CADP and XTL. Cap#] (Construction and Analysis of Distributed Pro-
cesses) [10] is a state-of-the-art verification toolbox for asynchronous concurrent
systems. It has been applied over the years for validating over 110 industrial
case-studied] and for developing over 40 derived research tooldl. The toolbox ac-
cepts as input several description languages with process algebraic flavour (such
as LoTos [I8], Fsp [25], and CHP [26]) and also lower-level formalisms such as the
EXP [24] language for networks of communicating automata. All these languages are
compiled into labeled transition systems (LTSs), which are state/transition graphs
representing the behaviour of concurrent systems.

CADP provides several representations for LTss, among which the Bca (Binary
Coded Graphs) compact file format equipped with specific compression algorithms
and with a set of tools and libraries implementing various features (reading/writing,
relabeling, conversion to other formats, visualization, etc.). XTL (eXecutable Tem-
poral Language) |27] is a functional language and tool for the description and evalua-
tion of temporal logic properties involving data values on BcG graphs. The language
enables to handle sets of states and transitions, to extract the data values contained
in transition labels, and to describe the fixed point computations underlying tempo-
ral logic operators by means of forward or backward traversals of the graph. These
features make BcG and XTL particularly suitable as targets for translating RDF
graphs and SPARQL queries, respectively.

’http://www.inrialpes.fr/vasy/cadp
3See the online catalog at http://www.inrialpes.fr/vasy/cadp/case-studies
4See the online catalog at http://www.inrialpes.fr/vasy/cadp/software
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3 Translating SPARQL to XTL

We begin this section by showing how RDF graphs can be encoded as LTSs in the
Bca format, then we present the translation from SPARQL to XTL, and finally we
propose to extend SPARQL queries with new clauses allowing to check temporal logic
properties on the nodes of RDF graphs.

3.1 Encoding RDF graphs in BCG

The directed, labeled graphs representing RDF documents associate information
both to nodes (subjects and objects) and to transition labels (predicates). The
LTss representing the state spaces of concurrent programs attach information only
to transition labels (events or actions). Therefore, in order to convert an RDF
graph into an LTS, all the information attached to the nodes must be moved into
the transition labels. A natural way of achieving this is by converting every edge
s % o of the RDF graph into an edge of the form s *2° 0 in the LTs. This is the
classical translation from state-based models (Kripke structures) to action-based
models (LTss) defined, e.g., in [7]. It has the advantage of being succinct, the
resulting LTS having exactly as many states and transitions as nodes and edges in
the RDF graph.

In the Bca format, states are encoded as natural numbers and transition labels
have the form G v;...v,, where G is the name of a gate (communication channel)
and vy, ..., v, are data values exchanged during communication. To represent in the
Bca format an LTS corresponding to an RDF graph, the character strings denoting
subjects and objects are given unique indexes encoding states, and the transition
labels are of the form “A s p 0”, where A is a fictitious gate name adopted by con-
vention and s, p, o are the character strings of the corresponding subject, predicate,
and object. Using this encoding scheme, RDF graphs represented in the N3 format
can be straightforwardly converted into L'TSs represented in the Bca format.

3.2 Encoding SPARQL operators in XTL

XTL implements various operations for manipulating sets of states, labels, and edges
of the LTS, including the enumeration of all elements in a set. It is also equipped
with a preprocessor enabling to define parameterized macros and to group them
into reusable libraries. The principle we adopt for encoding SPARQL queries in XTL
is to enumerate and display all the solutions of a relational algebraic term. This
is illustrated in Figure [ for the BGP (Basic Graph Pattern) operator of SPARQL,
which matches a subset of the triples contained in an RDF graph by extracting
their fields in data variables and/or matching them against data values. The BGp
is translated into an XTL iteration macro BGP taking four parameters: pattern

INRIA
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contains the three fields of the BGP (constants or variable declarations); property
denotes a boolean expression that may use the data variables extracted by the BGP;
and by, by represent the bodies of the iteration, i.e., the XTL printing statements
that must be executed for each triple matching the BGP and when no triple matches
the BGP, respectively.

