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Fingerprinting omportemental et temporelRésumé : Ce doument propose une nouvelle approhe de �ngerprinting deséquipements grâe à l'analyse de leurs omportements en terme de messageséhangés mais aussi grâe aux délais entre es derniers. L'objetif est d'identi�erhaque équipement di�érent utilisant le même protoole. Dans un premiertemps, les informations omportementales et temporelles sont apturées et stok-ées dans des arbres dont la spéi�ation formelle est dé�nie dans e doument.Dans un seond temps, une lassi�ation multi-lasse supervisée basée sur lesmahines à veteurs de support permet d'identi�er les di�érents équipements.Cette nouvelle tehnique est validée grâe à de nombreuses expérimentationssur le protoole SIP dont les résultats sont très prometteurs.Mots-lés : �ngerprinting, signature, mahines à veteurs de support, ma-hine à états �nis



Behavioral and Temporal Fingerprinting 31 IntrodutionFingerprinting a devie is an essential task in network seurity assessment, in-trusion detetion senarios and opyright infringement trials. When performinga seurity assessment task, being able to identify the remote operating systemand/or appliation is ruial for the auray and overall quality of the assess-ment. A similar ase holds for intrusion detetion and seurity monitoring. Forinstane, in a VoIP network that is operated only with a well-de�ned set ofSIP (Session Initiation Protool) [1℄ hardphone types, the presene of anothertype of end devie ould be deteted, even if the overall seurity redentialsare valid. Most appliation level protools do ontain information about thedevie identity (user agent) that generated the message, but in most ases it isnot proteted against maliious srubbing. For instane, a popular and widely-deployed VoIP system used the following liense agreements. A �xed number totokens were distributed to the main VoIP server (all manager). A SIP deviemanufatured by a popular network vendor in the San Franiso area wouldonsume one token, while any other SIP end devie would onsume at least twotokens. The devie identity was asserted only from the user agent �eld (whihwas ryptographially unproteted) in the SIP signalling. We are onvinedthat an extended authentiation mehanism an be built on top of devie-level�ngerprinting � for instane to allow only real hardphones to onnet to a VoIPserver.In the past, several approahes for the remote identi�ation of a devie havebeen proposed. In most ases, these approahes were based either on iden-tifying vendor- or devie-spei� deviations in the implementation of a givenprotool. Suh deviations are possible beause of simple omissions in the spe-i�ations/norms � many urrent spei�ations either do not ompletely overall the exeptional ases or lak the neessary preision, and thus leave to manydegrees of freedom to the software implementers. The existing �ngerprintingapproahes exploit this in order to �ngerprint a devie. For instane, individual�elds in the TCP header an lead to passive �ngerprinting, as implemented in[2℄. The main ontribution of our paper is a new �ngerprinting sheme thatis aurate even in the ase protool staks that are ompletely idential, butwhih are run on hardware having di�erent apabilities (CPU power, mem-ory resoures, et). We also look at the �ngerprinting problem under morerestritive onstraints. We propose a �ngerprinting sheme that an learn dis-tintive patterns in the state mahine of a partiular implementation. We seesuh a pattern as a restrited tree �nite state mahine that provides additionaltime-related information about the transition performed. We de�ne a similaritymetri between patterns that is highly aurate for the lassi�ation of a givennetwork apture.Our paper is strutured as follows: we start in setion 2 with the presen-tation of the formal model that aptures a temporal and state mahine-related�ngerprint. We ontinue in setion 3 by explaining the funtioning of our �nger-printing system and the way to onstrut the �ngerprints. Setion 4 is dediatedto the lassi�ation method. The metris used for evaluating our system aredesribed in setion 5 and the datasets used for our experiments are detailed inthe next setion. Setion 7 fouses on the determination of the best parame-ters based on a single dataset. Setion 8 presents omplete results from severaldatasets. Related work is summarized in setion 9 before onluding.RR n° 6995



4 J. François, H. Abdelnur, R. State, O. Festor2 Formal ModelWe model a behavioral �ngerprint using a Temporal Random ParameterizedTree Extended Finite State Mahine (TR-FSM). The TR-FSM is an extension ofthe parameterized extended �nite state mahine introdued in [3℄. Our extensiononerns the introdution of temporal information and one additional onstrainton the transitions in the state mahine.A TR-FSM is formally de�ned by a tuple
M =< S, sinit, I, O, ~X, T, ~Y >where:� S is a �nite set of states with |S| = n;� sinit is the initial state;� I = {i0(~v0), i1(~v1), . . . , ip−1( ~ip−1)} is the input alphabet set of size p. Eahsymbol is assoiated with a vetor of parameters;� O = {o0( ~w0), o1( ~w1), . . . , oq−1( ~wq−1)} is the output alphabet set of size q.Eah symbol is assoiated with a vetor of parameters;� ~X is a vetor of variables;� T is a �nite set of transitions and eah t ∈ T is de�ned as

t =< s1, s2, i(~v), o(~w), P ( ~X, i(~v)), Q( ~X, i(~v), o(~w)) >. s1 and s2 are thestart and end state, i is the input symbol triggering the transition and
o is the triggered output symbol. P ( ~X, i(~v)) represents the ondition toahieve the transition and Q( ~X, i(~v), o(~w)) is the ation triggered by thetransition, based on an operation on the di�erent parameters;� ~Y is a n − 1 dimensional random vetor desribed later.Additionally, the transitions of state mahine are restrited to form a tree:

