INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Implementation of Bourbaki’s Elements of Mathematics in Coq:
 Part One
 Theory of Sets

José Grimm

$\mathrm{N}^{\circ} 6999$

December 2009

Implementation of Bourbaki's Elements of Mathematics in Coq: Part One Theory of Sets

José Grimm*
Domaine 1 - Mathématiques appliquées, calcul et simulation
Équipe-Projet Apics
Rapport de recherche nº 6999 - December 2009 - 205 pages

Abstract

We believe that it is possible to put the whole work of Bourbaki into a computer. One of the objectives of the Gaia project concerns homological algebra (theory as well as algorithms); in a first step we want to implement all nine chapters of the book Algebra. But this requires a theory of sets (with axiom of choice, etc.) more powerful than what is provided by Ensembles; we have chosen the work of Carlos Simpson as basis. This reports lists and comments all definitions and theorems of the Chapter "Theory of Sets". The code (including almost all exercises) is available on the Web, under http://www-sop.inria.fr/apics/gaia.

Version one was relaesed in July 2009, version 2 in December 2009. The are small differences, marked in footnotes.

Key-words: Gaia, Coq, Bourbaki, Formal Mathematics, Proofs, Sets

Work done in collaboration with Alban Quadrat, based on previous work of Carlos Simpson (CNRS, University of Nice-Sophia Antipolis)

* Email: Jose.Grimm@sophia.inria.fr

Implémentation des Éléments de mathématiques de Bourbaki en
 Coq,

 partie 1

 partie 1
 Théorie des ensembles

Résumé: Nous pensons qu'il est possible de mettre dans un ordinateur l'ensemble de l'œuvre de Bourbaki. L'un des objectifs du projet Gaia concerne l'algèbre homologique (théorie et algorithmes); dans une première étape nous voulons implémenter les neuf chapitres du livre Algèbre. Au préalable, il faut implémenter la théorie des ensembles. Nous utilisons l'Assistant de Preuve Coq; les choix fondamentaux et axiomes sont ceux proposées par Carlos Simpson. Ce rapport liste et commente toutes les définitions et théorèmes du Chapitre théorie des ensembles. Presque tous les exercises ont été résolus. Le code est disponible sur le site Web http://www-sop.inria.fr/apics/gaia.

Mots-clés: Gaia, Coq, Bourbaki, mathématiques formelles, preuves, ensembles

Chapter 1

Introduction

1.1 Objectives

Our objective (it will be called the Bourbaki Project in what follows) is to show that it is possible to implement the work of N. Bourbaki, "Éléments de Mathématiques" [3], into a computer, and we have chosen the Coq Proof Assistant, see [4, 1]. All references are given to the English version "Elements of Mathematics" [2], which is a translation of the French version (the only major difference is that Bourbaki uses an axiom for the ordered pair in the English version and a theorem in the French one). We start with the first book: theory of sets. It is divided into four chapters, the first one describes formal mathematics (logical connectors, quantifiers, axioms, theorems). Chapters II and III form the basis of the theory; they define sets, unions, intersections, functions, products, equivalences, orders, integers, cardinals, limits. The last chapter describes structures.

An example of structure is the notion of real vector space: it is defined on a set E, uses the set \mathbb{R} of real numbers as auxiliary set, has some characterization (there are two laws on E , a zero, and a action of \mathbb{R} over E), and has an axiom (the properties of the the laws, the action, the zero, etc.). A complete example of a structure is the order; given a set A, we have as characterization $s \in \mathfrak{P}(\mathrm{~A} \times \mathrm{A})$ and the axiom " $s \circ s=s$ and $s \cap s^{-1}=\Delta_{\mathrm{A}}$ ". We shall see in the second part of this report that an ordering satisfies this axiom, but it not clear if this kind of construction is adapted to more complicated structure (for instance a left module on a ring). Given two sets A and A^{\prime}, with orderings s and s^{\prime}, we can define $\sigma\left(\mathrm{A}, \mathrm{A}^{\prime}, s, s^{\prime}\right)$, the set of increasing functions from A to A^{\prime}. An element of this set is called a σ-morphism. In our implementation, the "set of functions f such that ..." does not exists; we may consider the set of graphs of functions (this is well-defined), but we can also take another position: we really need σ to be a set if we try to do non-trivial set operations on it, for instance if we want to define a bijection between σ and σ^{\prime}; these are non-obvious problems, dealt with by the theory of categories. There is however another practical problem; Bourbaki very often says: let E be an ordered set; this is a short-hand for a pair (A, s). Consider now a monoid ($\mathrm{A},+$). Constructing an ordered monoid is trivial: the characterization is the product of the characterizations, and the axiom is the conjunction of the axioms. The ordered monoid could be (A, $(s,+)$). If f is a morphism for s, and $u \in \mathrm{~A}$, then the mapping $x \mapsto f(x+u)$ is a morphism for s, provided that + is compatible with s. If we want to convert this into a theorem in Coq, the easiest solution is to define an object X equivalent to $(\mathrm{A},(s,+))$, a way to extract $\mathrm{X}^{\prime}=(\mathrm{A}, s)$ and $\mathrm{X}^{\prime \prime}=(\mathrm{A},+)$ from X , an operation s on A obtained from X or X^{\prime}, and change the definition of σ : it should depend on X^{\prime} rather than on A and s. The compatibility condition is then a property of $\mathrm{X}, \sigma(\mathrm{X}, \mathrm{Y})$ and $\sigma\left(\mathrm{X}^{\prime}, \mathrm{Y}\right)$ are essentially the same objects, if $f \in \sigma(\mathrm{X}, \mathrm{Y})$ we can con-
sider $f^{\prime}=x \mapsto f(x+u)$, and show $f^{\prime} \in \sigma(\mathrm{X}, \mathrm{Y})$. From this we can deduce the mapping from $\sigma\left(\mathrm{X}^{\prime}, \mathrm{Y}\right)$ into $\sigma\left(\mathrm{X}^{\prime}, \mathrm{Y}\right)$ associated to $f \mapsto f^{\prime}$.

1.2 Background

We started with the work of Carlos Simpson ${ }^{1}$ who has implemented the Gabriel-Zisman localization of categories in a sequence of files: set.v, func.v, ord.v, comb.v, cat.v, and gz.v. Only the first three files in this list are useful for our project. The file ord.z contains a lot of interesting material, but if we want to closely follow Bourbaki, it is better to restart everything from scratch. The file func. v contains a lot of interesting constructions and theorems, that can be useful when dealing with categories. For instance, it allows us to define morphisms on the category of left modules over a ring. The previous discussion about structures and morphism explains why only half of this file is used.

This report is divided in two parts. The first part deals with implementation of Chapter II, "Theory of sets", and the second part with chapter III, "Ordered sets, cardinals; integers" of [2] Each of the six sections of Bourbaki gives a chapter in this report (we use the same titles as in Bourbaki) but we start with the description of the two files set.v and func.v by Carlos Simpson (it is a sequence of modules). Their content covers most of Sections 1 and 2 ("Collectivizing relations" and "Ordered pairs").

1.3 Notations

Choosing tractable notations is a difficult task. We would like to follow the definitions of Bourbaki as closely as possible. For instance he defines the union of a family $\left(\mathrm{X}_{\mathrm{t}}\right)_{\mathrm{t} \in \mathrm{I}}\left(\mathrm{X}_{\mathrm{I}} \in \mathfrak{G}\right)$. We can easily replace lower Greek letters by their Latin equivalents (there is little difference between $\left(\mathrm{X}_{\mathrm{t}}\right)_{\mathrm{t} \in \mathrm{I}}$ and $\left.\left(\mathrm{X}_{i}\right)_{i \in \mathrm{I}}\right)$. We can replace these unreadable old German letters by more significant ones. We must also replace I by something else, because this is a reserved keyword in Coq (and in is reserved too). In the original version, C. Simpson reserved the letters A, B and E. Thus, a phrase like: let A and B be two subsets of a set E, and $I=A \times B$, all four identifiers are reserved letters in Simpson's framework. Note that, traditionally, French mathematicians use roman upright upper case letters and italics lower case letters for variables; constants like pr_{1} and Card use upright font. The set of integers is sometimes noted \mathbb{N}; but Bourbaki uses only \mathbf{N}.

Quantities named R, B, X, Y, and Z by Simpson have been renamed to Ro, Bo, Xo, Yo and Zo. Quantity A has been removed (it was a prefix version of \&). Quantity E has been renamed Bset: this is the type of a Bourbaki set. It will still be denoted by \mathscr{E} here. In our framework, the reserved single-letter identifiers are I J L O P Q S V W.

Coq reserves the letter I as a proof of True, the letter O as the integer 0 and the letter S for the function $n \mapsto n+1$ on integers. An ordered pair with values x and y is a term z that has two projections $\mathrm{pr}_{1} z=x$ and $\mathrm{pr}_{2} z=y$. The constructor is called bpair ${ }^{2}$ in Coq, and the destructors are called prl and pr2. We shall reserve the letters J for the constructor and P, Q for the destructors, so that $J(P z)(Q z)=z$ for all pairs z (see section 2.6 for details).

Bourbaki has section called "definition of a function by means of a term". An example would be $x \mapsto(x, x)(x \in \mathbb{N})$. This corresponds to the Coq expression fun x :nat $=>(x, x)$. Ac-

[^0]cording to the Coq documentation, the expression "defines the abstraction of the variable x, of type nat, over the term (x, x). It denotes a function of the variable x that evaluates to the expression (x, x) ". Bourbaki says "a mapping of A into B is a function f whose source is equal to A and whose target is equal to B ". The distinction between the terms function and mapping is subtle: there is a section called "sets of mappings of one set into another"; it could have been: "sets of functions whose source is equal to some given set and whose target is equal to some other given set". It is interesting to note that the term 'function' is used once one in the exercises to Chapter III, in a case where 'mapping' cannot be used because Bourbaki does not specify the set B.

In what follows, we shall use the term 'function' indifferently for S, or the mapping $n \mapsto$ $n+1$, or the abstraction $n=>S n$. Given a set A, we can consider the graph g of this mapping when n is restricted to A. This construction is so important that we reserve the letter L for it. Given a set B, if our mapping sends A to B, we can consider the (formal) function f associated to the mapping with source A and target B . We shall denote this by BL. These two objects f and g have the important property that, if n is in A, there is an m denoted by $f(n)$ or $g(n)$ such that $m=n+1$ (we have the additional property that $f(n)$ is in B). A short notation is required for the mapping from $(g, n) \mapsto g(n)$, or $(f, n) \mapsto f(n)$. We shall use the letters V and W respectively. In this document, we shall use standard notations, for instance pr_{1} and pr_{2} for P and Q , when they exist, calligraphic letters like \mathcal{V} or \mathscr{W} for some objects like V and W , and a slanted font like is_function for the general case. Note that $J x y$ is a Coq expression meaning the application of J to both arguments x and y .

There a possibility to change the Coq parser and pretty printer so that (x, y) is read as pair x y , and $\{\mathrm{x}: \mathrm{A} \mid \mathrm{P}\}$ is read as the set of all x in A satisfying the predicate P . We shall not use this feature here. In fact, these are standard notations in Coq for notions that are related but not exactly identical to ours.

1.4 Description of formal mathematics

Terms and relations. A mathematical theory \mathscr{T} is a collection of words over a finite alphabet formed of letters, logical signs and specific signs. Logical signs are $\square, \tau, \vee, \neg$ (the first two signs are specific to Bourbaki, the other ones, disjunction and negation, have their usual meaning). Specific signs are $=, \epsilon$, letters are $x, y, \mathrm{~A}, \mathrm{~A}^{\prime}, \mathrm{A}^{\prime \prime}, \mathrm{A}^{\prime \prime \prime}$, and "at any place in the text it is possible to introduce letters other than those which have appeared in previous arguments" [2. p. 15] (any number of prime signs is allowed; this is not in contradiction with the finiteness of the alphabet). An assembly is a sequence of signs and links. Some assemblies are well-formed according to some grammar rules. In Backus-Naur form they are:

Term := letter | $\boldsymbol{\tau}_{\text {letter }}$ (Relation) | Ssign Term ${ }_{1} \ldots$ Term $_{n}$
Relation $:=\neg$ Relation $\mid \vee$ Relation Relation | Rsign Term ${ }_{1} \ldots$ Term $_{n}$
Each sign has to be followed by the appropriate number of terms: \square takes none, ϵ and $=$ are followed by two signs, and one can extend Bourbaki to non-standard analysis[7] by introducing a specific sign ${ }^{\text {st }}$ of weight 1 qualifying the relation that follows to be standard. Each sign is substantific as \square (it yields a term) or relational as $=$ (it yields a relation).

We shall see below that $\tau_{x}(\mathrm{R})$ has to be interpreted as the expression where all occurrences of x in R are replaced by \square and linked to the τ. Parentheses are removed. This has one advantage: there is no x in $\tau_{x}(\mathrm{R})$, hence substitution rules become trivial. For instance, the function $x \mapsto x+y$ is constructed by using τ, it is identical to the function $z \mapsto z+y$. If we want to replace y by z, we get $x \mapsto x+z$, but not $z \mapsto z+z$. In Coq, the variable y appears
free in $x \mapsto x+y$, and the variable x appears bound in the same expression. Renaming bound variables is called α-conversion. Two α-convertible terms are considered equal in Coq.

The Appendix to Chapter I describes an algorithm that decides whether an assembly is a term, a relation, or is ill-formed. It works in two stages. In the first stage, links are ignored. A classical result in computer science is that there exists a program (called a parser) that recognizes all significant words (i.e., well-formed assemblies without links). We can associate a number to each sign (for instance 262 to 'a', 111 to ' $=$ ') and thus to each assembly (for instance, 262111262 to ' $\mathrm{a}=\mathrm{a}$ '). This will be called the Gödel number of the assembly, see [5] for an example. Two distinct assemblies have distinct Gödel numbers. The set of Gödel numbers is a recursively enumerable set. Given assemblies $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, etc, one can form the concatenation $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \ldots$. If each assembly is a significant word, there is a unique way to recover A_{i} from the concatenation, hence from the Gödel number of the concatenation.

A demonstrative text for Bourbaki is a sequence of assemblies $\mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{n}$, that contains a proof, which is a subsequence $\mathrm{A}_{1}^{\prime} \mathrm{A}_{2}^{\prime} \ldots \mathrm{A}_{m}^{\prime}$ of relations, where each A_{i}^{\prime} can be shown to be true by application of a basic derivation rule that uses only A_{j}^{\prime} for $j<i$. Each A_{i}^{\prime} is a theorem. We shall use a variant: a proof-pair is a sequence of relations $\mathrm{A}_{1}^{\prime} \mathrm{A}_{2}^{\prime} \ldots \mathrm{A}_{m}^{\prime}$ satisfying the same conditions as above, and a theorem is the last relation A_{m}^{\prime} in a proof-pair. If our basic rules are simple enough, the property of a number g to be the Gödel number of a proof-pair is primitive recursive. From this, one can deduce the existence of a true statement that has no proof (this is Gödel's Theorem).

An assembly A containing links is analyzed by using antecedents, which are assemblies of the form $\mathrm{\tau}_{x}(\mathrm{R})$ (where x is some variable) that are identical to A if x is substituted in R and links are added. The algorithm for deciding that an assembly with links is a term or a relation is rather complicated. Bourbaki gives some examples of assemblies with links: a link is a sequence of lines that join \square and τ. For large formulas, such a system is impracticable. We shall give later on an example of an assembly and say that there is a link between positions 5 and 9. This is an abuse of notation $\sqrt[3]{3}$. A formal way of introducing links could be to insert after each \square a given number of dashes, for instance n if the τ is the n-th of the left, and none if the \square is unlinked. For instance $\tau_{x}(y x)$ could be represented by $\tau y \square-$. Replacing y by $\tau_{z}(z z)$ is then non-trivial since the number of dashes has to be adapted, as in $\tau \tau \square-\square-\square--$. Formal mathematics in Bourbaki is so complicated that the \square symbol is, in reality, never used.

Denote by $(\boldsymbol{B} \mid \boldsymbol{x}) \boldsymbol{A}$ the assembly obtained by replacing \boldsymbol{x}, wherever it occurs in \boldsymbol{A}, by the assembly \boldsymbol{B}. Bourbaki has some criteria of substitutions, CS1, CS2, etc, that are rules about substitutions. For instance CS3 says that $\tau_{\boldsymbol{x}}(\boldsymbol{A})$ and $\tau_{\boldsymbol{x}^{\prime}}\left(\boldsymbol{A}^{\prime}\right)$ are identical if \boldsymbol{A}^{\prime} is $\left(\boldsymbol{x}^{\prime} \mid \boldsymbol{x}\right) \boldsymbol{A}$ provided that \boldsymbol{x}^{\prime} does not appear in \boldsymbol{A} (informally: since x does not appear in $\boldsymbol{\tau}_{x}(\mathrm{~A})$, the name of the variable x is irrelevant). Formative criteria CF1, CF2, etc. give rules about well-formedness of assemblies. For instance CF8 says that $(\boldsymbol{T} \mid \boldsymbol{x}) \boldsymbol{A}$ is a term or a relation whenever \boldsymbol{A} is a term or a relation, \boldsymbol{T} is a term, \boldsymbol{x} is a letter.

Abbreviations are allowed, so that $\vee \neg$ can be replaced by \Rightarrow, and $\neg \in$ can be replaced by \notin. Abbreviations may take arguments, for instance $\wedge A B$ is the same as $\neg \vee \neg A \neg B$. A term may appear more than once, for instance $\Longleftrightarrow A B$ is the same as $\wedge \Rightarrow A B \Longrightarrow B A$, and after expansion $\neg \vee \neg \vee \neg \mathrm{AB} \neg \vee \neg \mathrm{BA}$. The logical connectors \neg, \vee and \wedge are written $\sim, \backslash /$, and $/ \wedge$ in Coq (we shall use \& instead of \wedge, since it is easier to type). Note that in Coq, $A \rightarrow B$ is the type of a function from A to B but also means $A \Rightarrow B$. There is no limit on the number of abbreviations (Bourbaki invented \varnothing as a variant of \varnothing).

[^1]Starting with Section 2, Bourbaki switches to infix notation. For instance, whenever \boldsymbol{A} and \boldsymbol{B} are relations so is $\vee \neg \neg \vee \neg \boldsymbol{A} \neg \boldsymbol{B A}$, by virtue of CF5 and CF9. Using abbreviations, this relation can be written as $\Rightarrow \wedge \boldsymbol{A B A}$. The infix version is $(\boldsymbol{A}$ and $\boldsymbol{B}) \Longrightarrow \boldsymbol{A}$. In order to remove ambiguities, parentheses are required, but Bourbaki says: "Sometimes we shall leave out the brackets" [2, p. 24], in the example above three pairs of brackets are left out. In some cases Bourbaki writes $A \cup B \cup C$. This can be interpreted as $(A \cup B) \cup C$ or $A \cup(B \cup C)$. These are two distinct objects that happen to be equal: formally, the relation $(A \cup B) \cup C=A \cup(B \cup C)$ is true. Similarly $A \vee B \vee C$ is ambiguous, but it happens, according to $C 24$, that $(A \vee B) \vee C$ and $A \vee(B \vee C)$ are equivalent (formally: related by \Longleftrightarrow). In Coq, we use union2 as prefix notation for \cup, so we must chose between $\cup(\cup A B) C$ or $\cup A(\cup B C)$. Function calls are left-associative, and brackets are required where indicated. We use $\backslash /$ as infix notation for \vee, parentheses may be omitted, the operator is right associative.

Theorems and proofs. Each relation can be true or false. To say that P is false is the same as to say that $\neg \mathrm{P}$ is true. To say that P is either true or false is to say that $\mathrm{P} \vee \neg \mathrm{P}$ is true. A relation is true by assumption or deduction. A relation can be both true and false, case where the current theory is called contradictory (and useless, since every property is then true). There may be relations P for which it is impossible to deduce that P is true and it is also impossible to deduce that P is false (Gödel's theorem). A property can be independent of the assumptions. This means that it is impossible to deduce P or $\neg \mathrm{P}$; in other words, adding P or $\neg \mathrm{P}$ does not make the theory contradictory. An example is the axiom of foundation (see below), or the continuum hypothesis (every uncountable set contains a subset which has the power of the continuum).

Some relations are true by assumption; these are called axioms. An axiom scheme is a rule that produces axioms. The list of axioms and schemes used by Bourbaki are given at the end of the document. A true relation is called a Theorem (or Proposition, Lemma, Remark, etc). A conjecture is a relation believed to be true, for which no proof is currently found. As said above, in Bourbaki, a theorem is a relation with a proof, which consists of a sequence of true statements, the theorem is one of them, and each statement R in the sequence is either an axiom, follows by applications of rules (the axiom schemes) to previous statements, or there are two previous statements S and T before R, where T has the form $S \Longrightarrow R$.

It is very easy for a computer to check that an annotated proof is correct (provided that we use a parsable syntax); but a formal proof is in general huge. Example of formal proofs can be found in [5]; the theory used there is simpler than Bourbaki's, but contains arithmetics on integers. We give here a proof of $1+1=2$:

(1)	$\forall \mathrm{a}: \forall \mathrm{b}:(\mathrm{a}+\mathrm{Sb})=\mathrm{S}(\mathrm{a}+\mathrm{b})$	axiom 3
(2)	$\forall \mathrm{b}:(\mathrm{S} 0+\mathrm{Sb})=\mathrm{S}(\mathrm{S} 0+\mathrm{b})$	specification (S0 for a)
(3)	$(\mathrm{S} 0+\mathrm{S} 0)=\mathrm{S}(\mathrm{S} 0+0)$	specification (0 for b$)$
(4)	$\forall \mathrm{a}:(\mathrm{a}+0)=\mathrm{a}$	axiom 2
(5)	$(\mathrm{S} 0+0)=\mathrm{S} 0$	specification (S0 for a)
(6)	$\mathrm{S}(\mathrm{S} 0+0)=\mathrm{SS} 0$	add S
(7)	$(\mathrm{S} 0+\mathrm{S} 0)=\mathrm{SS} 0$	transitivity (lines 3,6)

The proof is formed of the statements in the second column; the annotations of the third column are not part of the formal proof. The line numbers can be used in the annotations. In Coq, the annotations are part of the proof. The principle is: a theorem is a function and applying the theorem means applying the function. For instance, transitivity of equality is a function trans_eq; in line (7) we apply it to two arguments, the statements of lines 3 and 6. The statement of line 6 is obtained by applying f_{-}equal with argument S to the statement
that precedes (the f_{-}equal theorem states that for every function f and equality $a=b$ we have $f(a)=f(b))$. In Coq, a proof is a tree, the advantage is that we do not need to worry about line numbers.

Bourbaki has over 60 criteria that help proving theorems. The first one says: if \boldsymbol{A} and $\boldsymbol{A} \Longrightarrow \boldsymbol{B}$ are theorems, then \boldsymbol{B} is a theorem. This is not a theorem, because it requires the fact that \boldsymbol{A} and \boldsymbol{B} are relations. On the other hand $x=x$ is a theorem (the first in the book). The difference is the following: if A and B are letters then $A \Longrightarrow B$ is not well-formed. Until the end of E.II.5, Bourbaki uses a special font as in $\boldsymbol{A} \Rightarrow \boldsymbol{B}$ to emphasize that \boldsymbol{A} and \boldsymbol{B} are to be replaced by something else.

Criterion Cl works as follows. If $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{n}$ and $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{m}$ are two proofs, if the first one contains A, if the second one contains $A \Longrightarrow B$, then

$$
\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{n}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{m}, \mathrm{~B}
$$

is a proof that contains B . Assume that we have two annotated proofs R_{i} and S_{j}, where A is R_{n} and $\mathrm{A} \Rightarrow \mathrm{B}$ is S_{m}. Each statement has a line number, and we can change these numbers so that they are all different (this is a kind of α-conversion). Let N and M be the line numbers of R_{n} and S_{m}. We get an annotated proof by choosing a line number for the last statement, and annotating it by: detachment N M (this is also known as syllogism, or Modus Ponens).

Criterion C6 says the following: assume $\boldsymbol{P} \Longrightarrow \boldsymbol{Q}$ and $\boldsymbol{Q} \Longrightarrow \boldsymbol{R}$. From axiom scheme S4, we get $(\boldsymbol{Q}=\boldsymbol{R}) \Longrightarrow((\boldsymbol{P} \Longrightarrow \boldsymbol{Q}) \Longrightarrow(\boldsymbol{P} \Longrightarrow \boldsymbol{R}))$. Applying Criterion C 1 gives $(\boldsymbol{P} \Longrightarrow \boldsymbol{Q}) \Longrightarrow$ $(\boldsymbol{P}=\boldsymbol{R})$. Applying it again gives $\boldsymbol{P} \Longrightarrow \boldsymbol{R}$. If $\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{n}$ and $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{m}$ are proofs of $\boldsymbol{P} \Longrightarrow \boldsymbol{Q}$ and $\boldsymbol{Q} \Longrightarrow \boldsymbol{R}$ then a proof of $\boldsymbol{P} \Longrightarrow \boldsymbol{R}$ is

$$
\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{n}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{m}, \mathrm{R}_{1}, \mathrm{R}_{2}, \ldots, \mathrm{R}_{n}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{m}, \mathrm{~A}_{4}, \mathrm{D}_{y}, \mathrm{D}_{y}
$$

Here A_{4} and D_{y} are to be replaced by the appropriate relation, or in the case of an annotated proof, by the appropriate annotation (for instance in the case of A_{4}, we must give the values of three arguments of the axiom scheme S 4 , in the case of detachment D_{y} we must give the position of the arguments of the syllogism in the proof tree).

There is a converse to C6. If we can deduce, from the statement that A is true, a proof of B , then $\mathrm{A} \Longrightarrow \mathrm{B}$ is true. This is called method of the auxiliary hypothesis. Almost all theorems we shall prove in Coq have this form.

Criterion C21 says that $\vee \neg \neg \vee \neg \boldsymbol{A} \neg \boldsymbol{B} \boldsymbol{A}$ is a theorem, whenever \boldsymbol{A} and \boldsymbol{B} are relations. We have already seen this assembly and showed that it is a relation. If we could quantify relations, the criterion could be converted into a theorem that says " $(\forall A)(\forall B)((A$ and $B) \Longrightarrow A)$ ". In Coq, we can quantify everything and our theorem is then:

```
example =
fun (A B : Prop) (H : A /\ B) => and_ind (fun (HO : A) (_ : B) => HO) H
    : forall A B : Prop, A /\ B -> A
```

This has the form "name = proof : value". The last line is the value of the theorem. The second line is the proof. As you can see, this is not just a sequence of statements with their justification, but function calls. It applies and_ind to f_{2} and H where f_{2} is a function of two arguments that returns the first one, and ignores the second (the proof of B). We show here the function:

```
and_ind =
fun A B P : Prop => and_rect (A:=A) (B:=B) (P:=P)
    : forall A B P : Prop, (A -> B -> P) -> A 八\ B -> P
Arguments A, B, P are implicit
```

According to this definition, and_ind takes three implicit arguments, named A, B and P, its value is a function that takes two arguments, a function f_{2} and a proof of $\mathrm{A} \wedge \mathrm{B}$. Here f_{2} is a function that maps A and B to P . The result is a proof of P . Arguments A, B and P are deduced from f_{2} and need not be given (on the second line you see expressions of the form ($\mathrm{A}:=\mathrm{A}$), this is because and_rect has three implicit arguments, that must be explicitly given). With our function f_{2}, P is the first argument hence A . As you can see, proofs in Coq are often hard to read. The important point is that Coq is a proof assistant: it is a system in which inventing a proof is easy. Here in an example.

Lemma example: forall A B, A $/ \backslash \mathrm{B} \rightarrow \mathrm{A}$. intros. induction H. exact H. Qed.

The proof is formed of three parts. We first say intros. This means: consider an environment in which A and B are propositions (very often, types are guessed by Coq), and $A \wedge B$ is true; we must show A. In this environment, everything has a name and H is the name of the assumption $\mathrm{A} \wedge \mathrm{B}$. Then we say induction H. This has as effect to remove H and replace it by all possible consequences (well, not all, since and_ind shows that there is one for each function f_{2}). The consequences are A and B , they are named as H and H 0 . The last step is exact H. This means that our goal is true, since it is the assumption H. We say Qed when the proof is complete.

If P and Q are propositions, one can show that $\neg \neg P \Rightarrow P,((P \Rightarrow Q) \Rightarrow P) \Rightarrow P, P \vee \neg P$, $\neg(\neg \mathrm{P} \wedge \neg \mathrm{Q}) \Rightarrow \mathrm{P} \vee \mathrm{Q}$ and $(\mathrm{P} \Rightarrow \mathrm{Q}) \Rightarrow(\neg \mathrm{P} \vee \mathrm{Q})$ are equivalent. These statements are unprovable in Coq. They are true in Bourbaki since the last statement is a tautology. In [5], there is the Double-tilde Rule that says that the string ' $\sim \sim$ ' can be deleted from any theorem, and can be inserted into any theorem provided that the resulting string is itself well-formed. We solve this problem by adding the first statement as axiom. Then all theorems of Bourbaki can be proved in Coq. There are still two difficulties: the first one concerns the status of τ (see below); the second concerns sets. Bourbaki says in the formalistic interpretation of what follows, the word "set" is to be considered as strictly synonymous with "term" [2, p. 65]. Recall that there are only two kinds of valid assemblies, namely terms and relations. We shall see in the next chapter how to implement sets in Coq. The standard library of Coq contains one implementation Ensembles in which a set is a relation. Our work matches Bourbaki better.

Quantified theories Bourbaki defines $\tau_{x}(\mathrm{R})$ as the construction obtained by replacing all x in R by \square, adding τ in front, and drawing a line between τ and this square. For instance $\tau \neg \neg \neg \in \tau \neg \neg \in \square \square \square$ with links $(0,10),(0,11)$ and $(5,9)$ is some term. It corresponds to: $\tau_{x}(\neg \neg \neg \in$ $\left.\tau_{y}(\neg \neg \in y x) x\right)$. The positions of the parentheses is fixed by the structure: \neg takes one argument, while \in takes two arguments. For the expression to make sense it is necessary that all \square related to τ_{y} are in scope of the parentheses. If we admit that the double negation of P is P and use infix notation, the previous term is equivalent to $\tau_{x}\left(\tau_{y}(y \in x) \notin x\right)$. This is the empty set.

Denote by $(\mathrm{T} \mid x) \mathrm{R}$ the expression R where all free occurrences of the letter x have been replaced by the term T. Paragraph 2.4.1 of [1] explains that this is a natural operation in Coq; the right amount of α-conversions are done so that free occurrences of variables in T are still free in all copies of T. For instance, if R is $(\exists z)(z=x)$, if we replace x by z, the result becomes $(\exists w)(w=z)$. These conversions are not needed in Bourbaki: there is no x in $\tau_{x}(\mathrm{R})$ and no z in $(\exists z)(z=x)$. Of course, if we want to simplify $(z \mid x)(\exists z)(z=x)$, we can replace it by $(z \mid x)(\exists w)(w=x)$ (thanks to rule CS8) then by $(\exists w)((z \mid x)(w=x))$ (thanks to rule CS9), then simplify as $(\exists w)(w=z)$.

Bourbaki defines $(\forall \boldsymbol{x}) \boldsymbol{R}$ as "not $((\exists \boldsymbol{x})$ not $\boldsymbol{R})$ ", whereas forall $x: T$, R is a Coq primitive, whose meaning is (generally) obvious; instead of T, any type can be given, it may be omitted if it is deducible via type inference. The expression $\left(\forall_{\boldsymbol{T}} \boldsymbol{x}\right) \boldsymbol{R}$ is defined in Bourbaki, similar to the Coq expression, but not used later on; we shall not use it here. The dual expression exists $x: T$, R is equivalent in Coq to $e x($ fun $x: T=>R)$. Here, $e x$ is an inductive object. If P is the argument, and if for some witness $x, \mathrm{P}(x)$ is true, then $e x P$ is defined. From this, we deduce that for some $x, \mathrm{P}(x)$ is true. Assume that $f: \mathrm{A} \rightarrow \mathrm{B}$ is a surjective function. This means that for each y in B there is an x in A that f maps to y. This does not mean that there is a g such that for all $y, f(g(y))=y$. The existence of g is related to the "axiom of choice".

Bourbaki defines $(\exists \boldsymbol{x}) \boldsymbol{R}$ as $\left(\tau_{\boldsymbol{x}}(\boldsymbol{R}) \mid \boldsymbol{x}\right) \boldsymbol{R}$. Write y instead of $\tau_{\boldsymbol{x}}(\boldsymbol{R})$. Our expression is $(y \mid \boldsymbol{x}) \boldsymbol{R}$. It does not contain the variable \boldsymbol{x}, since \boldsymbol{x} is not in y. If $(\exists \boldsymbol{x}) \boldsymbol{R}$ is true, then \boldsymbol{R} is true for at least one object, namely y. This object is explicit: we do not need to introduce a specific axiom of choice. Axiom scheme S 5 states the converse: if for some $\boldsymbol{T},(\boldsymbol{T} \mid \boldsymbol{x}) \boldsymbol{R}$ is true, then $(\exists \boldsymbol{x}) \boldsymbol{R}$ is true.

Let's give an example of a non-trivial rule. As noted in [5], it is possible to show, for each integer n, that $0+n=n$ (where addition is defined by $n+0=n$ and $n+S m=S(n+m)$), but it is impossible to prove $\forall n, 0+n=n$. The following induction principle is thus introduced: "Suppose u is a variable, and $\mathrm{X}\{u\}$ is a well-formed formula in which u occurs free. If both $\forall u:\langle\mathrm{X}\{u\} \supset \mathrm{X}\{\mathrm{S} u / u\}\rangle$ and $\mathrm{X}\{0 / u\}$ are theorems, then $\forall u: \mathrm{X}\{u\}$ is also a theorem."

Criterion C61 [2, p. 168] is the following: Let $\mathrm{R} \xi n \xi$ be a relation in a theory \mathscr{T} (where n is not a constant of \mathscr{T}). Suppose that the relation

$$
\mathrm{R}\} 0 \xi \text { and }(\forall n)((n \text { is an integer and } \mathrm{R} \xi n \xi) \Longrightarrow \mathrm{R} \xi n+1 \xi)
$$

is a theorem of \mathscr{T}. Under these conditions the relation

$$
(\forall n)((n \text { is an integer }) \Longrightarrow \mathrm{R} \xi n \xi) .
$$

is a theorem of \mathscr{T}.
The syntax is different, but the meaning is the same. This criterion is a consequence of the fact that a non-empty set of integers is well-ordered. In Coq, a consequence of the definition of integers is the following induction principle:

```
nat_ind =
fun P : nat -> Prop => nat_rect P
    forall P : nat -> Prop,
        P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n
```

Notes. A reference of the form E.II.4.2 refers to [2], Theory of Sets, Chapter 2, section 4, subsection 2 (properties of union and intersection).

The document gives no proofs, except for the exercises. In order to show how difficult some theorems are, the numbers of lines of the proof is sometimes indicated in a comment.

Some statistics: there are 171 lemmas in jset, 98 in jfunc, 424 in set2 (correspondences), 364 in set 3 and set 31 (union; intersection, products) and 257 in set 4 (equivalence relations) ${ }^{4}$.

[^2]
Chapter 2

Sets

This chapter describes the content of the file set1.v, that is an adaptation of the work of C. Simpson. It is formed of several modules, that will be commented one after the other. It implements the basis of the theory of sets; this is a logical theory (as described in the previous chapter) that contains a specific sign \in and some rules about its usage; we must define the Coq equivalent inc and the associated rules.

2.1 Module Axioms

Types. In Coq, each object has a type, for instance 0 is of type nat, and the type of nat is Set; the type of a boolean like True is Prop; the type of Set or Prop is Type. Our sets will be of type Bset, this is nothing else than Type. This is a choice made by C. Simpson, that has advantages and drawbacks. For instance True and nat can be considered as sets, but a function is not a set, and Coq refuses to consider it as a set. This means that we cannot define a set of functions.

Definition Bset:=Type.

Is element of. The last axiom of Bourbaki states that there exists an infinite set. It is equivalent to the existence of the set of natural numbers and will be discussed in the second part of this report. The other axioms, as well as axiom scheme S 8 , use the symbols $\in, \subset \operatorname{or~}^{\operatorname{Coll}}{ }_{x} R$, that are not defined in Coq. The notation $x \subset y$ is a short-hand for:

$$
(\forall z)((z \in x) \Longrightarrow(z \in y))
$$

If \boldsymbol{x} are \boldsymbol{y} are two distinct letters, and \boldsymbol{R} a relation that does not depend on \boldsymbol{y}, the relation

$$
(\exists y)(\forall \boldsymbol{x})((\boldsymbol{x} \in \boldsymbol{y}) \Longleftrightarrow \boldsymbol{R})
$$

is denoted by $\operatorname{Coll}_{\boldsymbol{x}} \boldsymbol{R}$, and read as: the relation \boldsymbol{R} is collectivizing in \boldsymbol{x}. The first axiom (axiom of extent) in Bourbaki says:

$$
(\forall x)(\forall y)((x \subset y) \text { and }(y \subset x)) \Longrightarrow(x=y)
$$

We can restate it as: if x and y are two sets, then $x=y$ if and only if $z \in x$ is equivalent to $z \in y$. As a consequence, if $\mathrm{R}(x)$ is collectivizing in x, there exists a unique set y such that $x \in y$ if and only if $\mathrm{R}(x)$ is true. It is denoted by $\{x, \mathrm{R}(x)\}$, or $\{x \mid \mathrm{R}(x)\}$ or $\mathscr{E}_{x}(\mathrm{R}(x))$.

Some relations are not collectivizing, for instance $x \notin x$. In fact, if we assume that this is equivalent to $x \in y$, replacing x by y gives: $y \notin y$ is equivalent to $y \in y$, which is absurd. Almost all sets defined by Bourbaki are obtained by application of Axiom A3 (the relation " $x=a$ or $x=b$ " is collectivizing), Axiom A4 (the relation $x \subset y$ is collectivizing) or Scheme S8 (Scheme of Selection and Union); a notable exception is the set of integers, for which a special axiom is required. Scheme S 8 is a bit complicated. In [6], it is replaced by the axiom

$$
(\forall x)(\exists y)(\forall z)(z \in y) \Longleftrightarrow((\exists t)(t \in x \text { and } z \in t))
$$

that asserts the existence of the union of sets, and the following scheme (Scheme of Substitution):

If E is a relation that depends on $x, y, a_{1}, \ldots, a_{k}$, then for all $x_{1}, x_{2}, \ldots, x_{k}$, if we denote by $\mathrm{R}(x, y)$ the relation $\mathrm{E}\left(x, y, x_{1}, \ldots x_{n}\right)$, the assumption $(\forall x)(\forall y)\left(\forall y^{\prime}\right) \mathrm{R}(x, y)=$ $\mathrm{R}\left(x, y^{\prime}\right) \Longrightarrow y=y^{\prime}$ implies that, for all t, the relation $(\exists u)(u \in t$ and $\mathrm{R}(u, v))$ is collectivizing in v.

The conclusion is the same as in S8. This scheme is more powerful than S8; for instance, it implies the axiom of the set of two elements A2. In fact we can deduce the existence of the empty set \varnothing from this scheme (or from S8). Applying A4 to the empty set asserts the existence of a set that has a single element which is \varnothing, applying A4 again asserts the existence of a set t with two elements \varnothing and $\{\varnothing\}$. If a and b are any elements, and $\mathrm{R}(u, v)$ is " $u=\varnothing$ and $v=a$ or $u=\{\varnothing\}$ and $v=b$ ", we get as conclusion: there exists a set formed solely of a and b. The assumption is clear: for fixed u, there is a unique v such that $\mathrm{R}(u, v)$. Question: can we apply S8 to this case? the answer is yes, provided that there exists a set X_{a} such that $a \in \mathrm{X}_{a}$ and a set X_{b} such that $b \in \mathrm{X}_{b}$. Such sets exist by virtue of Axiom A2. Hence A2 is required in Bourbaki, a conclusion of other axioms in [6]. The rules introduced below are closer to a Scheme of Substitution than to a Scheme of Selection and Union.