macro BGP (pattern, property, by, by) =
if for E:edge
apply or
from false
to if £ -> [ A pattern where property ] then
let a:action — by in true end let
else
false
end if
end for
then
nop
else
by
end if

end macro

Figure 1: XTL iteration macro enumerating all triples matching a BGP

The XTL “for” expression enumerates all edges in the graph and accumulates in
an internal boolean variable (initialized to false and updated at each iteration) the
fact that a matching edge has been encountered or not. The label of the current
edge E, which has the form “A s p 0”, is then matched against the pattern and the
boolean property by means of the “-> [ ... 1”7 label matching operator of XTrL. If
the matching succeeds, then the b; statement (of type action) is executed. The static
semantics of XTL ensures that all data variables declared in the pattern are visible
inside the expression contained in the “if” branch, and therefore they can be used
within b;. If no successful match was encountered upon the end of the iteration (i.e.,
the value of the internal variable returned by the “for” expression is false), then the
by statement is executed.

The translation of a SPARQL query is compositional: each relational operator has
a specific XTL iteration macro, and a query containing nested relational operators
yields an appropriate nesting of the corresponding XTL iteration macros. Table [0

RR n’ 7056
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shows a simplified version of the translation rules for the main relational operators
of SPARQL, by considering that all operands are BGPs.

Table 1: (Simplified) translation rules of SPARQL operators into XTL

| Op. | SPARQL \ XTL |
BGP {72 7y 7z} BGP (?x:string 7y:string ?z:string, true, by, by)
{c?y 7z} BGP (!¢ 7y:string ?z:string, true, by, bo)
FILTER | {7z 7y ?z. BGP (?x:string 7y:string 7z:string,
FILTER f(?z,7y,72)} f(z,y,2), by, ba)
JOIN {72 7y ?z. BGP (?x:string 7y:string 7z:string, true,
2 7t Tu} BGP (!z 7t:string 7w:string, true, by, nop), nop)
LJOIN | {?z 7y ?7=2. BGP (?x:string 7y:string ?z:string, true,
OPTIONAL{?z 7t ?u}} | BGP (lz ?t:string Tu:string, true, by, ba), nop)
UNION | {{?z 7y 7z} BGP (?ax:string ?y:string ?z:string, true, by, ba)
UNION fby
{7t 7u v}} BGP (?t:string ?w:string 7uv:string, true, by, b2)

The two examples of BGPs show how variable declarations and constants are
translated into XTL label patterns using the “?” and the “!” notations, respectively.
Here we consider that all fields are of string type, but XTL can recognize also label
fields of other types (booleans, integers, reals, etc.). When the BGP is equipped
with a FILTER clause, the boolean expression f(7x, 7y, ?z) is passed as the property
parameter to the XTL iteration macro. The JOIN operator yields a nested iteration,
the invocation of the BGP iteration macro for the second triple being passed as
body b; to the invocation of the BGP macro for the first iteration. The field z; on
which the join takes place, which was extracted by the first BGP macro, is used
as a constant value in the second BGP macro. The LJOIN (left join) operator is
translated similarly, except that the body by is not set to the empty action nop,
but consists in printing empty slots instead of the fields of the second triple. The
UNION operator is translated as the sequential composition of the two BGP iteration
macros.

Finally, the iteration bodies by, by are derived from the SELECT projection oper-
ator present at the top of each SPARQL query, which indicates the list of variables
to be printed as the result of the query. This is illustrated below by the translation
of an LJOIN query in XTL:

SPARQL | SELECT 7z 7t WHERE { 7z 7y 7z . OPTIONAL { 72 7t 7u } |
XTL BGP (?x:string 7y:string 7z:string, true,
BGP (!z ?t:string 7u:string, true, print (x, t), print (z, " ")), nop)

INRIA
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The body b; of the second BGP iteration macro prints the values of variables
x and t assigned at each iteration, whereas the body b, prints the value of x and
an empty slot corresponding to the situation when no RDF triple matches the BGp

specified by the OPTIONAL clause.