∀s ∈ S | s 6= sinit, ∃ ! r states si1, si2, . . . , sirsuh that:
si1 = sinit ∧ sir = swhere the notation ij represents a single index. The struture is a tree if there isonly one possible sequene of transitions from the initial state to the destinationstate. Thus, we denote the orresponding transitions:
∀j, 1 ≤ j < r, tij ∈ T

tij =< sij , si(j+1), iij( ~vij), o(~w), Pij( ~X, i(~v))

Qij( ~X, iij(~v), oij(~w)) >Hene, the ardinality of T is de�ned by |T | = n−1 and T = {t1, . . . , tn−1}.Finally ~Y is a n − 1 dimensional random vetor with Ytj
representing the(measured) average time to perform the transition tj .In the rest of the paper, states and transitions are synonyms for nodes andedges beause the TR-FSMs are trees and state mahines also. Thus, a TR-FSM an be haraterized by its height and its ardinality orresponding to

|S|. INRIA



Behavioral and Temporal Fingerprinting 5
Internet

Figure 1: Fingerprinting arhitetureOne important note should be made. The loation at whih the measureis taken is important, espeially when done from a remote site and over a net-work. The inherent additional noise due to the round-trip time an be �lteredout. This is done by taking the network round-trip time into aount. Alterna-tively, if the �ngerprinting is integrated within an intrusion detetion system,the measurements an be used diretly without any other additional �ltering,beause in this ase the system is learning loal and deployment-spei� param-eterized devie signatures.The problem of �ngerprinting an be now stated as follows. Given a an-didate group of implementations C = {M1, M2, . . . , Mk} and a set of behav-ioral �ngerprints {Tj1, Tj2, . . . , Tjp} for eah implementation Mj , the goal is to�nd a lassi�er that orretly maps behavioral �ngerprints to the orrespondinglasses.We assume a similarity measure ∆(T1, T2), whih is a distane based on thethe tree struture and the vetor ~Y , between two TR-FSMs T1 and T2.3 Fingerprinting framework3.1 SIP bakgroundWe have onsidered SIP as a target appliation domain. We did this for sev-eral reasons. Firstly, SIP is widely deployed and the study of the seurityof VoIP urrently is still in its infany. Our goal was to provide a seuritymonitoring framework that takes the �ngerprint of a devie into aount. Forinstane, whenever one SIP devie (identi�ed by its IP address) shows a hangein its underlying devie �ngerprint, this should be learly treated as an at-tak. SIP messages are divided into two ategories: requests and responses.Eah request begins with a spei� keyword like REGISTER, INVITE, OPTIONS,UPDATE, NOTIFY... The SIP responses begin with a three-digit numerial odeRR n° 6995



6 J. François, H. Abdelnur, R. State, O. Festordivided into six lasses identi�ed by the �rst digit. Figure 2(a) gives someexamples of SIP sessions.A session is omposed of a sequene of messages and its delimitation de-pends on the protool. Considering SIP protool, a session is identi�ed bya spei� identi�er (SIP all ID). Beause an identi�er an be reused severaltimes, a session is onsidered �nished after an inativity period.3.2 ArhitetureFigure 1 depits our �ngerprinting arhiteture. First, the SIP traes are ol-leted from the loal network or Internet through a proxy where the lients areonneted. Consequently, the lients are not onneted via a dediated network,entailing muh noise on the tra�. The �rst step aims to identify the di�er-ent sessions and to reate the orresponding �ngerprints as TR-FSMs (the nextsetion details this step). The next stage is divided into two parts:� during the learning phase (1), the �ngerprints database is generated byidentifying the devies using some knowledge of their harateristis. Forexample, the SIP user agent �eld (devie identi�er) an be used if theolleted traes are assumed to be free of malformed messages.� during the testing phase (2), the devie identi�ation module tests new�ngerprints against the database in order to detet devie hanges or tohek newly onneted devies.3.3 Fingerprint generationThe �ngerprint is a tree with a generi ROOT node. The �ngerprint representsa spei� devie and is generated from a subset of sessions in whih this deviepartiipates. Eah state of the TR-FSM is represented by a type omposed ofSIP request type or the SIP response ode pre�xed by ! (outgoing message at thedevie �ngerprinted) or ? (ongoing message at the devie �ngerprinted). Figure2(b) illustrates a TR-FSM orresponding to an Asterisk server. Therefore, nodespre�xed by ! are messages sent by Asterisk, whereas those pre�xed by ? areemitted by any seond party. This tree represents a signature for the AsteriskSIP proxy. A transition is indiated by an arrow between two states. In addition,the vetor ~Y orresponds to the average delays put on the edges like in �gure2(b).The signature in �gure 2(b) is generated from the sessions shown in �gure2(a). In fat, eah session is represented by a sequene of states and the sharedpre�xes are merged. For instane, the sessions S3 and S4 of the �gure 2(a) havethe two �rst messages in ommon and so they share the �rst two nodes whihare gray olored in �gure 2(b).The algorithm 1 details the onstrution of a signature. For reasons ofsimpliity, the delay of a transition is diretly stored on the node representingthe end state without loss of information, sine the tree struture involves onlyone ongoing edge for eah node. Brie�y, the algorithm maintains a urrent nodeinitialized to the ROOT node. For eah message m of the sessions, lines 16-18aim to �nd a node n orresponding to the type of m among the hildren ofthe urrent node in order to update it. If this is not possible, a new node isINRIA



