Skip to Main content Skip to Navigation
Journal articles

Action Recognition Using a Bio-Inspired Feedforward Spiking Network

Maria-Jose Escobar 1 Guillaume Masson 2 Thierry Viéville 3 Pierre Kornprobst 1
1 ODYSSEE - Computer and biological vision
DI-ENS - Département d'informatique de l'École normale supérieure, CRISAM - Inria Sophia Antipolis - Méditerranée , ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, ENPC - École des Ponts ParisTech
3 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We propose a bio-inspired feedforward spiking network modeling two brain areas dedicated to motion (V1 and MT), and we show how the spiking output can be exploited in a computer vision application: action recognition. In order to analyze spike trains, we consider two characteristics of the neural code: mean firing rate of each neuron and synchrony between neurons. Interestingly, we show that they carry some relevant information for the action recognition application. We compare our results to Jhuang et al. (Proceedings of the 11th international conference on computer vision, pp. 1–8, 2007) on the Weizmann database. As a conclusion, we are convinced that spiking networks represent a powerful alternative framework for real vision applications that will benefit from recent advances in computational neuroscience.
Document type :
Journal articles
Complete list of metadata

https://hal.inria.fr/inria-00407903
Contributor : Thierry Viéville <>
Submitted on : Monday, July 27, 2009 - 7:11:42 PM
Last modification on : Thursday, July 1, 2021 - 5:58:02 PM

Identifiers

  • HAL Id : inria-00407903, version 1

Citation

Maria-Jose Escobar, Guillaume Masson, Thierry Viéville, Pierre Kornprobst. Action Recognition Using a Bio-Inspired Feedforward Spiking Network. International Journal of Computer Vision, Springer Verlag, 2009, 82 (3), pp.284-301. ⟨inria-00407903⟩

Share

Metrics

Record views

626