In the previous chapter, we have given a proof with seven lines that says $1+1=2$. The analogue proof is trivial in Coq (both objects have the same normal form SSO). We have also seen that the induction principle for integers in Bourbaki is the same as that of integers in Coq; as a consequence, if we can identify the Coq integers with the integers of Bourbaki, then a lot of theorems will become trivial (i.e., are already proved by someone else). For this reason, all types, such as nat, will be a set. The Coq notation O:nat says that O is of type nat, we want it to be the same as $z \in \mathbb{N}$ where z stands for 0 and \mathbb{N} for nat. In Bourbaki, $z \in \mathbb{N}$, $\mathbb{N} \in z$ and $\mathbb{N} \in \mathbb{N}$ are legal statements; the first one is true, the other ones are false. In order to avoid paradoxes, people sometimes use a hierarchy of sets: if $x \in y$ and x is at level n, then y must be at level $n+1$. Thus $x \in x$ is illegal or false. The axiom of foundation states that if x is not empty, there exists $y \in x$ such that the intersection of x and y is empty; it forbids the existence of a sequence of sets with $x_{i} \in x_{i+1}$ and $x_{n} \in x_{0}$. This axiom is independent of all other ones. We shall not use it. However, in Coq there is a type hierarchy, so that there is no a whose type is itself, and no pairs a and b such that a is of type b and b of type a. In [6] there is a theorem that says: if the axiom of foundation is true, then X is an ordinal if and only if for all u and v in X we have $u \in v$ or $u=v$ or $v \in u$ and for all $u \in \mathrm{X}$ we have $u \subset \mathrm{X}$. Such a statement becomes impossible in the case of a set hierarchy.

We have the property that O :nat is the same as $z \in \mathbb{N}$ if we chose \mathbb{N} to be nat and z a function of 0 , say $\mathscr{R} 0$. We postulate the existence of such a function; note that the type of 0 is nat while the type of $\mathscr{R} 0$ is Bset, i.e. the same as (in fact, compatible with) the type of nat. Let's define \mathbb{N}_{2} as the set of even numbers; we have $\mathbb{N}_{2} \subset \mathbb{N}$, and $z \in \mathbb{N}_{2}$. Let 0_{2} be zero in the type even. We have $z=\mathscr{R} 0=\mathscr{R} 0_{2}$. This relation will be a consequence of the definition of 0_{2}. We
want $\mathscr{R} 0 \neq \mathscr{R} 1$, since otherwise this mechanism is useless. Thus we introduce a parameter and an axiom. Later on ${ }^{11}$ we shall define $\mathscr{R} 0$ and $\mathscr{R} 1$; we shall prove that the axiom is satisfied in this case.

```
Parameter Ro : forall x : Bset, x -> Bset.
Axiom R_inj : forall (x : Bset) (a b : x), Ro a = Ro b -> a = b.
```

We define ' $x \in y$ ' to be: there is an object a of type y such that $\mathscr{R} a=x$. Inclusion $x \subset y$ is defined as in Bourbaki. These two operations are called In or Included in Ensembles, but inc or sub in our framework.

```
Definition inc (x y : Bset) := exists a : y, Ro a = x.
Definition sub (a b : Bset) := forall x : E, inc x a -> inc x b.
```

Extensionality. The axiom of extent is the same as in Bourbaki: if $x \subset y$ and $y \subset x$ then $x=y$. we add another one for functions; if two functions take the same values everywhere we declare them equal.

```
Axiom extensionality : forall a b : Bset, sub a b -> sub b a -> a = b.
Axiom prod_extensionality :
    forall (x : Type) (y : x -> Type) (u v : forall a : x, y a),
            (forall a : x, u a = v a) -> u = v.
Lemma arrow_extensionality :
    forall (x y : Type) (u v : x >> y), (forall a : x, u a = v a) -> u = v.
```

Given a type t or a set x, it will be declared nonempty if there is a witness, i.e., an instance of t or an element of x.

```
Inductive nonemptyT (t : Type) : Prop :=
    nonemptyT_intro : t -> nonemptyT t.
Inductive nonempty (x : Bset) : Prop :=
    nonempty_intro : forall y : Bset, inc y x >> nonempty x.
```

The axiom of choice. Given a type $t, \mathscr{C}_{\mathrm{T}}$ is a function of two variables p and q, returning an object c of type t. The second argument q is a proof that t is not empty. The first argument p is a property on the type t. The axiom says that the object c satisfies $p(c)$, under the assumption that there is at least one object that satisfies p. This will be generalized later. This is the equivalent of Bourbaki's τ.

```
Parameter chooseT : forall (t : Type) (p : t -> Prop)(q:nonemptyT t), t.
Axiom chooseT_pr :
    forall (t : Type) (p : t -> Prop) (ne : nonemptyT t),
        ex p -> p (chooseT p ne).
```

[^3]Images. Given a relation $\mathrm{R}(x, y)$. Assume that for fixed y, we have a set E_{y} such that $\mathrm{R}(x, y)$ implies $x \in \mathrm{E}_{y}$. Then, for every Y , there is a set Z_{Y} containing all x for which there is an $y \in \mathrm{Y}$ such that $\mathrm{R}(x, y)$. This is the scheme of selection and union. A simple case is when R is independent of y. Another simple case is when R has the form $x=f(y)$. The axiom of the set of two elements (shown later) says that we can select $\mathrm{E}_{y}=\{f(y)\}$. As a consequence the image of a set by a function is a set. We define here a parameter $I M$, and the corresponding axioms.

```
Parameter IM : forall x : Bset, (x -> Bset) -> Bset.
Axiom IM_exists :
    forall (x : Bset) (f : x -> Bset) (y : Bset),
    inc y (IM f) -> exists a : x, f a = y.
Axiom IM_inc :
    forall (x : Bset) (f : x -> Bset) (y : Bset),
    (exists a : x, f a = y) -> inc y (IM f).
```

Double negation axiom. A property is either true or false. Thus two sets are equal or not.

```
Axiom excluded_middle : forall P : Prop, ~ ~ P -> P.
Lemma excluded_middle': forall A B:Prop, (~ B->A)-> (~A->B).
Lemma p_or_not_p : forall P : Prop, P \/ ~ P.
Lemma equal_or_not: forall x y:Bset, x= y \/ x<> y.
Lemma inc_or_not: forall x y:Bset, inc x y \/ ~ (inc x y).
```

The first axiom will be used in the by_cases construct. The second axiom will only be used in one case, when $p=q$ stands for p is equivalent to q.

```
Axiom proof_irrelevance : forall (P : Prop) (q p : P), p = q.
Axiom iff_eq : forall P Q : Prop, (P -> Q) -> (Q -> P) -> P = Q.
```

Special realizations. The next two axioms \rrbracket^{2} define inductively $\mathscr{R} i$ for natural numbers i. In the case of $i=0$, the value is \varnothing, in the case of $i+1$ it is $\mathscr{R} i \cup\{\mathscr{R} i\}$; note that the emptyset, singleton, and union will be defined later, so that $\mathscr{R} i$ is defined by extensionality.

```
Axiom nat_realization_0 : forall x : Bset, ~ inc x (Ro 0).
Axiom nat_realization_S :
    forall (n : nat) (x : Bset),
    inc x (Ro (S n) ) = (inc x (Ro n) \/ x = Ro n).
```

These axioms say that $\mathscr{R} \mathrm{P}$ is P for every proposition, and $\mathscr{R} p$ is the emptyset whenever p is a proof of True.

```
Axiom prop_realization : forall x : Prop, Ro x = x.
Axiom true_proof_realization_empty : forall t : True, Ro t = Ro 0.
```

[^4]
2.2 Module constructions

We denote by EE, EEE, EP, EEP, the type of functions with one or two arguments, that return a set or a boolean. The definition that follows says that p is a predicate, satisfied by a unique object of type t. This will be extended later to objects of different types, for instance functions.

```
Definition exists_unique t (p : t->Prop) :=
    (ex p) & (forall x y : t, p x -> p y ->> x = y).
```

This defines $x \neq y$ and $x \subsetneq y$.

Definition neq (x y : Bset) := x <> y.
Definition strict_sub (a b : Bset) := (neq a b) \& (sub a b).
Definition elt x y := inc y x.

These lemmas say that $x \subset x$, and if $x \subset y$ and $y \subset z$, then $x \subset z$; if one \subset is replaced by \subsetneq in the assumption, then the same holds in the conclusion.

```
Lemma sub_refl : forall x, sub x x.
Lemma sub_trans : forall a b c, sub a b -> sub b c -> sub a c.
Lemma strict_sub_trans1 :
    forall a b c, strict_sub a b -> sub b c -> strict_sub a c.
Lemma strict_sub_trans2 :
    forall a b c, sub a b -> strict_sub b c -> strict_sub a c.
```

Empty sets and types. We say that a set is empty if it has no element; by extensionality, it is unique. Bourbaki proves existence of the empty set by noting that for every set y, and every property P , there is a set containing all elements of y with the property P . In particular, we can define the complement of x in y; taking $x=y$ gives the empty set. In Coq, the situation is simpler: we define \varnothing as a type without constructor, hence there is no $a \in x$, since there is no $b: x$.

```
Definition empty (x : Bset) := forall y : Bset, ~ inc y x.
```

Inductive emptyset : Bset :=.

Given a set x, we have $b \in x$ if $b=\mathscr{R} a$ for some $a: x$. As a consequence, if $a: x$ then $\mathscr{R} a \in x$. In particular, x is not empty. On the other hand, if $b \in x$ there is an a with $a: x$.

```
Lemma R_inc : forall (x : Bset) (a : x), inc (Ro a) x.
Lemma nonemptyT_not_empty : forall x : E, nonemptyT x -> ~ empty x.
Lemma inc_nonempty : forall x y, inc x y >> nonemptyT y.
```

An inverse for \mathscr{R}. We define a function \mathscr{B} that takes 3 arguments, x, y and H, two sets and a proof of $x \in y$. The first two arguments are implicit: they are deduced from the type of H . We have $\mathscr{B}(\mathrm{H})=\mathscr{C}_{\mathrm{T}}(p, q)$. Here p is the property that $\mathscr{R} a=x$ for $a: y$. In particular $\mathscr{B}(\mathrm{H})$ is of type y. The expression q says that there is a a such that $a: y$, so that we can apply the axiom of choice, hence $p(\mathscr{B})$ is true; this is lemma $B_{-} e q$. If we replace x by $\mathscr{R} z$, we get $\mathscr{R}(\mathscr{B}(\mathrm{H}))=\mathscr{R} z$, hence $\mathscr{B}(\mathrm{H})=z$, by injectivity.

```
Definition Bo (x y : Set) (hyp : inc x y) :=
    chooseT (fun a : y => Ro a = x) (inc_nonempty hyp).
Lemma B_eq : forall x y (hyp : inc x y), Ro (Bo hyp) = x.
Lemma B_back : forall (x:Set) (y:x) (hyp : inc (Ro y) x), Bo hyp = y.
```

If H is a proof of $y \in x$, then $\mathscr{B} \mathrm{H}$ is of type x; in particular the type x cannot be empty, and x cannot be the emptyset. The proof of the next lemma uses the excluded-middle axiom in order to replace $\neg \forall y \neg \mathrm{P}$ to $\exists y \mathrm{P}$, where P is $y \in x$. Finally, we have a lemma that says that a set is either empty or nonempty.

```
Lemma not_empty_nonemptyT : forall x, ~ empty x -> nonemptyT x.
Lemma emptyset_empty : forall x, ~ inc x emptyset.
Lemma emptyset_dichot : forall x, (x = emptyset \/ nonempty x).
```

Reasoning by cases. Let T be a type, P a proposition, a a function that maps a proof of P into T and b a function that maps a proof of $\neg \mathrm{P}$ into T . Consider $\mathrm{Q}(a, b, x)$ the property that, for every proof p of P we have $a(p)=x$ and for every proof q of $\neg \mathrm{P}$ we have $b(q)=x$. Assume P true, consider a proof p_{0}, and define $x_{0}=a\left(p_{0}\right)$. Consider another proof p. We have $p=p_{0}$ by the proof irrelevance axiom, hence $a(p)=a\left(p_{0}\right)=x_{0}$. We have $b(q)=x_{0}$ for every proof of $\neg \mathrm{P}$, since there is no such proof. The same can be done if P is false; the first lemma follows, since P is either true of false. The second lemma is a consequence.

```
Definition by_cases_pr (T : Type) (P : Prop) (a : P -> T)
    (b : ~ P -> T) (x : T) :=
    (forall p : P, a p = x) & (forall q : ~ P, b q = x).
Lemma by_cases_exists :
    forall (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T),
            exists x : T, by_cases_pr a b x.
Lemma by_cases_nonempty :
    forall (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T), nonemptyT T.
```

With the same assumptions as above, we can apply the axiom of choice. The result is denoted $\mathscr{C}_{\mathrm{C}}(a, b)$. The first lemma says that $\mathrm{Q}\left(a, b, \mathscr{C}_{\mathrm{C}}(a, b)\right)$ is true, where Q is defined as above. The second lemma says that if $\mathrm{Q}(a, b, x)$ is true, $x=\mathscr{C}_{\mathrm{C}}(a, b)$ (since there is a proof of either P or $\neg \mathrm{P}$). Moreover, if p is a proof of P , we have $\mathscr{C}_{\mathrm{C}}(a, b)=a(p)$; if q is a proof of $\neg \mathrm{P}$, we have $\mathscr{C}_{\mathrm{C}}(a, b)=b(q)$.

```
Definition by_cases (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T) :=
    chooseT (fun x : T => by_cases_pr a b x) (by_cases_nonempty a b).
Lemma by_cases_property :
    forall (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T),
    by_cases_pr a b (by_cases a b).
Lemma by_cases_unique :
    forall (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T) (x : T),
            by_cases_pr a b x -> by_cases a b = x.
Lemma by_cases_if :
```

```
    forall (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T) (p : P),
    by_cases a b = a p.
Lemma by_cases_if_not :
    forall (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T) (q : ~ P),
        by_cases a b = b q.
```

Choosing a representative or the empty set. Let $\mathrm{Q}(p, x)$ be the property that, if there is a y such that $p(y)$, then $p(x)$ is true, and if there is no such y, then x is the emptyset. The first two lemmas say that, if we know that there exists an y, then we can simplify. The last lemma says that for every p there exists an x (either y or the emptyset).

```
Definition refined_pr (p:EP) (x:Bset) :=
    (ex p -> p x) & ~(ex p) -> x = emptyset.
Lemma refined_pr_if : forall p x, ex p -> refined_pr p x = p x.
Lemma refined_pr_not : forall p x, ~(ex p) -> refined_pr p x = (x = emptyset).
Lemma exists_refined_pr : forall p, ex (refined_pr p).
```

We define an auxiliary function $\mathrm{C}^{\prime}(p)$, that chooses an x such that $p(x)$ is true, then apply it to the function Q defined above. This gives $\mathscr{C}(p)$, that satisfies: if there is an x with $p(x)$, then $p(\mathscr{C}(p))$ is true, otherwise $\mathscr{C}(p)=\varnothing$. In most cases, we use only the first property: if p is true for some x, then p is true for $\mathscr{C}(p)$.

```
Definition choose' : EP -> Bset := fun X:EP => chooseT X (nonemptyT_intro Prop).
Definition choose (p:EP) := choose' (refined_pr p).
Lemma choose'_pr : forall p : EP, ex p -> p (choose' p).
Lemma choose_pr : forall p, ex p -> p (choose p).
Lemma choose_not : forall p, ~(ex p) -> choose p = emptyset.
```

Representatives of nonempty sets. Fix z. Let $p(x)$ be the property $x \in z$. If z is not empty, there is an y such that $p(y)$, hence $\mathscr{C}(p)$ satisfies p, this is an element of z. This will be denoted by rep z.

```
Definition rep (x : Bset) := choose (fun y : Bset => inc y x).
Lemma nonempty_rep : forall x, nonempty x -> inc (rep x) x.
```

The first of theses lemmas is obvious; the second has already been used; it relies on the excluded-middle axiom.

```
Lemma not_exists_pr : forall p : EP, ~ ex p <-> (forall x : Bset, ~ p x).
Lemma exists_proof : forall p : EP, ~ (forall x : Bset, ~ p x) -> ex p.
```

Defining a term depending on a boolean value. This defines a function $\mathscr{Y}(\mathrm{P}, x, y)$ via $\mathscr{C}_{\mathrm{C}}(f, g)$. Here P is a property, f the function that returns x for every proof of P and g the function that returns y for every proof of $\neg \mathrm{P}$. As a consequence $\mathscr{Y}(\mathrm{P}, x, y)$ is x if P is true and y otherwise.

Definition Yo : Prop -> EEE :=

```
    fun P x y => by_cases (fun _ : P => x) (fun _ : ~ P => y).
Lemma Y_if : forall (P : Prop) (hyp : P) x y z, x = z -> Yo P x y = z.
Lemma Y_if_not : forall (P : Prop) (hyp : ~ P) x y z, y = z -> Yo P x z = y.
Lemma Y_if_rw : forall (P:Prop) (hyp :P) x y, Yo P x y = x.
Lemma Y_if_not_rw : forall (P:Prop) (hyp : ~P) x y, Yo P x y = y.
```

Set of elements such that P. In Bourbaki, the "Scheme of selection and union" is the following : we have four distinct variables x, y, X and Y , and a relation R that depends on x and y, but not on X, Y. The assumption is $\forall y, \exists \mathrm{X}, \forall x, \mathrm{R} \Longrightarrow x \in \mathrm{X}$. The conclusion is that for every Y , the relation $\exists y, y \in \mathrm{Y} \& \mathrm{R}$ is collectivizing in x. Said otherwise, for every Y , there is a set Z such that $x \in \mathrm{Z}$ is equivalent to the existence of $y \in \mathrm{Y}$ such that R . A simple case is when R does not depend on y. Then, the assumption $\forall x, \mathrm{R}(x) \Longrightarrow x \in \mathrm{X}$ implies the existence of Z such that $x \in \mathrm{Z}$ is equivalent to $\mathrm{R}(x)$. In particular, if $\mathrm{Q}(x)$ is any relation, there is a set Z such that $x \in \mathrm{Z}$ is equivalent to $x \in \mathrm{Y} \& \mathrm{Q}(x)$. Here is the Coq implementation.

```
Record Zorec (x : Bset) (f : x -> Bset) : Bset :=
    {Zohead : x; tail : f Zohead}.
Definition Zo := fun (x:Bset) (p:EP)
    => let P := Zorec (fun a : x => p (Ro a)) in IM (fun t : P => Ro (Zohead t)).
```

The object $\mathcal{Z}(x, p)$ is the image of some function g. This means that $y \in \mathcal{Z}(x, p)$ if and only if there is a t such that $y=g(t)$. If t is the record defined by a, it holds a of type x and $p(\mathscr{R} a)$. The function $g(t)$ is then $\mathscr{R} a$. Thus $y=g(t)$ says $y \in x$; it implies $p(y)$. The reverse is true.

The set is denoted in Bourbaki by $\mathscr{E}_{x}(\mathrm{P}$ and $x \in \mathrm{~A})$. In the French version, it is denoted by $\{x \mid \mathrm{P}$ and $x \in \mathrm{~A}\}$; Bourbaki notes that this may be abbreviated as $\{x \in \mathrm{~A} \mid \mathrm{P}\}$.

```
Lemma Z_inc : forall x p y, inc y x -> p y -> inc y (Zo x p).
Lemma Z_sub : forall x p, sub (Zo x p) x.
Lemma Z_pr : forall x p y, inc y (Zo x p) -> p y.
Lemma Z_all : forall x p y, inc y (Zo x p) -> (inc y x) & (p y).
```

This defines an auxiliary function $Y y$, with arguments f and x. It depends on a property P. If p is a proof of P , the function returns $f(p)$, and if p is false, it returns x.

```
Definition Yy : forall P : Prop, (P -> Bset) -> EE :=
    fun P f x => by_cases f (fun _ : ~ P => x).
Lemma Yy_if :
    forall (P : Prop) (hyp : P) (f : P -> Bset) x z, f hyp = z -> Yy f x = z.
Lemma Yy_if_not :
    forall (P : Prop) (hyp : ~ P) (f : P >> Bset) x z, x = z -> Yy f x = z.
```

We define here $\mathscr{X}(f, y)$ as $Y y(g, \varnothing)$. Given a proof H of $y \in x, \mathscr{B} \mathrm{H}$ is of type x; we assume that f is defined for such objects, and pose $g(\mathrm{H})=f(\mathscr{B} \mathrm{H})$. This is $\mathscr{X}(f, y)$ by definition. If $y=\mathscr{R} z$, where z is of type x, we know $\mathscr{B} \mathrm{H}=z$. Said otherwise: $\mathscr{X}(f)$ is some function F , defined for every y, whose value is \varnothing if $y \notin x$, and $\mathrm{F}(\mathscr{R} z)=f(z)$ if $z: x$.

```
Definition Xo (x : Bset) (f : x -> Bset) (y : Bset) :=
    Yy (fun hyp : inc y x => f (Bo hyp)) emptyset.
Lemma X_eq :
    forall (x : Bset) (f : x -> Bset) (y z : Bset),
        (exists a : x, (Ro a = y) & (f a = z)) >> Xo f y = z.
Lemma X_rewrite : forall (x : Bset) (f : x -> Bset) (a : x), Xo f (Ro a) = f a.
```

Cuts. Let p be the property that x is even. The construction cut allows us to define \mathbb{N}_{2} as the set of all even integers. This means $y \in \mathbb{N}_{2}$ if $\mathscr{R} y$ is even. Since 0 is even we have $z \in Z_{2}$. Let 0_{2} be the object of type \mathbb{N}_{2} such that $\mathscr{R} 0_{2}=z$. The construction cut_to take 0_{2} as argument and returns 0 . Later on, we shall see that for any inclusion like $\mathbb{N}_{2} \subset \mathbb{N}$ there is a function of type $\mathbb{N}_{2} \rightarrow \mathbb{N}$.

We define cut $x p$ as the set of all elements $y \in x$ such that if H is a proof of $y \in x$, and $z=\mathscr{B} \mathrm{H}$, then $p(z)$ is true, (here p is a property on the type x). Note that $\mathscr{R} z=y$. Argument x is implicit.

```
Definition cut (x : Bset) (p : x -> Prop) :=
    Zo x (fun y : Bset => forall hyp : inc y x, p (Bo hyp)).
Lemma cut_sub : forall (x : Bset)(p : x -> Prop), sub (cut p) x.
Lemma cut_inc : forall (x : Bset)(p : x >> Prop)(y : x), p y >> inc (Ro y) (cut p).
```

Let y be of type cut p. In this case R_{-}inc y is a proof that $\mathscr{R} y \in C$. If we apply cut_sub we get a proof that $\mathscr{R} y \in x$. We apply \mathscr{B} to this. If this gives z, then z is of type $x, \mathscr{R} z=\mathscr{R} y$ and $p(z)$ is true.

```
Definition cut_to (x : Bset) (p : x -> Prop) (y : cut p) :=
    Bo (cut_sub (p:=p) (R_inc y)).
Lemma cut_to_R_eq : forall (x:Bset) (p: x -> Prop) (y: cut p), Ro (cut_to y) = Ro y.
Lemma cut_pr : forall (x : Bset) (p : x -> Prop) (y : cut p), p (cut_to y).
```

Let f be a function defined on the type a. If x is of type $I M f$, there is some $y: a$ such that $f(y)=\mathscr{R} x$. The function IM_lift uses the axiom of choice, and returns such an y.

```
Definition IM_lift : forall (a : Bset) (f : a >> Bset), IM f -> a.
... Defined.
Lemma IM_lift_pr :
    forall (a : Bset) (f : a -> Bset) (x : IM f), f (IM_lift x) = Ro x.
```

This defines $x \ni y$.
Definition elt x y := inc y x.
Lemma elt_inc : forall x y, elt $x y=i n c y x$.

2.3 Module Little

We define a singleton as the image of a set with one element. We could proceed as in Bourbaki, namely to define it as a doubleton $x x$. We denote this as $\{x\}$. By construction
$z \in\{x\} \Longleftrightarrow z=x$. From this one can deduce that a singleton is nonempty, and we have an extensionality property.

```
Inductive one_point : Bset :=
    one_point_intro : one_point.
Definition singleton (x : Bset) := IM (fun p : one_point => x).
Lemma singleton_inc : forall x, inc x (singleton x).
Lemma singleton_eq : forall x y, inc y (singleton x) -> y = x.
Lemma singleton_inj : forall x y, singleton x = singleton y -> x = y.
Lemma nonempty_singleton: forall x, nonempty (singleton x).
```

It is trivial to construct an object two_points with two constructors. This gives a set with two distinct elements. We call this the canonical doubleton, the elements will be TPa and $T P b$.

```
Inductive two_points : Bset := | two_points_a | two_points_b.
Definition TPa := Ro two_points_a.
Definition TPb := Ro two_points_b.
Lemma two_points_pr: forall x,
    inc x two_points = (x= TPa \/ x = TPb).
Lemma two_points_distinct: TPa <> TPb.
Lemma two_points_distinctb: TPb <> TPa.
```

Given two elements x and y, we construct a set, denoted by $\{x, y\}$, satisfying $z \in\{x, y\} \Longleftrightarrow$ $z=x \vee z=y$, as the image of the canonical doubleton. In Bourbaki, Axiom A2 says that such a set exists. By extensionbality, two_points is a doubleton.

```
Definition doubleton_map : forall x y : Bset, two_points -> Bset.
    intros x y t. induction t. exact x. exact y. Defined.
Definition doubleton (x y : Bset) := IM (doubleton_map x y).
Lemma doubleton_first : forall x y, inc x (doubleton x y).
Lemma doubleton_second : forall x y, inc y (doubleton x y).
Lemma doubleton_or : forall x y z, inc z (doubleton x y) -> z = x \/ z = y.
Lemma two_points_pr2: doubleton TPa TPb = two_points.
Lemma doubleton_inj : forall x y z w : Bset,
    doubleton x y = doubleton z w -> ( }\textrm{x}=\textrm{z}&&\textrm{y}=\textrm{w})\/ (\textrm{x}=\textrm{w}& & y=z)
Lemma doubleton_singleton : forall x, doubleton x x = singleton x.
If \(x \in z\) and \(y \in z\) then \(\{x, y\} \subset z\). A doubleton is nonempty. We have \(\{x, y\}=\{y, x\}\).
```

```
Lemma nonempty_doubleton: forall x y, nonempty (doubleton x y).
```

Lemma nonempty_doubleton: forall x y, nonempty (doubleton x y).
Lemma sub_doubleton: forall x y z,
Lemma sub_doubleton: forall x y z,
inc x z -> inc y z -> sub (doubleton x y) z.
inc x z -> inc y z -> sub (doubleton x y) z.
Lemma doubleton_symm: forall a b,
Lemma doubleton_symm: forall a b,
doubleton a b = doubleton b a.

```
    doubleton a b = doubleton b a.
```


2.4 Module Basic Realization

This module is not used for the Bourbaki Project ${ }^{3}$.
The first lemma says $\mathscr{R} 0=\varnothing$; as noted above, we could use this as the definition of $\mathscr{R} 0$. The second lemma says that \varnothing is False. Note that the objects have different types, but are equal by extensionality. The realization of False is itself, hence the empty set. The realization of every t of type True is the empty set. By extensionality, this implies that True is the singleton $\{\varnothing\}$. The realization of True is itself.

```
Lemma nat_zero_emptyset : Ro 0 = emptyset.
Lemma false_emptyset : emptyset = False.
Lemma R_false_emptyset : Ro False = emptyset.
Lemma true_proof_emptyset : forall t : True, Ro t = emptyset.
Lemma true_singleton_emptyset : singleton emptyset = True.
Lemma R_true_singleton_emptyset : Ro True = singleton emptyset.
```

By definition $\mathscr{R} 1=\varnothing \cup\{\varnothing\}=\{\varnothing\}$, since $\mathscr{R} 0=\varnothing$. Moreover $\mathscr{R} 2$ has two elements, which are \varnothing and $\{\varnothing\}$ said otherwise, True and False. Since every proposition is True or False, we get that $\mathscr{R} 2$ is Prop.

Lemma R_one_singleton_emptyset : Ro $1=$ singleton emptyset.
Lemma R_two_prop : Ro 2 = Prop.

2.5 Module Complement

The complement in a of b, denoted $a \backslash b$ or sometimes $a-b$, is the subset of a formed of elements not in b; it is the set of all elements in a but not in b. If x is in a but not in $a \backslash b$, then it is in b. If $a \backslash b$ is empty, then $a \subset b$.

```
Definition complement (a b : Bset) := Zo a (fun x : Bset => ~ inc x b).
Lemma inc_complement :
    forall a b x, inc x (complement a b) = (inc x a & ~ inc x b).
Lemma use_complement :
    forall a b x, inc x a -> ~ inc x (complement a b) -> inc x b.
Lemma non_nonempty_comp_sub: forall a b,
    ~ nonempty (complement a b) -> sub a b.
```

The first lemma is used to show the second, that says that if it is not the case that both complements are non-empty, then one complement is non-empty, i.e., one set is included in the other. The other lemmas are obvious.

```
Lemma show_sub_or_aux: forall b c,
    ~ (sub b c \/ sub c b) -> nonempty (complement c b).
Lemma show_sub_or : forall b c,
    (nonempty (complement b c) -> nonempty (complement c b) -> False) ->
    sub b c \/ sub c b.
Lemma sub_complement: forall a b, sub (complement a b) a.
Lemma strict_sub_nonempty_complement : forall x y,
    strict_sub x y -> nonempty (complement y x).
```

${ }^{3}$ It has been withdrawn in version 2 as well as the axioms associated to it.

2.6 Module Pair

We define here an operator bpaif ${ }^{4}$ denoted by J in what follows. Given x and y, it constructs the object generally denoted by (x, y). The predicate is_pair applied to z just says that there exists x and y such that $z=(x, y)$. There are two destructors, pr_{1} and pr_{2} (denoted by P and Q), that return x and y.

In the English version [2], Bourbaki uses Axiom A3 to show the existence of such an object. In the French version [3], he uses the doubleton $\{x,\{x, y\}\}$. In the definition here, we use the doubleton $\{\{x\},\{\varnothing,\{y\}\}\}$. This definition is a bit complicated, but it has a strange property: the set $\{\varnothing,\{y\}\}$ has two distinct elements, since a singleton is not empty; thus it cannot be the singleton $\{x\}$.

```
Definition pair_first (x y:Bset):= singleton x.
Definition pair_second (x y:Bset):= doubleton emptyset (singleton y).
Definition bpair (x y : Bset) :=
    doubleton (pair_first x y) (pair_second x y).
Notation J := bpair.
Definition is_pair (u : Bset) := exists x, exists y, u = J x y.
Lemma pair_distincta:forall x y z w,
    (pair_first x y = pair_second z w)-> False.
Lemma pair_distinct:forall x y,
    pair_second x y <> pair_first x y.
```

If we consider a pair as a doubleton, we get the following lemmas.

```
Lemma inc_pair1: forall x y, inc (pair_first x y) (J x y).
Lemma inc_pair2: forall x y, inc (pair_second x y) (J x y).
Lemma pair_extensionalitya: forall x y u,
    inc u (J x y) -> u = pair_first x y \/ u = pair_second x y.
```

Whatever definition is chosen, a pair must satisfy the two following properties:

```
Lemma pair_extensionality_first : forall x y z w,
    J x y = J z w -> x = z.
Lemma pair_extensionality_second : forall x y z w,
    J x y = J z w -> y = w.
```

The previous lemmas allows us to defined the destructors via the axiom of choice.

```
Definition pr1 (u : Bset) :=
    choose (fun x : Bset => ex (fun y : Bset => u = J x y)).
Definition pr2 (u : Bset) :=
    choose (fun y : Bset => ex (fun x : Bset => u = J x y)).
Notation P := pr1.
Notation Q := pr2.
```

The next lemmas say that if z is a pair, then z is the pair $\left(\operatorname{pr}_{1} z, \operatorname{pr}_{2} z\right)$, the quantity (x, y) is a pair, $\operatorname{pr}_{1}(x, y)=x, \operatorname{pr}_{2}(x, y)=y$. Moreover, if $(x, y)=\left(x^{\prime}, y^{\prime}\right)$ then $x=x^{\prime}$ and $y=y^{\prime}$, and conversely two pairs with the same projectors are equal.

[^5]```
Definition pair_recovers (u : Bset) := J (P u) (Q u) = u.
Lemma pair_recov : forall u, is_pair u -> pair_recovers u.
Lemma pair_is_pair : forall x y, is_pair (J x y).
Lemma is_pair_rw : forall x, is_pair x = (x = J (P x) (Q x)).
Lemma pr1_pair : forall x y, P (J x y) = x.
Lemma pr2_pair : forall x y, Q(J x y) = y.
Lemma pair_extensionality : forall a b,
 is_pair a -> is_pair b -> P a = P b -> Q a = Q b -> a = b.
Lemma pr1_injective: forall a b c d, J a b = J c d -> a = c.
Lemma pr2_injective: forall a b c d, J a b = J c d -> b = d.
```

A set of pairs is sometimes called a graph (or a relation in the original work of C. Simpson). We denote by $V(x, g)$ an element $y$, if it exists, such $(x, y)$ is in the graph $g$. If there is an $y$ such that $(x, y)$ is in the graph, then $(x, \mathcal{V}(x, g))$ is in the graph. Otherwise, $\mathcal{V}(x, g)=\varnothing$. Later on, we shall define the domain as the set all $x$ for which there an $y$; a graph is said functional (on its domain E ) if for every $x$ (in the set E ) there is a unique $y$ such that $(x, y$ ) is in the graph.

```
Definition V (x f : Bset) := choose (fun y : Bset => inc (J x y) f).
Lemma V_inc : forall x z f,
 (exists y, inc (J x y) f) -> z = V x f -> inc (J x z) f.
Lemma V_or : forall x f,
 (inc (J x (V x f)) f) \/
 ((forall z, ~(inc (J x z) f)) & (V x f = emptyset)).
```


### 2.7 Module Image

This module contained initially 8 lemmas, and only 2 of them will be used in what follows. If $f$ is a mapping, $x$ a set, we denote the image of $x$ by $f$ as $f\langle x\rangle$.

```
Definition fun_image (x : Bset) (f : EE) := IM (fun a : x => f (Ro a)).
Lemma inc_fun_image : forall x f a, inc a x -> inc (f a) (fun_image x f).
Lemma fun_image_rw : forall f x y,
 inc y (fun_image x f) = exists z, (inc z x & f z = y).
```


### 2.8 Module Powerset

Bourbaki introduces an axiom that says that for every set $x$, there is a set $y$ denoted $\mathfrak{P}(x)$ containing the subsets of $x$. We consider here the set of cuts.

Definition powerset (x : Bset) := IM (fun p : x -> Prop => cut p).

There is a lemma that says that a cut is a subset of $x$, hence is in $\mathfrak{P}(x)$. Conversely, if $a$ is a subset of $x$, the cut of the function $b \mapsto(\mathscr{R} b \in a)$ is $a$, hence an element of $\mathfrak{P} x$ is a subset of $x$. The last lemma says $x \in \mathfrak{P}(x)$.

```
Lemma powerset_inc : forall x y, sub x y -> inc x (powerset y).
Lemma powerset_sub : forall x y, inc x (powerset y) -> sub x y.
Lemma powerset_inc_rw : forall x y, inc x (powerset y) = sub x y.
Lemma inc_x_powerset_x: forall x, inc x (powerset x).
```


### 2.9 Module Union

Bourbaki defines the union $\bigcup_{\mathrm{t} \in \mathrm{I}} \mathrm{X}_{\mathrm{l}}$ of a family of sets. This means that we have a set I and a mapping $1 \mapsto \mathrm{X}_{\iota}$ defined for $i \in \mathrm{I}$. If the mapping is the identity, which is the case considered here, we get the union of a set of sets, denoted by $\cup X$. The union exists as a direct consequence of S8 (Scheme of Selection and Union). The assumption is $(\forall i)(\exists Z)(\forall x)(i \in \mathrm{I}$ and $x \in$ $\left.\mathrm{X}_{i}\right) \Longrightarrow x \in \mathrm{Z}\left(\right.$ take $\left.\mathrm{Z}=\mathrm{X}_{i}\right)$. The conclusion is the existence of a set containing all elements satisfying $(\exists i)\left(i \in \mathrm{I}\right.$ and $\left.x \in \mathrm{X}_{i}\right)$. Instead of an axiom, we use the following construction:

```
Record Union_integral (x : Bset) : Bset :=
 {Union_param : x; Union_elt : Ro Union_param}.
Definition union (x : Bset) :=
 IM (fun i : Union_integral x => Ro (Union_elt (x:=x) i)).
```

A Union_integral record contains two fields, say $p$ and $e$. Let $q=\mathscr{R} p$. Since $p$ is type $x$, we have $q \in x$. An object $y$ is in the union if $y=\mathscr{R} e$ for some integral record. Since $e$ is of type $q$, this means $y \in q$. The next two lemmas are then obvious; the third one is easy. Bourbaki considers the union of subsets of $x$; according to the last lemma, this is a subset of $x$.

```
Lemma union_inc : forall x y a, inc x y >> inc y a -> inc x (union a).
Lemma union_exists : forall x a,
 inc x (union a) -> exists y, inc x y & inc y a.
Lemma union_sub: forall x y, inc x y -> sub x (union y).
Lemma sub_union : forall x z,
 (forall y, inc y z -> sub y x) -> sub (union z) x.
```

The union a family of two sets X and Y denoted by $\mathrm{X} \cup Y$. An element is in the union if and only if it is in one of the sets.

```
Definition union2 (x y : Bset) := union (doubleton x y).
Lemma union2_or : forall x y a, inc a (union2 x y) -> inc a x \/ inc a y.
Lemma union2_first : forall x y a, inc a x -> inc a (union2 x y).
Lemma union2_second : forall x y a, inc a y -> inc a (union2 x y).
Lemma inc_union2_rw : forall a b x,
 inc x (union2 a b) = (inc x a \/ inc x b).
Lemma union2_idempotent: forall u, union2 u u= u.
```

In some cases (induction on finite sets), one needs to consider the union of a set and a singleton.

```
Definition tack_on x y := union2 x (singleton y).
Lemma tack_on_or : forall x y z : Bset, inc z (tack_on x y) ->
 (inc z x \/ z = y).
Lemma tack_on_inc: forall x y z,
```

```
 (inc z (tack_on x y)) = (inc z x \/ z = y).
Lemma inc_tack_on_x: forall a b, inc a (tack_on b a).
Lemma inc_tack_on_sub: forall a b, sub b (tack_on b a).
Lemma inc_tack_on_y: forall a b y, inc y b -> inc y (tack_on b a).
Lemma tack_on_when_inc: forall x y, inc y x >> tack_on x y = x.
Lemma not_in_complement: forall x y, ~ (inc y (complement x (singleton y))).
Lemma tack_on_sub: forall x y z, sub x z -> inc y z -> sub (tack_on x y) z.
Lemma tack_on_complement: forall x y, inc y x ->
 x = tack_on (complement x (singleton y)) y.
```


### 2.10 Module Intersection

Intersection is dual of union. We have $x \in \bigcap_{1 \in I} X_{1}$ if and only if $x$ is in every element of the family. The intersection is a subset of every $\mathrm{X}_{\mathrm{t}}$. Fix $\alpha \in \mathrm{I}$. Then $x \in \cap \mathrm{X}_{1}$ if and only if $x \in \mathrm{X}_{\alpha}$ and $x$ is in every element of the family. The construction is independent of $\alpha$, provided it is in the set of indices I, which must be nonempty. We consider here the case (denoted by $\cap \mathrm{X}$ ) where the mapping $\imath \mapsto \mathrm{X}_{1}$ is the identity of X , the general case will be studied in the next Chapter.

```
Definition intersection (x : Bset) :=
 Zo (rep x) (fun y : Bset => forall z : Bset, inc z x -> inc y z).
Lemma intersection_inc : forall x a,
 nonempty x -> (forall y, inc y x -> inc a y) -> inc a (intersection x).
Lemma intersection_forall :
 forall x a y, inc a (intersection x) -> inc y x -> inc a y.
Lemma intersection_sub : forall x y, inc y x -> sub (intersection x) y.
```

Intersection of two sets is denoted $\mathrm{X} \cap \mathrm{Y}$, the properties listed here are obvious.