Behavioral and Temporal Fingerprinting 7

(a) Sessions (left value =time) (b) A signature for Asterisk server generated from foursessionsFigure 2: Example of the �ngerprint generationreated. The delay assoiated with an edge is the average delay in transmittingthe orresponding message.Considering a total of n messages, s sessions and the number of messages persession ni = |Si|, algorithm 1 iterates over all messages of all sessions, meaningthat the number of iterations of lines 11 and 13 equals n. For eah message, inthe worst ase the searh (line 16) iterates over all possible hildren, whih are atmost as many as the previously examined sessions. Therefore the total numberof iterations is it =
∑s

i=1 i×ni. Considering that all sessions exept the last haveonly one message, we obtain the maximal value it = s(n − (s − 1)) +
∑s−1

i=1 i =
ns + 1.5s− 0.5s2 < ns + 1.5s. Beause, unlike n, the number of sessions to useis a �xed onstant parameter, the overall omplexity is O(n).4 Automated �ngerprinting4.1 TerminologyA dataset is omposed of TR-FSMs. For a given dataset, the size N is the num-ber of TR-FSMs t1, t2, . . . tN that it ontains. We follow the standard method-ology in supervised learning. Eah dataset is divided into a learning set used totrain the system and a testing set. The testing set is used to evaluate the per-formane of the system when generalizing on new data. Eah sub-dataset alsohas an assoiated size: N_train and N_test with N = N_train + N_test.RR n° 6995



8 J. François, H. Abdelnur, R. State, O. FestorAlgorithm 1 Tree onstrution1: S a table ontaining the sessions2: S
j
i is the node representation of the jth message of the ith session3: tab.length returns the number of elements in tab4: m.type returns the type of the message m pre�xed by ? or ! depending on the diretion5: m.time returns the delay of the message m6: n.children returns the hild nodes of the node n7: create_node(t) reates a new node from the message type t8: n.update(d) updates the average delay of the ongoing edge of the node n using the delay

d9: n.add_child(n2, d) links the node n2 to n with an edge having delay d10: nROOT is the root node11: for i← 1 to length(S) do12: current_node← nROOT13: for j ← 1 to length(Si) do14: child = current_node.children15: k ← 116: while k < child.length ∧ childk.type 6= S
j
i
.type do17: k ← ind + 118: end while19: if k > child.length then20: new← create_node(Sj

i .type)21: current_node.add_child(new,S
j
i .time)22: current_node← new23: else24: childk.update(Sj

i .time)25: current_node← childk26: end if27: end for28: end forThe number of sessions extrated for building eah tree is named sessionsize: training session size for the training set and test session-size fortesting set. These are important parameters for our method.There are N_devices distint devies:
D = d1, d2, . . . dN_devices.Two funtions an be applied to eah tree ti:� real(ti) returns the real identi�er (devie or implementation stak) for aTR-FSM ti� assigned(ti) returns the lass name (devie or implementation stak) fora TR-FSM ti that is assigned by the �ngerprinting sheme.4.2 Supervised learning for �ngerprintingWe brie�y review the basis of support vetor mahines (SVM) in this setionin order to make the paper self-ontained. Additional referene material an befound in [4℄. We relied on the multi-lass lassi�ation [5℄ and adapted it to our�ngerprinting task. The hosen approah is known as the one-to-one tehniquedue to its good trade-o� between lassi�ation auray and omputational time[6℄. Assuming the terminology of the previous setion, the SVM lasses or-respond to the N_devices devies, and the input spae data points are the
N_train trees from the training set. Firstly, eah point ti of the training set isINRIA