Optimizations. The XTL iteration macro shown in Figure [[l can be optimized
whenever the subject or the object field in pattern has a fixed value (either a constant,
or a variable extracted by an enclosing iteration macro). In this case, the iteration
is no more performed on all edges E, but only on those edges going out of the
subject node or coming to the object node. XTL provides specialized operators for
performing these iterations efficiently (originally devised for the evaluation of modal
logic operators), by translating them in terms of the iteration operators provided by
the Bca libraries.

3.3 Adding temporal logic properties

Once a SPARQL query is translated into an XTL expression, it is very easy to extend
it with structural properties on the RDF graph, expressed, e.g., as temporal logic
formulas. The CADP toolbox provides XTL libraries [27] encoding the operators
(extended with data) of several branching-time logics, such as HML [T, AcTL [28],
and fragments of the modal p-calculus [22].

The basic idea is to constrain further the SPARQL query by associating tempo-
ral properties to the subjects and objects occurring in BGPs in a way similar to
the FILTER clause. To this purpose, we define the additional clauses S-PROP and
O-PROP, which associate temporal properties to subjects and objects, respectively.
A subject or object constrained by the S-PROP or O-PROP clause can be part of
the query solution iff its corresponding node satisfies the temporal logic property
evaluated on the RDF graph. The syntactic extension of the BGPs of SPARQL with
the S-PROP and O-PROP clauses and its translation in XTL are shown below.

SPARQL | { ?s 7p 70 . S-PROP P . O-PROP @ }
XTL BGP (?s:string ?p:string 7o:string,
(source (F) among P) and (target (E) among @), by, b2)

The S-PROP P clause amounts to check that the subject node (i.e., the source
node of the current triple E) belongs to the set of nodes produced by evaluating
the temporal formula P. The O-PROP @) clause has a symmetric interpretation in
terms of the target node. P and @) are XTL expressions of type stateset (i.e., they
denote sets of nodes in the RDF graph) that are syntactically copied in the property
parameter of the XTL iteration macro.

The data handling features of XTL enable to go beyond classical temporal logics,
for instance by allowing the formula P to use the data values extracted by the Bap

RR n’ 7056
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and stored in the s, p, 0 variables. For example, the extended BGP below expresses
the existence of a cycle of unknown length going from the object of a triple back to
the subject of the same triple:

{?s ?p 70 . O-PROP EF A (true, Dia (EVAL_A (A _ _ls), true)) }

The XTL formula in the O-PROP clause combines the potentiality operator EF,
of ACTL, which states the existence of a sequence of 0 or more transitions labeled
by actions satisfying « (here « is true, meaning that we impose no constraint on
transition labels) and the HML diamond modality (A !s)true, which states the
existence of a transition going out from the current state (i.e., the last state of the
sequence matched by the EF operator) and labeled by a triple with object s (the
two other fields are ignored, being matched by the wildcards * ). Each temporal
or modal operator is implemented by an XTL function (such as EF_A and Dia)
returning the set of graph nodes satisfying it. The EVAL A(a) macro operator
stands for { L:label where L -> [ a 1 }, the set of transition labels satisfying a
pattern a.

The inevitability operator AF, of ACTL allows the specification of branching-time
properties characterizing subtrees of the RDF graph. For example, the extended BGp
below matches all triples for which all sequences going out of their subject node lead,
after a finite number of steps, to an object v:

{?s ?p 70 . S-PROP AF_A (true, Dia (EVAL_A (A lv), true)) }

Other kinds of temporal properties can be specified by using various operators
within the S-PROP and O-PROP clauses. For instance, the fixed point operators of
modal p-calculus can be used to encode sequences matching regular expressions or
complex cycles, which are expressible within the u-calculus fragments of alternation
1 and 2, respectively [T3].

4 Performance Measures

We carried out several experiments in order to study the behaviour of our BCG and
XTL-based query evaluation approach w.r.t. dedicated SPARQL evaluation engines.
As candidate for comparison, we chose the ARQ engine used by the JENA Semantic
Web framework for JAVA developed by Hp Labdl. To obtain RDF graphs of increas-
ing size, we used the LUBM benchmarkll [16], which enables to generate randomly
new ontologies in OWL starting from a basic ontology representing a university.