```
Definition intersection2 (x y : Bset) := intersection (doubleton x y).
Lemma intersection2_inc : forall x y a,
 inc a x -> inc a y ->> inc a (intersection2 x y).
Lemma intersection2_first : forall x y a,
 inc a (intersection2 x y) -> inc a x.
Lemma intersection2_second : forall x y a,
 inc a (intersection2 x y) -> inc a y.
Lemma intersection2_both: forall x y a,
 inc a (intersection2 x y) -> (inc a x & inc a y).
```


### 2.11 Module Transposition

We define here a function $\mathrm{T}_{i j a}$ that maps $i$ to $j, j$ to $i$ and everything else to $a$. All lemmas given here are obvious. The module is not yet used used for the Bourbaki project.

```
Definition create (i j a : Bset) := Yo (a = i) j (Yo (a = j) i a).
```

```
Lemma not_i_not_j : forall i j a, a <> i -> a <> j -> create i j a = a.
Lemma i_j_j_i : forall i j a, create i j a = create j i a.
Lemma i_j_i : forall i j, create i j i = j.
Lemma i_j_j : forall i j, create i j j = i.
Lemma i_i_a : forall i a, create i i a = a.
Lemma surj : forall i j a, exists b, create i j b = a.
Lemma involutive : forall i j a, create i j (create i j a) = a.
Lemma inj : forall i j a b, create i j a = create i j b -> a = b.
```


### 2.12 Module Bounded

Let $p$ be a predicate and $x$ a set. Assume $p(y)$ is true if and only if $y \in x$. We say that $p$ satisfies the axioms if there is such a set $x$. This set is obviously unique, and will be denoted by create $p$.

```
Definition property (p : EP) (x : Bset) :=
 forall y : Bset, (p y -> inc y x & inc y x -> p y).
Definition axioms (p : EP) := ex (property p).
Definition create (p : EP) := choose (property p).
```

If $p$ satisfies the axioms then $y$ is in create $p$ if and only if $p(y)$. If $p$ is bounded (we can consider different cases) then $p$ satisfies the axioms.

```
Lemma lem1 : forall (p : EP) (y : Bset), axioms p -> inc y (create p) -> p y.
Lemma lem2 : forall (p : EP) (y : Bset), axioms p -> p y -> inc y (create p).
Lemma inc_create : forall (p : EP) y, axioms p -> inc y (create p) = p y.
Lemma criterion : forall p : EP,
 ex (fun x : Bset => forall y : Bset, p y -> inc y x) -> axioms p.
Lemma trans_criterion :
 forall (p : EP) (f : EE) (x : Bset),
 (forall y : Bset, p y -> ex (fun z : Bset => (inc z x) & (f z = y))) ->
 axioms p.
Lemma little_criterion :
 forall (p : EP) (x : Bset) (f : x -> Bset),
 (forall y : Bset, p y -> exists a : x, f a = y) -> axioms p.
```


### 2.13 Module Cartesian

Consider two sets X and Y . For every $y \in \mathrm{Y}$ we can consider the set of all pairs $(x, y)$ with $x \in \mathrm{X}$. We can consider the union of these sets. It is denoted by $\mathrm{X} \times \mathrm{Y}$. Bourbaki defines the product before the union, but uses the same argument as for the union to show existence of the product.

We consider here the following property: Let $a$ be a set and $f$ a function. We say that $z$ is in the record if $z$ is a pair, say $z=(x, y), x \in a$ and $y \in f(x)$. A Cartesian_record holds $u$ and $v$, where $u$ is of type $a$, and $v$ of type $f(\mathscr{R} u)$. Given such an object $i$ we can create the pair $(\mathscr{R} u, \mathscr{R} v)$. Let's denote it by $g(i)$. If $z$ is in the record, it is of the form $g(i)$. This shows that in_record is bounded.

```
Definition in_record (a : Bset) (f : EE) (x : Bset) :=
 is_pair x & inc (P x) a & inc (Q x) (f (P x)).
Record Cartesian_record (a : Bset) (f : EE) : Bset :=
 {Cartesian_first : a; Cartesian_second : f (Ro Cartesian_first)}.
Definition recordMap (a : Bset) (f : EE) (i : Cartesian_record a f) :=
 J (Ro (Cartesian_first i)) (Ro (Cartesian_second i)).
Lemma in_record_ex : forall (a : Bset) (f : EE) (x : Bset),
 in_record a f x -> exists i : Cartesian_record a f, recordMap i = x.
Lemma in_record_bounded :
 forall (a : Bset) (f : EE), Bounded.axioms (in_record a f).
```

The record $\mathrm{R}(a, f)$ of $a$ and $f$ is the set of all pairs $(x, y)$ where $x \in a$ and $y \in f(x)$. Following lemmas are trivial.

```
Definition record a f := Bounded.create (in_record a f).
Lemma record_in : forall a f x, inc x (record a f) -> in_record a f x.
Lemma record_pr : forall a f x,
 inc x (record a f) -> (is_pair x & inc (P x) a & inc (Q x) (f (P x))).
Lemma record_inc : forall a f x, in_record a f x -> inc x (record a f).
Lemma record_pair_pr : forall a f x y,
 inc (J x y) (record a f) -> (inc x a & inc y (f x)).
Lemma record_pair_inc : forall a f x y,
 inc x a -> inc y (f x) -> inc (J x y) (record a f).
```

A product is just a record where the function is constant. Next lemmas are immediate.

```
Definition product (a b : Bset) := record a (fun x : Bset => b).
Lemma product_pr : forall a b u,
 inc u (product a b) -> (is_pair u & inc (P u) a & inc (Q u) b).
Lemma product_inc : forall a b u,
 is_pair u -> inc (P u) a -> inc (Q u) b -> inc u (product a b).
Lemma product_pair_pr : forall a b x y,
 inc (J x y) (product a b) -> (inc x a & inc y b).
Lemma product_pair_inc : forall a b x y,
 inc x a -> inc y b -> inc (J x y) (product a b).
Lemma inc_product : forall x y z,
 inc x (product y z) = (is_pair x & inc (P x) y & inc (Q x) z).
```

Some properties of the emptyset.

```
Lemma emptyset_pr: forall x, inc x emptyset -> False.
Lemma is_emptyset: forall x, (forall y, ~ (inc y x)) -> x = emptyset.
```

A product is empty if and only one factor is empty. This is Proposition 2 [2, p. 75].

```
Lemma empty_product1: forall y, product emptyset y = emptyset.
Lemma empty_product2: forall x, product x emptyset = emptyset.
Lemma empty_product_pr: forall x y,
 product x y = emptyset -> (x = emptyset \/ y= emptyset).
```

The product $A \times B$ is increasing in $A$ and $B$, strictly if the other argument is non empty. This is Proposition 1 [2, p. 74].

```
Lemma product_monotone_left: forall x x' y,
 sub x x' -> sub (product x y) (product x' y).
Lemma product_monotone_right: forall x y y',
 sub y y' -> sub (product x y) (product x y').
Lemma product_monotone: forall x x' y y',
 sub x x' -> sub y y' -> sub (product x y) (product x' y').
Lemma product_monotone_left2: forall x x' y, nonempty y ->
 sub (product x y) (product x' y) -> sub x x'.
Lemma product_monotone_right2: forall x y y', nonempty x ->
 sub (product x y) (product x y') -> sub y y'.
```


### 2.14 Module Back

This module is not used for the Bourbaki Project. ${ }_{4}^{5}$
We define RBdefault as a function of $x, z$ and $d$, where $d$ is of type $z$. The value is $x$ if $x \in z$ and $\mathscr{R} d$ otherwise. In any case, this is an element of $z$.

```
Definition RBdefault x z (d:z) :=
 Yo (inc x z) x (Ro d).
Lemma RBdefault_in :
 forall x z (d:z), inc x z -> RBdefault x d = x.
Lemma RBdefault_out : forall x z (d:z),
 ~(inc x z) -> RBdefault x d = (Ro d).
Lemma inc_RBdefault : forall x z (d:z),
 inc (RBdefault x d) z.
```

We define now Bdefault. If $y$ if the value of $\operatorname{RBdefault}(x, z, d)$ we know $y \in z$. Applying $\mathscr{B}$ gives $t$ of type $z$. If $x \in z$ then $\mathscr{R} t=x$, otherwise $t=d$. If $x=\mathscr{R} x^{\prime}$, where $x^{\prime}$ is of type $z$ then $t=x^{\prime}$.

```
Definition Bdefault x z (d:z) : z :=
 Bo (inc_RBdefault x d).
Lemma R_Bdefault_in : forall x z (d:z),
 inc x z -> Ro (Bdefault x d) = x.
Lemma Bdefault_out : forall x z (d:z),
 ~(inc x z) -> (Bdefault x d) = d.
Lemma Bdefault_R : forall z (y d:z),
 Bdefault (Ro y) d = y.
```

Now the definition of Bnat, as a particular case where $z=\mathbb{N}$, and $d=0$. To any set $x$ we associate an integer $n$ (an object of type nat). If $x \in \mathbb{N}$, then $\mathscr{R} n=x$, otherwise $n=0$.

Definition Bnat $x:=$ Bdefault $x$ ( $z:=n a t) 0$.

[^6]```
Lemma R_Bnat : forall x, inc x nat ->
    Ro (Bnat x) = x .
Lemma Bnat_out : forall x, ~(inc x nat) ->
    Bnat x = 0.
Lemma Bnat_R : forall (i:nat), Bnat (Ro i) = i.
```

Note. In the second part of this document, we shall define Bnat as the set of natural integers.

Chapter 3

Functions

We describe in this Chapter the file jfunc.v obtained from the file func.v by Carlos Simpson, by removing definitions that seemed useless for the Bourbaki project ${ }^{11}$. The module defining equivalence relations will be described in Chapter 6 .

3.1 Module Function

A graph is a set of pairs. The domain and range are the images of the first and second projection. A set f satisfies the fgraph property if it is a graph and if the first projection is injective. This means that if $(a, b) \in f$ and $\left(a, b^{\prime}\right) \in f$ then $b=b^{\prime}$ (claim that will be proved in the next Chapter).

```
Definition is_graph r := forall y, inc y r -> is_pair y.
Definition domain f := fun_image f P.
Definition range f := fun_image f Q.
Definition fgraph f :=
    is_graph f & (forall x y, inc x f >> inc y f -> P x = P y -> x = y).
```

The domain and range are characterized by the following two lemmas.

```
Lemma domain_pr: forall r x,
    is_graph r -> inc x (domain r) = (exists y, inc (J x y) r).
Lemma range_pr: forall r y,
    is_graph r -> inc y (range r) = (exists x, inc (J x y) r).
```

These lemmas are obvious from the definitions and the fact that a functional graph is a graph.

```
Lemma inc_pr1_domain : forall f x,
    fgraph f -> inc x f -> inc (P x) (domain f).
Lemma inc_pr2_range : forall f x,
    fgraph f -> inc x f -> inc (Q x) (range f).
```

[^7]If g is a non-empty graph, its domain is non-empty. In the first lemma given here, we do no say that that g is a graph. In fact, if x is in the domain of g, there need not exists a y such that $(x, y) \in g$, we just say that there exists $z \in g$ with $x=\operatorname{pr}_{1} z$. In the second lemma, we add the assumption that g is a graph, and we know there there is at least one y, namely $V(x, g)$.

```
Lemma nonempty_domain: forall g,
    nonempty g -> nonempty (domain g).
Lemma fdefined_lem : forall f x,
    fgraph f -> inc x (domain f) -> inc (J x (V x f)) f.
```

The first lemma says that if x is in the graph, then x is a pair whose second component is $\mathcal{V}\left(\operatorname{pr}_{1} x, f\right)$. The second says that y is in the range if and only if it is $\mathcal{V}(x, f)$ for some x in the domain. Other two lemmas are trivial consequences.

```
Lemma in_graph_V : forall f x,
    fgraph f -> inc x f -> x = J (P x) (V (P x) f).
Lemma frange_inc_rw : forall f y,
    fgraph f -> inc y (range f) = (exists x, inc x (domain f) & y = V x f).
Lemma pr2_V : forall f x,
    fgraph f -> inc x f -> Q x = V (P x) f.
Lemma inc_V_range: forall f x,
    fgraph f -> inc x (domain f) -> inc (V x f) (range f).
```

Assume that g is a functional graph, and $f \subset g$. Then f is a functional graph, its domain and range are subsets of the domain and range of g; its evaluation function is the same. There is a converse: if we have two functional graphs, if the domain of f is a part of the domain of g, and if the evaluation function is the same on the domain of f, then f is a subset of g. From this we deduce an extensionality property.

```
Lemma sub_axioms : forall f g, fgraph g -> sub f g -> fgraph f.
Lemma sub_domain : forall f g, sub f g >> sub (domain f) (domain g).
Lemma sub_range : forall f g, sub f g -> sub (range f) (range g).
Lemma sub_ev: forall f g x,
    fgraph g -> sub f g -> inc x (domain f) -> V x f = V x g.
Lemma function_sub : forall f g,
    fgraph f -> fgraph g ->
    sub (domain f) (domain g) ->
    (forall x, inc x (domain f) -> V x f = V x g) -> sub f g.
Lemma function_extensionality: forall f g,
    fgraph f -> fgraph g -> domain f = domain g ->
    (forall x, inc x (domain f) -> V x f = V x g) -> f = g.
```

I Inverse image of a set a by a graph f, denoted $\stackrel{-1}{f}\langle a\rangle$ or simply $f^{-1}\langle a\rangle$. This is a part of the domain, characterized by the property that $x \in f^{-1}\langle a\rangle$ if and only if $\mathscr{V}(x, f) \in a$.

```
Definition inverse_image (a f : Bset) :=
    Zo (domain f) (fun x => inc (V x f) a).
Lemma inverse_image_sub : forall a f,
    sub (inverse_image a f) (domain f).
```

```
Lemma inverse_image_inc : forall a f x,
    inc x (domain f) -> inc (V x f) a -> inc x (inverse_image a f).
Lemma inverse_image_pr : forall a f x,
    inc x (inverse_image a f) -> inc (V x f) a.
```

Consider now a function f, and a set x. We can consider the set of all pairs ($a, f(a)$) for $a \in x$. This will be denoted by $\mathscr{L}_{x} f$. This is a functional graph; its domain is x, and its evaluation function is f.

```
Definition fcreate (x : Bset) (p : E) :=
    fun_image x (fun y => J y (p y)).
Lemma create_axioms : forall p x, fgraph (fcreate x p).
Lemma create_domain : forall x p, domain (fcreate x p) = x.
Lemma create_V_apply : forall x p y z,
        inc y x -> p y = z >> V y (fcreate x p) = z.
Lemma create_V_rewrite : forall x p y,
        inc y x -> V y (fcreate x p) = p y.
```

The range of $\mathscr{L}_{x} f$ is the image $f\langle x\rangle$ (according to Section 2.7, on page 45 we shall define $g\langle x\rangle$ where g is a graph). There are some other useful properties.

If v is a graph with domain x and evaluation function f, then $v=\mathscr{L}_{x} f$. We have $\mathscr{L}_{x} f=$ $\mathscr{L}_{y} g$ if $x=y$, and f and g agree on x.

```
Lemma create_range : forall p x,
    range (fcreate x p) = fun_image x p.
Lemma create_create : forall a f,
    fcreate a (fun x => V x (fcreate a f)) = fcreate a f.
Lemma inc_create_range: forall sf f a,
    inc a (range (fcreate sf f)) = exists b, inc b sf & f b = a.
Lemma inc_create_domain: forall sf f a,
    inc a (domain (fcreate sf f)) = inc a sf.
Lemma create_V_out : forall x f y,
    ~inc y x -> V y (fcreate x f) = emptyset.
Lemma create_recovers : forall f,
    fgraph f -> fcreate (domain f) (fun x : Bset => V x f) = f.
Lemma function_extensionality1 : forall a b f g,
            a = b -> (forall x, inc x a -> f x = g x) ->
            fcreate a f = fcreate b g.
```

I Composition of functions. We denote by $g \circ f$ the composition of the two functions. It maps x to $g(f(x))$. In the case of graphs, the evaluation function is $\mathscr{V}(V)(x, f), g)$; note that the order is reversed. The domain is the set of all x in the domain of f that are mapped to the domain of g, it is the inverse image of the domain of g by f. We do not like this definition, thus introduce an alternate one, that agrees if functions are composable. Note that the last lemma makes no assumptions on f and g. The easy case is when the two objects are composable (in particular, they are functions). In this case the domain of $g \circ f$ is the domain of f.

```
Definition fcomposable (f g : Bset) :=
    fgraph f & fgraph g & sub (range g) (domain f).
Definition fcompose (f g : Bset) :=
    fcreate (inverse_image (domain f) g) (fun y => V (V y g) f).
Definition gcompose g f := fcreate(domain f) (fun y => V (V y f) g).
```

```
Lemma fcompose_axioms : forall f g, fgraph (fcompose f g).
Lemma fcompose_domain : forall \(f \mathrm{~g}\),
    domain (fcompose f g) = inverse_image (domain f) g.
Lemma fcomposable_domain : forall f g,
    fcomposable \(f\) g -> domain (fcompose f g) = domain \(g\).
Lemma alternate_compose: forall g f,
    fcomposable g f \(\rightarrow\) gcompose \(g \mathrm{f}=\) fcompose g f .
Lemma fcompose_ev : forall x f g,
```


An interesting function is the identity: it maps everything on itself. More properties will be given later.

```
Definition identity (x : Bset) := fcreate x (fun y : Bset => y).
Lemma identity_axioms : forall x, fgraph (identity x).
Lemma identity_domain : forall x, domain (identity x) = x.
Lemma identity_ev : forall x a, inc x a -> V x (identity a) = x.
```

Given two sets f and x, one can consider the set of all $y \in f$ satisfying $\operatorname{pr}_{1} y \in x$. This makes sense if f is a graph. In fact, since this is a subset of f, it is a functional graph whenever f is. Its domain is the intersection of f and x. On the restriction domain the function takes the same value as the restriction.

```
Definition restr f x :=
    Zo f (fun y=> inc (P y) x).
Lemma restr_inc_rw : forall f x y,
    inc y (restr f x) = (inc y f & inc (P y) x).
Lemma restr_sub : forall f x,
        sub (restr f x) f.
Lemma restr_axioms : forall f x,
    fgraph f -> fgraph (restr f x).
Lemma restr_domain : forall f x,
    fgraph f -> domain (restr f x) = intersection2 (domain f) x.
Lemma restr_ev : forall f u x,
    fgraph f -> sub u (domain f) -> inc x u ->
        V x (restr f u) = V x f.
Lemma function_sub_V : forall f g x,
    fgraph g -> defined f x -> sub f g ->
        V x f = V x g.
Lemma function_sub_eq : forall r s,
    fgraph r -> fgraph s -> sub r s ->
        sub (domain s) (domain r) -> r = s.
Lemma restr_to_domain : forall f g,
    fgraph f -> fgraph g -> sub f g -> restr g (domain f) = f.
```

We say that f is a restriction of g if there is a set x such that f is the restriction of g to x. This is the same as saying that f is a subset of g.

```
Definition is_restriction (f g :Bset) :=
    fgraph g & exists x, f = restr g x.
Lemma is_restriction_pr: forall f g,
    is_restriction f g = (fgraph f & fgraph g & sub f g).
```

The union of functional graphs is a graph, provided that some compatibility condition holds. The domain is the union of the domains. The range is the union of the ranges. We consider the special case of a union of a graph and the singleton $\{(x, y)\}$.

```
Lemma function_glueing : forall z,
    (forall f, inc f z -> fgraph f) ->
    (forall f g x, inc f z -> inc g z -> defined f x -> defined g x
        -> (V x f) = (V x g)) ->
    fgraph (union z).
Lemma domain_union : forall z, domain (union z) =
    union (fun_image z domain).
Lemma domain_tack_on : forall f x y,
    domain (tack_on f (J x y)) = tack_on (domain f) x.
Lemma range_union : forall z, range (union z) =
    union (fun_image z range).
Lemma range_tack_on : forall f x y,
    range (tack_on f (J x y)) = tack_on (range f) y.
Lemma function_tack_on_axioms : forall f x y,
    fgraph f -> ~inc x (domain f) ->
    fgraph (tack_on f (J x y)).
```

Given a function that takes an argument of type x, we know how to convert it to a function defined on the set x. We can then take its graph.

```
Definition tcreate (x:Bset) (f:x->Bset) :=
    fcreate x (fun y => (Yy (fun (hyp : inc y x) => f (Bo hyp)) emptyset)).
Lemma tcreate_value_type : forall x (f:x->Bset) y,
    V (Ro y) (tcreate f) = f y.
Lemma tcreate_value_inc : forall x (f:x->Bset) y (hyp : inc y x),
    V y (tcreate f) = f (Bo hyp).
Lemma domain_tcreate : forall x (f:x->Bset), domain (tcreate f) = x.
Notation L := Function.fcreate.
```


3.2 Module FunctionSet

We say that u is in $\mathrm{F}(a, f)$ if u is a functional graph, its domain is a and for every x, the value $\mathscr{V}(x, u)$ is in $f(x)$. In section 2.13 we have defined the record $\mathrm{R}(a, f)$. It is immediate that $u \subset \mathrm{R}(a, f)$; this has as consequence that the property is bounded. This module is not used for the Bourbaki Project.

```
Definition in_function_set (a : Bset) (f : EE) (u : Bset) :=
    fgraph u
    & domain u = a
    & (forall y, inc y a -> inc (V y u) (f y)).
Lemma in_fs_sub_record : forall a f u,
    in_function_set a f u -> sub u (record a f).
Lemma in_fs_eq_L : forall a f u,
    in_function_set a f u -> u = fcreate a (fun y : Bset => V y u).
Lemma in_fs_for_L : forall a g v,
    (forall y, inc y a -> inc (v y) (f y)) ->
    in_function_set a f (fcreate a v).
Lemma in_fs_bounded : forall a f,
    Bounded.axioms (in_function_set a f).
```

Since the property is bounded, there exists a set, denoted $\mathrm{F}(a, f)$ above. It is a subset of $\mathfrak{P}(\mathrm{R}(a, f))$.

```
Definition function_set (a : Bset) (f : EE) :=
    Bounded.create (in_function_set a f).
Lemma function_set_iff : forall a f u
    inc u (function_set a f) <-> in_function_set a f u.
Lemma function_set_sub_powerset_record : forall a f,
    sub (function_set a f) (powerset (record a f)).
Lemma function_set_pr : forall a f u,
        inc u (function_set a f) ->
        (in_function_set a f u & fgraph u & domain u = a
            & (forall y, inc y a -> inc (V y u) (f y))).
Lemma function_set_inc : forall a f u,
    fgraph u -> domain u = a ->
        (forall y, inc y a -> inc (V y u) (f y)) -> inc u (function_set a f).
Lemma in_function_set_inc : forall a f u,
    in_function_set a f u -> inc u (function_set a f).
```


3.3 Module Notation

Bourbaki says: a correspondence $f=(\mathrm{F}, \mathrm{A}, \mathrm{B})$ is said to be function if its graph F is a functional graph and if its source A is equal to its domain $\operatorname{pr}_{1} \mathrm{~F}$ [2, p. 81], and has statements of the form: let f be a mapping of A into B , if f is injective and if $\mathrm{A} \neq \varnothing$ then f has a left-inverse. The important point is that a function contains three items (source, graph, etc., and has some properties as $\left.\mathrm{A}=\operatorname{pr}_{1} \mathrm{~F}\right)$. In Coq this means that source $f=P(g r a p h f)$ is true for every function f. We do not require graph $f=P f$. In a first implementation, the graph was defined by the function graphC below. Then we changed our mind and associated a record to it; the trouble is then that we cannot consider the set of all functions, bust must use instead the set of all triples ($\mathrm{F}, \mathrm{A}, \mathrm{B}$) associated to the function.

Consider now the following puzzle. We say that a group is a tuple ($\mathrm{E},+,-, 0$) with some properties and that a ring is a tuple ($\mathrm{E},+,-, 0, *, 1$) and that a field is a tuple ($\mathrm{E},+,-, 0, *, 1, /$). How can we arrange the data structure so that properties true for a group become true for a field?

One solution is the following: we say that a group is tuple of equalities ($u=\mathrm{E}, p=+, m=$,$- z=0$), where u, p, m, z are some constant names (we will use character strings in what follows). The order becomes irrelevant, and we may have additional, useless, elements. Instead of $u=\mathrm{E}$ we use the pair (u, E). In other words, a group is a finite functional graph.

A notation is a functional graph, whose domain is string. A finite functional graph is defined by the two constructors stop and denote. Here stop is the constant function that associates the empty set to every value and denote $a b f$ is the function similar to f, but it associates b to a.

```
Definition is_notation f :=
    fgraph f & domain f = string.
Definition stop := L string (fun s => emptyset).
Definition denote str obj old :=
    L string (fun s => (Yo (s = str) obj (V s old))).
```

The following four lemmas explain how to use the notation mechanism.

```
Lemma is_notation_stop : is_notation stop.
Lemma is_notation_denote : forall str obj old,
    is_notation old -> is_notation (denote str obj old).
Lemma V_stop : forall x, V x stop = emptyset.
Lemma V_denote_new : forall str obj old x,
    x = str -> inc x string -> V x (denote str obj old) = obj.
Lemma V_denote_old : forall str obj old x,
    ~x=str -> inc x string -> V x (denote str obj old) = V x old.
```

We define here some commonly used fields.

```
Definition Underlying := Ro "Underlying".
Definition Source := Ro "Source".
Definition Target := Ro "Target".
Definition Graph := Ro "Graph".
Definition Arrow := Ro "Arrow".
Definition Ul (x : E) := V Underlying x.
Definition sourceC (x : E) := V Source x.
Definition graphC (x : E) := V Graph x.
Definition targetC (x : E) := V Target x.
Definition arrowC x := V Arrow x.
```

This may be used later one when defining unary and binary operations on a set.

```
Definition unary (x:Bset) (f:EE) := L x f.
```

```
Lemma V_unary : forall x f a, inc a x ->
    V a (unary x f) = f a.
Definition binary (x:Bset) (f:EEE) :=
    L x (fun a => (L x (fun b => f b a))).
Lemma V_V_binary : forall x f a b,
    inc a x -> inc b x >> V a (V b (binary x f)) = f a b.
```


3.4 Module Universe

A universe is some big set. ${ }^{2}$. The definition here says that if u is a universe then it must contain many sets.

```
Definition axioms u :=
    (forall x y, inc x u -> inc y x -> inc y u) &
    (forall x (f:x->Bset), inc x u -> (sub (IM f) u) -> inc (IM f) u) &
    (forall x, inc x u -> inc (union x) u) &
    (forall x, inc x u -> inc (powerset x) u) &
    inc nat u &
    inc string u.
```

We give here a list of properties of a universe.

```
Lemma inc_trans_u : forall x u, axioms u ->
    (exists y, (inc x y & inc y u)) -> inc x u.
Lemma inc_powerset_u : forall x u, axioms u -> inc x u ->
    inc (powerset x) u.
Lemma inc_nat_u : forall u, axioms u -> inc nat u.
Lemma inc_R_nat_u : forall (n:nat) u, axioms u -> inc (Ro n) u.
Lemma inc_prop_u : forall u, axioms u -> inc Prop u.
Lemma inc_R_a_prop_u : forall u (p:Prop), axioms u -> inc (Ro p) u.
Lemma inc_a_prop_u : forall u (p:Prop), axioms u -> inc p u.
Lemma inc_proof_u : forall u (p:Prop) (t:p), axioms u -> inc (Ro t) u.
Lemma inc_string_u : forall u, axioms u -> inc string u.
Lemma inc_subset_u : forall x u, axioms u ->
    (exists y, (inc y u & sub x y)) -> inc x u.
Lemma inc_emptyset_u : forall u, axioms u -> inc emptyset u.
Lemma inc_IM_u : forall x (f:x->Bset) u,
    axioms u -> inc x u -> sub (IM f) u ->
    inc (IM f) u.
Definition doubleton_step :forall (x y:Bset) (n:nat), Bset.
intros. induction n. exact x. exact y.
Defined.
Lemma IM_doubleton_step: forall x y,
IM (doubleton_step x y) = (doubleton x y).
Lemma inc_doubleton_u : forall x y u,
    axioms u -> inc x u -> inc y u -> inc (doubleton x y) u.
```

[^8]```
Lemma inc_singleton_u : forall x u,
Lemma inc_pair_u : forall x y u,
 axioms u -> inc x u -> inc y u -> inc (pair x y) u.
Lemma sub_u : forall x u, axioms u -> inc x u -> sub x u.
Lemma inc_function_create_u : forall x f u,
 axioms u -> inc x u ->
 (forall y, inc y x -> inc (f y) u) ->
 inc (L x f) u.
Lemma inc_function_tcreate_u : forall x (f:x->Bset) u,
 axioms u -> inc x u ->
 (forall y, inc (f y) u) ->
 inc (tcreate f) u.
Lemma inc_pr1_of_pair_u : forall u x,
 axioms u -> (exists y, inc (pair x y) u) -> inc x u.
Lemma inc_pr2_of_pair_u : forall u y,
 axioms u -> (exists x, inc (pair x y) u) -> inc y u.
Lemma inc_V_u : forall f x u,
 axioms u -> inc f u -> inc x u -> inc (V x f) u.
Lemma inc_denote_u : forall s x a u,
 axioms u -> inc a u -> inc s string -> inc x u ->
Lemma inc_binary_u : forall x f u,
 axioms u -> inc x u ->
 (forall y z, inc y x -> inc z x -> inc (f y z) u) ->
 inc (binary x f) u.
Lemma inc_stop_u : forall u,
 axioms u -> inc stop u.
```


## Chapter 4

## Correspondences

From now on, we follow Bourbaki as closely as possible. The series "Elements of mathematics" is divided in 9 books, the first one is called "Theory of sets". This book is divided into four chapters, the second one is "Theory of sets". This chapter is divided into 6 sections; we implement here section 3 "Correspondences". When we talk about Proposition 1, this is to be understood as Proposition 1 of [2] of the current section (i.e., the current Chapter of this report).

We consider here some properties of sections 1 (Collectivizing relations) and 2 (Ordered pairs) not implemented by Carlos Simpson in [2].

If $a \subset x$, then $x \backslash(x \backslash a)=a$ and if $b \subset x$, then $x \backslash a \subset x \backslash b$ if and only if $b \subset a$. We have $x \backslash x=\varnothing$ and $x \backslash \varnothing=x$.

```
Lemma double_complement: forall a x,
 sub a x -> complement x (complement x a) = a.
Lemma complement_monotone : forall a b x,
 sub a x -> sub b x -> (sub a b = sub (complement x b) (complement x a)).
Lemma complement_itself : forall x, complement x x = emptyset.
Lemma complement_emptyset : forall x, complement x emptyset = x.
Lemma pair_in_product: forall a b c, inc a (product b c) -> is_pair a.
```

A property $\mathrm{P}(y)$ is collectivizing if there is a set $x$ such that $\mathrm{P}(y)$ is equivalent to $y \in x$. There are properties that are not collectivizing, for instance $y \notin y$. The second lemma says that there is a set containing no set but there is no set containing all sets.

```
Lemma not_collectivizing_notin:
 ~ (exists z, forall y, inc y z = not (inc y y)).
Lemma collectivizing_special :
 (exists x, forall y, ~ (inc y x)) & ~ (exists x, forall y, inc y x).
```

Additional properties of the empty set. We have $\varnothing \subset x$ for every $x$, but the converse is true only if $x$ is the empty set. Since $x \in \varnothing$ is absurd, everything can be deduced from it.

```
Lemma emptyset_pr: forall x, inc x emptyset -> False.
Lemma emptyset_pra: forall x (p: EP), inc x emptyset -> (p x).
Lemma sub_emptyset_any: forall x, sub emptyset x.
Lemma sub_emptyset : forall x, sub x emptyset = (x = emptyset).
```

If X and Y are nonempty sets, then $\mathrm{X} \times \mathrm{Y} \subset \mathrm{X}^{\prime} \times \mathrm{Y}^{\prime}$ is equivalent to $\mathrm{X} \subset \mathrm{X}^{\prime}$ and $\mathrm{Y} \subset \mathrm{Y}^{\prime}$.

```
Lemma product_monotone2: forall x x' y y', nonempty x -> nonempty y ->
 sub (product x y) (product x' y') -> (sub x x' & sub y y').
Lemma product_monotone3: forall x x' y y', nonempty x -> nonempty y ->
 sub (product x y) (product x' y') = (sub x x' & sub y y').
```

We state here that, given two sets $a$ and $b$, each one is in the union and contains the intersection.

```
Lemma union2sub_first: forall a b, sub a (union2 a b).
Lemma union2sub_second: forall a b, sub b (union2 a b).
Lemma intersection2sub_first: forall a b, sub (intersection2 a b) a.
Lemma intersection2sub_second: forall a b, sub (intersection2 a b) b.
```


### 4.1 Graphs and correspondences

A graph $r$ is a set of pairs; if the pair $(x, y)$ is an element of $r$ we say that $x$ and $y$ are related by $r$. This will be used essentially when $r$ is the graph of a relation.

```
Definition related r x y := inc (pair x y) r.
```

The next theorem is Proposition 1 in [2, p. 76]; it claims existence and uniqueness of two sets denoted by $\mathrm{pr}_{1}\langle r\rangle$ and $\mathrm{pr}_{2}\langle r\rangle$. The notation $\mathrm{pr}_{1}\langle r\rangle$ is defined in section 2.7 , it is the domain of $r$..

```
Theorem range_domain_exists: forall r,
 is_graph r ->
 (exists_unique (fun a=> (forall x, inc x a = (exists y, inc (J x y) r))) &
 exists_unique (fun b=> (forall y, inc y b = (exists x, inc (J x y) r)))).
```

A graph is a subset of the product of the domain by the range. A graph is empty if and only if its domain or range is empty. A functional graph is a graph.

```
Lemma sub_graph_prod: forall r, is_graph r ->
 sub r (product (domain r)(range r)).
Lemma empty_graph1: forall r, is_graph r ->
 (domain r = emptyset) = (r = emptyset).
Lemma empty_graph2: forall r, is_graph r ->
 (range r = emptyset) = (r = emptyset).
Lemma graph_fgraph : forall f, fgraph f -> is_graph f.
```

The emptyset is a functional graph, with empty range and domain.

```
Lemma emptyset_is_graph: is_graph (emptyset).
Lemma range_emptyset: range emptyset = emptyset.
Lemma domain_emptyset: domain emptyset = emptyset.
Lemma fgraph_emptyset: fgraph emptyset.
```

A product $x \times y$ is a graph. The domain is $x$, the range is $y$. Note that, if one set is empty, then the product is empty, see above. It is a functional graph if the range is a singleton.

```
Lemma product_is_graph: forall x y,
 is_graph (product x y).
Lemma product_related: forall \(x\) y a b,
 related (product \(\mathrm{x} y\)) a \(\mathrm{b}=\) (inc \(\mathrm{a} x\) \& inc \(b \mathrm{y}\)).
Lemma domain_product: forall x y,
 nonempty \(y->\) domain (product \(x y\)) \(=x\).
Lemma range_product: forall x y,
 nonempty \(\mathrm{x} \rightarrow\) range (product \(\mathrm{x} y\)) \(=\mathrm{y}\).
Lemma constant_function_p1: forall x y,
 fgraph (product \(x\) (singleton \(y\)).
```

The diagonal of $x$, denoted $\Delta_{x}$, is the set of all pairs $(a, a)$, with $a \in x$. This is a functional graph, domain and range being $x$.

```
Definition diagonal x := Zo (product x x)(fun y=> P y = Q y).
Lemma inc_diagonal: forall x u,
 inc u (diagonal x) = (is_pair u & inc (P u) x & P u = Q u).
Lemma inc_pair_diagonal: forall x u v,
 inc (J u v) (diagonal x) = (inc u x & u = v).
Lemma diagonal_related: forall x u v,
 related (diagonal x) u v = (inc u x & u = v).
Lemma diagonal_is_graph: forall x, is_graph (diagonal x).
Lemma domain_diagonal: forall x, domain (diagonal x) = x.
Lemma range_diagonal: forall x, range (diagonal x) = x.
Lemma fgraph_diagonal: forall x, fgraph (diagonal x).
```

For Bourbaki, a correspondence between A and $B$ is a triple ( $G, A, B$ ) where the domain of $G$ is a subset of $A$ and the range is a subset of $B$. In a first implementation, we have used the mechanism shown here.

```
(*
 Definition create x y g:=
 denote Source x (denote Target y (denote Graph g stop)).
 Definition like (a:E) := a = create(sourceC a) (targetC a)(graphCiN a).
 Definition correspondence m:=
 like m & is_graph (graph m) & sub (domain (graph m)) (source m)
 & sub (range (graph m)) (target m).
*)
```

In the current version, we use a record. In order to consider the set of all correspondences, we must convert this record into an object via corr_value. Conversely, we can convert a triple into a correspondence.

```
Record correspondenceC:Type :=
 corresp{ source:Bset; target:Bset; graph :Bset }.
Definition corr_value (x:correspondenceC):=
 J(graph x) (J (source x) (target x)).
Definition inv_corr_value z := corresp(P (Q z)) (Q (Q z)) (P z).
Lemma corr_propc: forall f,
 corresp(source f) (target f) (graph f) =f.
Lemma inv_corr_value_pr: forall z, inv_corr_value (corr_value z) = z.
```

```
Lemma correspondence_extensionality1: forall m m' :correspondenceC,
 (corr_value m = corr_value m') = (m = m').
```

The property corr_axiom stg says that $g$ is a graph, whose domain is a subset of $s$ and whose range is a subset of $t$. The property corr_axiom1 $x$ says that $x$ is a triple $(g, s, t)$ with this property. We say that $f$ is a correspondence if its corr_value satisfies the property; note that an object that has a source, a target, a graph, corr_value, etc., is of type correspondenceC.

```
Definition corr_axiom s t g:=
 is_graph(g) & sub (domain g) s & sub(range g) t.
Definition corr_axiom1 x :=
 is_pair x & is_pair (Q x) & corr_axiom (P (Q x)) (Q (Q x)) (P x).
(*
Definition is_correspondence f :=
 corr_axiom1(corr_value f).
*)
Definition is_correspondence f :=
 corr_axiom (source f) (target f) (graph f).
```

We list here the basic properties of correspondences. The first one says that, given a correspondence, if we take its source, target and graph, and create a correspondence, we get the initial object. The second result is that two correspondences with the same corr_value are equal.

```
Lemma corr_create: forall s t g,
 corr_axiom s t g -> is_correspondence(corresp s t g).
Lemma corr_props: forall f,
 is_correspondence f -> corr_axiom(source f) (target f)(graph f).
Lemma is_graph_correspondence: forall g,
 is_correspondence g -> is_graph(graph g).
Lemma range_correspondence: forall g,
 is_correspondence g -> sub (range (graph g)) (target g).
Lemma domain_correspondence: forall g,
 is_correspondence g -> sub (domain (graph g)) (source g).
```

A triple $(G, A, B)$ is a correspondence if and only if $G \in \mathfrak{P}(A \times B)$, but Bourbaki defines the powerset only later. From this, we deduce that the set of all correspondences between $A$ and $B$ is $\mathfrak{P}(A \times B) \times\{A\} \times\{B\}$. If E is this set, we show that $z \in \mathrm{E}$ is only only if $z$ is the value of a correspondence $\Gamma$ from $A$ to $B$ (and such a $\Gamma$ is unique).

```
Definition set_of_correspondences (x y:Bset) :=
 product(powerset (product x y))
 (product (singleton x) (singleton y)).
Definition sof_value x y z := corresp x y (P z).
Lemma corr_propa: forall x y z,
 corr_axiom x y z = inc z (powerset (product x y)).
Lemma set_of_correspondences_prop: forall x y z,
 inc z (set_of_correspondences x y) =
 (corr_axiom1 z & (P (Q z) = x) &(Q (Q z)=y)).
Lemma set_of_correspondences_propa: forall f,
 is_correspondence f ->
 inc (corr_value f) (set_of_correspondences (source f) (target f)).
Lemma sof_value_pra: forall x y z,
```

```
 inc z (set_of_correspondences x y) ->
 (is_correspondence (sof_value x y z) &
 source (sof_value x y z) = x &
 target (sof_value x y z) = y &
 corr_value (sof_value x y z) =z).
Lemma set_of_correspondences_propb: forall x y z,
 inc z (set_of_correspondences x y) ->
 exists f, is_correspondence f & source f = x & target f = y & corr_value f=z.
```

Given a function $f: a \rightarrow b$, we construct $\mathscr{L} f$, the associated correspondence.