Behavioral and Temporal Fingerprinting 9mapped to a high-dimensional feature spae thanks a non-linear map funtion
φ(ti). Then, for eah lass pairwise < cl, ck >, an hyperplane with the maxi-mum separation from both lasses is found. First, we de�ne the points involvedfor these lasses:

Tl = {ti|real(ti) = cl}

Tk = {ti|real(ti) = ck} (1)Then, the hyperplane is de�ned by a vetor wlk and a salar blk and is underthe following onstraints:
∀ti ∈ {Tl ∪ Tk}

〈φ(ti) · w
lk〉 + blk ≥ 1 − ξlk

ti
, if real(ti) = cl

〈φ(ti) · w
lk〉 + blk ≥ −1 + ξlk

ti
, if real(ti) = ck

(2)where the ξ terms are slak variables allowing some lassi�ation errors, i.e.,some points not on the orret side of the hyperplane beause this is neessarywhen data points are not totally separable. The orresponding optimizationproblem an be onverted to its dual form using the Lagrangian. Assumingthat ρlk
ti
is equal to 1 when ti ∈ TL and −1 when tu ∈ TK , the problem is:

max
∑

ti∈{Tl∪Tk}

αlk
ti
−

1

2

∑

ti∈{Tl∪Tk}
tj∈{Tl∪Tk}

αlk
ti

αlk
tj

ρlk
ti

ρlk
tj

K(ti, tj) (3)subjet to:
∑

ti∈{Tl∪Tk}

αlk
ti

ρlk
ti

= 0

0 ≤ αlk
ti

≤ C, ti ∈ {Tl ∪ Tk}

(4)where K is a kernel funtion suh as the following dot produt:
K(ti, tj) = 〈 φ(xi).φ(xj) 〉 (5)This kernel trik allows the problem to be solved without omputing or knowingthe φ funtion. The only requirement is a kernel funtion whih has to be appliedto eah pair of data points. It is basially a similarity funtion onstrained byMerer's theorem [7℄. Finally, a deision funtion, applied to eah tx of thetesting set, is de�ned as:

flk(tx) =
∑

ti∈{Tl∪Tk}

αlk
ti

ρti
K(ti, tx) + blk (6)In fat, the support vetors are the trees ti with non-zero αlk

ti
and form the set

SV lk from whih blk is obtained:
blk =

1

|SV lk|

∑

ti∈SV lk

(ρlk
ti
−

∑

tj∈{Tl∪Tk}

αlk
ti

ρlk
tj

K(tj , ti)) (7)RR n° 6995



10 J. François, H. Abdelnur, R. State, O. Festor

(a) Twinkle 1.10 (softphone) (b) Ciso 7940 �rmware 8.93 (hard-phone)Figure 3: Sessions tree examples of one hardphone and one softphone. The attributeon a direted edge is the average delay of the transition. Two shared pathsare grey oloredDuring the testing stage, eah deision funtion flk is applied to ti, where ti isa TR-FSM to lassify. Depending on the return value, ti is assigned to the lass
cl or ck. Using a voting sheme, the lass hosen most often is onsidered to beorret.Figure 3(b) shows a behavioral �ngerprint for a SIP hardphone, while �gure3(a) presents a �ngerprint for a softphone. However, the softphone makes onetransition almost ten times faster then the hardphone. Therefore, if properlyaptured and used, time-related information an be be very useful when thesame appliation is exeuted on di�erent hardware, it will re�et di�erenes inthe arhitetural and omputational features. For instane, the same SIP stakrunning on a CPU-limited apabilities hardphone will show higher transitiontimes than the same stak on a high-performane workstation (softphone). The�gures 3(b) and 3(a) illustrate this hypothesis.4.3 Kernel funtionThe kernel funtion is one important parameter in SVM appliations. TheGaussian kernel is a well-known possible funtion for simple data points givenby a tuple of values. However, the urrent problem data points are trees withlabelled edges. Therefore, we propose extending our previous method [8℄, basedon the tree omparison method proposed in [9℄. The goal is to obtain a similarityequal to 1 for exatly the same trees and 0 for totally di�erent ones. Firstly,the set of paths from the root to eah node of the tree ti is designated by
pathsi and omposed of m paths: pathi

1, . . . pathi
m where pathi

j represents asingle path. The funtion nodes(pathi
j) returns only the nodes and transitionswithout delay properties. The funtion nodes(pathsi) returns the set of thedi�erent paths pathsi of the tree ti without delays i.e., the tree struture.The intersetion of the trees ti and tj is de�ned as:

