Overview of facts and issues about neural coding by spikes

Bruno Cessac 1, 2 Hélène Paugam-Moisy 3 Thierry Viéville 4
CRISAM - Inria Sophia Antipolis - Méditerranée , INRIA Rocquencourt, ENS Paris - École normale supérieure - Paris, UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR8548
3 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
4 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In the present overview, our wish is to demystify some aspects of coding with spike-timing, through a simple review of well-understood technical facts regarding spike coding. Our goal is a better understanding of the extent to which computing and modeling with spiking neuron networks might be biologically plausible and computationally efficient. We intentionally restrict ourselves to a deterministic implementation of spiking neuron networks and we consider that the dynamics of a network is defined by a non-stochastic mapping. By staying in this rather simple framework, we are able to propose results, formula and concrete numerical values, on several topics: (i) general time constraints, (ii) links between continuous signals and spike trains, (iii) spiking neuron networks parameter adjustment. Beside an argued review of several facts and issues about neural coding by spikes, we propose new results, such as a numerical evaluation of the most critical temporal variables that schedule the progress of realistic spike trains. When implementing spiking neuron networks, for biological simulation or computational purpose, it is important to take into account the indisputable facts here unfolded. This precaution could prevent one from implementing mechanisms that would be meaningless relative to obvious time constraints, or from artificially introducing spikes when continuous calculations would be sufficient and more simple. It is also pointed out that implementing a large-scale spiking neuron network is finally a simple task.
Type de document :
Article dans une revue
Journal of Physiology - Paris, Elsevier, 2010, 104 (1-2), pp.5-18. 〈10.1016/j.jphysparis.2009.11.002〉
Liste complète des métadonnées

Contributeur : Thierry Viéville <>
Soumis le : lundi 27 juillet 2009 - 19:56:03
Dernière modification le : vendredi 12 janvier 2018 - 01:50:25



Bruno Cessac, Hélène Paugam-Moisy, Thierry Viéville. Overview of facts and issues about neural coding by spikes. Journal of Physiology - Paris, Elsevier, 2010, 104 (1-2), pp.5-18. 〈10.1016/j.jphysparis.2009.11.002〉. 〈inria-00407915〉



Consultations de la notice