```
Definition gacreate a b (f:a->b) := (IM (fun y:a => J (Ro y) (Ro (f y)))).
Definition acreate a b (f:a->b) := corresp a b (gacreate f).
Lemma acreate_axioms: forall a b (f:a->b),
 is_correspondence (acreate f).
Lemma source_acreate : forall a b (f:a->b), source (acreate f) = a.
Lemma target_acreate : forall a b (f:a->b), target (acreate f) = b.
```

For a correspondence $(G, A, B)$ we have $G \subset A \times B$.

Lemma corresp_graph_sub: forall r:correspondenceC, sub (graph r) (product (source r) (target r)).

Restriction of $f$ to $x$ is defined elsewhere. In some cases, it is important to change the order of arguments.

```
Definition restriction_graph f r := restr r f.
Lemma restriction_graph_pr: forall x r y,
 (inc y (restriction_graph x r) = (inc y r & inc (P y) x)).
Lemma restricted_graph_is_graph: forall x r,
 is_graph r -> is_graph (restriction_graph x r).
```

I Direct image of a set by a functional object. This will be denoted by $f\langle x\rangle$. In the first definition $f$ is a graph, and we consider all elements $y$ for which there is a $z \in x$ such that $(z, y) \in f$. In the second definition, $f$ is a correspondence, and we consider the image by its graph. In the last definition, $f$ is a correspondence, and we take the image of the source (the case where $f$ is a mapping has been considered in Section 2.7.

```
Definition image_by_graph f u:=
 Zo(range f)(fun y=>exists x, inc x u & inc (J x y) f).
Definition image_by_fun f u :=
 image_by_graph(graph f) u.
Definition image_of_fun f :=
 image_by_graph (graph f) (source f).
```

We give now some basic properties. The image is a part of the range; it is the full range if we consider the full domain. The image of a subset $x$ of the domain is empty if and only if $x$ is empty. Proposition 2 in [2, p. 77] says that the image functor is increasing (we use here the term "functor" rather than function, since it is a mapping without graph).

```
Lemma image_by_graph_pr: forall u r y, is_graph r ->
 inc y (image_by_graph r u) = exists x, (inc x u & related r x y).
Lemma sub_image_by_graph: forall u r, is_graph r ->
 sub (image_by_graph r u) (range r).
Lemma image_by_graph_domain: forall r, is_graph r ->
 image_by_graph r (domain r) = range r.
Lemma image_by_emptyset: forall r,
 image_by_graph r emptyset = emptyset.
Lemma image_by_nonemptyset: forall u r,
 is_graph r -> nonempty u -> sub u (domain r)
 -> nonempty (image_by_graph r u).
Theorem image_by_increasing: forall u u'r,
 is_graph r -> sub u u' -> sub (image_by_graph r u) (image_by_graph r u').
Lemma image_of_large: forall u r, is_graph r ->
 sub (domain r) u -> image_by_graph r u = range r.
```

Given a graph $r$ and an element $x$, the set of all $y$ in $r$ whose first projection is $x$ is called the cut. This is $r\langle\{x\}\rangle$. If $f$ is a correspondence, the notation $\mathrm{G}(f)\langle\{x\}\rangle$ is sometimes simplified to $f\langle\{x\}\rangle$ or $f(x)$ (this last notation is ambiguous, since it denotes also the value of $f$ at $x$ ).

```
Definition cut r x := image_by_graph r (singleton x).
Lemma cut_pr: forall r x y, is_graph r ->
 inc y (cut r x) = related r x y.
Lemma cut_inclusion: forall r r', is_graph r -> is_graph r' ->
 (forall x, sub (cut r x) (cut r' x)) = sub r r'.
```


### 4.2 Inverse of a correspondence

The inverse graph of G , denoted by $\stackrel{-1}{\mathrm{G}}$, or $\mathrm{G}^{-1}$ is the set of all pairs $(x, y)$ such that $(y, x) \in$ G. We follow the definition of Bourbaki; he says that this set exists when G is a graph, because it is a subset of the product of the range and domain. We can also consider the image of the mapping $(x, y) \rightarrow(y, x)$. Both definitions agree if G is a graph.

```
Definition inverse_graph r :=
 Zo(product(range r)(domain r))
 (fun y=> inc (J (Q y)(P y)) r).
```

Lemma inverse_graph_alt: forall r, is_graph r ->
inverse_graph $r=$ fun_image $r(f u n z=>(Q \quad z)(P z)$ ).

Some trivialities to start with.

```
Lemma inverse_graph_is_graph: forall r, is_graph (inverse_graph r).
Lemma inverse_graph_pr: forall r y, is_graph r ->
 inc y (inverse_graph r) = (is_pair y & inc (J (Q y) (P y)) r).
Lemma inverse_graph_pair: forall r x y, is_graph r ->
 inc (J x y) (inverse_graph r) = inc (J y x) r.
Lemma inverse_graph_pr2: forall r x y, is_graph r ->
 related (inverse_graph r) y x = related r x y.
```

Taking the inverse swaps range and domain. Taking twice the inverse gives the same graph. The inverse of a product is the product in reverse order. The inverse of the empty set or identity is itself.

```
Lemma inverse_graph_involutive: forall r, is_graph r ->
 inverse_graph (inverse_graph r) = r.
Lemma range_inverse: forall r, is_graph r ->
 range (inverse_graph r) = domain r.
Lemma domain_inverse: forall r, is_graph r ->
 domain (inverse_graph \(r\)) = range \(r\).
Lemma inverse_graph_emptyset:
 inverse_graph (emptyset) = emptyset.
Lemma inverse_product: forall x y,
 inverse_graph (product x y) = product y x.
Lemma inverse_diagonal: forall x,
 inverse_graph (diagonal x) = diagonal x .
```

The inverse of the correspondence $\Gamma=(G, A, B)$ is $(\stackrel{-1}{G}, B, A)$. It is denoted by $\stackrel{-1}{\Gamma}$. It satisfies some trivial properties.

```
Definition inverse_fun m :=
 corresp(target m) (source m)(inverse_graph (graph m)).
Lemma correspondence_inverse_fun: forall m,
 is_correspondence m -> is_correspondence (inverse_fun m).
Lemma source_inverse: forall m: correspondenceC,
 source(inverse_fun m) = target m.
Lemma target_inverse: forall m: correspondenceC,
 target(inverse_fun m) = source m.
Lemma graph_inverse: forall m: correspondenceC,
 graph(inverse_fun m) = inverse_graph(graph m).
Lemma inverse_fun_involutive: forall m,
 is_correspondence m -> inverse_fun (inverse_fun m) = m.
```

The inverse image by a graph (or correspondence or a function) is the direct image of its inverse. It is denoted by $g^{-1}\langle x\rangle$.

```
Definition inv_image_by_graph r x :=
 image_by_graph (inverse_graph r) x.
Definition inv_image_by_fun r x:=
 inv_image_by_graph(graph r) x.
Lemma inv_image_by_fun_pr: forall r x,
 inv_image_by_fun r x = image_by_fun (inverse_fun r) x.
Lemma inv_image_graph_pr: forall x r y, is_graph r ->
 (inc y (inv_image_by_graph r x)) = (exists u, inc u x & related r y u).
```


### 4.3 Composition of two correspondences

The composition of two graphs $\mathrm{G}_{2} \circ \mathrm{G}_{1}$ is the set of all $(x, z)$ for which there is an $y$ such that $(x, y)$ is in the first graph and $(y, z)$ is in the second. It is a subset of the product of the domain of the first graph and the range of the second. Note: the first graph is $\mathrm{G}_{1}$, it is the second argument of compose_graph. These properties are obvious.

```
Definition compose_graph r' r :=
 Zo(product(domain r)(range r'))(fun w => exists y,
 (inc (J (P w) y) r & inc (J y (Q w)) r')).
Lemma composition_is_graph: forall r r',
 is_graph (compose_graph r r').
Lemma inc_compose: forall r r' x,
 is_graph r -> is_graph r' -> inc x (compose_graph r' r) =
 (is_pair x &(exists y, inc (J (P x) y) r& inc (J y (Q x)) r')).
Lemma compose_related:forall r r' x z,
 is_graph r -> is_graph r' -> (related (compose_graph r' r) x z=
 exists y, related r x y & related r' y z).
Lemma compose_domain1: forall r r',
 is_graph r -> is_graph r' ->
 sub (domain (compose_graph r' r)) (domain r).
Lemma compose_range1:forall r r',
 is_graph r -> is_graph r' ->
 sub (range (compose_graph r' r)) (range r').
```

        Proposition 3 in [2, p. 79] says \(\left(\mathrm{G}^{\prime} \circ \mathrm{G}\right)^{-1}=\mathrm{G}^{-1} \circ\left(\mathrm{G}^{\prime}\right)^{-1}\).
    Theorem inverse_compose:forall r r',
is_graph r -> is_graph r' ->
inverse_graph (compose_graph r' r) =
compose_graph (inverse_graph r)(inverse_graph r').

Proposition 4 [2] p. 79] says that graph composition is associative.

```
Theorem composition_associative:forall r r' r'',
 is_graph r -> is_graph r' -> is_graph r', ->
 compose_graph r'' (compose_graph r' r) =
 compose_graph (compose_graph r'' r') r.
```

Proposition 5 [2, p. 79] says $\left(\mathrm{G}^{\prime} \circ \mathrm{G}\right)\langle\mathrm{A}\rangle=\mathrm{G}^{\prime}\langle\mathrm{G}\langle\mathrm{A}\rangle\rangle$. We have a characterization of the domain and range of the composition as direct or inverse image of the domain or range. We have an interesting formula $\mathrm{A} \subset \mathrm{G}^{-1}\langle\mathrm{G}\langle\mathrm{A}\rangle\rangle$.

```
Theorem image_composition: forall r r' x,
 is_graph r -> is_graph r' ->
 image_by_graph(compose_graph r' r) x = image_by_graph r' (image_by_graph r x).
Lemma compose_domain:forall r r',
 is_graph r -> is_graph r' ->
 domain (compose_graph r' r) = inv_image_by_graph r(domain r').
Lemma compose_range: forall r r',
 is_graph r -> is_graph r' ->
 range (compose_graph r' r) = image_by_graph r' (range r).
Lemma inverse_direct_image: forall r x,
 is_graph r -> sub x (domain r) ->
 sub x (inv_image_by_graph r (image_by_graph r x)).
Lemma composition_increasing: forall r r' s s',
 is_graph r -> is_graph r' -> is_graph s -> is_graph s' ->
 sub r s -> sub r' s' -> sub (compose_graph r' r) (compose_graph s' s).
```

The property that $f$ and $f^{\prime}$ are two correspondences where the target of $f$ is the source of $f^{\prime}$ will be called composableC. We can write them as $f=(\mathrm{G}, \mathrm{A}, \mathrm{B})$ and $f^{\prime}=\left(\mathrm{G}^{\prime}, \mathrm{B}, \mathrm{C}\right)$. We define the composition $f^{\prime} \circ f=\left(\mathrm{G}^{\prime} \circ \mathrm{G}, \mathrm{A}, \mathrm{C}\right)$; this is a correspondence, with source A , target C , and graph $\mathrm{G}^{\prime} \circ \mathrm{G}$. Proposition 5 implies $\left(f^{\prime} \circ f\right)\langle\mathrm{A}\rangle=f^{\prime}\langle f\langle\mathrm{~A}\rangle\rangle$, and Proposition 3 gives $\left(f^{\prime} \circ f\right)^{-1}=$ $f^{-1} \circ f^{\prime-1}$, provided both correspondences are composable; two lemmas are needed; the first one says $f^{-1} \circ f^{\prime-1}$ is defined, the other one says that it is the LHS.

```
Definition composableC r' r :=
 is_correspondence r & is_correspondence r' & source r' = target r.
Definition compose r' r :=
 corresp (source r)(target r') (compose_graph (graph r')(graph r)).
Lemma corresp_compose: forall r' r,
 composableC r' r -> is_correspondence (compose r' r).
Lemma source_compose: forall r' r, source(compose r' r) = source r.
Lemma target_compose: forall r' r, target(compose r' r) = target r'.
Lemma graph_compose: forall r' r ,
 graph(compose r' r) = compose_graph(graph r')(graph r).
Lemma compose_of_sets: forall r' r x, composableC r' r ->
 image_by_fun(compose r' r) x = image_by_fun r' (image_by_fun r x).
Lemma inverse_compose_cor: forall r r' (H:composableC r' r),
 inverse_fun (compose H) =
 compose (inverse_composable H).
```

Denote by $\Delta_{A}$ the diagonal of A and by $\mathrm{I}_{\mathrm{A}}$ the identity correspondence defined by $\left(\Delta_{\mathrm{A}}, \mathrm{A}, \mathrm{A}\right)$.

```
Definition identity_fun x := corresp x x (diagonal x).
Lemma correspondence_identity: forall x,
 is_correspondence (identity_fun x).
Lemma target_identity: forall x, target (identity_fun x) = x.
Lemma source_identity: forall x, source (identity_fun x) = x.
Lemma graph_identity: forall x, graph (identity_fun x) = diagonal x.
```

We have lemmas that say under which condition $f \circ \mathrm{I}_{\mathrm{A}}$ or $\mathrm{I}_{\mathrm{A}} \circ f$ are defined. The result is $f$. In particular $\mathrm{I}_{\mathrm{A}} \circ \mathrm{I}_{\mathrm{A}}=\mathrm{I}_{\mathrm{A}}$.

```
Lemma composable_identity_left: forall m,
 is_correspondence m -> composableC (identity_fun (target m)) m.
Lemma composable_identity_right: forall m,
 is_correspondence m -> composableC m (identity_fun (source m)).
Lemma compose_identity_left: forall m,
 is_correspondence m -> compose (identity_fun (target m)) m = m.
Lemma compose_identity_right: forall m,
 is_correspondence m -> compose m (identity_fun (source m)) = m.
Lemma compose_identity_identity: forall x,
 compose (identity_fun x) (identity_fun x) = (identity_fun x).
Lemma identity_self_inverse: forall x,
 inverse_fun (identity_fun x) = (identity_fun x).
```


### 4.4 Functions

We say that $r$ is functional if each $x$ is related to at most one $y$. We show that this definition is equivalent to the one given in Section 3.1, that says that if $z$ and $z^{\prime}$ are in $r$, then
$\operatorname{pr}_{1} z=\operatorname{pr}_{1} z^{\prime}$ implies $z=z^{\prime}$. Remember that $\mathcal{V}_{r} x$ denotes the object $v$ (if it exists) such that $x$ is related to $v$.

```
Definition functional_graph r :=
 forall x y y', related r x y >> related r x y' -> y=y'.
Lemma is_functional: forall r,
 (is_graph r & functional_graph r) = (fgraph r). (* 12 *)
```

A function is a correspondence $f=(\mathrm{G}, \mathrm{A}, \mathrm{B})$ with a functional graph G , where A is the domain of G. This means that every $x$ in A is related to unique $y$. This is denoted in Bourbaki by $f(x)$ or $\mathrm{G}(x)$. Here we use either $\mathcal{V}_{\mathrm{G}} x$ or $\mathscr{W}_{f} x$. Note: since source is only defined for correspondences, by type inference the expression is_function $f$ implies that $f$ is a correspondence. Note: Bourbaki says [2, p. 82] "we shall often use the word 'function' in place of 'functional graph' ".

```
Definition is_function f :=
 is_correspondence f & (functional_graph (graph f))
 & (source f = domain (graph f)).
Lemma fgraph_function: forall f ,
 is_function f -> fgraph (graph f).
Lemma is_graph_function: forall f,
 is_function f -> is_graph (graph f).
Lemma related_inc_source: forall f x y,
 is_function f -> related (graph f) x y -> inc x (source f).
Lemma is_function_functional: forall f, is_correspondence f ->
 (is_function f = forall x, inc x (source f) ->
 exists_unique (fun y => related (graph f) x y)).
Lemma sub_image_target:
 forall f, is_function f -> sub (image_of_fun f) (target f).
```

All properties of $\mathscr{V}$ give a corresponding one for $\mathscr{W}$. All lemmas listed here are trivial. Let $f=(\mathrm{G}, \mathrm{A}, \mathrm{B})$ be a function. If $x \in \mathrm{~A}$ then $\left(x, \mathscr{W}_{f} x\right) \in \mathrm{G}, \mathscr{W}_{f} x \in \operatorname{range}(\mathrm{G})$ and $\mathscr{W}_{f} x \in \mathrm{~B}$. If $y \in \operatorname{range}(\mathrm{G})$, there exists $x$ such that $y=\mathscr{W}_{f} x$. If $z \in \mathrm{G}$ then $z=\left(\operatorname{pr}_{1} z, \mathscr{W}_{f} \operatorname{pr}_{1} z\right), \mathrm{pr}_{2} z=\mathscr{W}_{f} \operatorname{pr}_{1} z$, and $\operatorname{pr}_{1} z \in \mathrm{~A}$. If $(x, y) \in \mathrm{G}$ then $y=\mathscr{W}_{f} x, x \in \mathrm{~A}$ and $y \in \mathrm{~B}$. Finally, if $\mathrm{X} \subset \mathrm{A}$ then $y \in f\langle\mathrm{X}\rangle$ if and only if there is $x \in \mathrm{X}$ such that $y=\mathscr{W}_{f} x$.

```
Definition W x f := V x (graph f).
Lemma defined_lem: forall f x,
 is_function f-> inc x (source f) -> inc (J x (W x f)) (graph f).
Lemma inc_W_range_graph:forall f x, is_function f -> inc x (source f)
 -> inc (W x f) (range (graph f)).
Lemma inc_W_target: forall f x, is_function f -> inc x (source f)
 -> inc (W x f) (target f).
Lemma range_inc_rw: forall f y, is_function f ->
 inc y (range (graph f)) = exists x:E, (inc x (source f) & y = W x f).
Lemma in_graph_W: forall f x,
 is_function f -> inc x (graph f) -> x = (J (P x) (W (P x) f)).
Lemma pr2_W: forall f x, is_function f ->
 inc x (graph f) -> Q x = W (P x) f.
```

```
Lemma inc_pr1graph_source1:forall f x, is_function f ->
 inc x (graph f) -> inc (P x) (source f).
Lemma W_pr: forall f x y, is_function f ->
 inc (J x y) (graph f) -> y = W x f.
Lemma inc_pr1graph_source: forall f x y, is_function f ->
 inc (J x y) (graph f) -> inc x (source f).
Lemma inc_pr2graph_target: forall f x y, is_function f ->
 inc (J x y) (graph f) -> inc y (target f).
Lemma W_image: forall f x y, is_function f -> sub x (source f) ->
 (inc y (image_by_fun f x) = exists u, inc u x & y = W u f).
Lemma image_by_fun_pr: forall f u y, is_function f -> sub u (source f) ->
 inc y (image_by_fun f u) = exists x, (inc x u & y = W x f).
```

The first lemma says $f\langle\{x\}\rangle=\{f(x)\}$. Remember that the LHS is the set of all $y$ related to $x$ by the function; we claim that there is exactly one such element, and is chosen by the W function. Two functions having same source, same target and same evaluation function are the same. We have $f^{-1}\langle\mathrm{~B} \backslash \mathrm{X}\rangle=\mathrm{A} \backslash f^{-1}\langle\mathrm{X}\rangle$ if it is a function from A to B .

```
Lemma image_singleton: forall f x,
 is_function f -> inc x (source f) ->
 image_by_fun f (singleton x) = singleton (W x f).
Lemma funct_extensionality: forall f g,
 is_function f -> is_function g -> source f = source g ->
 target f = target g -> (forall x, inc x (source f) -> W x f = W x g)
 -> f = g.
Lemma inv_image_complement: forall g x,
 is_function g ->
 inv_image_by_fun g (complement (target g) x) =
 complement (source g) (inv_image_by_fun g x).
```

I Let $h$ be a mapping (for instance $x \mapsto x+1$ ) and A a set (for instance the set of odd integers). We can associate a graph, namely $\mathscr{L}_{\mathrm{A}} h$. If B is another set, we can consider the function $\mathscr{L}_{\mathrm{A} ; \mathrm{B}} h$ from A to B whose graph is $\mathscr{L}_{\mathrm{A}} h$, provided that $x \in \mathrm{~A}$ implies $h(x) \in \mathrm{B}$ (in the example, B must contain the even integers); this condition will be denoted by transf_axiom (see Section 4.6. Assume now that $f$ maps type A into type B , its composition $h$ with $\mathscr{R}$ is a mapping that satisfies: $x \in \mathrm{~A}$ implies $h(x) \in \mathrm{B}$. The quantity $\mathscr{L}_{\mathrm{A} ; \mathrm{B}} h$ will be denoted by $\mathscr{L} f$. In the Coq source, this is acreate. We shall see in a moment that $f$ can be obtained from $g=\mathscr{L} f$ by the formula $f=\mathscr{M}_{\mathrm{A} ; \mathrm{B}} g$. Lemma $W_{-}$acreate says that the following diagram (left part) commutes.

(a/b create)

```
Lemma prop_acreate: forall A B (f:A->B) x,
 inc x (graph (acreate f)) = exists u:A, x = J(Ro u)(Ro (f u)).
Lemma axioms_acreate : forall A B (f:A->B), fgraph(graph (acreate f)).
Lemma function_acreate : forall A B (f:A>>B), is_function(acreate f).
Lemma W_acreate : forall A B (f:A>>B) (x:A),
 W (Ro x) (acreate f) = Ro (f x).
```

Given a function $g$, with source A and target B, we can use the inverse function $\mathscr{B}$ of $\mathscr{R}$ to get a map $f$ from type A to type B . We shall denote it by $\mathscr{M} g$ or $\mathscr{M}_{\mathrm{A} ; \mathrm{B}} g$. We have $\mathscr{L} f=g$. The notation $\mathscr{M} g$ is a shorthand for $\mathscr{M}_{\text {source }(g) ; \operatorname{target}(g)} g$. If $\mathrm{A}=\operatorname{source}(g)$ and $\mathrm{B}=\operatorname{target}(g)$ but if equality is not identity then $\mathscr{M} g$ and $\mathscr{M}_{\mathrm{A} ; \mathrm{B}} g$ are objects of different type, and are not equal in Coq. In particular, if $h$ is a mappping of type $\mathrm{A} \rightarrow \mathrm{B}$, and if $g=\mathscr{L} h$, then $\mathscr{M} g$ is a function $\mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime}$, where $\mathrm{A}^{\prime}$ is source $(g)$ and not A , so that $\mathscr{M} \mathscr{L} h$ is not equal to $h$.

We create here $\mathscr{M} f$. The expression $R_{-}$inc $x$ is a proof of $x \in \operatorname{source}(f)$. The expression inc_W_target shows $w \in \mathrm{~B}$, where B is the target of $f$ and $w$ the value of $f$. Evaluating $\mathscr{B}$ yields an object of type B , whose evaluation $\mathscr{R}$ is $w$. This is summarized by the first lemma. The second one says $\mathscr{L} \mathscr{M} f=f$. Remember that in order to use $\mathscr{M} f$ one needs a proof H that $f$ is a function, and $f$ is implicit, since it can be deduced from H .

```
Definition bcreate1 f (H:is_function f) :=
 fun x:source f => Bo (inc_W_target H (R_inc x)).
Lemma prop_bcreate1: forall f (H:is_function f) (x:source f),
 Ro(bcreate1 H x) = W (Ro x) f.
Lemma bcreate_inv1: forall f (H:is_function f),
 acreate (bcreate1 H) = f.
```

We create here $\mathscr{M}_{a ; b} g$. It depends on three assumptions, $g$ is a function, $a$ is the source and $b$ is the target. See diagram (a/b create) above, right part. If $x: a$, and $y=\mathscr{R} x$, the assertion $R \_i n c x$ says $y \in a$, and applying $\mathscr{B}$ to the assertion gives $y$. Let $w=\mathscr{W}_{g} x$. The $W_{-}$mapping lemma says (because of our three assumptions) that $w \in b$. If we apply $\mathscr{B}$, we get some element of type $b$, which is $\mathscr{M}_{a ; b} g(x)$.

We have $\mathscr{L} \mathscr{M}_{\mathrm{A} ; \mathrm{B}} g=g$ and $\mathscr{M}_{\mathrm{A} ; \mathrm{B}} \mathscr{L} f=f$. Note: the proof of the lemma is very short. It uses the arrow_extensionality axioms, so that we show in fact $f^{\prime}(a)=f(a)$ for all $a$ of type A. It uses the $R \_i n j$ axiom, so that we prove $\mathscr{R} f^{\prime}(a)=\mathscr{R} f(a)$. Using prop_back2 the lhs is the value on $\mathscr{R} a$ of $\mathscr{L} f$, which is the rhs thanks to $W_{-}$acreate. The last lemma says that $\mathscr{M} f=\mathscr{M}_{\mathrm{A} ; \mathrm{B}} f$ for some obvious A and B.

```
Lemma W_mapping: forall f A B (Ha:source f =A) (Hb:target f =B) x,
 is_function \(f\)-> inc \(x\) A \(->\) inc (W x f) B.
Definition bcreate f A B
 (H:is_function f) (Ha:source f =A) (Hb:target \(f=B\)):=
 fun \(x: A=B_{0}\left(W _m a p p i n g ~ H a ~ H b H\left(R _i n c ~ x\right)\right)\).
Lemma prop_bcreate2: forall f A B
 (H:is_function f) (Ha:source f =A) (Hb:target f=B) (x:A),
 Ro(bcreate \(H \mathrm{Ha} \mathrm{Hb} x\)) \(=\mathrm{W}\) (Ro x) f .
Lemma bcreate_inv2: forall f A B
 (H:is_function f) (Ha:source \(f=A\)) (Hb:target f=B),
 acreate (bcreate H Ha Hb) \(=\mathrm{f}\).
Lemma bcreate_inv3: forall A B (f:A->B),
 (bcreate (function_acreate f) (source_acreate f) (target_acreate f)) =f
Lemma bcreate_eq: forall f (H:is_function f),
 bcreate1 \(H=\) bcreate \(H\) (refl_equal (source f)) (refl_equal (target f)).
```

Let's consider some examples of functions. The empty function is the only function from the empty set to itself; its graph is empty. Note that if the graph is empty, so is the source.

```
Definition empty_functionC : emptyset -> emptyset := fun x => x.
Definition empty_function:= acreate empty_functionC.
Lemma function_empty_function: is_function empty_function.
Lemma source_empty_function: source empty_function = emptyset.
Lemma target_empty_function: target empty_function = emptyset.
Lemma graph_empty_function: graph empty_function = emptyset.
Lemma special_empty_function: forall f, is_function f >>
 graph f = emptyset -> source f = emptyset.
Lemma empty_function_prop2:
 bcreate function_empty_function source_empty_function target_empty_function
 = empty_functionC.
```

- We have already met the identity function. The properties shown here are trivial.

```
Lemma function_identity: forall x,
 is_function (identity_fun x).
Lemma W_identity: forall x y,
 inc y x -> W y (identity_fun x) = y.
```

We define identityC $a$ to be the identity on $a$ as a Coq function. By default, the argument $a$ is implicit; we make it explicit.

```
Definition identityC (a:Bset): a->a := fun x => x.
Implicit Arguments identityC [].
Lemma w_identity: forall a x, identityC a x = x.
Lemma identity_prop: forall a, acreate (identityC a) = identity_fun a.
Lemma identity_prop2: forall a,
 bcreate (function_identity a) (source_identity a)(target_identity a) =
 identityC a.
```

One of theorems in Chapter 2 (part II of this report) will be of the form: if P is true, there exists a unique function $f$ such that Q . This function is denoted by $\tau_{f}(\mathrm{Q})$ in Bourbaki. We cannot apply choose in Coq, since it gives a set, and not a function. Thus we define choosef, a variant of $\tau_{f}(\mathrm{Q})$ that produces the identity function of the empty set if no function $f$ satisfies Q.

```
Definition refined_prf (p:correspondenceC -> Prop) u :=
 (ex p -> p u) & ~(ex p) -> u = identity_fun emptyset.
Definition choosef p := chooseT (refined_prf p)
 (nonemptyT_intro (corresp emptyset emptyset emptyset)).
Lemma exists_refined_prf : forall p , exists u, (refined_prf p u).
Lemma choosef_pr : forall p, (ex p) -> p (choosef p).
```

II If $a \in x$ and $b \in x$ imply $a=b$, we say that $x$ is a small set. It is either empty or has a single element. We say that a function is constant if it takes at most one value; in other words that the range is a small set (if the source is not empty, the range is nonempty).

The constant function $\mathrm{C}_{x y} a$ maps $b$ of type $x$ to $a$ of type $y$; for this reason, arguments $x$ and $y$ are implicit. The Bourbaki function $\Gamma=(x \times\{a\}, x, y)$ needs the assumption $a \in y$. Hence $a$ and $y$ are implicit. We make all parameters explicit.

```
Definition small_set x :=
 forall u v, inc u x -> inc v x -> u = v.
Definition is_constant_function f :=
 (is_function f) &
 (forall x x', inc x (source f) -> inc x' (source f) -> W x f = W x' f).
Definition constant_functionC x y (a:y) := fun _:x => a.
Implicit Arguments constant_functionC [].
Definition constant_function x y a (H:inc a y) :=
 acreate (constant_functionC x y (Bo H)).
Implicit Arguments constant_function [].
```

These are the basic properties of constant functions.

```
Lemma source_constant: forall x y a (H:inc a y),
 source (constant_function x y a H) = x.
Lemma target_constant: forall x y a (H:inc a y),
 target (constant_function x y a H) = y.
Lemma graph_constant: forall x y a (H:inc a y),
 graph (constant_function \(x\) y a H) \(=\) product x (singleton a).
Lemma function_constant_fun: forall x y a (H: inc a y),
 is_function(constant_function x y a H).
Lemma W_constant: forall x y a (H:inc a y) b,
 inc b x -> W b (constant_function \(x\) y a H) = a.
Lemma w_constant_functionC: forall x y (a:y) (z:x),
 constant_functionC \(x\) y a \(z=a\).
```

We give now the link between constant functions, and the property of being constant. Every constant function is of the form $\mathrm{C}_{x y} a$ for some $a$ if $x$ is not empty. In the case of a Bourbaki function, instead of saying "there exists $a \in y$ " we say "there exists $a$ of type $y$ " from which we deduce an element and the proof that it is in $y$.

```
Lemma constant_function_pr: forall f,
 is_function f -> (is_constant_function f =
 small_set (range (graph f))).
Lemma constant_constant_fun: forall x y a (H: inc a y),
 is_constant_function(constant_function \(x\) y a H).
Lemma constant_fun_constantC: forall x y a,
 is_constant_functionC (constant_functionC x y a).
Lemma constant_function_prop2: forall x y (a:y),
 bcreate (function_constant_fun \(x\) (\(R_{-}\)inc a)) (source_constant x (R_inc a))
 (target_constant \(x\) (R_inc a)) = constant_functionC x y a.
Lemma constant_fun_prC: forall \(x\) y (f:x->y) (b:x), is_constant_functionC f ->
 exists \(a: y, f=\) constant_functionC \(x y a\).
Lemma nonempty_target: forall f,
 nonempty (graph f) \(->\) inc (rep (target f)) (target f).
Lemma constant_fun_pr: forall f (H:nonempty (graph f)),
 is_constant_function f ->
 exists a: target f,
 f= constant_function (source f) (target f) (Ro a) (R_inc a).
```


### 4.5 Restrictions and extensions of functions

The restriction of a function $f$ to a set $x$ can be defined in different ways, for instance as the composition with the inclusion map from $x$ in the source of $f$. This is the definition we shall use for Coq functions. In Bourbaki, composition is defined for correspondences, and the case of functions is studied later, in Section 4.7 .

We define here the composition of two Coq functions; associativity is trivial, it suffices to unfold the definitions. Identity is a unit; this relies on the fact that $f$ is equal to the function that maps $u$ to $f(u)$.

```
Definition composeC a b c (g:b->c) (f: a->b):= fun x:a => g (f x).
Lemma compositionC_associative: forall a b c d (f: c->d) (g:b->c) (h:a->b),
 composeC (composeC f g) h = composeC f (composeC g h).
Lemma compose_id_leftC: forall a b (f:a->b),
 composeC (identityC b) f = f.
Lemma compose_id_rightC: forall a b (f:a->b),
 composeC f (identityC a) = f.
```


(inclusion)

We now define the inclusion $\mathrm{I}_{x y}$. See diagram (inclusion) which is an instance of (a/b create). If $x$ and $y$ are two sets, H is the assumption $x \subset y$, if $u$ is of type $x$, then $R_{-}$inc $u$ says that $\mathscr{R} u \in x$. Applying H gives $\mathscr{R} u \in y$, denoted by $H_{-} s u b$ on the diagram, and using $\mathscr{B}$ yields an object of type $y$. The important property is $\mathscr{R} a=\mathscr{R}\left(\mathrm{I}_{x y}(a)\right)$. From the injectivity of $\mathscr{R}$ we deduce $\mathrm{I}_{x x}=\mathrm{I}_{x}$ and $\mathrm{I}_{y z} \circ \mathrm{I}_{x y}=\mathrm{I}_{x z}$ (where sub_refl says $x \subset x$ and sub_trans expresses the transitivity of inclusion, in other words, it says that if $\mathrm{I}_{y z} \circ \mathrm{I}_{x y}$ is defined so is $\mathrm{I}_{x z}$ ).

```
Definition inclusionC x y (H: sub x y):=
 fun u:x => Bo (H (Ro u) (R_inc u)).
Lemma inclusionC_pr: forall x y (H: sub x y) (a:x),
 Ro(inclusionC H a) = Ro a.
Lemma inclusionC_identity: forall x,
 inclusionC (sub_refl (x:=x)) = identityC x.
Lemma inclusionC_compose: forall x y z (Ha:sub x y)(Hb: sub y z),
 composeC (inclusionC Hb)(inclusionC Ha) = inclusionC (sub_trans Ha Hb).
```

We say that two functions agree on a set $x$ if this set is a subset of the sources, and if the functions take the same value on $x$. Consider two functions ( $\mathrm{G}, \mathrm{A}, \mathrm{B}$ ) and $\left(\mathrm{G}^{\prime}, \mathrm{A}^{\prime}, \mathrm{B}^{\prime}\right)$. If $\mathrm{A}=\mathrm{A}^{\prime}$ and $G=G^{\prime}$, the functions agree on $A$. Conversely, the property " $A \subset A^{\prime}$ and the functions agree on $A^{\prime \prime}$ is the same as $G \subset G^{\prime}$. Thus if $A=A^{\prime}$ we have $G=G^{\prime}$. If moreover $B=B^{\prime}$, the functions are the same.

(restriction/agree)

In the case of Coq functions, $f: \mathrm{A} \rightarrow \mathrm{B}$ and $f^{\prime}: \mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime}$ agree on X if the diagram (restriction/agree) commutes.

```
Definition agrees_on x f f' :
 (sub x (source f)) & (sub x (source f')) &
 (forall a, inc a x -> W a f = W a f').
Definition restrictionC x a b (f:a->b)(H: sub x a) :=
 composeC f (inclusionC H).
Definition agreeC x a a' b b'(f:a->b) (f':a'-> b')
 (Ha: sub x a)(Hb: sub x a') :=
 forall u:x, Ro(restrictionC f Ha u) = Ro(restrictionC f, Hb u).
Lemma same_graph_agrees: forall f f',
 is_function f -> is_function f' -> graph f = graph f' ->
 agrees_on (source f) f f'.
Lemma function_extens: forall f f',
 is_function f -> is_function f, ->
 (f =f')= ((source f =source f') & (target f= target f') &
 (agrees_on (source f) f f')).
Lemma sub_function: forall f g,
 is_function f -> is_function g ->
 (sub (graph f) (graph g)) = ((sub (source f) (source g))
 & (agrees_on (source f) f g)).
```

- We consider here the restriction of a function to a subset of its domain. We need some lemmas in order to define it.

```
Definition restriction_function f x :=
 corresp x (target f) (restr (graph f) x).
Lemma restriction_graph_is_graph: forall f x,
 is_function f-> fgraph (restr (graph f) x).
Lemma domain_restriction_graph: forall f x,
 is_function f-> sub x (source f) ->
 domain (restr (graph f) x) = x.
Lemma range_restriction_graph: forall f x,
 is_function f-> sub x (source f) ->
 sub (range (restr (graph f) x)) (target f).
Lemma restriction_correspondence: forall f x,
 is_function f-> sub x (source f)
 -> is_correspondence(restriction_function f x).
Lemma source_restriction: forall f x,
 source (restriction_function f x) = x.
```

```
Lemma target_restriction:forall f x,
 target (restriction_function f x) = target f.
Lemma graph_restriction:forall f x,
 graph (restriction_function f x) = (restr (graph f) x).
Lemma function_restriction: forall f x,
 is_function f -> sub x (source f) ->
 is_function (restriction_function f x).
Lemma W_restriction: forall f x a,
 is_function f -> sub x (source f) ->
 inc a x -> W a (restriction_function f x) = W a f.
```

We say that $g=(\mathrm{G}, \mathrm{C}, \mathrm{D})$ extends $f=(\mathrm{F}, \mathrm{A}, \mathrm{B})$ if $\mathrm{F} \subset \mathrm{G}$ and $\mathrm{B} \subset \mathrm{D}$. This implies $\mathrm{A} \subset \mathrm{C}$. Both functions agree on $A$. In the case of Coq functions, there is no notion of graph, hence: for every $f$ and $g$ such that the source of $f$ is a subset of the source of $g$, we say that $g$ extends $f$ if the target of $f$ is a subset of the target of $g$, and if the functions agree on the source of $f$.

```
Definition extends g f :=
 (is_function f) & (is_function g) & (sub (graph f) (graph g))
 & (sub (target f) (target g)).
Definition extendsC a b a' b' (g:a'->b')(f:a->b)(H: sub a a') :=
 sub b b' & agreeC g f H (sub_refl (x:=a)).
Lemma source_extends: forall f g,
 extends g f -> sub (source f) (source g).
Lemma W_extends: forall f g x,
 extends g f >> inc x (source f) -> W x f = W x g.
Lemma extendsC_pr : forall a b a' b' (g:a'->b')(f:a->b)(H: sub a a'),
 extendsC g f H -> forall x:a, Ro (f x) = Ro(g (inclusionC H x)).
```

If $f$ is a function, X a subset of its source, then $f$ extends its restriction to X . If $f$ and $g$ are two functions with the same target, that agree on $X$, their restrictions to $X$ are equal. The same is true for Coq functions. Bourbaki notes that the graph of the restriction is the intersection with the product of X and the target (but he cannot prove this statement, since intersection is not yet defined).

```
Lemma function_extends_rest: forall f x,
 is_function f -> sub x (source f) ->
Lemma function_extends_restC: forall x a b (f:a->b)(H:sub x a),
 extendsC f (restrictionC f H) H.
Lemma agrees_same1: forall f g x, agrees_on x f g -> sub x (source f).
Lemma agrees_same2: forall f g x, agrees_on x f g -> sub x (source g).
Lemma agrees_same_restriction: forall f g x,
 is_function f -> is_function g -> agrees_on x f g ->
 target f = target g ->
 restriction_function f x = restriction_function g x.
Lemma agrees_same_restrictionC: forall a a' b x (f:a->b)(g:a'->b)
 (Ha: sub x a) (Hb: sub x a'),
 agreeC f g Ha Hb -> restrictionC f Ha = restrictionC g Hb.
Lemma restriction_graph1: forall f x,
 is_function f -> sub x (source f) ->
 graph (restriction_function f x) =
 intersection2 (graph f)(product x (target f)).
Lemma restriction_create: forall f x,
```

```
is_function f -> sub x (source f) ->
restriction_function f x = create x (target f)
(intersection2 (graph f)(product x (target f))).
```

- Given a function $f=(\mathrm{G}, \mathrm{A}, \mathrm{B})$ and two sets X and Y , we can consider $(\mathrm{G} \cap(\mathrm{X} \times \mathrm{B}), \mathrm{X}, \mathrm{Y})$. This is a function if $\mathrm{X} \subset \mathrm{A}, \mathrm{Y} \subset \mathrm{B}$ and the image of X by $f$ is a subset of Y (a name is given to this condition) The function agrees with $f$ on X . If $f$ is the extension of some function $g$, then $g$ is the restriction of $f$ to its source and target.