Iij = nodes(pathsi) ∩ nodes(pathsj) (8)In �gure 3, the two �ngerprint intersetions are shaded in gray. INRIA



Behavioral and Temporal Fingerprinting 11For all shared paths, weight are derived from the delay di�erenes andsummed to obtain the similarity measure:
inter_sim =

∑

p∈Iij

nodes(pathi
k)=p

nodes(path
j

l
)=p

weight(pathsi
k, pathsj

l ) (9)Without onsidering the delays, pathj
l and pathi

k are exatly the same for agiven p. A omparison funtion is then alulated for eah node np ∈ p basedon the Laplae kernel. Consequently, the new similarity measure is:
weight(p1, p2) =

∑

np∈p1

e−α|fdelay(n,p1)−fdelay(n,p2)| (10)where fdelay(n, p) is a time-based funtion whih returns the average delayfor the ongoing edge from node n in the path p. Beause a �ngerprint onernsone devie only, the delay due to other equipment has to be disarded, and so
fdelay(n, p) = 0 for n a message reeived by the devie (node name pre�xed by?).Theorem The following funtion is a valid kernel i.e., whih satis�es Merer'stheorem (Chapter 3 of [7℄):

K(ti, tj) =
∑

p∈Iij

nodes(pathi
k)=p

nodes(path
j

l
)=p

∑

np∈p

e−α|fdelay(n,p1)−fdelay(n,p2)| (11)
Proof: Eq. (10), whih forms the inner sum, is a valid kernel known asLaplae Kernel Kl. The funtion fdelay(n, p) an be expressed as a real-valuedfuntion f(ti) beause n and p are subparts of ti as well as tj . Hene, the termsin the sum of K are expressed as Kl(f(ti), f(tj), whih is also a kernel due tokernel onstrution properties. Finally, a sum of kernels is also a kernel and so

K is a kernel. Readers interested in kernel onstrution and related proofs arereferred the setion 3.3 in [7℄.5 Performane evaluation5.1 MetrisStandard metris for multi-lass lassi�ation are de�ned in [10℄. Obviously,the following funtions are applied to testing trees only. The number of treesorresponding to a partiular devie d is denominated as xd. The number oftrees lassi�ed as devie d is yd. The number of trees lassi�ed as devie d1 andwhih orrespond in reality to the devie d2 is zd2d1The sensitivity of a devie type d represents the perentage of the orre-sponding trees whih are orretly identi�ed:
sens(d) = zdd/xd (12)RR n° 6995



12 J. François, H. Abdelnur, R. State, O. FestorThe spei�ity of a devie d represents the perentage of trees whih arelabelled as d and whih are really of this type.
spec(d) = zdd/yd (13)The overall metri, designated �ngerprinting auray in this paper, orre-sponds to the perentage of trees orretly identi�ed. The orresponding formulais:

acc =
∑

d∈D

zdd/N_test (14)The mutual information oe�ient (IC) is a ombination of entropies usingthe following distribution: X = xi/N_test, Y = yi/N_test, Z = zij/N_test.It is de�ned as:
IC =

H(X) + H(Y) − H(Z)

H(X)
(15)where H is the entropy funtion. This IC is a ratio between 0 and 1 and ismaximal for a perfet lassi�ation. It is very useful to ompare lassi�ationswith the same overall auray. In this ase, the ratio an be degraded wheneah lass is not well represented. For example, it is easy to obtain an aurayof 80% if 80% of data points are of the same type by assigning all of them to asingle lass. However, in this ase the information oe�ient will be 0.6 Experimental datasetsWe made extensive use of network traes from whih we ould extrat the SIPuser agent (devie type) in order to perform both the training and the testingour system. We assumed that our traes did not ontain maliious messages,where for instane an attaker spoofed the user agent �eld. Our implementationis based on the LIBSVM library [11℄.We used two kinds of datasets. The �rst was generated from our testbed om-posed of various end-user equipment inluding softphones like Twinkle or Ekigaand hardphones from the following brands: Ciso, Linksys, Snom or Thomson.The testbed also used servers suh as Asterisk and OpenSer/Ciso Call Man-ager. This dataset will be desribed as testbed dataset in the remainder ofthe paper. The other datasets designated operator datasets (T1 to T4) wereprovided by four real VoIP operators (about 45MB of traes were extrated).Most equipment is hardphones or SIP servers. The main di�erene between thetwo kinds of dataset is the network environment. The �rst haraterizes a loalnetwork, while the operator datasets apture tra� from devies that on-net from the Internet. This implies greater noise and longer delays, as shownin the table 1. We used these di�erent target environments intentionally in or-der to validate the robustness of our approah in noisy onditions. Obviously,the time delays are relevant when omparing di�erent datasets, but within onedataset, the �ngerprinting proess should be able to properly identify eah de-vie. Table 1 shows main harateristis of the datasets: the number of di�erentdevies, the number of messages, as well as the number of INVITE messages,whih indiates the number of VoIP alls made through the network. Althoughthe operator datasets are more omplete in terms of messages and devies,the number of INVITEs is quite low, indiating that most of the SIP sessionsINRIA