Shttp://jena.sourceforge.net
Shttp://swat.cse.lehigh.edu/projects/lubm
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Table 2: Sizes of the RDF graphs used in query evaluation experiments

N Graph size N3 size | Bea size | Ratio
nodes | edges | (MB) | (MB) | (%)
26476 | 102741 6.59 3.81| 57.8
84720 | 346813 | 22.27 12.72| 57.1

278456 11159196 | 74.50 42.39| 56.8

27| 881828 | 3687700 | 238.61 136.72| 57.2

O W =

Given a number N of universities, LUBM generates N OWL files containing random
variations of the basic ontology. These N files were merged and converted using the
CwM tooll into a single RDF file in the N3 format, which was subsequently encoded
in the BcG format. Table ] gives the numbers of nodes and edges of the RDF graphs
obtained for increasing values of N and compares the sizes of the corresponding files.
The Bca format is almost two times more compact than the N3 format.

On each RDF graph, we checked several SPARQL queries involving various alge-
braic operators, some of them being based on the example queries contained in the
LuBM benchmark. All experiments were performed on a 2.2 GHz Cpu, 1 GByte
machine running Linux. The results are shown in Figure Pl The first three pictures
(a), (b), (c) compare the times of evaluating requests made of BGps, JOIN, and
UNION operators by using ARQ on the N3 files and XTL on the BCG files. For large
files, we observe that ARQ becomes increasingly faster than XTL. However, the
quasi-totality of the evaluation time using XTL is taken by the initial phase of load-
ing the necessary information from the BCG file into memory, illustrated in picture
(d) by evaluating an empty request. By comparing picture (d) with pictures (a),
(b), and (c), we see that the time taken by XTL for the pure evaluation of queries
is comparable with the time taken by ARQ.

We can therefore take advantage of the fact that we can group several queries
into the same XTL program, which enables to perform the loading a single time. The
effect of grouping is illustrated by picture (e), which compares the time of evaluating
all XTL queries (grouped into a single program) and the sum of the times taken by
ARQ to evaluate each individual query. We notice a decrease of the difference in
time w.r.t. ARQ when the number of queries in the group increases, the two tools
becoming equally efficient when the XTL file contains about 10 requests.

Finally, Picture (f) shows the memory consumption, which is almost independent
from the type of query. XTL is less memory-consuming than ARQ an all examples,

"http://www.w3.org/2000/10/swap/doc/cwm
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the two tools exhibiting a quasi-linear variation of the memory with the size of the
RDF files.
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Figure 2: Performance measures using ARQ on N3 files and XTL on BcG files

5 Conclusion and Future Work

We proposed an approach for evaluating queries on large RDF graphs by reusing
the verification technology available from the domain of concurrent systems. Our
approach involves two aspects: an encoding of RDF graphs as state spaces in the Bca
format used by the CADP verification toolbox, and a translation of SPARQL queries
in the XTL language dedicated to the exploration of BCG graphs. This provides a

INRIA
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natural way of extending SPARQL with the possibility of evaluating temporal logic
properties characterizing sequences, subtrees, and/or cycles in the RDF graph, and
more generally with the ability to perform arbitrary graph explorations described
in XTL.

The experiments we carried out on medium and large RDF graphs have shown
that the performances obtained by using BCcG and XTL are comparable with those
of the ARQ evaluation engine dedicated to SPARQL. The increased expressiveness
brought by the temporal logic operators available in the XTL libraries of CADP
goes beyond existing work, which mainly focused on extending SPARQL with the
detection of sequences matching regular expressions.

Our work can be continued along several directions. First, the translation to XTL
can be extended in order to cover the whole SPARQL language, and not only the
basic relational algebraic operators we shown in Section B2 Second, the translation
should be further automated and experimented on other examples of domain-specific
RDF graphs. Finally, it would be interesting to study the classes of temporal logic
properties that are most useful for analyzing RDF graphs.
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