```
Definition restriction2 \(f\) x \(y\) :=
 corresp \(x\) y (intersection2 (graph f) (product \(x\) (target f))).
Definition restriction2_axioms f x y :=
 is_function f \&
 sub \(x\) (source f) \& sub y (target f) \& sub (image_by_fun f x) y.
Lemma source_restriction2:forall f \(x\) y, source (restriction2 f \(x\) y) \(=x\).
Lemma target_restriction2:forall f \(x\) y, target (restriction2 f \(x y\)) \(=y\).
Lemma graph_restriction2: forall f x y,
 sub (graph (restriction2 f x y)) (graph f).
Lemma inc_graph_restriction2: forall f x y a b,
 (inc (J a b) (graph (restriction2 f x y))) =
 (inc (J a b) (graph f) \& inc \(a \operatorname{x}\) \& inc b (target f)).
Lemma function_restriction2: forall f x y,
 restriction2_axioms f x y ->
 is_function (restriction2 f x y). (* 19 *)
Lemma W_restriction2: forall f x y a,
 restriction2_axioms f x y ->
 inc \(a x->W\) a (restriction2 \(f x y)=W a f\).
Lemma function_rest_of_prolongation: forall f g,
 extends \(g\) f \(\rightarrow\) f \(=\) restriction2 \(g\) (source f) (target f).
```


(restriction2C)

In the case of Coq functions, we start with a function $f: a \rightarrow b$, with the assumptions $c \subset a$ and $d \subset b$. The restriction $\mathrm{R}_{c d} f$ is the one that makes diagram (restriction2C) commute. In order for it to exist, each $y$ in the image of the lhs must be convertible to type $d$, i.e. $\mathscr{R} y \in d$.

```
Definition restriction2C \(a\) a' \(b\) b' (f:a->b) (Ha:sub a' a)
 (\(\mathrm{H}: ~ f o r a l l ~ u: a ', ~ i n c ~(R o ~(f ~(i n c l u s i o n C ~ H a ~ u))) ~ b ') ~:=~\)
 fun \(u=>\) Bo (\(\mathrm{H} u\)).
Lemma restriction2C_pr: forall \(a\) a' b b' (f:a->b) (Ha:sub a' a)
 (H: forall u:a', inc (Ro (f (inclusionC Ha u))) b') (x:a'),
 Ro (restriction2C \(f\) Ha \(H x\)) \(=W\) (Ro \(x\)) (acreate f).
Lemma restricion2C_pr: forall \(a a^{\prime} b b^{\prime}(f: a->b)(H a: s u b ~ a ' ~ a)(H b: s u b ~ b ' ~ b) ~\)
 (H: forall u:a', inc (Ro (f (inclusionC Ha u))) b'),
 composeC f (inclusionC Ha) = composeC (inclusionC Hb) (restriction2C f Ha H).
```


### 4.6 Definition of a function by means of a term

In Bourbaki [2, p. 83], Criterion C54 says that if $\boldsymbol{A}$ and $\boldsymbol{T}$ are two terms, $\boldsymbol{x}$ and $\boldsymbol{y}$ are two distinct letters, $\boldsymbol{x}$ is not in $\boldsymbol{A}, \boldsymbol{y}$ is neither in $\boldsymbol{T}$ nor in $\boldsymbol{A}$, then the relation $\boldsymbol{x} \in \boldsymbol{A}$ and $\boldsymbol{y}=\boldsymbol{T}$ admits a graph $\boldsymbol{F}$, which is functional, and $\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{T}$. If $\boldsymbol{C}$ is a set which contains the set $\boldsymbol{B}$ of objects of the form $\boldsymbol{T}$ for $\boldsymbol{x} \in \boldsymbol{A}$ (where $\boldsymbol{y}$ does not appear in $\boldsymbol{C}$ ), the function $(\boldsymbol{F}, \boldsymbol{A}, \boldsymbol{C})$ is also denoted by the notation $\boldsymbol{x} \rightarrow \boldsymbol{T}(\boldsymbol{x} \in \boldsymbol{A}, \boldsymbol{T} \in \boldsymbol{C})$, where the terms in parentheses may be omitted. It can also be written as $(\boldsymbol{T})_{x \in A}$. In what follows, we shall use $x \mapsto \mathrm{~T}$ to denote the function that associates T to $x$, and $x \rightarrow \mathrm{~T}$ to mean a function from the set (or type) $x$ to the set (or type) T .

The non-trivial point is the existence of the set $\boldsymbol{B}$, since $\boldsymbol{F}$ is then a subset of $\boldsymbol{A} \times \boldsymbol{B}$. The range of $\boldsymbol{F}$ is $\boldsymbol{B}$, so that $(\boldsymbol{F}, \boldsymbol{A}, \boldsymbol{C})$ is a function when $\boldsymbol{B} \subset \boldsymbol{C}$. In these definitions, $\boldsymbol{y}$ is just an auxiliary letter (because it neither appears in $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{T}$ nor $\boldsymbol{F}$ ). On the other hand, $\boldsymbol{x}$ may appear in $\boldsymbol{T}$, it does not appear in $\boldsymbol{A}, \boldsymbol{B}, \operatorname{nor} \boldsymbol{F}$.

If we have an object $f: \mathrm{E} \rightarrow \mathrm{E}$, and consider $\mathrm{T}=f(x)$ then $\mathrm{F}=\mathscr{L}_{\mathrm{A}} f$. The second claim of the criterion, namely $\mathrm{F}(x)=\mathrm{T}$, is just $\mathcal{V}\left(x, \mathscr{L}_{\mathrm{A}} f\right)=f(x)$ (see Section3.1). The function (F, A, C) will be denoted by $B L f A C$, or $\mathscr{L}_{\mathrm{A} ; \mathrm{C}} f$. The following lemmas are obvious from the definitions of $\mathscr{L}_{\mathrm{A}}$ and $\mathscr{L}_{\mathrm{A} ; \mathrm{C}}$.

```
Definition fun_function f a b :=
 corresp a b (L a f).
Notation BL := fun_function.
Lemma af_source: forall f a b,
 source (BL f a b) = a.
Lemma af_target: forall f a b,
 target (BL f a b) = b.
Lemma af_graph1: forall f a b c,
 inc c (graph (BL f a b)) -> c = J (P c) (f (P c)).
Lemma af_graph2: forall f a b c,
 inc c a -> inc (J c (f c)) (graph (BL f a b)).
Lemma af_graph3: forall f a b c,
 inc c (graph (BL f a b)) -> inc (P c) a.
Lemma af_graph4: forall f a b c,
 inc c (graph (BL f a b)) -> f (P c) = (Q c).
```

The expression $\mathscr{L}_{\mathrm{A} ; \mathrm{B}} f$ is a function if $f$ maps A into B . If $x \in \mathrm{~A}$, the value at $x$ is $f(x)$. By extensionality, if $f$ is a function with source A , target B , and evaluation function $\mathscr{W}_{f}$, then $\mathscr{L}_{\mathrm{A} ; \mathrm{B}} \mathscr{W}_{f}=f$.

```
Definition transf_axioms f a b :=
 forall c, inc c a -> inc (f c) b.
Lemma af_function: forall f a b,
 transf_axioms f a b -> is_function (BL f a b).
Lemma W_af_function: forall f a b c,
 transf_axioms f a b ->
 inc c a-> W c (BL f a b) = f c.
Lemma af_self: forall f,
 is_function f -> BL (fun z => W z f)(source f)(target f) = f.
```

We consider here an example of a function defined by a term, the first and second projection, denoted $\mathrm{pr}_{1}$ and $\mathrm{pr}_{2}$, on the range and target.

```
Definition first_proj g := BL P g (domain g).
Definition second_proj g := BL Q g (range g).
Lemma W_first_proj: forall g x,
 is_graph g -> inc x g -> W x (first_proj g) = P x.
Lemma W_second_proj: forall g x,
 is_graph g-> inc x g -> W x (second_proj g) = Q x.
Lemma source_first_proj: forall g, source (first_proj g) = g.
Lemma source_second_proj: forall g, source (second_proj g) = g.
Lemma target_first_proj: forall g, target (first_proj g) = domain g.
Lemma target_second_proj: forall g, target (second_proj g) = range g.
Lemma function_first_proj:forall g, is_graph g -> is_function (first_proj g).
Lemma function_second_proj:forall g, is_graph g -> is_function (second_proj g).
```


### 4.7 Composition of two functions. Inverse function


(composition)

We say that $f=(\mathrm{F}, \mathrm{A}, \mathrm{B})$ and $g=(\mathrm{G}, \mathrm{B}, \mathrm{C})$ are composable if they are functions and if they are composable as correspondences. Proposition 6 [2, p. 84] says that the composition is a function. The evaluation function is the composition of the evaluation functions. We have $\mathscr{L}(g \circ f)=(\mathscr{L} g) \circ(\mathscr{L} f)$. In other words, the two definitions of composition (for Bourbaki and Coq functions) are really the same.

```
Definition composable g f :=
 is_function g & is_function f & source g = target f.
Lemma domain_compose:forall g f,
 composable g f->
 domain (graph(compose g f)) = domain (graph f).
Theorem is_function_compose: forall g f, composable g f
 -> is_function (compose g f).
Lemma W_compose: forall g f x, composable g f ->
 inc x (source f) -> W x (compose g f) = W (W x f) g.
Lemma composable_acreate:forall a b c (f: a-> b) (g: b->c),
 composable (acreate g) (acreate f).
Lemma compose_acreate:forall a b c (g: b->c)(f: a-> b),
 compose (acreate g) (acreate f) = acreate(composeC g f).
```

Composition is associative, and identity is a unit.
Lemma compose_assoc: forall f gh,
composable f g -> composable g h ->

```
 compose (compose f g) h = compose \(f\) (compose gh).
Lemma compose_id_left: forall m,
 is_function \(m->\) compose (identity_fun (target \(m\)) \(m=m\).
Lemma compose_id_right: forall m,
 is_function m-> compose m (identity_fun (source m)) m.
```

We say that $f$ is injective if it is a function such that $f(x)=f(y)$ implies $x=y$. We say that $f$ is surjective if the range of its graph is the target. The phrase " $f$ is a mapping of A onto B " is sometimes used by Bourbaki as a shorthand of " $f$ is surjective, its source is A, and its target is B ". We say that $f$ is bijective if it satisfies both properties. We list here some trivial properties.

```
Definition injective \(f:=\)
 is_function \(f\) \&
 (forall (x y), inc x (source f) -> inc y (source f) ->
 W \(x f=W\) y \(f \rightarrow x=y\)).
Definition surjective f :=
 is_function \(f\) \& image_of_fun \(f=\) target \(f\).
Definition bijective f :=
 injective \(f\) \& surjective \(f\).
Definition equipotent x y :=
 exists \(z\), bijective \(z \&\) source \(z=x\) \& target \(z=y\).
Lemma injective_pr: forall f x x' y,
 injective f \(\rightarrow\) related (graph f) \(x\) y \(\rightarrow\) related (graph f) \(x\) ' y \(\rightarrow\) x \(=\) x'.
Lemma injective_pr3: forall f x x' y,
 injective f -> inc (J x y) (graph f) -> inc (J x' y) (graph f) -> \(x=x\).
Lemma injective_pr_bis: forall f,
 is_function f \(\rightarrow\) (forall x x' y,
 related (graph f) \(x\) y \(\rightarrow\) related (graph f) \(x\) ' \(y ~->~ x ~=~ x ') ~->~ i n j e c t i v e ~ f . ~\)
Lemma surjective_pr: forall fy,
 surjective f -> inc y (target f) ->
 exists \(x\), inc \(x\) (source f) \& related (graph f) \(x\) y .
Lemma surjective_pr2: forall f y,
 surjective \(f\)-> inc \(y\) (target f) \(\rightarrow\) exists \(x\), inc \(x\) (source f) \& \(y=W x f\).
Lemma surjective_pr3: forall f,
 surjective \(f\)-> range (graph f) \(=\) target \(f\).
Lemma surjective_pr4: forall f,
 is_function f-> range (graph f) = target f \(\rightarrow\) surjective f.
Lemma surjective_pr5: forall f,
 is_function \(f\)-> (forall y, inc y (target f) ->
 exists \(x\), inc \(x\) (source f) \& related (graph f) \(x\) () \(\rightarrow\) surjective \(f\).
Lemma surjective_pr6: forall f,
 is_function f-> (forall y, inc y (target f) ->
 exists \(x\), inc \(x\) (source f) \& \(y=W\) f f) \(\rightarrow\) surjective \(f\).
Lemma injective_af_function: forall f a b, transf_axioms f a b ->
 (forall u v, inc \(u\) a-> inc \(v a->f u=f v->u=v\)) ->
 injective (BL f a b).
Lemma surjective_af_function: forall f a b, transf_axioms f a b ->
 (forall \(y\), inc \(y\) b \(\rightarrow\) exists \(x\), inc \(x a \& y=f x\)) \(\rightarrow\)
 surjective (BL fab).
Lemma bijective_pr: forall fy,
 bijective f -> inc y (target f) ->
 exists_unique (fun \(x=>\) inc \(x\) (source f) \& \(y=W\) f).
```

Let's consider the case of Coq functions. We do not need as many lemmas, because they are trivialities. Functors acreate and bcreate map bijections to bijections. We say that two sets are equipotent if there is a bijection between them. Which definitions of bijection used is irrelevant.

```
Definition injectiveC a b (f:a->b) := forall u v, f u = f v -> u =v.
Definition surjectiveC a b (f:a->b) := forall u, exists v, f v = u.
Definition bijectiveC a b (f:a->b) := injectiveC f & surjectiveC f.
```

```
Lemma bijectiveC_pr: forall a b (f:a->b) (y:b),
 bijectiveC f -> exists_unique (fun \(x: a=>y=f x\)).
Lemma equipotentC: forall \(x\) y, equipotent \(x y=\) exists \(f: x->y\), bijectiveC \(f\).
Lemma injective_bcreate: forall f a b
 (H:is_function f) (Ha:source f =a) (Hb:target f =b),
 injective f -> injectiveC (bcreate H Ha Hb).
Lemma surjective_bcreate: forall fab
 (H:is_function f) (Ha:source f =a) (Hb:target f =b),
 surjective f -> surjectiveC (bcreate H Ha Hb).
Lemma bijective_bcreate: forall f a b
 (H:is_function f) (Ha:source f =a) (Hb:target f =b),
 bijective \(f\)-> bijectiveC (bcreate H Ha Hb).
Lemma injective_bcreate1: forall f (H:is_function f),
 injective f -> injectiveC (bcreate1 H).
Lemma surjective_bcreate1: forall f (H:is_function f),
 surjective f -> surjectiveC (bcreate1 H).
Lemma bijective_bcreate1: forall f (H:is_function f),
 bijective f -> bijectiveC (bcreate1 H).
Lemma injective_acreate: forall a b (f:a->b),
 injectiveC f -> injective (acreate f).
Lemma surjective_acreate: forall a b (f:a->b),
 surjectiveC f -> surjective (acreate f).
Lemma bijective_acreate: forall a b (f:a->b),
 bijectiveC f -> bijective (acreate f).
Lemma equipotentC: forall \(x \mathrm{y}\), equipotent \(\mathrm{x} y=\) exists \(\mathrm{f}: \mathrm{x}->\mathrm{y}\), bijectiveC f .
```

The identity function is bijective; the restriction of a function $f$ to X and Y is injective if $f$ is injective; it is surjective if for instance X is the source and Y the range.

```
Lemma bijective_identity: forall x,
 bijective (identity_fun x).
Lemma bijective_identityC: forall x,
 bijectiveC (identityC x)
Lemma injective_restriction2: forall f x y,
 injective f -> restriction2_axioms f x y
 -> injective (restriction2 f x y).
Lemma surjective_restriction2: forall f x y,
 restriction2_axioms f x y ->
 source f = x -> image_of_fun f = y ->
 surjective (restriction2 f x y).
```

IThe canonical injection of $A$ into $B$ is the identity of $B$ restricted to $A$. In other terms, if $A \subset B$ it is the function with source A , target B , whose evaluation function is $x \mapsto x$. It is injective with range A . Its Coq equivalent has been introduced page 55 .

```
Definition canonical_injection a b :=
 corresp a b (diagonal a).
Lemma source_ci: forall a b , source (canonical_injection a b)=a.
Lemma target_ci: forall a b, target (canonical_injection a b)=b.
Lemma graph_ci: forall a b, graph (canonical_injection a b)= diagonal a.
Lemma function_ci: forall a b, sub a b ->
 is_function (canonical_injection a b).
Lemma W_ci: forall a b x,
 sub a b -> inc x a >> W x (canonical_injection a b) = x.
Lemma injective_ci: forall a b,
 sub a b -> injective (canonical_injection a b).
Lemma range_ci: forall a b, sub a b ->
 range (graph (canonical_injection a b)) = a.
```

I The diagonal application is the function from X to $\mathrm{X} \times \mathrm{X}$ that maps $x$ to $(x, x)$. It is an injection into the diagonal of X .

```
Definition diagonal_application a :=
 BL (fun x=> J x x) a (product a a).
Lemma source_diag_app:forall a, source (diagonal_application a) = a.
Lemma target_diag_app:forall a, target (diagonal_application a) = product a a.
Lemma graph_diag_app: forall a x,
 inc x (graph (diagonal_application a)) =
 (is_pair x & inc (P x) a & Q x = J (P x) (P x)).
Lemma W_diag_app:forall a x,
 inc x a -> W x (diagonal_application a) = J x x.
Lemma function_diag_app: forall a, is_function (diagonal_application a).
Lemma injective_diag_app: forall a, injective (diagonal_application a).
Lemma range_diag_app: forall a,
 range (graph (diagonal_application a)) = diagonal a.
```

I Both projections $\mathrm{pr}_{1}$ and $\mathrm{pr}_{2}$ are surjective by construction. The first projection on G is injective if only if G is a functional graph.

```
Lemma surjective_second_proj: forall g,
 is_graph g -> surjective (second_proj g).
Lemma surjective_first_proj: forall g ,
 is_graph g -> surjective (first_proj g).
Lemma injective_first_proj: forall g,
 is_graph g -> (injective (first_proj g) = functional_graph g).
```

I If G is a graph, the map $(x, y) \mapsto(y, x)$ maps G onto $\mathrm{G}^{-1}$ (as noted when we defined the inverse graph). From this, we get a bijective function. Bourbaki considers the following function: we fix $a$, and map $x$ to $(x, a)$. This is a bijection between X and the product $\mathrm{X} \times\{b\}$. This could be restated as: X is equipotent to $\mathrm{X} \times \mathrm{Y}$ when Y is a singleton.

```
Definition inv_graph_canon g :=
 BL (fun x=> J (Q x) (P x)) g (inverse_graph g).
```

```
Lemma source_inv_graph_canon: forall g, source (inv_graph_canon g) = g.
Lemma target_inv_graph_canon: forall g,
 target (inv_graph_canon g) = (inverse_graph g).
Lemma W_inv_graph_canon: forall g x,
 is_graph g ->inc x g -> W x (inv_graph_canon g) = J (Q x) (P x).
Lemma function_inv_graph_canon: forall g,
 is_graph g -> is_function (inv_graph_canon g).
Lemma bijective_inv_graph_canon: forall g,
 is_graph g -> bijective (inv_graph_canon g). (* 15 *)
Lemma bourbaki_ex5_17: forall a b,
 bijective (BL (fun x=> J x b) a (product a (singleton b))). (* 14 *)
Lemma equipotent_prod_singleton:
 forall a b, equipotent a (product a (singleton b)).
Lemma rest_to_image_surjective: forall f,
 is_function f -> surjective (restriction2 f (source f)
 (image_by_fun f (source f))). (* 13 *)
```

Proposition 7 [2, p. 85] states that if $f$ is a bijection, then the inverse correspondence $f^{-1}$ is a function. It also says that if $f$ and $f^{-1}$ are functions then $f$ is a bijection.

```
Theorem bijective_inv_function: forall f,
 bijective f -> is_function (inverse_fun f).
Theorem inv_function_bijective: forall f,
 is_function f -> is_function (inverse_fun f) -> bijective f.
```

In the case of a Coq function $f$, its inverse is defined by $f^{-1}=\mathscr{M}_{b ; a}\left((\mathscr{L} f)^{-1}\right)$. We need a bunch of trivial lemmas in order to use $\mathscr{M}$. This function satisfies $\mathscr{L}\left(f^{-1}\right)=(\mathscr{L} f)^{-1}$.

We have $f^{-1}(f(x))=x$. By injectivity of $\mathscr{R}$, it suffices to show that $\mathscr{R} f^{-1}(f(x))=\mathscr{R} x$. Using bcreate, it suffices to show that $\mathbb{W}_{\tilde{f}^{-1}}(\mathscr{R} f(x))=\mathscr{R} x$. Denoting $y=\mathscr{R} x$ and $g=\tilde{f}$, we have to show that $\mathscr{W}_{g^{-1}}\left(\mathscr{W}_{g}(y)\right)=y$. This is a consequence of $g^{-1} \circ g=\mathrm{I}$, relation to be shown later. But since we know that $g$ and $g^{-1}$ are functions, we can restate this as follows: the pair $\left(\mathscr{W}_{g}(y), y\right)$ is in the inverse graph of $g$, which is the same as: the pair $\left(y, \mathscr{W}_{g}(y)\right)$ is in the graph of $g$, which is true. From this we deduce $f\left(f^{-1}(f(x))\right)=f(x)$, and the surjectivity of $f$ gives $f \circ f^{-1}=\mathrm{I}$.

```
Lemma bijective_inv_aux: forall a b (f:a->b),
 bijectiveC f -> is_function (inverse_fun (acreate f)).
Lemma bijective_source_aux: forall a b (f:a->b),
 source (inverse_fun (acreate f)) = b.
Lemma bijective_target_aux: forall a b (f:a->b),
 target (inverse_fun (acreate f)) \(=a\).
Definition inverseC a b (f:a->b) (H:bijectiveC f) : b->a :=
 bcreate(bijective_inv_aux H) (bijective_source_aux f)
 (bijective_target_aux f).
Lemma inverseC_pra: forall a b (f:a->b) (H:bijectiveC f) (x:a),
 (inverseC H) (f x) = x.
Lemma inverseC_prb: forall a b (f:a->b) (H:bijectiveC f) (\(x: b\)),
 f ((inverseC H) x) = x.
Lemma inverseC_prc: forall a b (f:a-> b) (H:bijectiveC f),
 inverse_fun(acreate f) = acreate(inverseC H).
```

```
Lemma bij_left_inverseC: forall a b (f:a->b) (H:bijectiveC f) ,
 composeC (inverseC H) f = identityC a.
Lemma bij_right_inverseC: forall a b (f:a->b) (H:bijectiveC f) ,
 composeC \(f\) (inverseC H) = identityC b.
```

If a function has a left and right inverse, the function is bijective, and its inverse is equal to these inverses. In fact, if $f(g(x))=x$ for all $x$, then $f$ is surjective, since every $x$ is the image of $g(x)$. If $g^{\prime}(f(y))=y$, applying $g^{\prime}$ to $f(y)=f\left(y^{\prime}\right)$ gives $y=y^{\prime}$, hence proves injectivity. Now, $g^{\prime}(f(g(x)))=g^{\prime}(x)=g(x)$, this shows that $g=g^{\prime}$. We have $g^{\prime}(x)=f^{-1}(x)$, since $x=f(g(x))$, and, by definition, the rhs is $g(x)$. We have already seen that the lhs is this quantity.

We deduce from this that the inverse function of a bijection is a bijection.

```
Lemma bijective_double_inverseC: forall a b (f:a->b) g g',
 composeC g f = identityC a -> composeC f g' = identityC b ->
 bijectiveC f.
Lemma bijective_double_inverseC1: forall a b (f:a->b) g g'
 (Ha: composeC g f = identityC a)(Hb: composeC f g' = identityC b),
 g = inverseC(bijective_double_inverseC Ha Hb)
 & g' = inverseC(bijective_double_inverseC Ha Hb).
Lemma bijective_inverseC: forall a b (f:a->b)(H:bijectiveC f),
 bijectiveC (inverseC H).
Lemma inverse_fun_involutiveC:forall a b (f:a->b) (H: bijectiveC f),
 f = inverseC(bijective_inverseC H).
```

If $f$ is a bijective, then $f^{-1}$ is also a bijective. The composition in any order is the identity function. The proofs of these three lemmas are similar: let $g=\mathscr{M}_{a ; b} f$; then $f=\mathscr{L} g, f^{-1}=$ $\mathscr{L}\left(g^{-1}\right), f \circ f^{-1}=\mathscr{L}\left(g \circ g^{-1}\right)$.

```
Lemma inverse_bij_is_bij:forall f,
 bijective f -> bijective (inverse_fun f).
Lemma inverse_bij_is_bij_alt:forall f,
 bijective f -> bijective (inverse_fun f).
Lemma composable_f_inv:forall f,
 bijective f -> composable f (inverse_fun f).
Lemma composable_inv_f: forall f,
 bijective f -> composable (inverse_fun f) f.
Lemma bij_right_inverse:forall f,
 bijective f -> compose f (inverse_fun f) = identity_fun (target f).
Lemma bij_left_inverse:forall f,
 bijective f -> compose (inverse_fun f) f = identity_fun (source f).
Lemma W_inverse: forall f x y,
 bijective f -> inc x (target f) ->
 (y = W x (inverse_fun f)) -> (x = W y f).
Lemma W_inverse2: forall f x y,
 bijective f -> inc y (source f) ->
 (x = W y f)-> (y = W x (inverse_fun f)).
Definition involutive_function f := f = inverse_fun f.
```

We apply the results of Coq functions to Bourbaki functions. Note that Bourbaki shows that the inverse $h=f^{-1}$ is a bijection by noting that its inverse is $f$, hence is a function and

Proposition 7 [2] p. 85] applies. The relation $x=\mathscr{W}_{f} y$ is equivalent to $y=\mathscr{W}_{f^{-1}} x$ if either $x$ is in the target of $f$ or $y$ in the source.

```
Lemma bijective_inv_aux: forall a b (f:a->b),
 bijectiveC f -> is_function (inverse_fun (acreate f)).
Lemma bijective_source_aux: forall a b (f:a->b),
 source (inverse_fun (acreate f)) = b.
Lemma bijective_target_aux: forall a b (f:a->b),
 target (inverse_fun (acreate f)) = a.
```

Let $f$ be a function from A to B. We have shown before $x \subset f^{-1}\langle f\langle x\rangle\rangle$, if $x \subset \mathrm{~A}$ (this is true for any correspondence). Equality holds if $f$ is injective. We have $f\left\langle f^{-1}\langle y\rangle\right\rangle \subset y$ if $y \subset \mathrm{~B}$. Equality holds if $f$ is surjective.

```
Lemma sub_inv_im_source:forall f y,
 is_function f -> sub y (target f) ->
 sub (inv_image_by_graph (graph f) y) (source f).
Lemma direct_inv_im: forall f y,
 is_function f -> sub y (target f) ->
 sub (image_by_fun f (image_by_fun (inverse_fun f) y)) y.
Lemma direct_inv_im_surjective: forall f y,
 surjective f -> sub y (target f) ->
 (image_by_fun f (image_by_fun (inverse_fun f) y)) = y.
Lemma inverse_direct_image:forall f x,
 is_function f -> sub x (source f) ->
 sub x (image_by_fun (inverse_fun f) (image_by_fun f x)).
Qed.
Lemma inverse_direct_image_inj:forall f x,
 injective f -> sub x (source f) ->
 x = (image_by_fun (inverse_fun f) (image_by_fun f x)).
```


### 4.8 Retractions and sections



A retraction $r$ of $f$ is a right inverse; a section $s$ is a left inverse. This means that $r \circ f$ and $f \circ s$ are the identity functions. Assume $f$ is a function from A to B . The definition of $r$ implies the existence of $r \circ f$, i.e. the source of $r$ is B. A consequence is that the target is A. In the same way, the definition of $s$ implies the existence of $f \circ s$, i.e. the target of $s$ is A . A consequence is that the source is B . In the case of Coq functions if $f$ has type $a \rightarrow b$, its inverse $r$ or $s$ has type $b \rightarrow a$ (there is a unique type for $r$ compatible with the relation $r \circ f=\mathrm{I}_{\mathrm{A}}$ ).

```
Definition is_left_inverse r f :=
 is_function r & composable r f & compose r f = identity_fun (source f).
Definition is_right_inverse s f :=
 is_function s & composable f s & compose f s = identity_fun (target f).
```

```
Definition is_left_inverseC \(a \operatorname{b} r(f: a->b):=c o m p o s e C r f=i d e n t i t y C ~ a\).
Definition is_right_inverseC a bs (f:a->b):= composeC f \(s=\) identityC b.
Lemma target_left_inverse: forall r f,
 is_left_inverse \(r\) f \(\rightarrow\) target \(r=\) source \(f\).
Lemma source_right_inverse: forall s f,
 is_right_inverse s f -> source \(s=\) target \(f\).
Lemma W_right_inverse: forall s f x,
 is_right_inverse s f \(->\) inc \(x\) (target f) \(\rightarrow\) (W (X x) \(\mathrm{f}=\mathrm{x}\).
Lemma W_left_inverse: forall r f x,
```



```
Lemma w_right_inverse: forall a b s (f:a->b) (x:b),
 is_right_inverseC s f \(\rightarrow\) f (s x) \(=x\).
Lemma w_left_inverse: forall a b r (f:a->b) (x:a),
 is_left_inverseC r f \(\rightarrow\) r \((f x)=x\).
```

Proposition 8 [2, p. 86] expresses the next four theorems. Assume that $f$ is a function from A to B . If for some function $s, f \circ s=\mathrm{I}_{\mathrm{B}}$ then $f$ is surjective; if for some function $r, r \circ f=\mathrm{I}_{\mathrm{A}}$ then $f$ is injective. The converse holds; one has to take care that if $\mathrm{A}=\varnothing$, every function is injective, and there is in general no function from B to A (unless B is empty). Hence for the retraction $r$ to exist, we assume $A \neq \varnothing$. We start with the easy case.

```
Lemma inj_if_exists_left_invC: forall a b (f:a-> b),
 (exists r, is_left_inverseC r f) -> injectiveC f.
Lemma surj_if_exists_right_invC: forall a b (f:a->b),
 (exists s, is_right_inverseC s f) -> surjectiveC f.
Theorem inj_if_exists_left_inv: forall f,
 is_function f -> (exists r:E, is_left_inverse r f) -> injective f.
Theorem surj_if_exists_right_inv: forall f,
 is_function f -> (exists s:E, is_right_inverse s f) -> surjective f.
```

We show then existence of left and right inverses for Coq functions as follows. Assume that $f: a \rightarrow b$ is surjective. This means that for every $x: b$ there exists $y: a$ such that $f(y)=x$. We use chooseT, the basic axiom of choice to select such an $y$. For this mechanism to work, we need a proof that $a$ is not the empty type; this is only required when we try to assign a value to $x$, and the existence of $y$ is then sufficient.

Assume $f$ injective and $w: a$. Given $x: b$, we consider $\mathrm{P}(y)$ the property that " $f(y)=x$ or $x$ is not in the image of $f$ ", and $y=w$. Such an $y$ exists, and we can apply the axiom of choice. If $x=f(z)$, then we are in the first case, hence $f(y)=f(z)$. Denote the inverse mapping by $g$. We have $f(g(f(z)))=f(z)$ for every $z$. The assumption that $f$ is injective says $g(f(z))=z$, so that $g$ is a left inverse.

```
Lemma left_inverseC_aux: forall a b (f: a->b) (w:a) (v:b),
 exists \(u: a,(\sim(e x i s t s ~ x: a, f x=v) \& u=w) ~ \ /(f u=v)\).
Definition chooseT_any a (H:nonemptyT a):= (chooseT (fun \(x: a=>x=x\)) H).
Definition left_inverseC a b (f: a->b) (H:nonemptyT a)
 (v:b) := (chooseT (fun u:a => (~ (exists \(x: a, f x=v\)) \& u = chooseT_any H)
 \/ (f u = v)) H).
Lemma left_inverseC_pr:forall a b (f: a->b) (H:nonemptyT a) (u:a),
 \(f\left(l e f t _i n v e r s e C f H(f u)\right)=f u\).
```

```
Lemma left_inverse_comp_id: forall a b (f:a->b) (H:nonemptyT a),
 injectiveC f -> composeC (left_inverseC f H) f = identityC a.
Lemma exists_left_inv_from_injC: forall a b (f:a->b), nonemptyT a ->
 injectiveC \(f\)-> exists \(r\), is_left_inverseC \(r f\).
Lemma inverse_value_ex: forall a b (f: a->b) (H:surjectiveC f) (x:b),
 nonemptyT a.
Definition right_inverseC a b (f: a->b) (H:surjectiveC f) (x:b) :=
 (chooseT (fun k:a \(=>\mathrm{f} k=\mathrm{x}\)) (inverse_value_ex \(H\) x)).
Lemma right_inverse_pr: forall a b (f: a->b) (H:surjectiveC f) (x:b),
 f(right_inverseC H x) = x.
Lemma right_inverse_pr: forall a b (f: a->b) (H:surjectiveC f) (\(x: b\)),
 f (right_inverseC H x) \(=\mathrm{x}\).
Lemma right_inverse_comp_id: forall a b (f:a-> b) (H:surjectiveC f),
 composeC f (right_inverseC H) = identityC b.
Lemma exists_right_inv_from_surjC: forall a b (f:a-> b) (H:surjectiveC f),
 exists s, is_right_inverseC s f.
```

Bourbaki shows existence of a left inverse of the function $f: \mathrm{A} \rightarrow \mathrm{B}$ by considering the subset of $\mathrm{B} \times \mathrm{A}$ formed of all pairs $(x, y)$ such that $y \in \mathrm{~A}$ and $y=f(x)$ or $y=e$ and $x \in \mathrm{~B} \backslash f\langle\mathrm{~A}\rangle$, where $e \in \mathrm{~A}$ (such an element exists when A is nonempty). This set is a functional graph, and the function with this graph is an answer to the question.

```
Theorem exists_left_inv_from_inj: forall f,
 injective f ->nonempty (source f) -> exists r:E, is_left_inverse r f.
Theorem exists_right_inv_from_surj: forall f,
 surjective f -> exists s:E, is_right_inverse s f.
Theorem exists_left_inv_from_inj_alt: forall f,
 injective f -> nonempty (source f) -> exists r, is_left_inverse r f. (* 41 *)
Theorem exists_right_inv_from_surj_alt: forall f,
 surjective f -> exists s, is_right_inverse s f. (* 17 *)
```

- Some consequences. If $r$ is a left inverse of $f$, then $f$ is a right inverse of $r$, and vice versa. A left inverse is surjective, a right inverse is injective. If $g$ is both a left inverse and a right inverse of $f$, then $g$ is bijective as well as $f$.

```
Lemma bijective_from_compose: forall g f,
 composable g f -> composable f g -> compose g f = identity_fun (source f)
 -> compose f g = identity_fun (source g)
 ->(bijective f \& bijective g \& g = inverse_fun f). (* 16 *)
Lemma right_inverse_from_leftC: forall a b (r:b->a) (f:a->b),
 is_left_inverseC r f -> is_right_inverseC f r.
Lemma left_inverse_from_rightC: forall a b (s:b->a) (f:a->b),
 is_right_inverseC s f -> is_left_inverseC f s.
Lemma left_inverse_surjectiveC: forall a b (r:b->a) (f:a->b),
 is_left_inverseC r f -> surjectiveC r.
Lemma right_inverse_injectiveC: forall a b (s:b->a) (f:a->b),
 is_right_inverseC s f -> injectiveC s.
Lemma section_uniqueC: forall a b (f:a->b) (s:b->a) (s':b->a),
 is_right_inverseC s f -> is_right_inverseC s' f ->
 (forall \(x: a,(e x i s t s ~ u: b, x=s ~ u) ~=~(e x i s t s ~ u ': b, ~ x ~=~ s ' ~ u ')) ~->~\)
 \(\mathrm{s}=\mathrm{s}\).
Lemma right_inverse_from_left: forall r f,
```

```
 is_function f-> is_left_inverse r f -> is_right_inverse f r.
Lemma left_inverse_from_right: forall s f,
 is_function f -> is_right_inverse s f -> is_left_inverse f s.
Lemma left_inverse_surjective: forall f r,
 is_function f-> is_left_inverse r f >> surjective r.
Lemma right_inverse_injective: forall f s,
 is_function f-> is_right_inverse s f -> injective s.
Lemma section_unique: forall f s s',
 is_function f-> is_right_inverse s f -> is_right_inverse s' f ->
 range (graph s) = range (graph s') ->s = s'.
```

Theorem 1 in Bourbaki [2, p. 87] comes next. We assume that $f$ and $f^{\prime}$ are two composable functions and $f^{\prime \prime}=f^{\prime} \circ f$. If $f$ and $f^{\prime}$ are injective so is $f^{\prime \prime}$, if $f$ and $f^{\prime}$ are surjective, so is $f^{\prime \prime}$. Hence, if $f$ and $f^{\prime}$ are bijections, so is $f^{\prime \prime}$. If $f$ and $f^{\prime}$ have a left inverse, so has $f^{\prime \prime}$ (it is the composition of the inverses in reverse order). The same holds for right inverses.

If $f^{\prime \prime}$ has a left inverse $r^{\prime \prime}$ then $r^{\prime \prime} \circ f^{\prime}$ is a right inverse of $f$, and $f \circ r^{\prime \prime}$ is a left inverse of $f^{\prime}$ provided that $f$ is surjective (in which case $f$ is invertible). If $f^{\prime \prime}$ has a right inverse $s^{\prime \prime}$ then $f \circ s^{\prime \prime}$ is a right inverse of $f^{\prime}$ and $s^{\prime \prime} \circ f^{\prime}$ is a left inverse of $f$, provided that $f^{\prime}$ is injective, in which case $f^{\prime}$ is a bijection.

If $f^{\prime \prime}$ is injective then $f$ is injective, and for $f^{\prime}$ to be injective it suffices that $f$ is surjective; if $f^{\prime \prime}$ is surjective then $f^{\prime}$ is surjective; and for $f$ to be surjective it suffices that $f^{\prime}$ is injective.

```
Lemma inj_composeC: forall a b c (f:a->b) (f':b->c),
 injectiveC f-> injectiveC f, -> injectiveC (composeC f' f).
Lemma surj_composeC: forall a b c (f:a->b) (f':b->c),
 surjectiveC f-> surjectiveC f, -> surjectiveC (composeC f, f).
Lemma left_inverse_composeC: forall a b c (f:a->b) (f':b->c) (r:b->a) (r':c->b),
 is_left_inverseC r' f' -> is_left_inverseC r f ->
 is_left_inverseC (composeC r r') (composeC f' f).
Lemma right_inverse_composeC: forall a b c (f:a->b) (f':b->c) (s:b->a) (s':c->b),
 is_right_inverseC s' f' -> is_right_inverseC s f ->
 is_right_inverseC (composeC s s') (composeC f' f).
Lemma inj_right_composeC: forall a b c (f:a->b) (f':b->c),
 injectiveC (composeC f, f) -> injectiveC f.
Lemma surj_left_composeC: forall a b c (f:a->b) (f':b->c),
 surjectiveC (composeC f' f) -> surjectiveC f'.
Lemma surj_left_compose2C: forall a b c (f:a->b) (f':b->c),
 surjectiveC (composeC f' f) -> injectiveC f, \(->\) surjectiveC \(f\).
Lemma inj_left_compose2C: forall a b c (f:a->b) (f':b->c),
 injectiveC (composeC f' f) -> surjectiveC f -> injectiveC f'.
Lemma left_inv_compose_rfC: forall a b c (f:a->b) (f':b->c) (r'': c->a),
 is_left_inverseC r', (composeC f' f) ->
 is_left_inverseC (composeC r', f') f.
Lemma right_inv_compose_rfC : forall a b c (f:a->b) (f':b->c) (s'': c->a),
 is_right_inverseC s', (composeC f' f) ->
 is_right_inverseC (composeC f s'') f'.
Lemma left_inv_compose_rf2C: forall a b c (f:a->b) (f':b->c) (r', \({ }^{\prime}\) c->a),
 is_left_inverseC r', (composeC f' f) -> surjectiveC f ->
 is_left_inverseC (composeC f r'') f'.
Lemma right_inv_compose_rf2C : forall a b c (f:a->b) (f':b->c) (s'): c->a),
 is_right_inverseC s', (composeC f' f) -> injectiveC f'->
 is_right_inverseC (composeC s'' f') f.
```

Now the same results, in Bourbaki notations.