Behavioral and Temporal Fingerprinting 13Testbed T1 T2 T3 T4#devies 26 40 42 40 40#messages 18066 96033 95908 96073 96031#INVITE 3183 1861 1666 1464 1528#sessions 2686 30006 29775 30328 30063Avg #msgs/session 6.73 3.20 3.22 3.16 3.20Avg delay (se) 1.53 7.32 6.76 6.11 8.52Table 1: Experimental datasets statistisare not phone alls, but registration requests. This re�ets realisti SIP tra�,as all SIP user agents have to periodially send out a registration request inorder to maintain the binding between a SIP AOR (the generi and global iden-ti�er for a user) and the urrent IP address. Being able to �ngerprint deviesjust by looking at the registration messages is also important for devie levelauthentiation.Figure 4 highlights some of the di�erenes between the devies for thetestbed dataset and the �rst operator T1. Eah point in the �gure repre-sents one devie. We onsidered only messages emitted by the orrespondingdevie and we used a logarithmi sale. For the two datasets, the distribu-tion of messages per devie is obviously not uniform, re�eting reality beausesome devies are used more than others. Thus, this implies that the di�erenesbetween devies for the number of sessions and INVITE messages are similar.Additionally, the distribution ranges of the number of messages and the numberof sessions is greater for the operator T1 (�gure 4(b)). Hene, the di�erenesbetween devies are highlighted. For instane, one devie has only generatedone SIP session while another more than 10,000 as shown on the seond graphof �gure 4(b).Due to the di�erene in the average time delays, it seems possible to �nger-print devies based on suh piees of information. However, when these di�er-enes are however insigni�ant, additional information is needed. Our approahombines the temporal aspet with the behavioral aspet. For example, in �gure4(b), four or �ve groups of devies an be easily identi�ed just by omparing theaverage delays. Considering the dataset T1, the transition delays are generallyhigher than for testbed dataset and the median value is doubled. Moreover,many devies have not sent any INVITE message and so are not plotted on thegraph due to the logarithmi sale. The median value is also zero and so notplotted.7 testbed dataset resultsThe harateristis of the testbed dataset are depited in �gure 4(a) and intable 1. We used it to assess the auray of the behavioral and temporal �nger-printing. One objetive was to determine the impat of the di�erent parameterson these performane metris and tune them. These tuned parameters wouldthen be used on the larger operator datasets.We randomly seleted 40% of the sessions of eah devie to form the trainingset. The remainder (60%) represents the testing set. Eah experiments was runRR n° 6995
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Behavioral and Temporal Fingerprinting 157.1 Session-size treeWe �rst investigate the optimal session sizes for training. The test session-sizeis more important beause it shows how reative the system is. In the best ase,a session size of one implies the reognition of one devie with only one session.Seondly, we look at the relationship between testing session size and trainingsession size.Table 2 provides a short summary of this data. The shading key simplyhighlights the main observations onerning �ngerprinting auray. Our teh-nique annot be applied to detet a devie with only one session (�rst olumnis very pale). The darkest row orresponds to a train session-size of �ve. Thetraining proess does not need both huge trees and many sessions beause thegreater the session size is, the more neessary the sessions. Using a trainingsession size of �ve and a testing session size of ten, the maximal auray (∼90%) is obtained. Subsequent experiments assume this optimal on�guration.It an be seen that, even if our tehnique is not designed for single session de-vie identi�ation, its results are very good. Using only ten sessions or even �vesessions, the orresponding auray is about 86%.Finally, the low standard deviation shown in brakets indiates that theauray is still about the same during the di�erent experiments espeially inthe best on�grations (dark gray).Regarding the average sensitivity appearing in table 3, the optimal on�gu-ration is still the same and the orresponding auray is 65%. This relativelylow result is due mainly to some inorretly �ngerprinted devies. In fat, somedevies are poorly represented in the dataset as shown in �gure 4(a). For in-stane, a training session size of �ve and a training set of 40% of sessions resultsin a minimal number of ⌈5/0.4⌉ = 13, sessions whih is not the ase for sixdevies (�gure 4(a). Furthermore, this minimal value implies only one trainingtree and all learning lustering tehniques need more training data for e�ieny.The impat of training set size is studied in the next subsetion.Although omparing identially-sized trees seems more logial and probablymore e�ient, this experiment shows the reverse due primary to our omparisonfuntion, whih onsiders the various paths in the trees separately (see equations(8)-(11) ).7.2 Training set sizeAs it was previously mentioned, the �ngerprinting auray per devie is muha�eted by underrepresented devies. We assess the minimal training trees perdevie apable of ahieving good results. This number varies from 1 to 20 in�gure 5. Firstly, if there are at least two trees for eah devie, the auray ismore than 80% in most ases. Thus, a training session size of 5 implies at least
5× 2 = 10 sessions for the training proess, whih is reasonable. Going further,the auray is lose to 90% for a minimal training set size equals eight.7.3 E�et of the α parameterThe parameter α is introdued in formula (11), and has a potential impat on�ngerprinting auray, sine it impats the average delay weight. The higher αis, the more important are small delay di�erenes. Figure 6 highlights the impatRR n° 6995



