M. Astorino, F. Chouly, and F. Fernandez, An added-mass free semi-implicit coupling scheme for fluid???structure interaction, Comptes Rendus Mathematique, vol.347, issue.1-2, pp.99-104, 2009.
DOI : 10.1016/j.crma.2008.11.003

URL : https://hal.archives-ouvertes.fr/inria-00542751

S. Badia and R. Codina, Convergence analysis of the FEM approximation of the first order projection method for incompressible flows with and without the inf-sup condition, Numerische Mathematik, vol.3, issue.4, pp.533-557, 2007.
DOI : 10.1007/s00211-007-0099-5

S. Badia, F. Nobile, and C. Vergara, Fluid???structure partitioned procedures based on Robin transmission conditions, Journal of Computational Physics, vol.227, issue.14, pp.7027-7051, 2008.
DOI : 10.1016/j.jcp.2008.04.006

S. Badia, A. Quaini, and A. Quarteroni, Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction, SIAM Journal on Scientific Computing, vol.30, issue.4, pp.1778-1805, 2008.
DOI : 10.1137/070680497

F. and B. Belgacem, The Mortar finite element method with Lagrange multipliers, Numerische Mathematik, vol.84, issue.2, pp.173-197, 1999.
DOI : 10.1007/s002110050468

F. , B. Belgacem, and Y. Maday, The mortar element method for three-dimensional finite elements. RAIRO Modél, Math. Anal. Numér, vol.31, issue.2, pp.289-302, 1997.

C. Bernardi, Y. Maday, and A. T. Patera, Domain decomposition by the mortar element method In Asymptotic and numerical methods for partial differential equations with critical parameters, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, vol.384, pp.269-286, 1992.

C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, Nonlinear partial differential equations and their applications.Colì ege de France Seminar, pp.13-51, 1989.

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, Revue fran??aise d'automatique, informatique, recherche op??rationnelle. Analyse num??rique, vol.8, issue.R2, pp.129-151, 1974.
DOI : 10.1051/m2an/197408R201291

F. Brezzi and M. Fortan, Mixed and hybrid finite element methods, 1991.
DOI : 10.1007/978-1-4612-3172-1

E. Burman and M. A. Fernández, Stabilization of explicit coupling in fluidstructure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg, vol.198, pp.5-8766, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00247409

P. Causin, J. Gerbeau, and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid???structure problems, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.42-44, pp.42-444506, 2005.
DOI : 10.1016/j.cma.2004.12.005

URL : https://hal.archives-ouvertes.fr/hal-00695954

A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation, vol.22, issue.104, pp.745-762, 1968.
DOI : 10.1090/S0025-5718-1968-0242392-2

A. J. Chorin, On the convergence of discrete approximations to the Navier-Stokes equations, Mathematics of Computation, vol.23, issue.106, pp.341-353, 1969.
DOI : 10.1090/S0025-5718-1969-0242393-5

Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee, Analysis of a linear fluidstructure interaction problem, Disc. Cont. Dyn. Sys, vol.9, issue.3, pp.633-650, 2003.

A. Ern and J. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol.159, 2004.
DOI : 10.1007/978-1-4757-4355-5

M. A. Fernández and M. Moubachir, Numerical simulation of fluidstructure systems via Newton's method with exact Jacobians, 4 th European Congress on Computational Methods in Applied Sciences and Engineering, 2004.

M. A. Fernández, J. Gerbeau, and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, International Journal for Numerical Methods in Engineering, vol.9, issue.4, pp.794-821, 2007.
DOI : 10.1002/nme.1792

C. Foerster, W. A. Wall, and E. Ramm, The artificial added mass effect in sequential staggered fluid-structure interaction algorithms, Prooceedings European Conference on Computational Fluid Dynamics ECCOMAS CFD, 2006.

L. Formaggia, A. Quarteroni, and A. Veneziani, of Modeling, Simulation and Applications, Cardiovascular Mathematics. Modeling and simulation of the circulatory system, 2009.

J. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.37, issue.4, pp.631-648, 2003.
DOI : 10.1051/m2an:2003049

URL : https://hal.archives-ouvertes.fr/inria-00071895

R. Glowinski, Finite element methods for incompressible viscous flow, volume IX of Handbook of Numerical Analysis, 2003.

C. Grandmont, Analyse mathématiques et numérique de quelquesprobì emes d'interaction fluid-structure, 1998.

C. Grandmont and Y. Maday, Existence for an Unsteady Fluid-Structure Interaction Problem, ESAIM: Mathematical Modelling and Numerical Analysis, vol.34, issue.3, pp.609-636, 2000.
DOI : 10.1051/m2an:2000159

URL : http://archive.numdam.org/article/M2AN_2000__34_3_609_0.pdf

J. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-476011, 2006.
DOI : 10.1016/j.cma.2005.10.010

J. Guermond and L. Quartapelle, On stability and convergence of projection methods based on pressure Poisson equation, International Journal for Numerical Methods in Fluids, vol.95, issue.9, pp.1039-1053, 1998.
DOI : 10.1002/(SICI)1097-0363(19980515)26:9<1039::AID-FLD675>3.0.CO;2-U

J. Guermond and L. Quartapelle, On the approximation of the unsteady Navier-Stokes equations by finite element projection methods, Numerische Mathematik, vol.80, issue.2, pp.207-238, 1998.
DOI : 10.1007/s002110050366

G. Guidoboni, R. Glowinski, N. Cavallini, and S. Canic, Stable loosely-coupled-type algorithm for fluid???structure interaction in blood flow, Journal of Computational Physics, vol.228, issue.18, pp.6916-6937, 2009.
DOI : 10.1016/j.jcp.2009.06.007

F. Hecht, O. Pironneau, A. L. Hyaric, and K. Ohtsuka, FreeFem++ v. 2.11. User's Manual

J. G. Heywood and R. Rannacher, Finite-Element Approximation of the Nonstationary Navier???Stokes Problem. Part IV: Error Analysis for Second-Order Time Discretization, SIAM Journal on Numerical Analysis, vol.27, issue.2, pp.353-384, 1990.
DOI : 10.1137/0727022

P. , L. Tallec, and S. Mani, Numerical analysis of a linearised fluid-structure interaction problem, Numer. Math, vol.87, issue.2, pp.317-354, 2000.

J. Lions, Quelques méthodes de résolution desprobì emes aux limites non linéaires. Dunod, 1969.

D. P. Mok, W. A. Wall, and E. Ramm, Accelerated iterative substructuring schemes for instationary fluid-structure interaction, Computational Fluid and Solid Mechanics, pp.1325-1328, 2001.
DOI : 10.1016/B978-008043944-0/50907-0

A. Quaini and A. Quarteroni, A SEMI-IMPLICIT APPROACH FOR FLUID-STRUCTURE INTERACTION BASED ON AN ALGEBRAIC FRACTIONAL STEP METHOD, Mathematical Models and Methods in Applied Sciences, vol.17, issue.06, pp.957-983, 2007.
DOI : 10.1142/S0218202507002170

A. Quarteroni, F. Saleri, and A. Veneziani, Factorization methods for the numerical approximation of Navier???Stokes equations, Computer Methods in Applied Mechanics and Engineering, vol.188, issue.1-3, pp.1-3505, 2000.
DOI : 10.1016/S0045-7825(99)00192-9

R. Rannacher, On chorin's projection method for the incompressible navier-stokes equations, Lecture Notes in Mathematics, vol.33, pp.167-183, 1991.
DOI : 10.1016/0045-7825(86)90025-3

F. Saleri and A. Veneziani, Pressure Correction Algebraic Splitting Methods for the Incompressible Navier--Stokes Equations, SIAM Journal on Numerical Analysis, vol.43, issue.1, pp.174-194, 1999.
DOI : 10.1137/S0036142903435429

J. Shen, On Error Estimates of Projection Methods for Navier???Stokes Equations: First-Order Schemes, SIAM Journal on Numerical Analysis, vol.29, issue.1, pp.55-77, 1992.
DOI : 10.1137/0729004

T. Takahashi, Analyse deséquationsdeséquations modélisant le mouvement des systémes couplant des solides rigides et des fluides visqueux, 2002.

R. Temam, Une méthode d'approximation de la solution deséquationsdeséquations de Navier-Stokes, Bull. Soc. Math. France, vol.96, pp.115-152, 1968.

O. Interface, 12 3.2.1 Pointwise matching, p.12