```
Theorem inj_compose: forall f f',
 injective f-> injective f' -> composable f' f ->
 injective (compose f' f).
Theorem surj_compose: forall f f',
 surjective f-> surjective f' -> composable f' f ->
 surjective (compose f' f).
Lemma bij_compose: forall f f',
 bijective f-> bijective f' -> composable f' f ->
 bijective (compose f' f).
Lemma left_inverse_composable: forall f f' r r', composable f' f ->
 is_left_inverse r' f' -> is_left_inverse r f -> composable r r'.
Lemma right_inverse_composable: forall f f' s s', composable f' f ->
 is_right_inverse s' f' -> is_right_inverse s f -> composable s s'.
Theorem left_inverse_compose: forall f f' r r', composable f' f ->
 is_left_inverse r' f' -> is_left_inverse r f ->
 is_left_inverse (compose r r') (compose f' f).
Theorem right_inverse_compose: forall f f' s s', composable f' f ->
 is_right_inverse s' f' -> is_right_inverse s f ->
 is_right_inverse (compose s s') (compose f' f).
Theorem inj_right_compose: forall f f',
 composable f' f-> injective (compose f' f) -> injective f.
Theorem surj_left_compose: forall f f',
 composable f' f-> surjective (compose f' f) -> surjective f'.
Theorem left_inv_compose_rf: forall f f' r'',
 composable f' f-> is_left_inverse r'' (compose f' f) ->
 is_left_inverse (compose r'' f') f.
Theorem right_inv_compose_rf : forall f f' s'',
 composable f' f-> is_right_inverse s', (compose f' f) ->
 is_right_inverse (compose f s'') f'.
Theorem surj_left_compose2: forall f f',
 composable f' f-> surjective (compose f' f) -> injective f, -> surjective f.
Theorem inj_left_compose2: forall f f',
 composable f' f-> injective (compose f' f) -> surjective f -> injective f'.
Theorem left_inv_compose_rf2: forall f f' r'',
 composable f' f-> is_left_inverse r', (compose f' f) -> surjective f ->
 is_left_inverse (compose f r'') f'. (* 25 *)
Theorem right_inv_compose_rf2 : forall f f' s'',
 composable f' f-> is_right_inverse s', (compose f' f) -> injective f'->
 is_right_inverse (compose s'' f') f. (* 24 *)
```

If $f \circ g$ is a bijection, one function is a bijection, so is the other.

```
Lemma bij_is_function: forall f, bijective f-> is_function f.
Lemma bij_right_compose: forall f f',
 composable f' f-> bijective (compose f' f) -> bijective f' ->bijective f.
Lemma bij_left_compose: forall f f',
 composable f' f-> bijective (compose f' f) -> bijective f ->bijective f'.
```

Next three lemmas show that equipotency is an equivalence relation.

```
Lemma equipotent_reflexive: forall x, equipotent x x.
Lemma equipotent_symmetric: forall a b,
 equipotent a b -> equipotent b a.
Lemma equipotent_transitive: forall a b c,
 equipotent a b -> equipotent b c -> equipotent a c.
```


(decomposition, Prop 9)

Proposition 9 [2, p. 88] is implemented in the next lemmas. If $f$ and $g$ have the same source and if $g$ is surjective, then the condition $g(x)=g(y) \Longrightarrow f(x)=f(y)$ is a necessary and sufficient condition for the existence of $h$ with $f=h \circ g$. Such a mapping is then unique and is $f \circ s$, for any right inverse of $g$.

```
Lemma exists_left_composableC: forall a b c (f:a->b)(g:a->c),
 surjectiveC g ->
 (exists h, composeC h g = f) =
 (forall (x y:a), g x = g y -> f x = f y).
Theorem exists_left_composable: forall f g,
 is_function f -> surjective g -> source f = source g ->
 (exists h:E, composable h g & compose h g = f) =
 (forall (x y:E), inc x (source g) -> inc y (source g) ->
 W x g = W y g -> W x f = W y f). (* 13 *)
Lemma exists_left_composable_auxC: forall a b c (f:a->b) (g:a-> c) s h,
 surjectiveC g -> is_right_inverseC s g ->
 composeC h g = f -> h = composeC f s.
Theorem exists_left_composable_aux: forall f g s h ,
 is_function f -> surjective g -> source f = source g ->
 is_right_inverse s g ->
 composable h g -> compose h g = f -> h = compose f s.
Lemma exists_unique_left_composableC: forall a b c (f:a->b) (g:a->c) h h',
 surjectiveC g >> composeC h g = f -> composeC h' g = f ->
 h = h'.
Theorem exists_unique_left_composable: forall f g h h',
 is_function f -> surjective g -> source f = source g ->
 composable h g -> compose h g = f ->
 composable h' g >> compose h' g = f >> h = h'.
Lemma left_composable_valueC: forall a b c (f:a->b)(g:a->c) s h,
 surjectiveC g -> (forall (x y:a), g x = g y -> f x = f y) ->
 is_right_inverseC s g -> h = composeC f s ->
 composeC h g = f.
Theorem left_composable_value: forall f g s h,
 is_function f -> surjective g -> source f = source g ->
 (forall (x y:E), inc x (source g) -> inc y (source g) ->
 W x g = W y g -> W x f = W y f) ->
 is_right_inverse s g -> h = compose f s-> compose h g = f.
```

Second part of Proposition 9. We assume that $f$ and $g$ have the same target, $g$ is injective; the condition range $f \subset$ range $g$ is a necessary and sufficient condition for the existence of $h$ with $f=g \circ h$, such a mapping is then unique and is $r \circ f$, for any left inverse of $g$.

```
Lemma exists_right_composable_auxC: forall a b c (f:a->b) (g:c->b) h r,
 injectiveC g -> is_left_inverseC r g >> composeC g h = f
 -> h = composeC r f.
Theorem exists_right_composable_aux: forall f g h r,
```

```
is_function f -> injective g -> target f = target g ->
is_left_inverse r g -> composable g h -> compose g h = f
-> h = compose r f.
Lemma exists_right_composable_uniqueC: forall a b c (f:a->b) (g:c->b) h h',
 injectiveC g >> composeC g h = f >> composeC g h' = f -> h = h'.
Theorem exists_right_composable_unique: forall f g h h',
 is_function f -> injective g -> target f = target g ->
 composable g h -> compose g h = f ->
 composable g h' -> compose g h' = f -> h = h'.
Lemma exists_right_composableC: forall a b c (f:a->b) (g:c->b),
 injectiveC g ->
 (exists h, composeC g h = f) = (forall u, exists v, g v = f u).
Theorem exists_right_composable: forall f g,
 is_function f -> injective g -> target f = target g ->
 (exists h, composable g h & compose g h = f) =
 (sub (range (graph f)) (range (graph g))). (* 41 *)
Lemma right_composable_valueC: forall a b c (f:a->b) (g:c->b) r h,
 injectiveC g -> is_left_inverseC r g -> (forall u, exists v, g v = f u) ->
 h = composeC r f -> composeC g h = f. (* 17 *)
Theorem right_composable_value: forall f g r h,
 is_function f -> injective g -> target g = target f ->
 is_left_inverse r g ->
 (sub (range (graph f)) (range (graph g))) ->
 h = compose r f ->
 compose g h = f.
```


### 4.9 Functions of two arguments

A function of two arguments is a function whose domain is a set of pairs. Given $x$, we can consider the function $y \mapsto f((x, y))$. A simple case, not considered here, is when the source of $f$ is a nonempty product $\mathrm{A} \times \mathrm{B}$. In this case, the domain of the partial function is B , for every $x \in \mathrm{~A}$.

```
Definition partial_fun2 f y :=
 BL (fun \(x=>\) W (J x y) f) (cut (inverse_graph (source f)) y) (target f).
Definition partial_fun1 f x :=
 BL (fun \(y=>\) W (J x y) f) (cut (source f) \(x\)) (target f).
Lemma axioms_partial_fun1: forall f x, is_function f -> is_graph(source f) ->
 transf_axioms (fun y=> W (J x y) f) (cut (source f) x) (target f).
Lemma function_partial_fun1: forall f x, is_function f -> is_graph(source f) ->
 is_function (partial_fun1 f x).
Lemma W_partial_fun1: forall f x y, is_function f -> is_graph(source f) ->
 inc (J x y) (source f) -> W y (partial_fun1 f x) = W (J x y) f.
Lemma axioms_partial_fun2: forall f y, is_function f -> is_graph(source f) ->
 transf_axioms (fun x=> W (J x y) f) (cut (inverse_graph (source f)) y)
 (target f).
Lemma function_partial_fun2: forall f y, is_function f -> is_graph(source f) ->
 is_function (partial_fun2 f y).
```

```
Lemma W_partial_fun2: forall f x y, is_function f -> is_graph(source f) ->
 inc (J x y) (source f) -> W x (partial_fun2 f y) = W (J x y) f.
```

An example of function of two arguments is the function obtained from two functions $u$ and $v$ by associating to $(x, y)$ the pair $(u(x), v(y))$.

```
Definition ext_to_prod u v :=
 BL(fun \(z=>\) J (W (\(\mathrm{P} z\)) u) (W (Q z) v))
 (product (source u) (source v))
 (product (target u) (target v)).
Lemma function_ext_to_prod: forall u v,
 is_function u -> is_function v ->
 is_function (ext_to_prod u v).
Lemma source_ext_to_prod: forall u v,
 source (ext_to_prod u v) = product (source u) (source v).
Lemma target_ext_to_prod: forall u v,
 target (ext_to_prod u v) = product (target u) (target v).
Lemma W_ext_to_prod: forall u v a b,
 is_function u -> is_function v-> inc a (source u) -> inc b (source v)->
 \(\mathrm{W}(\mathrm{J} a \mathrm{~b})\left(e x t _t o _p r o d \mathrm{u} v\right)=\mathrm{J}(\mathrm{W} \mathrm{a} u)(\mathrm{W}\) b v).
Lemma W_ext_to_prod2: forall u v c,
 is_function u -> is_function v->
 inc c (product (source u)(source v)) ->
Lemma range_ext_to_prod2: forall u v,
 is_function u -> is_function v->
 range (graph (ext_to_prod u v)) =
 product (range (graph u)) (range (graph v)). (* \(14 *\))
```


(prod extension)

We can consider the product of two Coq functions. We first define the projections from $a \times b$ to $a$ and $b$ and the inverse function. In the diagram above, this inverse function corresponds to the two arrows named J. In other words, if $z$ is the pair $(x, y)$, we have $\mathrm{P}(z)=x$ and $\mathrm{Q}(z)=y$. To say that J is the inverse means that J applied to $x$ and $y$ gives $z$. This function takes two arguments (its type is $\mathscr{E} \rightarrow \mathscr{E} \rightarrow \mathscr{E}$ ) but is not a function of two arguments (its type is not $\mathscr{E} \times \mathscr{E} \rightarrow \mathscr{E}$ ).

```
Lemma ext_to_prod_propP: forall a a' (x: product a a'), inc (P (Ro x)) a.
Lemma ext_to_prod_propQ: forall a a' (x: product a a'), inc (Q (Ro x)) a'.
Lemma ext_to_prod_propJ: forall b b' (x:b) (x':b'),
 inc (J (Ro x)(Ro x')) (product b b').
```

```
Definition pr1C a b:= fun x:product a b => Bo(ext_to_prod_propP x).
Definition pr2C a b:= fun x:product a b => Bo(ext_to_prod_propQ x).
Definition pairC a b:= fun (x:a)(y:b) => Bo(ext_to_prod_propJ x y).
Definition ext_to_prodC a b a' b' (u:a->a')(v:b->b') :=
 fun x => pairC (u (pr1C x)) (v (pr2C x)).
```

```
Lemma prC_prop: forall a b (x:product a b),
 Ro \(x=J(\operatorname{Ro}(p r 1 C x))(R o(p r 2 C x))\).
Lemma pr1C_prop: forall a b (x:product a b), Ro (pr1C x) = \(P\) (Ro \(x\)).
Lemma pr2C_prop: forall a b (x:product a b), Ro (pr2C x) = Q (Ro x).
Lemma prJ_prop: forall a b (x:a) (y:b), Ro(pairC x y) = J (Ro x) (Ro y).
Lemma prJ_recov: forall a b (x:product a b), pairC (pr1C x) (pr2C x) = x.
Lemma ext_to_prod_prop:
 forall a b a' b' (u:a->a') (v:b->b') (x:a)(x':b),
 \(J(R o(u x))\left(R o\left(v x^{\prime}\right)\right)=R o\left(e x t _t o _p r o d C u v(p a i r C x ~ x ')\right)\).
```

If both functions are injective, surjective or bijective, so is the product. The inverse is the product of the inverses. It is compatible with composition.

```
Lemma injective_ext_to_prod2: forall u v,
 injective u -> injective v-> injective (ext_to_prod u v).
Lemma surjective_ext_to_prod2: forall u v,
 surjective u -> surjective v-> surjective (ext_to_prod u v).
Lemma bijective_ext_to_prod2: forall u v,
 bijective u -> bijective v-> bijective (ext_to_prod u v).
Lemma inverse_ext_to_prod2: forall u v,
 bijective u -> bijective v->
 inverse_fun (ext_to_prod u v) =
 ext_to_prod (inverse_fun u)(inverse_fun v). (* 22 *)
Lemma composable_ext_to_prod2: forall u v u' v',
 composable u' u -> composable v' v ->
 composable (ext_to_prod u' v') (ext_to_prod u v).
Lemma compose_ext_to_prod2: forall u v u' v',
 composable u' u -> composable v' v ->
 compose (ext_to_prod u' v') (ext_to_prod u v) =
 ext_to_prod (compose u' u)(compose v' v). (* 19 *)
```

Same lemmas for Coq functions.

```
Lemma injective_ext_to_prod2C: forall a b a' b' (u:a->a') (v:b->b'),
 injectiveC u -> injectiveC v-> injectiveC (ext_to_prodC u v).
Lemma surjective_ext_to_prod2C: forall a b a' b' (u:a->a') (v:b->b'),
 surjectiveC u -> surjectiveC v-> surjectiveC (ext_to_prodC u v).
Lemma bijective_ext_to_prod2C: forall a b a' b' (u:a->a')(v:b->b'),
 bijectiveC u -> bijectiveC v-> bijectiveC (ext_to_prodC u v).
Lemma compose_ext_to_prod2C: forall a b c a' b' c' (u:b-> c) (v:a->b)
 (\(\left.u^{\prime}: b^{\prime}->c^{\prime}\right)\left(v^{\prime}: a^{\prime}->b^{\prime}\right)\),
 composeC (ext_to_prodC u u') (ext_to_prodC v v') =
 ext_to_prodC (composeC u v) (composeC u' v').
Lemma inverse_ext_to_prod2C: forall a b a' b' (u:a->a') (v:b->b')
 (Hu: bijectiveC u) (Hv:bijectiveC v),
 inverseC (bijective_ext_to_prod2C Hu Hv)=
 ext_to_prodC (inverseC Hu) (inverseC Hv).
```

I Canonical decomposition of a function, version one. Let $f$ be a function from A to B , and C its range. Then $f$ is the composition of the restriction of $f$ to its range, and the canonical injection from the range to the target. The first function satisfies $g(x)=f(x)$; the second satisfies $i(x)=x$.

Lemma canonical_decomposition1: forall f g i,

```
is_function f ->
g = restriction2 f (source f) (range (graph f)) ->
i = canonical_injection (range (graph f)) (target f) ->
(composable i g & f = compose i g & injective i & surjective g &
(injective f -> bijective g)). (* 21 *)
```

In the case of Coq functions, we replace the range of the graph by the image.

```
Definition imageC a b (f:a->b) := IM (fun u:a => Ro (f u)).
Lemma imageC_inc: forall a b (f:a->b) (x:a), inc (Ro (f x)) (imageC f).
Lemma imageC_exists: forall a b (f:a->b) x,
 inc x (imageC f) -> exists y:a, x = Ro (f y).
Lemma sub_image_targetC: forall a b (f:a->b), sub (imageC f) b.
Definition restriction_to_image a b (f:a->b) :=
 fun x:a => Bo (imageC_inc f x).
Lemma restriction_to_image_pr: forall a b (f:a->b) (x:a),
 Ro(restriction_to_image f x) = Ro (f x).
Lemma canonical_decomposition1C: forall a b (f:a->b)
 (g:a-> imageC f)(i:imageC f ->b),
 g = restriction_to_image f ->
 i = inclusionC (sub_image_target (f:=f)) ->
 (injectiveC i & surjectiveC g &
 (injectiveC f -> bijectiveC g)).
```


## Chapter 5

## Union and intersection of a family of sets

Bourbaki defines union, intersection and products of a family of sets. A family is just a function, that is, a source, a target, and a functional graph. The definition of the union [2, p. 90] is: "let $\left(X_{t}\right)_{t \in I}$ be a family of sets. The set [...] is called the union of the family and denoted by $\bigcup_{\mathrm{L} \in \mathrm{I}} \mathrm{X}_{\mathrm{l}}$." Intersection is similarly denoted by $\bigcap_{\mathrm{I} \in \mathrm{I}} \mathrm{X}_{\mathrm{I}}$. In this notation t is a dummy variable, X is the graph, I the source (called "the index set"), and the target is never mentioned. In fact, the definitions are independent of the target. Given a graph G, it is possible to construct a function with graph $G$ (just use domain and range as source and target). Note that we do not have any choice for the source. The associated union will be independent of these choices.

For this reason, in what follows, unionb $X$ is the union associated to the graph $X$. Using unionb requires that X is a functional graph. Assume now that I is a set, and X a mapping. Then $\mathscr{L}_{\mathrm{I}} \mathrm{X}$ is a functional graph, whose index set is I. For this reason, we introduce unionf I X. This better matches the definition of Bourbaki. In some cases, Bourbaki considers the family $\left(\mathrm{X}_{f(\mathrm{k})}\right)_{\mathrm{k} \in \mathrm{K}}$. This has to be understood as the family $\mathrm{X} \circ f$.

We consider another variant, uniont where X is a function on the type I with values into a set. This will be our primary definition. We must then show that all these definitions are equivalent, and the same as the original union (as defined by C. Simpson in Sections 2.9 and 2.10.

Intersection is only defined over a nonempty index set. We have tried to impose this restriction in the definition, but this gives theorems that are two complicated. As a result, we define intersection even over the empty set. In the case of intersection, we shall use the fact that nonempty $x$ implies inc (rep $x$ ) $x$. We have shown that choose T_any $H$ yields an object of type $a$ if H says nonemptyT $a$. This will be used for intersectiont. Lemma nonempty_equiv says that every nonempty set is a nonempty type (if $y \in a$, then $y=\mathscr{R} x$ for some $x$ of type $a$ ). This will be used for intersectiont. Finally, in the case of intersectionb, we have a lemma that says that a nonempty graph has a nonempty domain.

```
Lemma nonempty_monotone: forall x y, sub x y -> nonempty x -> nonempty y.
Lemma nonempty_equiv: forall a, nonempty a -> nonemptyT a.
Definition nonempty_sourceT a b (f:a->b) (Ha:nonemptyT b) (Hb:surjectiveC f)
 :=(inverse_value_ex Hb (chooseT_any Ha)).
Lemma singleton_type_inj: forall x (y:singleton x)(z:singleton x),
 y = z.
```


### 5.1 Definition of the union and intersection of a family of sets

We define here uniont $f$, unionf $I X$ and unionb $G$ as follows. The first definition is a variant of the union, as defined in section 2.9. A Uintegral record contains $z$ and $e$ of type $f(z)$, so that $\mathscr{R} e \in f(z)$. Hence the union is just the image of the function that associates to each record the quantity $\mathscr{R} e$.

The intersection of a function $f$ defined on a type I, denoted by intersectiont $f$, is the set of all $y \in f(a)$ such that $y \in f(z)$ for all $z$; it is independent of $a$. We choose for $a$ a representative of $I$; this can be done if $I$ is not empty, otherwise, the intersection is defined to be the empty set.

Given a set I and a mapping X defined on sets, we define unionf I $X$ and intersectionf $I$ $X$ as the union and intersection of the functions defined on the type I by composing $X$ with $\mathscr{R}$. If $G$ is a graph, we define unionb $G$ and intersection $G$ as unionf $I X$ and intersectionf $I$ $X$, where $I$ is the domain and $X$ the evaluation function. It will be shown that intersection $X$, where X is a set of sets, is the intersection of the identity function on X . Similarly, union $X$ is the union of the identity function.

```
Record Uintegral (In :Bset)(f :In->Bset) : Bset := {UI_z : In; UI_elt : f UI_z}.
Definition uniont (In:Bset)(f : In->Bset) :=
 IM (fun i : Uintegral f => Ro (UI_elt i)).
Definition intersectiont (In:Bset)(f : In->Bset):=
 by_cases(fun H:nonemptyT In =>
 Zo (f (chooseT_any H)) (fun y => forall z : In, inc y (f z)))
 (fun _:~ nonemptyT In => emptyset).
Definition unionf (x:Bset)(f: Bset->Bset) := uniont (fun a:x => f (Ro a)).
Definition unionb (g:Bset) := unionf (domain g)(fun a=> V a g).
Definition intersectionf (x:Bset)(f: Bset->Bset):= intersectiont(fun a:x => f (Ro a)).
Definition intersectionb (g:Bset) := intersectionf (domain g) (fun a=> V a g).
```

We have now a bunch of lemmas that show how to use these definitions.

```
Lemma uniont_rw: forall Inc(f:In->Bset) \(x\),
 inc \(x\) (uniont \(f\)) \(=\) exists \(z\), inc \(x(f z)\).
Lemma unionf_rw: forall x i f,
 inc \(x\) (unionf i f) \(=\) exists \(y\), inc \(y\) i \& inc \(x\) (f \(y\)).
Lemma unionb_rw:forall x f,
 inc \(x\) (unionb f) = exists \(y\), inc \(y\) (domain f) \& inc \(x(V y f)\).
Lemma uniont_inc : forall In (f : In->Bset) y x,
 inc \(x\) (f \(y\)) -> inc \(x\) (uniont f).
Lemma uniont_exists : forall In (f : In->Bset) x,
 inc \(x\) (uniont f) -> exists \(y: I n\), inc \(x\) (f \(y\)).
Lemma unionf_inc:forall x y i f,
 inc \(y\) i \(->\) inc \(x\) (f \(y\)) \(->\) inc \(x\) (unionf i f).
Lemma unionf_exists:forall x i f,
 inc \(x\) (unionf if) \(\rightarrow\) exists \(y\), inc \(y\) i \& inc \(x\) (f y).
Lemma unionb_inc:forall x y f,
 inc \(y\) (domain f) -> inc \(x\) (V y f) \(->\) inc \(x\) (unionb f).
Lemma unionb_exists:forall x f,
 inc \(x\) (unionb f) -> exists \(y\), inc \(y\) (domain f) \& inc \(x(V y f)\).
```

Same lemmas for the intersection. All these lemmas are obvious from the definitions and the link between $\mathscr{R}$ and $\mathscr{B}$.

```
Lemma intersectiont_rw: forall In (f:In-> Bset) x,
 nonemptyT In ->
 inc \(x\) (intersectiont \(f\)) \(=(\) forall \(j\), inc \(x(f i)\)).
Lemma intersectionf_rw : forall In f x,
 nonempty In ->
 inc \(x\) (intersectionf \(\operatorname{In} f\)) \(=(\) forall \(j\), inc \(j\) In \(\rightarrow\) inc \(x(f j)\)).
Lemma intersectionb_rw : forall g x,
 nonempty g ->
 inc \(x\) (intersectionb g) = (forall i inc i (domain g) -> inc x (V i g)).
Lemma intersectiont_inc : forall In (f:In-> Bset) \(x\),
 nonemptyT In ->
 (forall \(j\), inc \(x(f j)\)) \(->\) inc \(x\) (intersectiont f).
Lemma intersectiont_forall : forall In (f:In-> Bset) \(x\) j,
 inc \(x\) (intersectiont f) -> inc \(x\) (\(f\)).
Lemma intersectionf_inc :forall In \(f x\),
 nonempty In ->
 (forall \(j\), inc \(j\) In \(->\) inc \(x(f j)\)) \(->\) inc \(x\) (intersectionf \(\operatorname{In} f\)).
Lemma intersectionf_forall :forall In f x \(j\),
 inc \(x\) (intersectionf \(\operatorname{In} f\)) -> inc \(j\) In \(->\) inc \(x(f)\)).
Lemma intersectionb_inc : forall g x,
 nonempty g ->
 (forall i, inc i (domain g) -> inc x (V i g)) -> inc x (intersectionb g).
Lemma intersectionb_forall : forall g x i,
 inc \(x\) (intersectionb g) -> inc i (domain g) -> inc x (V i g).
```

These lemmas are trivial consequences of the previous ones. They explain when two unions or intersections are equal.

```
Lemma uniont_extensionality: forall In (f: In-> Bset) (f':In->Bset),
 (forall i, f i = f' i) -> uniont f = uniont f'.
Lemma unionf_extensionality: forall sf f f',
 (forall i, inc i sf -> f i = f' i) -> unionf sf f = unionf sf f'.
Lemma unionb_extensionality: forall f f',
 f = f' -> unionb f = unionb f'.
Lemma intersectiont_extensionality:
 forall In(f:In-> Bset) (f':In-> Bset), nonemptyT In ->
 (forall i, f i = f' i) -> (intersectiont f) = (intersectiont f').
Lemma intersectionf_extensionality: forall In f f, nonempty In ->
 (forall i, inc i In -> f i = f' i) ->
 intersectionf In f = intersectionf In f'.
Lemma intersectionb_extensionality: forall g g',
 g = g' -> intersectionb g = intersectionb g'.
```

These trivial lemmas say that for all $j, \mathrm{X}_{j} \subset \cup \mathrm{X}_{i}$ and $\cap \mathrm{X}_{i} \subset \mathrm{X}_{j}$. On the other hand, if for all $i$, we have $\mathrm{A} \subset \mathrm{X}_{i} \subset \mathrm{~B}$, then $\mathrm{A} \subset \bigcup \mathrm{X}_{i} \subset \mathrm{~B}$ and $\mathrm{A} \subset \cap \mathrm{X}_{i} \subset \mathrm{~B}$. Note that for two of these inclusions, the index set must be nonempty.

```
Lemma uniont_sub: forall In (f: In-> Bset) i,
 sub (f i) (uniont f).
Lemma intersectiont_sub: forall In (f: In-> Bset) i,
 nonemptyT In -> sub (intersectiont f) (f i).
Lemma sub_uniont: forall In (f: In-> Bset) x,
```

```
 (forall i, sub (f i) x) -> sub (uniont f) x.
Lemma sub_intersectiont: forall In (f: In-> Bset) x,
 nonemptyT In -> (forall i, sub x (f i)) -> sub x (intersectiont f).
Lemma intersectiont_sub2: forall In (f: In-> Bset) x,
 nonemptyT In -> (forall i, sub (f i) x) -> sub (intersectiont f) x.
Lemma sub_uniont2: forall In (f: In-> Bset) x,
 nonemptyT In -> (forall i, sub x (f i)) -> sub x (uniont f).
```

If the index set is empty, so is the union.

```
Lemma empty_uniont1: forall (In:E) (f: In-> E),
 nonempty (uniont f) -> nonemptyT In.
Lemma empty_unionf1: forall sf f,
 nonempty (unionf sf f) -> nonempty sf.
Lemma empty_unionf: forall sf f,
 sf = emptyset -> unionf sf f = emptyset.
```

Bourbaki says in Proposition 1 [2, p. 92]: Let $f$ be a function from K onto $\mathrm{I}, \mathrm{X}_{\mathrm{t}}$ a family of sets indexed by I. Then the union and the intersection of the family is the union and the intersection of $\mathrm{X}_{f(\mathrm{~K})}$ over K.

```
Theorem uniont_rewrite: forall In K (f: K->In) (g:In ->Bset),
 surjectiveC f ->
 uniont g = uniont (fun k:K => g(f k)).
Theorem intersectiont_rewrite: forall In K (f: K->In) (g:In ->Bset)
 (Ha:nonemptyT In) (Hb:surjectiveC f),
 intersectiont g Ha =
 intersectiont (fun k:K => g(f k))(nonempty_sourceT Ha Hb).
```

The Bourbaki statement about union is unionb_rewritel. In the second lemma we just assume that $f$ is a functional graph. Note that we dropped the requirement that $g$ must be a functional graph (we use gcompose instead).

```
Lemma unionb_rewrite1: forall f g,
 is_function f -> fgraph g -> range (graph f) = domain g ->
 unionb g = unionb (fcompose g (graph f)).
Lemma unionb_rewrite: forall f g,
 fgraph f -> range f = domain g ->
 unionb g = unionb (gcompose g f).
Lemma intersectionb_rewrite: forall f g,
 fgraph f -> range f = domain g -> nonempty g ->
 intersectionb g = intersectionb (gcompose g f).
```

Let $f$ be a constant function and $x \in \mathrm{I}$. Then the intersection and union of $f$ on I is $f(x)$. This is trivial to show. But we shall follow Bourbaki: we first consider the case where I is a singleton. Then we shall prove that a constant function $h$ can be written as $h=g \circ f$ where the image of $f$ is a singleton, hence $f$ is surjective, and the union (or intersection) of $h$ is that of $g$. The conclusion is then obvious, since the source of $g$ is a singleton.

```
Lemma uniont_constant_alt: forall In (f:In ->Bset) (x:In),
 is_constant_functionC f -> uniont f = f x.
Lemma intersectiont_constant_alt: forall In (f:In ->Bset) (x:In),
 is_constant_functionC f -> intersectiont f = f x.
```

```
Lemma uniont_singleton:forall a (x:a) (f: singleton (Ro x) -> Bset),
 uniont \(f=f\) (Bo (singleton_inc (Ro \(x\))).).
Lemma intersectiont_singleton:forall a (x:a) (f: singleton (Ro x) -> Bset),
 intersectiont \(f=f\) (Bo (singleton_inc (Ro \(x\)))).
Lemma unionf_singleton:forall f x,
 unionf (singleton \(x\)) \(f=f x\).
Lemma intersectionf_singleton:forall f x,
 intersectionf (singleton \(x\)) \(f=f x\).
Lemma constant_function_pr: forall a (h:a->Bset) (x:a),
 is_constant_functionC h ->
 exists f: a->singleton (Ro x), exists g:singleton (Ro x)->Bset,
 (forall \(u: a, h u=g(f u)) \&(g(B o(\) singleton_inc (Ro \(x)))=h \quad x)\).
Lemma uniont_constant: forall In (f:In ->Bset) (x:In),
 is_constant_functionC f \(->\) uniont \(f=f\) x.
Lemma intersectiont_constant: forall In (f:In ->Bset) (x:In),
 is_constant_functionC f \(\rightarrow\) intersectiont \(f=f \mathrm{x}\).
```

I Link between these unions and intersections and the old ones: the union of a set of sets X is the union of the identity function on X . If $f$ is a functional graph, its union is also the union of the range.

A trivial consequence concerns union and intersection of a singleton.

```
Lemma union_prop: forall x, union x = unionf x (fun u => u).
Lemma intersection_prop: forall x, nonempty x ->
 intersection x = intersectionf x (fun u => u).
Lemma unionb_alt: forall f, fgraph f -> unionb f = union (range f).
Lemma unionb_identity: forall x, unionb (identity x) = union x.
Lemma union_singleton: forall x, union (singleton x) = x.
Lemma intersection_singleton: forall x, intersection (singleton x) = x.
```


### 5.2 Properties of union and intersection

We first show that the union and intersection of F over I are monotone with respect to the function and index.

```
Lemma union_monotone: forall In (f g:In->Bset),
 (forall i, sub (f i) (g i)) -> sub (uniont f) (uniont g).
Lemma intersection_monotone: forall In (f g:In->Bset), nonemptyT In ->
 (forall i, sub (f i) (g i)) -> sub (intersectiont f) (intersectiont g).
Lemma union_prolongates: forall a b f,
 sub a b -> sub (unionf a f) (unionf b f).
Lemma intersection_prolongates: forall a b f,
 sub a b -> nonempty a >> sub (intersectionf b f) (intersectionf a f).
```

Proposition 2 [2] p. 93] states associativity of union and intersection. It says:

$$
\bigcup_{\mathrm{L} \in \mathrm{I}} \mathrm{X}_{\mathrm{I}}=\bigcup_{\lambda \in \mathrm{L}}\left(\bigcup_{\left\llcorner\in \mathrm{J}_{\lambda}\right.} \mathrm{X}_{\mathrm{L}}\right), \quad \bigcap_{\mathrm{L} \in \mathrm{I}} \mathrm{X}_{\mathrm{I}}=\bigcap_{\lambda \in \mathrm{L}}\left(\bigcap_{\mathrm{L} \in \mathrm{~J}_{\lambda}} \mathrm{X}_{\mathrm{t}}\right) .
$$

```
Theorem union_assoc: forall sf sg f g,
```

    sf = unionf sg g ->
    ```
 unionf sf f = unionf sg (fun l => unionf (g l) f).
Theorem intersection_assoc: forall sf sg f g,
 nonempty sg -> (forall i, inc i sg -> nonempty (g i)) ->
 sf = unionf sg g ->
 intersectionf sf f = intersectionf sg (fun l => intersectionf (g l) f).
```

Proposition 3 [2, p. 94] says that if $\Gamma$ is a correspondence, $\Gamma\left\langle\cup X_{t}\right\rangle=\bigcup \Gamma\left\langle X_{\mathrm{t}}\right\rangle$ and $\Gamma\left\langle\cap \mathrm{X}_{\mathrm{t}}\right\rangle \subset$ $\cap \Gamma\left\langle\mathrm{X}_{\mathrm{l}}\right\rangle$. Proposition 4 [2, p. 95] says that we have equality if $\Gamma$ is the inverse of a function, and, as a consequence, if $\Gamma$ is an injective function. In fact, we use the canonical decomposition $\Gamma=i \circ g$, where $g$ is the restriction of $\Gamma$ on its image (hence is bijective), and $i$ is the inclusion map from the image of $\Gamma$ to its target (see lemma canonical_decomposition1). Then $\Gamma\langle x\rangle=$ $g^{-1}\langle x\rangle$ for every set $x$.

```
Theorem image_of_union: forall In (f:In->Bset) g,
 is_correspondence g ->
 image_by_fun g (uniont f) =
 uniont (fun i => image_by_fun g (f i)).
Theorem image_of_intersection: forall In (f:In->Bset) g,
 is_correspondence g -> nonemptyT In->
 sub (image_by_fun g (intersectiont f))
 (intersectiont (fun i => image_by_fun g (f i))). (* 18 *)
Theorem inv_image_of_intersection: forall In (f:In->Bset) g,
 is_function g -> nonemptyT In ->
 (inv_image_by_fun g (intersectiont f)) =
 (intersectiont (fun i => inv_image_by_fun g (f i))).
Lemma inj_image_of_intersection: forall In (f:In->Bset) g, (* 28 *)
 injective g -> nonemptyT In ->
 (image_by_fun g (intersectiont f))
 = (intersectiont (fun i => image_by_fun g (f i))).
```


### 5.3 Complements of unions and intersections

Assume $X_{t} \subset X, Y_{1}=X \backslash X_{1}$. Then the intersection (resp. union) of the $X_{t}$ is the union (resp. intersection) of the $Y_{1}$ as subsets of $X$. This is Proposition 5 [2, p. 96].

```
Theorem complementary_union: forall In (f:In-> Bset) x,
 nonemptyT In -> (forall i, sub (f i) x) ->
 complement \(x\) (uniont f) = intersectiont (fun i=> complement \(x\) (f i)).
Theorem complementary_intersection: forall In (f:In-> Bset) x,
 nonemptyT In \(->\) (forall i, sub (fi) x) ->
 complement \(x\) (intersectiont f) = uniont (fun i=> complement \(x\) (f i)).
Lemma complementary_union1: forall sf f x,
 nonempty sf -> (forall i, inc i sf -> sub (f i) x) ->
 complement \(x\) (unionf \(s f\)) \(=\) intersectionf \(s f\) (fun \(i=>\) complement \(x\) (\(f i)\)).
Lemma complementary_intersection1: forall sf \(f\) x,
 nonempty sf -> (forall i, inc i sf -> sub (f i) x) ->
 complement \(x\) (intersectionf sf f) = unionf sf (fun i=> complement \(x\) (\(f\) i)).
```


### 5.4 Union and intersection of two sets

Bourbaki defines the union and intersection of two sets $A$ and $B$ as the union and intersection of the identity function on the doubleton $\{\mathrm{A}, \mathrm{B}\}$. This was defined as union 2 and intersection2. All results shown here are easy.

```
Lemma union_of_twosets_aux: forall x y f,
 unionf(doubleton x y) f = union2 (f x) (f y).
Lemma intersection_of_twosets_aux: forall x y f,
 intersectionf(doubleton x y) f = intersection2 (f x) (f y).
Lemma union_of_twosets: forall x y,
 unionf(doubleton x y)(fun w => w) = union2 x y.
Lemma intersection_of_twosets: forall x y,
 intersectionf(doubleton x y)(fun w => w) = intersection2 x y.
Lemma union_doubleton: forall x y,
 union2 (singleton x)(singleton y) = doubleton x y.
```

We have:

$$
\{x\} \cup\{y\}=\{x, y\}, \quad x \cup x=x, \quad x \cap x=x, \quad x \cap y=y \cap x, \quad x \cup y=y \cup x .
$$

Lemma union2idem: forall x , union2 $\mathrm{x} x=\mathrm{x}$.
Lemma intersection2idem: forall x , intersection2 $\mathrm{x} \mathrm{x}=\mathrm{x}$.
Lemma union2comm: forall $\mathrm{x} y$, union2 $\mathrm{x} y=u n i o n 2 \mathrm{y} \mathrm{x}$.
Lemma intersection2comm: forall x y , intersection2 $\mathrm{x} \mathrm{y}=$ intersection2 y x.

We have:

$$
\begin{aligned}
x \cup(y \cup z)=(x \cup y) \cup z, & x \cap(y \cap z)=(x \cap y) \cap z, \\
x \cup(y \cap z)=(x \cup y) \cap(x \cup z), & x \cap(y \cup z)=(x \cap y) \cup(x \cap z) .
\end{aligned}
$$

Lemma union2assoc: forall x y z, union2 x (union2 $\mathrm{y} z$ ) = union2 (union2 $\mathrm{x} y$ ) z .
Lemma intersection2assoc: forall x y z, intersection2 $x$ (intersection2 $y ~ z) ~=~ i n t e r s e c t i o n 2 ~(i n t e r s e c t i o n 2 ~ x ~ y) ~ z . ~$
Lemma intersection_union_distrib1: forall x y z, union2 $x$ (intersection2 $y z$ ) = intersection2 (union2 $x$ y) (union2 $x z$ ).
Lemma intersection_union_distrib2: forall x y z, intersection2 x (union2 $\mathrm{y} z$ ) = union2 (intersection2 $\mathrm{x} y$ ) (intersection2 $\mathrm{x} z$ ).