16 J. François, H. Abdelnur, R. State, O. Festor
Trainingsessionsize Testing session size1 5 10 20 401 0.682 0.819 0.830 0.805 0.745(0.009) (0.013) (0.013) (0.031) (0.034)5 0.469 0.858 0.905 0.883 0.800(0.028) (0.013) (0.011) (0.025) (0.035)10 0.376 0.809 0.894 0.873 0.819(0.044) (0.011) (0.013) (0.021) (0.035)20 0.272 0.656 0.821 0.864 0.837(0.028) (0.028) (0.015) (0.015) (0.012)40 0.221 0.469 0.627 0.764 0.762(0.027) (0.026) (0.030) (0.037) (0.038)

< 50% 50-70% 70-80% 80-85% 85-90% ≥ 90%Table 2: testbed dataset: Average �ngerprinting auray (standard deviation is putin brakets)
Trainingsessionsize Testing session size1 5 10 20 401 0.504 0.542 0.553 0.535 0.529(0.011) (0.034) (0.032) (0.044) (0.043)5 0.294 0.605 0.647 0.648 0.580(0.026) (0.035) (0.035) (0.047) (0.045)10 0.224 0.550 0.625 0.636 0.599(0.028) (0.017) (0.023) (0.024) (0.047)20 0.145 0.452 0.572 0.615 0.622(0.021) (0.050) (0.030) (0.045) (0.027)40 0.109 0.316 0.399 0.505 0.522(0.028) (0.030) (0.032) (0.050) (0.038)

