Explicit Runge-Kutta Residual Distribution schemes for Time Dependent Problems: second order case

Mario Ricchiuto 1, 2 Remi Abgrall 1, 2
1 BACCHUS - Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems
Inria Bordeaux - Sud-Ouest, UB - Université de Bordeaux, CNRS - Centre National de la Recherche Scientifique : UMR5800
Abstract : In this paper we construct spatially consistent second order explicit discretizations for time dependent hyperbolic problems, starting from a given Residual Distribution (RD) discrete approximation of the steady operator. We explore the properties of the RD mass matrices necessary to achieve consistency in space, and finally show how to make use of second order mass lumping to obtain second order explicit schemes. The discussion is particularly relevant for schemes of the residual distribution type which we will use for all our numerical experiments. However, similar ideas can be used in the context of residual based finite volume discretizations.
Type de document :
Rapport
[Research Report] RR-6998, INRIA. 2009
Liste complète des métadonnées

https://hal.inria.fr/inria-00406958
Contributeur : Mario Ricchiuto <>
Soumis le : samedi 25 juillet 2009 - 01:41:30
Dernière modification le : jeudi 11 janvier 2018 - 06:22:35
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 17:14:59

Fichier

RR-6998.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00406958, version 3

Collections

Citation

Mario Ricchiuto, Remi Abgrall. Explicit Runge-Kutta Residual Distribution schemes for Time Dependent Problems: second order case. [Research Report] RR-6998, INRIA. 2009. 〈inria-00406958v3〉

Partager

Métriques

Consultations de la notice

516

Téléchargements de fichiers

159