We have $x \subset y$ if and only if $x \cup y=y$. We have $x \subset y$ if and only if $x \cap y=x$. We have:

$$
z \backslash(x \cup y)=(z \backslash x) \cap(z \backslash y), \quad z \backslash(x \cap y)=(z \backslash x) \cup(z \backslash y) .
$$

```
Lemma union2_sub: forall x y,
 sub \(\mathrm{x} y=\) (union2 \(\mathrm{x} y=\mathrm{y}\)).
Lemma intersection2_sub: forall x y,
 sub \(\mathrm{x} y=\) (intersection2 \(\mathrm{x} y=\mathrm{x}\)).
Lemma union2_comp: forall x y z,
 complement z (union2 x y) = intersection2 (complement z x) (complement zy).
Lemma intersection2_comp: forall x y z,
 sub x z -> sub y z ->
 complement \(z\) (intersection2 \(x y\)) = union2 (complement \(z x\)) (complement \(z y\)).
```

We have $x \cup(z \backslash x)=z$ and $x \cap(z \backslash x)=\varnothing$. If $g$ is a correspondence, we have $g\langle x \cup y\rangle=$ $g\langle x\rangle \cup g\langle y\rangle$ and $g\langle x \cap y\rangle \subset g\langle x\rangle \cap g\langle y\rangle$. Equality holds if $g$ is an injective function or $g=f^{-1}$ where $f$ is a function.

```
Lemma union2_complement: forall x z,
 sub x z -> union2 x (complement z x) = z.
Lemma intersection2_complement: forall x z,
 sub x z -> intersection2 x (complement z x) = emptyset.
Lemma image_of_union2: forall g x y,
 is_correspondence g ->
 image_by_fun g (union2 x y) = union2 (image_by_fun g x) (image_by_fun g y).
Lemma image_of_intersection2: forall g x y,
 is_correspondence g ->
 sub (image_by_fun g (intersection2 x y))
 (intersection2 (image_by_fun g x) (image_by_fun g y)).
Lemma inv_image_of_intersection2: forall g x y,
 is_function g ->
 inv_image_by_fun g (intersection2 x y) =
 intersection2 (inv_image_by_fun g x)(inv_image_by_fun g y).
Lemma inj_image_of_intersection2: forall g x y,
 injective g ->
 image_by_fun g (intersection2 x y)
 = intersection2 (image_by_fun g x)(image_by_fun g y).
```

If $f$ is a function from A into B , then we have $f^{-1}\langle\mathrm{~B} \backslash x\rangle=\mathrm{A} \backslash f^{-1}\langle x\rangle$ and $f\langle\mathrm{~A} \backslash x\rangle=\mathrm{B} \backslash f\langle x\rangle$ if $f$ is a injective with range B (Proposition 6, [2, p. 98]).

```
Lemma inv_image_of_comp: forall f x,
 is_function f -> sub x (target f) ->
 inv_image_by_fun f (complement (target f) x) =
 complement (inv_image_by_fun f (target f))(inv_image_by_fun f x).
Lemma inj_image_of_comp: forall f x,
 injective f -> sub x (source f) ->
 image_by_fun f (complement (source f) x) =
 complement (image_by_fun f (source f))(image_by_fun f x).
```


### 5.5 Coverings

A covering of a set $X$ is a family $X_{t}$ whose union contains $X$. We give two definitions, in the first case, the family is defined by a function, and in the second one, by the graph of a function. We show that these definitions agree.

```
Definition covering f x := fgraph f & sub x (unionb f).
Definition covering_f sf f x := sub x (unionf sf f).
Definition covering_s f x := sub x (union f).
Lemma covering_pr: forall f x,
 fgraph f -> covering f x = covering_s (range f) x.
Lemma covering_f_pr: forall sf f x,
 covering_f sf f x = covering_s (range (L sf f)) x.
```

We say that a covering $\left(\mathrm{Y}_{\kappa}\right)_{\kappa \in K}$ refines $\left(\mathrm{X}_{\mathrm{t}}\right)_{\iota \in \mathrm{I}}$ if for all $\kappa$ there is t such that $\mathrm{Y}_{\mathrm{K}} \subset \mathrm{X}_{\mathrm{t}}$. This definition will be extended to set coverings: the definition coarser_c y $y$ ' says that the set of sets $y^{\prime}$ refines $y$. In other words, for all $a \in y^{\prime}$ there is $b \in y$ such that $a \subset b$. This can be also
be read as: $y^{\prime}$ is finer than $y$ as as $y$ is coarser then $y^{\prime}$. We will show that this is an order on the set of all partitions; we show here transitivity.

```
Definition coarser_covering sf f sg g :=
 forall j, inc j sg -> exists i, inc i sf & sub (g j) (f i).
Definition coarser_c y y' :=
 forall a, inc a y' -> exists b, inc b y & sub a b.
Lemma coarser_same: forall sf f sg g ,
 coarser_covering sf f sg g = coarser_c (range (L sf f))(range (L sg g)).
Lemma coarser_transitive : forall y y' y'',
 coarser_c y y' -> coarser_c y' y', -> coarser_c y y''.
Lemma sub_covering: forall Ia Ib f x,
 covering_f Ia f x -> covering_f Ib f x -> sub Ib Ia ->
 coarser_covering Ia f Ib f.
```

Given two families $X_{1}$ and $Y_{K}$, we can consider the family $X_{\iota} \cap Y_{K}$. Given two sets of sets $X$ and $Y$, we can consider the set of elements of the form $a \cap b$ for $a \in X$ and $b \in Y$. Hence, given two coverings $X_{1}$ and $Y_{K}$ of $Z$ we find a covering $i\left(X_{\iota}, Y_{K}\right)$ of $Z$ that refines $X_{1}$ and $Y_{K}$, this is the sup for the coarser ordering (ordering are defined in the second part of this report).

```
Definition intersection_covering f g :=
 fun \(z=>\) intersection2 (f (P z)) (\((\mathrm{Q} \quad \mathrm{z})\)).
Definition intersection_covering2 x y:=
 range(L (product x y) (intersection_covering (fun w => w) (fun w => w))).
Lemma intersection_covering2_pr: forall x y z,
 inc \(z\) (intersection_covering2 \(x\) y) =
 exists \(a\), exists \(b\), inc \(a \operatorname{x} \&\) inc \(b y \& z=i n t e r s e c t i o n 2 a b\).
Lemma product_is_covering: forall sf f sg g x,
 covering_f sf f x -> covering_f sg g x ->
 covering_f (product sf sg) (intersection_covering f g) x.
Lemma intersection_covering_coarser1: forall sf f sg g x,
 covering_f sf f x -> covering_f sg g x ->
 coarser_covering sf \(f\) (product sf sg) (intersection_covering f g).
Lemma intersection_covering_coarser2: forall sf f sg g x,
 covering_f sf f x -> covering_f sg g x ->
 coarser_covering sg (product sf sg) (intersection_covering f g).
Lemma intersection_covering_coarser3: forall sf f sg g sh h x,
 covering_f sf f x -> covering_f sg g x -> covering_f sh h x ->
 coarser_covering sf f sh h ->
 coarser_covering sg g sh h ->
 coarser_covering (product sf sg) (intersection_covering f g) sh h.
```

We show here the equivalent properties for sets of sets. Essentially, we prove that $i(x, y)$ is the least upper bound for the order defined by coarser_c (which is defined on the set of partitions, as will be seen later).

```
Lemma product_is_covering2: forall u v x,
 covering_s u x -> covering_s v x ->
 covering_s (intersection_covering2 u v) x.
Lemma intersection_cov_coarser1: forall f g x,
 covering_s f x -> covering_s g x ->
```

```
 coarser_c f (intersection_covering2 f g).
Lemma intersection_cov_coarser2: forall f g x,
 covering_s f x -> covering_s g x ->
 coarser_c g (intersection_covering2 f g).
Lemma intersection_cov_coarser3: forall f g h x,
 covering_s f x -> covering_s g x -> covering_s h x ->
 coarser_c f h -> coarser_c g h ->
 coarser_c (intersection_covering2 f g) h.
```

If $X_{1}$ is a covering and $g$ a function, then the family of sets $g^{-1}\left\langle X_{t}\right\rangle$ is a covering; if $g$ is surjective, then $g\left\langle\mathrm{X}_{\mathrm{t}}\right\rangle$ is a covering.

```
Lemma image_of_covering: forall sf f g,
 surjective g -> covering_f sf f (source g)
 -> covering_f sf (fun w => image_by_fun g (f w)) (target g).
Lemma inv_image_of_covering: forall sf f g,
 is_function g -> covering_f sf f (target g)
 -> covering_f sf (fun w => inv_image_by_fun g (f w)) (source g).
Lemma product_of_covering: forall sf f sg g x y,
 covering_f sf f x -> covering_f sg g y ->
 covering_f (product sf sg) (fun z => product (f (P z)) (g (Q z)))
 (product x y).
```

Proposition 7 [2, p. 99] says that if $X_{1}$ is a covering of $E$, then two functions that agree on each $X_{1}$ agree on $E$, and a function defined on each $X_{t}$ can be extended to $E$ if the obvious compatibility conditions hold.

We modified the theorem, by adding the condition that the graph is the union of the graphs, and the range is the union of the ranges. Initial size of the proof was 42 lines; it is now 35 (without the assumption on the graph, uniqueness is not trivial).

```
Definition function_prop f s t:=
 is_function f & source f = s & target f = t.
Definition function_prop_sub f s t:=
 is_function f & source f = s & sub (target f) t.
Lemma agrees_on_covering: forall sf f x g g',
 covering_f sf f x -> is_function g -> is_function g' ->
 source g = x -> source g' = x ->
 (forall i, inc i sf -> agrees_on (intersection2 x (f i)) g g') ->
 agrees_on x g g'.
Lemma prolongation_covering1: forall sf f t h,
 (forall i, inc i sf -> function_prop (h i)(f i) t) ->
 (forall i j, inc i sf -> inc j sf ->
 agrees_on (intersection2 (f i) (f j)) (h i) (h j)) ->
 exists g, function_prop g (unionf sf f) t &
 graph g = (unionf sf (fun i => (graph (h i)))) &
 range(graph g) = (unionf sf (fun i => (range (graph (h i))))) &
 (forall i, inc i sf -> agrees_on (f i) g (h i)).
Lemma prolongation_covering: forall sf f t h,
 (forall i, inc i sf -> function_prop (h i) (f i) t) ->
 (forall i j, inc i sf -> inc j sf ->
 agrees_on (intersection2 (f i) (f j)) (h i) (h j)) ->
 exists_unique (fun g => function_prop g (unionf sf f) t &
 (forall i, inc i sf -> agrees_on (f i) g (h i))).
```


### 5.6 Partitions

Definition 7 in Bourbaki [2, p. 100] is: a partition of a set E is a family of non-empty mutually disjoints subsets of E which covers E ; the phrase non-empty is missing in the French version. Here partition_fam is a family $\mathrm{X}_{\mathrm{I}}$ of mutually disjoint sets, whose union is E ; partition_s is a set of sets with this property, and a partition is a set of non-empty sets.

```
Definition disjoint x y := intersection2 x y = emptyset.
Definition mutually_disjoint f :=
 (forall i j, inc i (domain f) -> inc j (domain f) ->
 i = j \/ (disjoint (V i f) (V j f))).
Definition partition_s y x:=
 (union y = x) &
 (forall a b, inc a y >> inc b y >> a = b \/ disjoint a b).
Definition partition y x:=
 (union y = x) &
 (forall a, inc a y >> nonempty a) &
 (forall a b, inc a y >> inc b y >> a = b \/ disjoint a b).
Definition partition_fam f x:=
 fgraph f & mutually_disjoint f & unionb f = x.
```

We list below some properties of partitions. The important property if that if $\left(\mathrm{X}_{\mathrm{l}}\right)$ is a partition of $E$, each element of $E$ is in a unique $X_{1}$.

```
Lemma partitionset_pr: forall y x,
 partition y x -> partition_s y x.
Lemma partition_same: forall y x,
 partition_s y x -> partition_fam (identity y) x.
Lemma partition_same2: forall y x,
 partition_fam y x -> partition_s (range y) x.
Lemma partitions_is_covering: forall y x,
 partition_s y x -> covering_s y x.
Lemma partition_fam_is_covering: forall y x,
 partition_fam y x -> covering y x.
Lemma partition_inc_exists: forall f x y,
 partition_fam f x -> inc y x -> exists i, (inc i (domain f) & inc y (V i f)).
Lemma partition_inc_unique: forall f x i j y,
 partition_fam f x -> inc i (domain f) -> inc y (V i f) ->
 inc j (domain f) -> inc y (V j f) -> i = j.
```

We construct here a function that maps $a$ to $x$ and $b$ to $y$. This function is well-defined if $a=x$ and $b=y$, since it is the identity on the doubleton $\{x, y\}$. It is also well defined if $a$ and $b$ are distinct elements. We will use the fact that two_points is a set with exactly two elements $T P a$ and $T P b$.

```
Definition variant a x y := (fun z:Bset => Yo (z = a) x y).
Definition Lvariant a b x y := L (doubleton a b) (variant a x y).
Definition Lvariantc f g:= Lvariant TPa TPb f g.
Definition partition_with_complement x j :=
 Lvariantc j (complement x j).
Lemma variant_if_rw: forall a x y z,
 z = a -> variant a x y z = x.
Lemma variant_if_not_rw: forall a x y z,
```

```
 z <> a -> variant a x y z = y.
Lemma V_variant_a : forall a b x y,
 V a (Lvariant a b x y) = x.
Lemma V_variant_b : forall a b x y,
 b <> a -> V b (Lvariant a b x y) = y.
Lemma axioms_variant : forall a b x y,
 fgraph (Lvariant a b x y).
Lemma domain_variant : forall a b x y,
 domain (Lvariant a b x y) = doubleton a b .
Lemma axioms_Lvariantc : forall x y,
 fgraph (Lvariantc x y).
Lemma domain_Lvariantc: forall f g,
 domain (Lvariantc f g) = two_points.
Lemma nonempty_domain_Lvariantc: forall f g,
 nonempty (domain (Lvariantc f g)).
Lemma V_variant_ca : forall x y, V TPa (Lvariantc x y) = x.
Lemma V_variant_cb : forall x y, V TPb (Lvariantc x y) = y.
```

If $X$ is a subset of $E$ then $X$ and $E \backslash X$ form a partition of $X$ (it is a non-empty partition only if X is neither empty nor E ).

```
Lemma disjoint_complement : forall x y,
 disjoint y (complement x y).
Lemma disjoint_symmetric : forall x y,
 disjoint x y -> disjoint y x.
Lemma is_partition_with_complement: forall x j,
 sub j x -> partition_fam (partition_with_complement x j) x.
```

The set of non-empty partitions on $X$ can be ordered by the finer ordering on coverings; we give here the smallest and largest element of the set. If $X_{l}$ is a partition family, then the mapping $\imath \mapsto X_{\iota}$ is injective (we use the fact that $X_{l}$ is not empty). Inverse images of disjoint sets by a function are disjoint.

```
Definition largest_partition x := range(L x (fun z => singleton z)).
Definition smallest_partition x := (singleton x).
Lemma partition_smallest: forall x,
 nonempty x -> partition_set (smallest_partition x) x.
Lemma largest_partition_pr: forall x z,
 inc z (largest_partition x) = exists w, inc w x & singleton w = z.
Lemma partition_largest: forall x, partition_set (largest_partition x) x.
Definition injective_graph f:=
 fgraph f &
 (forall x y, inc x (domain f) -> inc y (domain f) ->
 V x f = V y f -> x = y).
Lemma injective_partition: forall f x,
 partition_fam f x -> (forall i, inc i (domain f) -> nonempty (V i f))
 -> injective_graph f.
Lemma partition_fam_partition: forall f x,
 partition_fam f x -> (forall i, inc i (domain f) -> nonempty (V i f))
 -> partition(range f) x.
Lemma inv_image_disjoint : forall g x y,
 is_function g -> disjoint x y ->
 disjoint (inv_image_by_fun g x)(inv_image_by_fun g y).
```

Proposition 8 [2, p. 100] is an immediate consequence of Proposition 7. If $\left(X_{t}\right)_{t}$ is a partition of X and $f_{1} \in \mathscr{F}\left(\mathrm{X}_{\mathrm{l}}, \mathrm{T}\right)$, then there exists a unique $f \in \mathscr{F}(\mathrm{X}, \mathrm{T})$ that extends every $f_{\mathrm{l}}$. The assumption is that $f_{1}$ is a function defined on $\mathrm{X}_{\mathrm{t}}$, with target T . We give a variant (without uniqueness) where the target of $f_{\mathrm{l}}$ is a subset of T . The set of function $\mathscr{F}$ will be defined later.

```
Theorem prolongation_partition: forall f x t h,
 partition_fam f x ->
 (forall i, inc i (domain f) -> function_prop (h i) (V i f) t) ->
 exists_unique (fun g => function_prop g x t &
 (forall i, inc i (domain f) -> agrees_on (V i f) g (h i))).
Theorem prolongation_partition: forall f x t h,
 partition_fam f x ->
 (forall i, inc i (domain f) -> is_function (h i)) ->
 (forall i, inc i (domain f) -> target (h i) = t) ->
 (forall i, inc i (domain f) -> source (h i) = (V i f)) ->
 exists_unique (fun g => is_function g & source g = x &
 target g = t & (forall i, inc i (domain f) -> agrees_on (V i f) g (h i))).
```


### 5.7 Sum of a family of sets

Proposition 9 [2] p. 100] says that, for any family $X_{t}$, there exists a family $X_{l}^{\prime}$ of sets equipotent to $X_{t}$, that are mutually disjoint, and a set $X$ that is the union of these sets. After that we define the sum of a family as the union of the family $X_{1} \times\{t\}$. These sets form a partition of the sum. Proposition 10 [2, p. 101] says that that if $X_{1}$ is a family with union $A$ and sum $S$, there is a bijection between $A$ and $S$ if the family is disjoint. A comment says that there always exists a surjection.

```
Theorem disjoint_union_lemma : forall f,
 fgraph f -> exists g, exists x,
 fgraph g & x = unionb g &
 (forall i, inc i (domain f) -> equipotent (V i f) (V i g))
 & mutually_disjoint g. (* 53 *)
Definition disjoint_union_fam f :=
 (L (domain f)(fun i => product (V i f) (singleton i))).
Definition disjoint_union f :=
 unionb (disjoint_union_fam f).
Lemma disjoint_union_disjoint:
 forall f, fgraph f ->
 mutually_disjoint(disjoint_union_fam f).
Lemma partion_union_disjoint: forall f, fgraph f ->
 partition_fam (disjoint_union_fam f) (disjoint_union f).
Theorem disjoint_union_pr: forall f,
 fgraph f -> exists x,
 source x = disjoint_union f &
 target x = unionb f &
 surjective x &
 (mutually_disjoint f -> bijective x). (* 43 *)
```


## Chapter 6

## Product of a family of sets

### 6.1 The axiom of the set of subsets

Bourbaki has an axiom (Axiom 4 in the English edition) that asserts the existence, for every set $X$, of the set of subsets of $X$. This is sometimes called the powerset of $X$, it is denoted by $\mathfrak{P}(\mathrm{X})$. C. Simpson has defined it in Section 2.8 . We state here two easy lemmas.

```
Lemma powerset_monotone: forall a b,
 sub a b -> sub (powerset a) (powerset b).
Lemma powerset_emptyset :
 powerset emptyset = singleton emptyset.
```

If $f$ is a correspondence from A to B , then $f\langle\mathrm{X}\rangle \subset \mathrm{B}$ whenever $\mathrm{X} \subset \mathrm{A}$. This gives a function from $\mathfrak{P}(A)$ to $\mathfrak{P}(B)$, called extension to sets of subsets. If we denote it by $\hat{f}$, then the extension of $f \circ g$ is $\hat{f} \circ \hat{g}$. The extension of the identity is the identity. The extension of an inverse is an inverse of the extension; this can be more formally restated in Proposition 1 [2, p. 101] as: if $f$ is surjective (resp. injective), then its restriction to the set of sets is surjective (resp. injective).

```
Definition extension_to_parts f :=
 BL(image_by_fun f) (powerset (source f)) (powerset (target f)).
Lemma source_etp: forall f,
 source (extension_to_parts f) = powerset(source f).
Lemma target_etp: forall f,
 target (extension_to_parts f) = powerset(target f).
Lemma axioms_etp: forall f, is_correspondence f ->
 transf_axioms (image_by_fun f) (powerset (source f))
 (powerset (target f)).
Lemma function_etp: forall f,
 is_correspondence f -> is_function (extension_to_parts f).
Lemma W_etp: forall f x,
 is_correspondence f -> sub x (source f)
 -> W x (extension_to_parts f) = image_by_fun f x.
Lemma composable_etp: forall f g,
 composableC g f ->
 composable (extension_to_parts g) (extension_to_parts f).
Lemma compose_etp: forall f g,
 composableC g f ->
 compose (extension_to_parts g) (extension_to_parts f)
```

```
 = extension_to_parts (compose g f).
Lemma identity_etp: forall x,
 extension_to_parts (identity_fun x) = identity_fun (powerset x).
Lemma composable_for_function: forall f g, composable g f -> composableC g f.
Theorem surjective_etp: forall f,
 surjective f -> surjective (extension_to_parts f).
Theorem injective_etp: forall f,
 injective f -> injective (extension_to_parts f).
```


### 6.2 Set of mappings of one set into another

The set of all graphs of functions from $E$ to $F$ is denoted by $F^{E}$ : this is a subset of the powerset of $E \times F$. The set of all functions, namely the set of triples ( $G, E, F$ ) where $G \in F^{E}$, is denoted by $\mathscr{F}(\mathrm{E} ; \mathrm{F})$. In the previous chapter, we have defined the set of graphs of correspondences. There is no set containing all $f$ satisfying the property is_function $f$, so that we must write something like $g \in \mathscr{F}(\mathrm{E} ; \mathrm{F})$ if and only if there is a function $f$ associated to $g$. A bijection from E to itself is called a permutation of E .

```
Definition set_of_functions x y: Bset :=
 Zo (set_of_correspondences x y)(fun z => fgraph (P z)& x = domain (P z)).
Definition set_of_endomorphisms (x: Bset) := set_of_functions x x.
Definition set_of_permutations E :=
 Zo (set_of_functions E E)(fun z=> bijective(inv_corr_value z)).
Lemma inc_set_of_functions: forall f,
 is_function f -> inc(corr_value f) (set_of_functions (source f) (target f)).
Lemma set_of_functions_inc: forall x y z,
 inc z (set_of_functions x y) -> exists f,
 is_function f & source f = x & target f = y & corr_value f=z.
Lemma inc_set_of_functionsb: forall x y f,
 transf_axioms f x y -> inc (corr_value (BL f x y)) (set_of_functions x y)
Lemma sof_value_pr: forall x y z,
 inc z (set_of_functions x y) ->
 (is_function (sof_value x y z) &
 source (sof_value x y z) = x &
 target (sof_value x y z) = y &
 corr_value (sof_value x y z) =z). (* 14 *)
Lemma inc_set_of_functionsa: forall x y (f:x->y),
 inc (corr_value (acreate f)) (set_of_functions x y).
Lemma set_of_functionsC_inc: forall x y z,
 inc z (set_of_functions x y) -> exists f:x->y, corr_value (acreate f) =z.
Lemma set_of_permutationsC_inc: forall x z,
 inc z (set_of_permutations x) -> exists f:x->x,
 bijectiveC f & corr_value (acreate f) =z.
Lemma inc_set_of_permutationsC: forall x (f:x->x),
 bijectiveC f -> inc (corr_value (acreate f)) (set_of_permutations x).
```

We introduce now $\mathrm{E}^{\mathrm{F}}$. It is canonically isomorphic to $\mathscr{F}(\mathrm{E} ; \mathrm{F})$; this means that using one set or the other does not change the size of a proof.

```
Definition set_of_gfunctions x y: Bset :=
 Zo (powerset (product x y))(fun z => fgraph z & x = domain z).
```

```
Lemma inc_set_of_gfunctions: forall f,
 is_function f -> inc(graph f) (set_of_gfunctions (source f) (target f)).
Lemma inc_set_of_gfunctionsa: forall x y (f:x->y),
 inc (graph (acreate f)) (set_of_gfunctions x y).
Lemma set_of_gfunctions_inc: forall x y z,
 inc z (set_of_gfunctions x y) -> exists f,
 is_function f & source f = x & target f = y & graph f =z.
```

The set of partial functions from $x$ to $y$ will be used later on. It is the union of the sets of functions from $x^{\prime}$ to $y$, where $x^{\prime} \subset x$. We give two properties of this set.

```
Definition set_of_sub_functions (x y: Bset) :=
 unionf(powerset x)(fun z=> (set_of_functions z y)).
Lemma set_of_sub_functions_pr: forall x y z,
 inc z (set_of_sub_functions x y) =
 exists f, is_function f & sub (source f) x & target f = y & corr_value f=z.
Lemma set_of_sub_functions_pr1: forall x y z,
 let f := inv_corr_value z in
 inc z (set_of_sub_functions x y) =
 (is_function f & sub (source f) x & target f = y & corr_value f=z).
```

We list below some properties of exceptional functions. Remember that a small set has at most one element. We then show that there is an obvious bijection between $\mathscr{F}(\mathrm{E} ; \mathrm{F})$ and $\mathrm{F}^{\mathrm{E}}$.

```
Lemma empty_source_graph: forall f,
 is_function f -> source f = emptyset -> graph f = emptyset.
Lemma empty_target_graph: forall f,
 is_function f -> target \(f=\) emptyset \(->\) graph \(f=\) emptyset.
Lemma small_set_of_functions_source: forall x y,
 \(\mathrm{x}=\) emptyset \(->\) small_set (set_of_functions x y).
Lemma small_set_of_functions_target: forall x y,
 y = emptyset -> small_set (set_of_functions x y).
Lemma empty_set_of_functions_target: forall x y,
 (\(\mathrm{x}=\) emptyset \(\backslash /\) nonempty y) -> nonempty (set_of_functions \(\mathrm{x} y\)).
Lemma set_of_functions_extens: forall x y a b,
 inc a (set_of_functions x y) -> inc b (set_of_functions x y) ->
 P a = P b -> a = b.
Lemma bijective_graph_function: forall x y,
 bijective (BL P (set_of_functions x y) (set_of_gfunctions x y)). (* 15 *)
```


(compose3function)

Given $f \in \mathscr{F}(\mathrm{E} ; \mathrm{F})$, we construct $f^{\prime} \in \mathscr{F}\left(\mathrm{E}^{\prime} ; \mathrm{F}^{\prime}\right)$ via $f^{\prime}=v \circ f \circ u$, provided that $u$ is a function from $\mathrm{E}^{\prime}$ to E and $v$ is a function from F into $\mathrm{F}^{\prime}$. The trouble with this definition is that an element of $\mathscr{F}(\mathrm{E} ; \mathrm{F})$ is not a function, but a triple, and we do not have a definition of compositions for such objects. We first convert $f$ into a function, then take the triple associated to $f^{\prime}$. Proposition 2 [2, p. 102] says that if $u$ is surjective and $v$ is injective, then this mapping is injective; if $u$ is injective and $v$ is surjective, then this mapping is surjective. The situation is a bit more tricky when some sets are empty.

```
Definition compose3function u v :=
 BL (fun f => corr_value (compose (compose v
 (sof_value (target u) (source v) f)) u))
 (set_of_functions (target u) (source v))
 (set_of_functions (source u) (target v)).
Lemma axioms_c3f: forall u v,
 is_function u -> is_function v ->
 transf_axioms (fun f => corr_value (compose (compose v
 (sof_value (target u) (source v) f)) u))
 (set_of_functions (target u) (source v))
 (set_of_functions (source u) (target v)).
Lemma function_c3f: forall u v,
 is_function u -> is_function v -> is_function(compose3function u v).
Lemma source_c3f: forall u v,
 source(compose3function u v) = (set_of_functions (target u) (source v)).
Lemma target_c3f: forall u v,
 target(compose3function u v) = (set_of_functions (source u) (target v)).
Lemma W_c3f: forall u v f,
 is_function u -> is_function v ->
 is_function f -> source f = target u -> target f = source v ->
 W (corr_value f) (compose3function u v) = corr_value (compose (compose v f)u).
Theorem injective_c3f: forall u v,
 surjective u -> injective v -> injective (compose3function u v). (* 29 *)
Theorem surjective_c3f: forall u v,
 (nonempty (source u) \/ (nonempty (source v)) \/ (nonempty (target v))
 \/ target u = emptyset) ->
 injective u -> surjective v -> surjective (compose3function u v). (* 38 *)
Lemma bijective_c3f: forall u v,
 bijective u -> bijective v -> bijective (compose3function u v).
```

We now define the canonical bijections from $\mathscr{F}(\mathrm{B} \times \mathrm{C} ; \mathrm{A})$ into $\mathscr{F}(\mathrm{B} ; \mathscr{F}(\mathrm{C} ; \mathrm{A})$ or $\mathscr{F}(\mathrm{C} ; \mathscr{F}(\mathrm{B} ; \mathrm{A}))$. For any function $f(x, y)$ we can fix one of the variables to get a function.

```
Definition first_partial_fun f y:=
 BL(fun x => W (J x y) f) (domain (source f)) (target f).
Definition second_partial_fun f x:=
 BL(fun y => W (J x y) f) (range (source f)) (target f).
Definition first_partial_function f:=
 BL(fun y => corr_value (first_partial_fun f y)) (range (source f))
 (set_of_functions (domain (source f)) (target f)).
Definition second_partial_function f:=
 BL(fun x => corr_value(second_partial_fun f x)) (domain (source f))
 (set_of_functions (range (source f)) (target f)).
Definition first_partial_map b c a:=
 BL (fun f=> corr_value (first_partial_function (sof_value (product b c) a f)))
 (set_of_functions (product b c) a)
 (set_of_functions c (set_of_functions b a)).
Definition second_partial_map b c a:=
 BL (fun f=> corr_value(second_partial_function (sof_value (product b c) a f)))
 (set_of_functions (product b c) a)
 (set_of_functions b (set_of_functions c a)).
```

We start with a bunch of trivial lemmas.

```
Lemma source_fpf :forall f y,
```

```
 source (first_partial_fun f y) = domain (source f).
Lemma source_spf :forall f y,
 source (second_partial_fun f y) = range (source f).
Lemma source_fpfa :forall f,
 source (first_partial_function f) = range (source f).
Lemma source_spfa :forall f,
 source (second_partial_function f) = domain (source f).
Lemma source_fpfb :forall a b c,
 source (first_partial_map a b c) = (set_of_functions (product a b) c).
Lemma source_spfb :forall a b c,
 source (second_partial_map a b c) = (set_of_functions (product a b) c).
Lemma target_fpf :forall f y,
 target(first_partial_fun f y) = target f.
Lemma target_spf :forall f y,
 target(second_partial_fun f y) = target f.
Lemma target_fpfa :forall f, target(first_partial_function f) =
 set_of_functions (domain (source f)) (target f).
Lemma target_spfa :forall f, target(second_partial_function f) =
 set_of_functions (range (source f)) (target f).
Lemma target_fpfb :forall a b c, target(first_partial_map a b c) =
 set_of_functions b (set_of_functions a c).
Lemma target_spfb :forall a b c, target(second_partial_map a b c) =
 set_of_functions a (set_of_functions b c).
```

The next lemmas show that for fixed $x$, the partial application $f_{x}$ that maps $y$ to $f(x, y)$ is a function. Similarly for $f_{y}$.

```
Lemma axioms_fpf: forall f y,
 partial_fun_axioms f -> inc y (range (source f)) ->
 transf_axioms (fun x => W (J x y) f) (domain (source f)) (target f).
Lemma axioms_spf: forall f x,
 partial_fun_axioms f -> inc x (domain (source f)) ->
 transf_axioms (fun y => W (J x y) f) (range (source f)) (target f).
Lemma function_fpf :forall f y,
 partial_fun_axioms f -> inc y (range (source f)) ->
 is_function (first_partial_fun f y).
Lemma function_spf :forall f x,
 partial_fun_axioms f -> inc x (domain (source f)) ->
 is_function (second_partial_fun f x).
Lemma W_fpf :forall f x y,
 partial_fun_axioms f -> inc x (domain (source f)) ->
 inc y (range (source f)) ->
 W x (first_partial_fun f y) = W (J x y) f.
Lemma W_spf :forall f x y,
 partial_fun_axioms f -> inc x (domain (source f)) ->
 inc y (range (source f)) ->
 W y (second_partial_fun f x) = W (J x y) f.
```

The next lemmas show that both $x \mapsto f_{x}$ and $y \mapsto f_{y}$ are functions.

```
Lemma axioms_fpfa: forall f,
 partial_fun_axioms f ->
 transf_axioms (fun y => corr_value (first_partial_fun f y))(range (source f))
 (set_of_functions (domain (source f)) (target f)).
Lemma axioms_spfa: forall f ,
 partial_fun_axioms f ->
```

```
 transf_axioms (fun x => corr_value(second_partial_fun f x))(domain (source f))
 (set_of_functions (range (source f)) (target f)).
Lemma function_fpfa: forall f,
 partial_fun_axioms f -> is_function (first_partial_function f).
Lemma function_spfa: forall f ,
 partial_fun_axioms f -> is_function (second_partial_function f).
Lemma W_fpfa: forall f y,
 partial_fun_axioms f -> inc y (range (source f)) ->
 W y (first_partial_function f) = corr_value(first_partial_fun f y).
Lemma W_spfa: forall f x,
 partial_fun_axioms f -> inc x (domain (source f)) ->
 W x (second_partial_function f) = corr_value(second_partial_fun f x).
```

Denote the mapping $x \mapsto f_{x}$ by $\tilde{f}$. We show here that the mapping $f \mapsto \tilde{f}$ is a function. We assume that the source is nonempty.

```
Lemma axioms_fpfb: forall a b c,
 nonempty \(b->\) nonempty \(c->\)
 transf_axioms (fun f=>
 corr_value (first_partial_function (sof_value (product b c) a f)))
 (set_of_functions (product b c) a)
 (set_of_functions c (set_of_functions b a)).
Lemma axioms_spfb: forall a b c,
 nonempty \(b->\) nonempty \(c->\)
 transf_axioms (fun f=>
 corr_value (second_partial_function (sof_value (product b c) a f)))
 (set_of_functions (product b c) a)
 (set_of_functions b (set_of_functions ca)).
Lemma W_fpfb: forall a b c f,
 nonempty \(a->\) nonempty \(b\)-> inc \(f\) (set_of_functions (product a b) c) ->
 W f (first_partial_map a b c) =
 corr_value (first_partial_function (sof_value (product a b) c f)).
Lemma W_spfb: forall a b c f,
 nonempty \(a->\) nonempty \(b\)-> inc \(f\) (set_of_functions (product a b) c) ->
 W f (second_partial_map a b c) =
 corr_value (second_partial_function (sof_value (product a b) c f)).
Lemma WW_fpfb: forall a b c f x,
 nonempty \(a \operatorname{lon}\) nompty \(b->\) inc \(f\) (set_of_functions (product a b) c) ->
 inc \(x\) (product a b) ->
 W (P x) (sof_value a c (W (Q x)
 (sof_value b (set_of_functions a c) (W f (first_partial_map a b c))))) =
 W x (sof_value (product a b) c f). (* 22 *)
Lemma WW_spfb: forall a b c f x,
 nonempty \(a\)-> nonempty \(b\)-> inc f (set_of_functions (product a b) c) ->
 inc \(x\) (product a b) ->
 W (Q x) (sof_value b c (W (P x)
 (sof_value a (set_of_functions bc) (W f (second_partial_map a b c))))) =
 W x (sof_value (product a b) c f). (* 22 *)
```

We now prove the main result, Proposition 3 of [2] p. 103].

Theorem bijective_fpfa: forall a b c,
nonempty a -> nonempty b -> bijective (first_partial_map a b c). (* 68 *)
Theorem bijective_spfa: forall a b c,
nonempty a -> nonempty b -> bijective (second_partial_map a b c). (* 65 *)

### 6.3 Definition of the product of a family of sets

An element of the product of two sets $X_{1}$ and $X_{2}$ is a pair of elements of $X_{1}$ and $X_{2}$, an element of the product of $n$ sets $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ is a tuple ( $x_{1}, \ldots, x_{n}$ ), and thus an element of the product of a family $X_{1}$ is a family $x_{1}$ such that $x_{1} \in X_{1}$. We give three definitions of the product, in the same way as we gave three definitions for the union or the intersection. Note that the family $X_{\iota}$ can be defined by a function $f: a \rightarrow \mathrm{E}$, but the family $x_{1}$ cannot, because there is not set containing such objects; an element of a product is the graph of a function. We define below gbcreate, a variant of gacreate, that is the graph of acreate, that converts $f: a \rightarrow \mathrm{E}$ into a graph.

```
Definition gbcreate a (f:a->Bset) := (IM (fun y:a => J (Ro y) (f y))).
Lemma inc_gbcreate: forall a (f:a->E) x,
 inc x (gbcreate f) = exists y:a, J (Ro y) (f y) =x.
Lemma graph_gbcreate: forall a (f:a-> Bset), is_graph (gbcreate f).
Lemma fgraph_gbcreate: forall a (f:a-> Bset), fgraph (gbcreate f).
Lemma domain_gbcreate : forall a (f:a-> Bsezt), domain (gbcreate f) = a.
Lemma V_gbcreate : forall a (f:a-> Bset) (x:a), V (Ro x) (gbcreate f) = f x.
```

Given a family $\left(\mathrm{X}_{\mathrm{t}}\right)_{\mathrm{L} \in \mathrm{I}}$ of sets defined on I , we may consider functions $f$ such that $f(\mathrm{t}) \in \mathrm{X}_{\mathrm{t}}$. The target of $f(\mathrm{t})$ is in the union $\mathrm{A}=\bigcup \mathrm{X}_{\mathrm{t}}$ and the graph is an element of $\mathfrak{P}(\mathrm{I} \times \mathrm{A})$. Thus, we define the product $\Pi X_{1}$ as the set of all elements $\mathfrak{P}(I \times A)$ that are are graphs of functions with this property. If all $X_{1}$ are the same set $E$, then $A=E$, this justifies the notation $E^{I}$ for the set of functional graphs from I to E since it is the product of a constant family.

In the basic definition, the family is defined by the graph of a function, but in some cases, it is easier to consider a function defined on the type I. If I has two elements, the product is isomorphic to the product of two sets. Contrarily to the union and intersection, the order of the family is important.

```
Definition productt In (f:In->Bset):=
 Zo (powerset (product In (uniont f)))
 (fun z => fgraph z & domain z = In & forall i:In, inc (V (Re i) z) (f i)).
Definition productb g:= productt (fun x:domain g => V (Re x) g).
Definition productf sf f:= productb (L sf f).
```

We list below some basic properties of products.

```
Lemma productb_pr: forall f x, fgraph f ->
 inc x (productb f) =
 (fgraph x & domain x = domain f &
 forall i, inc i (domain x) -> inc (V i x) (V i f)).
Lemma productt_pr: forall In (f:In->Bset) x,
 inc x (productt f) =
 (fgraph x & domain x = In & forall i:In, inc (V (Ro i) x) (f i)).
Lemma productf_pr: forall sf f x,
 inc x (productf sf f) =
 (fgraph x & domain x = sf &
 forall i, inc i (domain x) -> inc (V i x) (f i)).
```

Note that $\Pi X_{t}=\Pi Y_{\kappa}$ if and only if families $X_{\iota}$ and $Y_{K}$ are the same; the lemmas here say under which conditions $\left(x_{\mathrm{L}}\right)_{\mathrm{L}}=\left(y_{\mathrm{K}}\right)_{\mathrm{K}}$ when $\left(x_{\mathrm{L}}\right)_{\mathrm{L}}$ and $\left(y_{\mathrm{K}}\right)_{\mathrm{K}}$ are two families of the same product.

```
Lemma productt_extensionality:forall In (f:In->Bset) x x',
 inc x (productt f) -> inc x' (productt f) ->
 (x = x') = (forall i:In, V (Ro i) x = V (Ro i) x').
Lemma productb_extensionality:forall f x x',
 fgraph f ->
 inc x (productb f) -> inc x' (productb f) ->
 (x = x') = (forall i, inc i (domain f) -> V i x = V i x').
Lemma productf_extensionality:forall sf f x x',
 inc x (productf sf f) -> inc x' (productf sf f) ->
 (x = x') = (forall i, inc i sf -> V i x = V i x').
```

We define now $\mathrm{pr}_{1}$, the 1 -th projection of a product; it is like $\mathrm{pr}_{1}$ and $\mathrm{pr}_{2}$ for the product of two sets. Let $f$ be an element of the product and t an index; we have $\operatorname{pr}_{\mathrm{t}} f=f_{\mathrm{l}}$, where $f_{\mathrm{t}}$ denotes $f(\mathrm{t})$. Thus this mapping is nothing else than $\mathcal{V}$. Here we define a function, whose source is the product $\Pi X_{\kappa}$ and whose target is $X_{1}$.