< 30% 30-40% 40-50% 50-55% 55-60% ≥ 60%Table 3: testbed dataset: Average sensitivity (standard deviation is put in brakets)
INRIA
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18 J. François, H. Abdelnur, R. State, O. Festor8 Global resultsWe will onsider a train session-size of �ve and a test-session of ten beausethis on�guration previously gave the best results. Table 2 gives all statistisand results. The initial rows are related to dataset statistis. Considering thetestbed dataset, even when more sessions are seleted for the testing proess,the number of testing trees is lower due to a higher test session-size. Eah ex-periment is performed three times for the operator datasets and ten timesfor the testbed dataset. Exept for the number of trees, whih is �xed forall experiments, the average values are given, with the standard deviation inbrakets. For the operator datasets, only 10% of sessions are used for thetraining stage. It is important to note that the standard deviation of maximaland average heights and ardinality is high. This shows that our experimentsover many on�gurations. At the same time, the lassi�ation results in thelower part of the table are stable, as highlighted by a low standard deviation,demonstrating that our �ngerprinting approah is suited to many distint on-�gurations. Obviously, the TR-FSMs of the operator datasets are higherand bigger beause the datasets are more omplete.Considering the operators, the overall auray reahes about 86%, whihis lower than the testbed dataset (91%), due prinipally to additional noiseon Internet. Moreover, the mutual information oe�ient (IC) for the testbeddataset is very high, indiating that the high auray is not due an over-represented devie. However, this oe�ient is lower for the operator datasetsbeause some devies are learly present ingreater numbers than others, as high-lighted in 4(b). One again, for several devies, the number of sessions is toolow to have omplete training sets and so the average sensitivity is onentratedbetween 45% and 58%. However, the spei�ity is always high, meaning thatthe mislassi�ed trees are well-sattered among the di�erent devies.
9 Related workNetwork and servie �ngerprinting is a ommon task that is often used by at-takers to design e�ient attaks. However, it is also a useful and legitimatetool for seurity assessment, penetration testing and monitoring the diversityof hardware and software on the network. The key assumption is that subtledi�erenes due to development hoies and/or inomplete spei�ation an betraed bak the spei� devie/protool stak [12℄. There are two main lassesof �ngerprinting sheme: ative and passive. Passive �ngerprinting monitorsnetwork tra� without any interation. The most e�ient tool for this purposeis p0f [2℄, whih uses a set of signatures to identify the operating system thatgenerated a TCP paket. Eah signature is based on the spei� values in parti-ular TCP/IP header �elds. In ontrast, ative �ngerprinting generates spei�requests direted to a devie and monitors the responses. For instane, [13℄implements this sheme in order to detet the operating system and servie ver-sioning of a remote devie. A related work is [14℄, whih desribes ative probingand proposes a mehanism to automatially explore and selet the right requeststo make. These requests an themselves onsidered as �ngerprints themselves.INRIA
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Metri Testbed T1 T2 T3 T4#Training trees 440 1223 1217 1237 1224#Testing trees 332 5409 5367 5471 5423Maxheight 71.95 464.67 476.33 420.33 431.33(32.03) (41.35) (38.58) (30.56) (0.94)Minheight 1.9 1.00 1.00 1.00 1.00(0.30) (0.00) (0.00) (0.00) (0.00)Avgheight 9.53 8.80 8.85 8.70 9.05(2.13) (1.53) (1.89) (1.73) (1.38)Maxard 89.00 492.67 491.17 540.84 464.84(35.72) (44.68) (47.65) (157.00) (21.52)Minard 3.95 2.67 2.00 2.00 3.00(1.56) (0.47) (0.00) (0.00) (0.00)Avgard 18.97 12.93 12.94 12.85 13.23(4.69) (2.68) (3.09) (2.98) (2.56)Auray 0.91 0.81 0.86 0.85 0.83(0.011) (0.004) (0.001) (0.002) (0.004)Sensitivity 0.64 0.53 0.58 0.54 0.43(0.030) (0.019) (0.026) (0.012) (0.015)Spei�ity 0.91 0.79 0.81 0.77 0.77(0.035) (0.001) (0.025) (0.028) (0.028)IC 0.87 0.64 0.65 0.65 0.63(0.012) (0.001) (0.001) (0.003) (0.004)Table 4: Experimental datasets results (α = 1000, test session-size = 10, train session-size = 5). Average values given and standard deviations in brakets
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20 J. François, H. Abdelnur, R. State, O. FestorFingerprinting might have also another interpretations: for instane [15℄ and[16℄ fous on the identi�ation on the �ow types, unlike our method whih aimsto distinguish spei� implementation of a protool.The �ngerprinting of SIP devies has already been addressed in [17, 18, 8℄.However all these works onsider that it is possible to extrat spei� SIP �elds.We have addressed a somewhat related topi in [19℄, where we looked at theidenti�ation of the di�erent message types used by an unknown protool andwere able to build up the traking state mahines from network traes. Thatapproah an serve to build TR-FSMs for an unknown protool without anydomain-spei� knowledge, espeially of the grammar of the protool. Seondly,we have not until now onsidered both behavioral and temporal aspets of the�ngerprinting task at the same time. Support vetor mahines have been alreadyproposed in the ontext of network seurity monitoring and intrusion detetion.For instane, [20℄ addresses the issue of SVMs in intrusion detetion approahes,while our own previous work [21℄ showed a VoIP-spei� appliation for SVMs.None of the previous related work addressed the onstrution of time basedbehavioral �ngerprints.Constrution of the state mahine of a protool from a set of examples hasbeen studied in the past. Although known to be NP omplete (see [22℄,[23℄ and[24℄ for good overviews on this topi), the existing heuristis for this task it arebased on building tree representations for the underlying �nite state mahine.In our approah we do not prune the tree and, although the �nal tree repre-sentation is dependent on the order in whih we onstruted the tree, we arguethat the resulting substrees have good disriminative features. We developed alassi�ation method based on tree kernels in order to take into aount the pe-uliar nature of the input spae. Tree kernels for support vetor mahines havereently been introdued in [25℄, [26℄, [27℄ and allow the use of substrutures ofthe original sets as features. Our approah extends this onept in order to beappliable to the TR-FSMs we de�ned. In onsequene, a new valid kernel isproposed in this paper.10 ConlusionIn this paper, we have addressed the problem of �ngerprinting devies and/orimplementation staks. Our approah is based on the analysis of temporal andstate-mahine-indued features. We introdued the TR-FSM, a tree-struturedparameterized �nite state mahine having time-annotated edges. A TR-FSMrepresents a �ngerprint for devie/stak. Several suh �ngerprints are assoi-ated with a devie. We propose a supervised learning method, where supportvetor mahines use kernel funtions de�ned over the spae of TR-FSMs. Wevalidated our approah using SIP as a target protool. We will ontinue thiswork in two main diretions. Firstly, we will look at other protools � forinstane wireless protools � and assess the operational appliability in thissenario. This would for instane allow the identi�ation of rogue aess pointswithin a large wireless aess infrastruture. A seond researh diretion on-sists of de�ning other kernel funtions spei� to the TR-FSMs that allow themodeling of the probability distribution of transition times at eah edge. Thiswill leverage not only the average transition time for one edge, but also theunderlying probability distribution. INRIA
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