Note. Proofs are much easier if we use productt instead of productb. Consider for instance a product defined by a mapping $\mathrm{X}: \mathrm{I} \rightarrow$ Bset. The function $\mathrm{pr}_{i}$ takes two arguments, an index of type I and an element of the product. If the product is defined by a mapping Y : Bset $\rightarrow$ Bset, then the first argument is a set; hence we need two definitions; they are related by gbcreate. For every property of $p r_{-} i$, there is a corresponding property for $p r_{-} i t$. This will give a lot of theorems. For this reason, we just state basic properties of $p r_{-} i t$, and use only $p r \_i$.

```
Definition pr_i f i:= BL(V i) (productb f) (V i f).
Definition pr_it In (f:In ->Bset):= pr_i (gbcreate f).
Lemma source_pri: forall f i, source(pr_i f i) = productb f.
Lemma target_pri: forall f i, target(pr_i f i) = V i f.
Lemma axioms_pri: forall f i,
 fgraph f -> inc i (domain f) ->
 transf_axioms (V i)(productb f)(V i f).
Lemma function_pri: forall f i,
 fgraph f -> inc i (domain f) ->
 is_function (pr_i f i).
Lemma W_pri: forall f i x,
 fgraph f -> inc i (domain f) -> inc x (productb f) ->
 W x (pr_i f i) = V i x.
Lemma source_prit: forall In (f:In->Bset) i, source(pr_it f i) = productt f.
Lemma target_prit: forall In (f:In->Bset) i, target(pr_it f (Ro i)) = f i.
Lemma axioms_prit: forall In (f:In>>Bset) i,
 transf_axioms (V (Ro i))(productt f)(f i).
Lemma function_prit: forall In (f:In->Bset) (i:In), is_function (pr_it f (Ro i)).
Lemma W_prit: forall In (f:In ->Bet) (i:In) x,
 inc x (productt f) -> W x (pr_it f (Ro i)) = V (Ro i) x.
```

If the sets $X_{1}$ are non empty, so is the product, and conversely. The idea is that we have $x_{\mathrm{l}} \in \mathrm{X}_{\mathrm{l}}$ for some $x_{\mathrm{l}}$, and we can construct a function $\mathrm{I} \mapsto x_{\mathrm{l}}$.

```
Lemma trivial_product :
 productb emptyset = singleton emptyset.
Lemma trivial_function: forall f, L emptyset f = emptyset.
Lemma trivial_product2: forall f,
 productb (L emptyset f) = singleton emptyset.
```

```
Lemma nonempty_product: forall f,
 fgraph f -> (forall i, inc i (domain f) -> nonempty (V i f)) ->
 nonempty (productb f).
Lemma nonempty_product2: forall f,
 fgraph f -> nonempty (productb f) ->
 (forall i, inc i (domain f) -> nonempty (V i f)).
Lemma nonempty_productt: forall In (f:In->Bset),
 (forall i, nonempty (f i)) -> nonempty (productt f).
Lemma nonempty_productt2: forall In (f:In->Bset),
 nonempty (productt f) -> (forall i, nonempty (f i)).
```

Assume $X_{\imath} \subset E$. An element of the product $\prod_{t \in I} X_{t}$ is the graph of a function from $I$ to $E$. The converse is true if $X_{t}=E$ for all $t$. Then $\prod_{t \in I} E=E^{I}$.

```
Lemma set_of_gfunctions_pr1: forall a b z,
 inc \(z\) (set_of_gfunctions a b) =
 (fgraph \(z\) \& domain \(z=a\) \& sub \(z\) (product \(a \operatorname{b})\)).
Lemma set_of_gfunctions_pr2: forall a b z,
 inc \(z\) (set_of_gfunctions a b) =
 (fgraph \(z\) \& domain \(z=a\) \& sub (range \(z\)) b).
Lemma sub_product_graphset: forall f x,
 fgraph f -> sub (unionb f) x ->
 sub (productb f) (set_of_gfunctions (domain f) x).
Lemma eq_product_graphset: forall f x,
 fgraph f -> (forall i, inc i(domain f) -> V i f = x) ->
 productb \(f=\) set_of_gfunctions (domain f) \(x\).
```

- Special cases of products. We have already seen that if the index set I is empty, then the product has a single element: the empty graph. We consider here the case where the index set has one element $\alpha$. The product is then isomorphic to $\mathrm{X}_{\alpha}$. The definition productla constructs a product with one set given the parameters $x=\mathrm{X}_{\alpha}$ and $a=\alpha$. If $\mathrm{I}=\{\alpha\}$, then the product is equal to $x^{\mathrm{I}}$ since I is a singleton. We construct a function from $x$ into the product that associates to each $y$ the constant function $y$.

```
Definition product1 (x a:Bset) := productt (fun _:singleton a => x).
Lemma product1_pr: forall x a,
 product1 x a= set_of_gfunctions (singleton a) x .
Lemma inc_product1: forall x a y ,
```



```
 \& inc (V a y) x).
Definition product1_canon (x a:Bset) :=
 BL (fun i : Bset => L(singleton a) (fun _ : Bset => i)) x (product1 x a).
Lemma transf_axioms_product1_canon: forall x a,
 transf_axioms (fun i \(=>\) (singleton a) (fun _ : Bset \(=>\) i) \(x\) (product1 \(x\) a).
Lemma function_product1_canon: forall x a,
 is_function (product1_canon x a).
Lemma source_product1_canon: forall x a,
 source (product1_canon \(x\) a) \(=x\).
Lemma target_product1_canon: forall x a,
 target (product1_canon x a) \(=(\) product1 x a).
Lemma W_product1_canon: forall x a i,
 inc i x -> W i (product1_canon x a) =
 L(singleton a) (fun _ : Bset => i).
Lemma bijective_product1_canon: forall x a,
 bijective (product1_canon x a). (* 15 *)
```

We now consider the case of two sets. For each index set $\mathrm{I}=\{\alpha, \beta\}$, if $x$ and $y$ are two sets, we can consider the $\left(\mathrm{X}_{\mathrm{t}}\right)_{\llcorner\in \mathrm{I}}$ such that $x=\mathrm{X}_{\alpha}, y=\mathrm{X}_{\beta}$. We can define a bijection between $x \times y$ and the the product $\Pi X_{1}$. For simplicity, consider only the case where $I$ is the basic doubleton (we might as well consider the case where $\alpha=\varnothing$ and $\beta=\{\varnothing\}$, which is what Bourbaki suggests whenever two distinct sets are needed).

```
Definition product2 x y :=
 productf two_points (variant TPa x y).
Definition product2_canon x y :=
 BL (fun z => (Lvariantc (P z) (Q z))) (product x y) (product2 x y).
Lemma inc_product2: forall x y z,
 inc z (product2 x y) = (fgraph z & domain z = two_points &
 inc (V TPa z) x & inc (V TPb z) y).
Lemma transf_axioms_product2_canon: forall x y,
 transf_axioms (fun z => Lvariantc (P z) (Q z))
 (product x y) (product2 x y).
Lemma function_product2_canon: forall x y,
 is_function (product2_canon x y).
Lemma source_product2_canon: forall x y,
 source (product2_canon x y) = (product x y).
Lemma target_product2_canon: forall x y,
 target (product2_canon x y) = (product2 x y).
Lemma W_product2_canon: forall x y z,
 inc z (product x y) -> W z (product2_canon x y) = Lvariantc (P z) (Q z).
Lemma bijective_product2_canon: forall x y,
 bijective (product2_canon x y). (* 16 *)
```

If each $X_{1}$ is a singleton, so is the product $\Pi X_{1}$.

```
Definition is_singleton x := exists u, x = singleton u.
Lemma is_singleton_pr: forall x,
 is_singleton x = (nonempty x & (forall a b, inc a x -> inc b x -> a = b)).
Lemma singleton_product: forall f,
 fgraph f -> (forall i, inc i (domain f) -> is_singleton (V i f))
 -> is_singleton (productb f).
```

The set of graphs of constant functions $I \rightarrow E$ is called the diagonal of $E^{I}$. The application that associates to $x$ the constant function with value $x$ is an injection from E to $\mathrm{E}^{\mathrm{I}}$.

```
Definition constant_graph s x :=
 L s (fun _ \(=>\mathrm{x}\)).
Definition is_constant_graph f :=
 fgraph f \&
```



```
Definition diagonal_graphp e i :=
 Zo(set_of_gfunctions i e) is_constant_graph.
Definition constant_functor i e:=
 BL(fun \(x\) => constant_graph i x) e (set_of_gfunctions i e).
Lemma constant_graph_function: forall f,
 is_constant_function f -> is_constant_graph (graph f).
Lemma V_constant_graph: forall s x y,
 inc y s -> V y (constant_graph s x) \(=\mathrm{x}\).
Lemma constant_graph_small_range: forall f,
```

```
 is_constant_graph f -> small_set(range f).
Lemma diagonal_graph_pr: forall e i x,
 inc x (diagonal_graphp e i) =
 (is_constant_graph x & domain x = i & sub (range x) e).
Lemma constant_graph_is_constant: forall x y,
 is_constant_graph(constant_graph x y).
Lemma injective_cf : forall i e,
 nonempty i -> injective (constant_functor i e).
```

Proposition 4 [2, p. 104] says: Given a family $\mathrm{X}_{1}$ and a bijection $f$, the product $\Pi \mathrm{X}_{1}$ is isomorphic to the product $\Pi \mathrm{X}_{f(1)}$. Note that in the case of union or intersection, we have equality if $f$ is surjective. The idea is that, if $x_{\mathrm{l}} \in \mathrm{X}_{\mathrm{\imath}}$ and $\mathrm{\imath}=f(\kappa)$ then $(x \circ f)_{\mathrm{K}} \in(\mathrm{X} \circ f)_{\mathrm{\kappa}}$. Some machinery is needed because $x$ is a graph and $f$ a function. These objects are not composable (we must compose $x$ and the graph of $f$ ).

```
Definition product_compose f u :=
 BL (fun x => >compose_graph x (graph u))
 (productb f) (productf (source u) (fun k => V (W k u) f)).
Lemma source_pc: forall f u, source (product_compose f u) = (productb f).
Lemma target_pc: forall f u,
 target (product_compose f u) =
 (productf (source u) (fun k => V (W k u) f)).
Lemma compose_V: forall u v x,
 fgraph u -> fgraph v -> fgraph (compose_graph u v) ->
 inc x (domain (compose_graph u v)) ->
 V x (compose_graph u v) = V (V x v) u.
Lemma axioms_pc1: forall f u c,
 fgraph f -> bijective u -> target u = domain f ->
 inc c (productb f) -> domain (compose_graph c (graph u)) = source u.
Lemma axioms_pc2: forall f u c,
 fgraph f -> bijective u -> target u = domain f ->
 inc c (productb f) -> fgraph (compose_graph c (graph u)).
Lemma axioms_pc: forall f u,
 fgraph f -> bijective u -> target u = domain f ->
 transf_axioms (fun x => compose_graph x (graph u))
 (productb f) (productf (source u) (fun k => V (W k u) f)).
Lemma function_pc: forall f u,
 fgraph f -> bijective u -> target u = domain f ->
 is_function(product_compose f u).
Lemma W_pc: forall f u x,
 fgraph f -> bijective u -> target u = domain f ->
 inc x (productb f) -> W x (product_compose f u) = compose_graph x (graph u).
Lemma WV_pc: forall f u x i,
 fgraph f -> bijective u -> target u = domain f ->
 inc x (productb f) -> inc i (source u) ->
 V i (W x (product_compose f u)) = V (W i u) x.
Lemma bijective_pc: forall f u,
 fgraph f -> bijective u -> target u = domain f ->
 bijective (product_compose f u). (* 24 *)
```


### 6.4 Partial products

Given a family $\mathrm{X}_{i}$ with index I and a subset $\mathrm{J} \subset \mathrm{I}$, we can restrict the family to J; we have $\bigcup_{\mathrm{J}} \subset \bigcup_{\mathrm{I}}$ and $\bigcap_{\mathrm{J}} \supset \bigcap_{\mathrm{I}}$. The case of a product is more complicated. If $x \in \Pi_{\mathrm{I}}$, the restriction of $x$ to J is in $\Pi_{\mathrm{J}}$. The converse is not clear: given an element of $\Pi_{\mathrm{J}}$, is there an extension? Is it unique? We start with some lemmas concerning restrictions.

```
Lemma graph_extensionality: forall r r',
 is_graph r -> is_graph r' ->
 (r = r') = forall u v, related r u v = related r' u v.
Lemma restriction_graph1 : forall x f,
 fgraph f -> sub x (domain f) -> L x (fun i => V i f) = restr f x.
Lemma restriction_V: forall f x i,
 fgraph f -> sub x (domain f) -> inc i x -> V i (restr f x) = V i f.
Lemma restriction_graph2 : forall f j,
 fgraph f -> sub j (domain f) ->
 L j (fun x => V x f) = compose_graph f (diagonal j).
Lemma restr_domain1 : forall f x,
 fgraph f -> sub x (domain f) -> domain (restr f x) = x.
```

We now define the restriction product and the function that associates to each $x$ of the product its restriction to J. This function will be denoted by $\mathrm{pr}_{\mathrm{J}}$.

```
Definition restriction_product f j := productb (restr f j).
Definition pr_j f j :=
 BL (restriction_graph j) (productb f)(restriction_product f j).
Lemma axioms_prj: forall f j,
 fgraph f -> sub j (domain f) ->
 transf_axioms (restriction_graph j)
 (productb f)(restriction_product f j).
Lemma source_prj: forall f j,
 source (pr_j f j) = (productb f).
Lemma target_prj: forall f j,
 target (pr_j f j) = restriction_product f j.
Lemma function_prj: forall f j,
 fgraph f -> sub j (domain f) -> is_function (pr_j f j).
Lemma W_prj: forall f j x,
 fgraph f -> sub j (domain f) -> inc x (productb f)
 -> W x (pr_j f j) = (restriction_graph j x).
Lemma WV_prj: forall f j x i,
 fgraph f -> sub j (domain f) -> inc x (productb f) -> inc i j
 -> V i (W x (pr_j f j)) = V i x.
```

Propositions 6 and 5 [2, p. 105] state that if $X_{l}$ is nonempty for $t \notin J$, then we can extend a function defined on $J$ to the whole of I (using the axiom of choice or the fact that a nonempty product is nonempty). Then $\mathrm{pr}_{\mathrm{J}}$ is surjective. A special case is when J has a single element $\alpha$. Then $\mathrm{pr}_{\mathrm{J}}$ is the composition of $\mathrm{pr}_{\alpha}$ and the canonical function that identifies a product of a single set with this set. Thus $\mathrm{pr}_{\alpha}$ is surjective. A consequence is that if $X_{1} \subset Y_{1}$ then $\Pi X_{1} \subset \Pi Y_{1}$ (the converse is true if no $X_{l}$ is empty).

```
Theorem prolongation_exists: forall f j g,
 fgraph f -> (forall i, inc i (domain f) -> nonempty (V i f)) ->
 fgraph g -> domain g = j -> sub j (domain f) ->
```

```
 (forall i, inc i j -> inc (V i g) (V i f)) ->
 exists h, domain h = domain f &
 fgraph h & (forall i, inc i (domain f) -> inc (V i h) (V i f)) &
 (forall i, inc i j -> V i h = V i g). (* 35 *)
Theorem surjective_prj: forall f j,
 fgraph f -> (forall i, inc i (domain f) -> nonempty (V i f)) ->
 sub j (domain f) -> surjective (pr_j f j).
Lemma surjective_pri: forall f k,
 fgraph f -> (forall i, inc i (domain f) -> nonempty (V i f)) ->
 inc k (domain f) -> surjective (pr_i f k). (* 34 *)
Lemma productb_monotone1: forall f g,
 fgraph f -> fgraph g -> domain f = domain g ->
 (forall i, inc i (domain f) -> sub (V i f) (V i g))
 -> sub (productb f) (productb g).
Lemma productb_monotone2: forall f g,
 fgraph f -> fgraph g -> domain f = domain g ->
 (forall i, inc i (domain f) -> nonempty (V i f)) ->
 sub (productb f) (productb g) ->
 (forall i, inc i (domain f) -> sub (V i f) (V i g)).
```


### 6.5 Associativity of products of sets

Consider a family $X_{1}$. Assume that the index set $I$ is the union of sets $J_{\lambda}$. For each $\lambda$, we can consider the function $\mathrm{pr}_{\mathrm{J}_{\lambda}}$. If $f \in \prod_{\mathrm{l}}$, then $\mathrm{pr}_{\mathrm{J}_{\lambda}} f \in \prod_{⿺ \in \mathrm{~J}_{\lambda}}$. We can consider this as a function of $\lambda$ and write it as $\left(\operatorname{pr}_{\mathrm{J}_{\lambda}} f\right)_{\lambda}$. Thus we get a function

$$
f \mapsto\left(\operatorname{pr}_{\mathrm{J}_{\lambda}} f\right)_{\lambda \in \mathrm{L}} \quad \prod_{\mathrm{i} \in \mathrm{I}} \mathrm{X}_{\mathrm{\imath}} \rightarrow \prod_{\lambda \in \mathrm{L}}\left(\prod_{\mathrm{i} \in \mathrm{~J}_{\lambda}} \mathrm{X}_{\mathrm{\imath}}\right)
$$

It is a bijection if the sets $\mathrm{J}_{\lambda}$ are mutually disjoint, in other words if they form a partition of I . This is Proposition 7 [2, p. 106].

```
Definition axioms_prod_assoc f g :=
 fgraph f & partition_fam g (domain f).
Definition prod_assoc_map f g :=
 BL(fun z => (L (domain g) (fun l => W z (pr_j f (V l g)))))
 (productb f)
 (productf (domain g) (fun l => (restriction_product f (V l g)))).
Lemma source_pam: forall f g,
 source (prod_assoc_map f g) = productb f.
Lemma target_pam: forall f g,
 target (prod_assoc_map f g) =
 (productf (domain g) (fun l => (restriction_product f (V l g)))).
Lemma axioms_pam: forall f g,
 axioms_prod_assoc f g ->
 transf_axioms(fun z => (L (domain g) (fun l => W z (pr_j f (V l g)))))
 (productb f)
 (productf (domain g) (fun l => (restriction_product f (V l g)))).
Lemma function_pam: forall f g,
 axioms_prod_assoc f g ->
 is_function (prod_assoc_map f g).
Lemma W_pam: forall f g x,
```

```
 axioms_prod_assoc f g -> inc x (productb f) ->
 W x (prod_assoc_map f g) = (L (domain g) (fun l => W x (pr_j f (V l g)))).
Lemma injective_pam: forall f g,
 axioms_prod_assoc f g ->
 injective(prod_assoc_map f g). (* 18 *)
Theorem bijective_pam: forall f g,
 axioms_prod_assoc f g ->
 bijective(prod_assoc_map f g). (* 43 *)
```

Assume that the domain I is the disjoint union of two set $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$. Let $\mathrm{Y}, \mathrm{Y}_{1}$ and $\mathrm{Y}_{2}$ be the products of the family $X_{i}$ over $I, I_{1}$ and $I_{2}$. There is a bijection between $Y$ and $Y_{1} \times Y_{2}$, because this set is equipotent to the product of the family with two elements. Assume now that each $\mathrm{X}_{i}$ is a singleton when $i \in \mathrm{I}_{2}$. Then $\mathrm{Y}_{2}$ is a singleton. The first projection from $\mathrm{Y}_{1} \times \mathrm{Y}_{2}$ onto $\mathrm{Y}_{1}$ is then a bijection. This gives a bijection between Y and $\mathrm{Y}_{1}$. The last lemma here says that this bijection is $\mathrm{pr}_{\mathrm{I}_{1}}$.

```
Lemma Lvariantc_prop: forall x y,
 Lvariantc x y = L two_points (variant TPa x y).
Lemma prod_assoc_map2: forall f g, (* 16 *)
 axioms_prod_assoc f g -> domain g = two_points
 -> equipotent (productb f)
 (product (restriction_product f (V TPa g)) (restriction_product f (V TPb g))).
```

Lemma bijective_p: forall x y,
is_singleton y $\rightarrow$ bijective (first_proj (product x y)).
Lemma bijective_prj_aux1: forall f j,
fgraph f -> sub j (domain f) ->
(forall i, inc i (complement (domain f) j) -> is_singleton (V i f)) ->
is_singleton (restriction_product f (complement (domain f) j)).
Lemma bijective_prj_aux2: forall f g,
two_points = domain g ->
target (prod_assoc_map f g) =
source (inverse_fun (product2_canon (restriction_product f (V TPa g))
(restriction_product $f(V \mathrm{TPb} \mathrm{g}))$ ).
Lemma bijective_prj: forall f j,
fgraph f -> sub j (domain f) ->
(forall i, inc i (complement (domain f) j) -> is_singleton (V i f)) ->
bijective (pr_j f j). (* 54 *)

### 6.6 Distributivity formulae

Let $\left(\left(X_{\lambda, 1}\right)_{\iota \in J_{\lambda}}\right)_{\lambda \in L}$ be a family of families of sets. Let $I=\Pi J_{\lambda}$. We assume that $L$ and $I$ are not empty. We have (Proposition 8 [2, p. 107])

$$
\begin{aligned}
& \bigcup_{\lambda \in \mathrm{L}}\left(\bigcap_{1 \in \mathrm{~J}_{\lambda}} \mathrm{X}_{\lambda, 1}\right)=\bigcap_{f \in \mathrm{I}}\left(\bigcup_{\lambda \in \mathrm{L}} \mathrm{X}_{\lambda, f(\lambda)}\right), \\
& \bigcap_{\lambda \in \mathrm{L}}\left(\bigcup_{1 \in \mathrm{~J}_{\lambda}} \mathrm{X}_{\lambda, 1}\right)=\bigcup_{f \in \mathrm{I}}\left(\bigcap_{\lambda \in \mathrm{L}} \mathrm{X}_{\lambda, f(\lambda)}\right) .
\end{aligned}
$$

The first result can be shown as follows. If $x$ is in the LHS, there is a $\lambda$ such $x$ is in the intersection over $\mathrm{J}_{\lambda}$, hence $x \in \mathrm{X}_{\lambda, \mu}$, whatever $\mu$; in particular it could be $f(\lambda)$. Conversely, Bourbaki assumes that $x$ is not in the LHS; he considers the set $\left\{t \in \mathrm{~J}_{\lambda} \mid x \notin \mathrm{X}_{\lambda, \mathrm{l}}\right\}$. This set is
not empty so that there is a function $f \in \mathrm{I}$ whose value is in the set, so that $x$ cannot be in the union of $\mathrm{X}_{\lambda, f(\lambda)}$. The second result is shown by taking complements in a big set, namely the union of all sets involved.

```
Theorem distrib_union_inter: forall f,
 fgraph f -> nonempty (domain f) ->
 (forall l, inc l (domain f) -> fgraph (V l f)) ->
 (forall l, inc l (domain f) -> nonempty (domain (V l f))) ->
 unionf (domain f) (fun l => intersectionb (V l f)) =
 intersectionf (productf (domain f) (fun l => (domain (V l f))))
 (fun g => (unionf (domain f) (fun l => V (V l g) (V l f)))). (* 24 *)
Lemma distrib_inter_union: forall f,
 fgraph f -> nonempty (domain f) ->
 (forall l, inc l (domain f) -> fgraph (V l f)) ->
 (forall l, inc l (domain f) -> nonempty (domain (V l f))) ->
 intersectionf (domain f) (fun l => unionb (V l f)) =
 unionf (productf (domain f) (fun l => (domain (V l f))))
 (fun g => (intersectionf (domain f) (fun l => V (V l g) (V l f)))). (* 87 *)
```

A corollary is when $L$ has two elements. We consider two families $\left(F_{1}\right)_{t \in I}$ and $\left(G_{K}\right)_{K \in K}$. We need a set L with two elements. The easiest would be to use the set $\{\mathrm{F}, \mathrm{G}\}$, but this works only if the two families are different. We could use the argument of Bourbaki: the emptyset is different from the singleton with the emptyset. We initially used the trick that the pair ( $\mathrm{F}, \mathrm{G}$ ) has two elements; we now use two_points instead. We define a function that associates F to one element, and G to the other. If this function is $L$, then $L(t)$ is a functional graph with non-empty domain, provided the same holds for $F$ and $G$. The distributivity formulas use the set $\mathrm{I}=\Pi \mathrm{J}_{\lambda}$. This set is the product of the domains of the graphs $\mathrm{L}(\mathrm{t})$, namely I and J . We show that it is the product of the family with index set ( $\mathrm{F}, \mathrm{G}$ ), that maps the first element to I and the second to J .

```
Lemma fgraph_rec_Lvariantc: forall f g,
 fgraph f -> fgraph g ->
 (forall l, inc l (domain (Lvariantc f g)) ->
 fgraph (V l (Lvariantc f g))).
Lemma nonempty_rec_dom_Lvariantc: forall f g,
 nonempty (domain f) -> nonempty (domain g) ->
 forall l, inc l (domain (Lvariantc f g)) ->
 nonempty (domain (V l (Lvariantc f g))).
Lemma product_Lvariantc: forall f g,
 productf (domain (Lvariantc f g)) (fun l => domain (V l (Lvariantc f g))) =
 product2 (domain f) (domain g).
```

The result is now the following: the union of $\bigcap_{\mathrm{t} \in \mathrm{I}} F_{\mathrm{I}}$ and $\bigcap_{\kappa \in K} G_{K}$ is the intersection on $L$ of all $F_{1} \cup G_{k}$; there is a similar formula if we exchange union and intersection. The general distributivity formula says that L is some complicated product, but it can be replaced by an equivalent set; we use the fact that the product of the family of two sets is equipotent to a normal product, so that $\mathrm{L}=\mathrm{I} \times \mathrm{K}$.

```
Lemma distrib_union2_inter: forall f g,
 fgraph f -> fgraph g -> nonempty (domain f) -> nonempty (domain g) ->
 union2 (intersectionb f)(intersectionb g) =
 intersectionf(product (domain f)(domain g)) (fun z =>
 (union2 (V (P z) f) (V (Q z) g))). (* 55 *)
Lemma distrib_inter2_union: forall f g,
```

```
fgraph f -> fgraph g -> nonempty (domain f) -> nonempty (domain g) ->
intersection2 (unionb f)(unionb g) =
unionf(product (domain f)(domain g)) (fun z =>
 (intersection2 (V (P z) f) (V (Q z) g))). (* 50 *)
```

We say here that the union and intersection of a singleton $\{\mathrm{X}\}$ is X . We also gives additional properties of the empty set. These will be used in the next theorem for exceptional situations.

```
Lemma unionf_singleton: forall x f, unionf (singleton x) f = f x.
Lemma intersectionf_singleton: forall x f, intersectionf (singleton x) f = f x.
Lemma empty_function: forall f, L emptyset f = emptyset.
Lemma trivial_product1: forall f, productf emptyset f = singleton emptyset.
Lemma unionf_emptyset: forall f, unionf emptyset f = emptyset.
Lemma nonempty_product3: forall sf f i,
 inc i sf -> f i = emptyset -> productf sf f = emptyset.
```

Let $\left(\left(X_{\lambda, 1}\right)_{1 \in J_{\lambda}}\right)_{\lambda \in L}$ be a family of families of sets. Let $I=\Pi J_{\lambda}$. We assume $L$ and I not empty in the case of intersection. Proposition 9 [2, p. 109] says

$$
\begin{aligned}
& \prod_{\lambda \in \mathrm{L}}\left(\bigcup_{\imath \in \mathrm{J}_{\lambda}} \mathrm{X}_{\lambda, \mathrm{l}}\right)=\bigcup_{f \in \mathrm{I}}\left(\prod_{\lambda \in \mathrm{L}} \mathrm{X}_{\lambda, f(\lambda)}\right) \\
& \prod_{\lambda \in \mathrm{L}}\left(\bigcap_{\imath \in \mathrm{J}_{\lambda}} \mathrm{X}_{\lambda, \mathrm{l}}\right)=\bigcap_{f \in \mathrm{I}}\left(\prod_{\lambda \in \mathrm{L}} \mathrm{X}_{\lambda, f(\lambda)}\right)
\end{aligned}
$$

In the case of union, we have to consider the special cases where $L$ and I could be empty. Otherwise the proofs are similar. We must sometimes find an element $f$ in the product I such that $f(\lambda)$ satisfies a given property $\mathrm{P}(\lambda)$. We do this by considering the representative of the non-empty set $\{\lambda \in L, P(\lambda)\}$.

```
Theorem distrib_prod_union: forall f,
 fgraph f ->
 (forall l, inc l (domain f) -> fgraph (V l f)) ->
 productf (domain f) (fun l => unionb (V l f)) =
 unionf (productf (domain f) (fun l => (domain (V l f))))
 (fun g => (productf (domain f) (fun l => V (V l g) (V l f)))). (* 29 *)
Theorem distrib_prod_intersection: forall f,
 fgraph f -> nonempty (domain f) ->
 (forall l, inc l (domain f) -> fgraph (V l f)) ->
 (forall l, inc l (domain f) -> nonempty (domain (V l f))) ->
 productf (domain f) (fun l => intersectionb (V l f)) =
 intersectionf (productf (domain f) (fun l => (domain (V l f))))
 (fun g => (productf (domain f) (fun l => V (V l g) (V l f)))). (* 26 *)
```

Let $X_{\lambda}$ be the union of $X_{\lambda, 1}$. The distributivity formula says that the product $\Pi X_{\lambda}$ is a union; this union is a partition of the product, provided that the sets are mutually disjoint, i.e., if the $X_{\lambda, t}$ form a partition of $X_{\lambda}$.

```
Lemma partition_product: forall f,
 fgraph f -> nonempty (domain f) ->
 (forall l, inc l (domain f) -> fgraph (V l f)) ->
 (forall l, inc l (domain f) -> (partition_fam (V l f) (unionb (V l f)))) ->
 partition_fam(L(productf (domain f) (fun l => domain (V l f)))
 (fun g => (productf (domain f) (fun l => V (V l g) (V l f)))))
 (productf (domain f) (fun l => unionb (V l f))). (* 19 *)
```

We apply the distributivity formulas to the case of two families of sets. In a first variant, we consider the product of a family of two sets, after that, we convert it to a normal product.

```
Lemma distrib_prod2_union: forall f g,
 fgraph f -> fgraph g ->
 nonempty (domain f) -> nonempty (domain g) ->
 product2 (unionb f) (unionb g) =
 unionf(product (domain f)(domain g))
 (fun z => (product2 (V (P z) f) (V (Q z) g))). (* 55 *)
Lemma distrib_prod2_inter: forall f g,
 fgraph f -> fgraph g ->
 nonempty (domain f) -> nonempty (domain g) ->
 product2 (intersectionb f)(intersectionb g)=
 intersectionf(product (domain f)(domain g)) (fun z =>
 (product2 (V (P z) f) (V (Q z) g))). (* 54 *)
Lemma distrib_product2_union: forall f g,
 fgraph f -> fgraph g ->
 product (unionb f)(unionb g) =
 unionf(product (domain f)(domain g)) (fun z =>
 (product (V (P z) f) (V (Q z) g))). (* 34 *)
Lemma distrib_product2_inter: forall f g,
 fgraph f -> fgraph g -> nonempty (domain f) -> nonempty (domain g) ->
 product (intersectionb f)(intersectionb g) =
 intersectionf(product (domain f)(domain g)) (fun z =>
 (product (V (P z) f) (V (Q z) g))). (* 34 *)
```

Proposition 10 [2, p. 110] says that the intersection of a product is the product of the intersection.

$$
\prod_{\imath \in I}\left(\bigcap_{K \in K} X_{\imath, K}\right)=\bigcap_{K \in K}\left(\prod_{i \in I} X_{\imath, K}\right)
$$

This is a special case of the general distributivity formula where the set $\mathrm{J}_{\lambda}$ is independent of $\lambda$. In the case of two families of two sets, we get $(a \times b) \cap(c \times d)=(a \times c) \cap(b \times d)$. In the case of union, the general theorem says $(a \times b) \cup(c \times d)=(a \times c) \cup(b \times d) \cup(a \times d) \cup(b \times c)$ and there is no simpler formula.

```
Theorem distrib_inter_prod: forall f sa sb,
 fgraph f -> nonempty sb ->
 intersectionf sb (fun k => productf sa (fun i=> V (J i k) f)) =
 productf sa (fun i => intersectionf sb (fun k=> V (J i k) f)). (* 25 *)
```

If one of the sets I or $K$ is a doubleton then we get

$$
\left(\prod_{t \in I} X_{t}\right) \cap\left(\prod_{t \in I} Y_{t}\right)=\prod_{t \in \mathrm{I}}\left(X_{t} \cap Y_{t}\right), \quad\left(\bigcap_{t \in I} X_{t}\right) \times\left(\bigcap_{t \in I} Y_{t}\right)=\bigcap_{t \in I}\left(X_{t} \times Y_{t}\right)
$$

Lemma productf_extension : forall sf1 f1 sf2 f2,
L sf1 f1 $=$ L sf2 f2 $\rightarrow$ productf $s f 1 f 1=$ productf $s f 2 f 2$.
Lemma distrib_prod_inter2_prod: forall f g,
fgraph $f$-> fgraph $g ~ \rightarrow$ domain $f=$ domain $g ~->$
nonempty (domain f) ->
intersection2 (productb f) (productb g) =
productf (domain f) (fun i => intersection2 (V i f) (V i g) ). (* 25 *)

```
Lemma distrib_inter_prod_inter: forall f g,
 fgraph f -> fgraph g -> domain f = domain g ->
 nonempty (domain f) ->
 product2 (intersectionb f) (intersectionb g) =
 intersectionf (domain f) (fun i => product2 (V i f) (V i g)). (* 23 *)
```

Given two functional graphs $f$ and $f^{\prime}$ with the same domain I , we define the product to be the graph that associates $\left(f(x), f^{\prime}(x)\right)$ to $x$. Let $f^{\prime \prime}=\left(f, f^{\prime}\right)$ be a pair of graphs; we can consider it as a function that associates $\left(f(x), f^{\prime}(x)\right)$ to $x$. Thus we have a mapping from $\Pi F_{1} \times \Pi F_{1}^{\prime}$ into $\Pi\left(F_{1} \times F_{1}^{\prime}\right)$. We need a bunch of lemmas in order to prove that this mapping is a bijection.

```
Definition prod_of_function x x':=
 L(domain x) (fun i => J (V i x) (V i x')).
Definition prod_of_products_canon f f':=
 BL(fun w => prod_of_function (P w) (Q w))
 (product (productb f) (productb f'))
 (productf (domain f)(fun i => product (V i f) (V i f'))).
Definition prod_of_product_aux f f' :=
 fun i \(=>\) (product (W i f) (W i f')).
Definition prod_of_prod_target f f' :=
 fun_image(source f) (prod_of_product_aux f f').
Definition prod_of_products f f' :=
 BL (prod_of_product_aux f f') (source f) (prod_of_prod_target f f').
Lemma inc_prod_of_prod_target: forall f f' \(x\),
 inc x (prod_of_prod_target f f') =
 (exists i, inc i (source f) \& product (W i f) (W i f') = x).
Lemma function_prod_of_products: forall f f',
 is_function (prod_of_products f f').
Lemma source_prod_of_products: forall f f',
 source (prod_of_products f \(f\) ') = source \(f\).
Lemma target_prod_of_products: forall f f',
 target (prod_of_products f f') = prod_of_prod_target f f'.
Lemma W_prod_of_products: forall f f' i,
 inc i (source f) ->
 W i (prod_of_products f f') = product (W i f) (W i f').
Lemma prod_of_products_fam_pr: forall f f' \(x\),
 is_function \(x\)-> source \(x=\) source f \(->\)
 target \(x=\) union (prod_of_prod_target f f') ->
 inc (graph x) (productb (graph (prod_of_products f f'))) =
 forall i, inc i (source f) ->
 (is_pair (W i x) \& inc (P (W i x)) (W i f) \& inc (Q (W i x)) (W i f')).
Lemma axioms_prod_of_function:forall x x' f f',
 is_function f -> is_function f' -> source f = source f' ->
 inc (graph x) (productb (graph f)) -> inc (graph x') (productb (graph f')) ->
 transf_axioms (fun i \(\Rightarrow\) (J (W i x) (W i x'))
 (source f) (union (prod_of_prod_target f f')).
Lemma W_prod_of_function:forall x x' f f' i,
 is_function f -> is_function f' -> source f = source f' ->
 inc \(x\) (productb (graph f)) -> inc x' (productb (graph f')) ->
 inc i (source f) ->
```

```
 V i (prod_of_function x x') = J (V i x) (V i x').
Lemma function_prod_of_function: forall x x' f f',
 is_function f -> is_function f' -> source f = source f' ->
 inc x (productb (graph f)) -> inc x' (productb (graph f')) ->
 inc (prod_of_function x x')
 (productb (graph (prod_of_products f f'))). (* 17 *)
Lemma source_popc:forall f f',
 source (prod_of_products_canon f f') =
 (product (productb f) (productb f')).
Lemma target_popc_aux:forall f f',
 is_function f -> is_function f' -> source f = source f' ->
 productb(L (domain (graph f))
 (fun i => product (V i (graph f)) (V i (graph f')))) =
 productb(graph (prod_of_products f f')).
Lemma target_popc:forall f f',
 is_function f -> is_function f' -> source f = source f' ->
 target (prod_of_products_canon (graph f) (graph f')) =
 (productb (graph (prod_of_products f f'))).
Lemma axioms_popc:forall f f',
 is_function f -> is_function f' -> source f = source f, ->
 transf_axioms(fun w => prod_of_function (P w) (Q w))
 (product (productb (graph f)) (productb (graph f')))
 (productb (graph (prod_of_products f f'))).
Lemma W_popc:forall f f' w,
 is_function f -> is_function f, -> source f = source f' ->
 inc w (product (productb (graph f)) (productb (graph f'))) ->
 W w (prod_of_products_canon (graph f) (graph f')) =
 prod_of_function (P w) (Q w).
Lemma bijection_popc: forall f f',
 is_function f -> is_function f' -> source f = source f' ->
 bijective (prod_of_products_canon (graph f) (graph f')). (* 74 *)
```


### 6.7 Extensions of mappings to products


(extension)

Assume that $\mathrm{X}_{\mathrm{l}}, \mathrm{Y}_{1}$ and $f_{1}$ are families with the same index I. We assume that $f_{1}$ is a functional graph with source $X_{1}$ and target $Y_{1}$. If $x \in \Pi X_{1}$ then $x_{1} \in X_{1}, f_{1}\left(x_{1}\right) \in Y_{1}$ and the mapping $\mathfrak{l} \mapsto f_{\mathrm{l}}\left(x_{\mathrm{l}}\right)$ is in $\prod_{\mathrm{l}}$.

```
Definition ext_map_prod_aux x f := fun i=> V (V i x) (f i).
Definition ext_map_prod In src trg f :=
 BL (fun x => L In (ext_map_prod_aux x f))
 (productf In src) (productf In trg).
Definition ext_map_prod_axioms In src trg f :=
 forall i, inc i In -> (fgraph (f i) & domain (f i) = src i &
 sub (range (f i)) (trg i)).
```

```
Lemma taxioms_ext_map_prod: forall In src trg f,
 ext_map_prod_axioms In src trg f ->
 transf_axioms (fun x => L In (ext_map_prod_aux x f))
 (productf In src) (productf In trg).
Lemma source_ext_map_prod: forall In src trg f,
 source (ext_map_prod In src trg f) = (productf In src).
Lemma target_ext_map_prod: forall In src trg f,
 target (ext_map_prod In src trg f) = (productf In \(\operatorname{trg}\)).
Lemma function_ext_map_prod: forall In src trg f,
 ext_map_prod_axioms In src trg f \(\rightarrow\) is_function (ext_map_prod In src trg f).
Lemma W_ext_map_prod: forall In src \(\operatorname{trg} \mathrm{f} x\),
 ext_map_prod_axioms In src trg f ->
 inc \(x\) (productf In src) ->
 W x (ext_map_prod \(\operatorname{In} \operatorname{src} \operatorname{trg} f\)) = L In (ext_map_prod_aux x f).
Lemma WV_ext_map_prod: forall In src \(\operatorname{trg} f x i\),
 ext_map_prod_axioms In src trg f ->
 inc \(x\) (productf In src) -> inc i In ->
 Vi(W x (ext_map_prod In src \(\operatorname{trg} \mathrm{f})\)) \(=\mathrm{V}(\mathrm{V}\) i x) (fi).
```

Proposition 11 [2, p. 111] says that composition of extensions is extension of compositions. Bourbaki uses this property to show that if all $f_{1}$ are injective, so is the extension, by exhibiting a left inverse. We use a direct proof because it is easier (note that $f_{1}$ is not a function, just the graph of a function).

```
Lemma composable_ext_map_prod: forall In p1 p2 p3 g f h,
 ext_map_prod_axioms In p1 p2 f ->
 ext_map_prod_axioms In p2 p3 g ->
 (forall i, inc i In -> h i = fcompose (g i) (f i)) ->
 (forall i, inc i In -> fcomposable (g i) (f i)) ->
 ext_map_prod_axioms In p1 p3 h.
Lemma compose_ext_map_prod: forall In p1 p2 p3 g f h,
 ext_map_prod_axioms In p1 p2 f ->
 ext_map_prod_axioms In p2 p3 g ->
 (forall i, inc i In -> h i = fcompose (g i) (f i)) ->
 (forall i, inc i In -> fcomposable (g i) (f i)) ->
 compose (ext_map_prod In p2 p3 g) (ext_map_prod In p1 p2 f) =
 (ext_map_prod In p1 p3 h). (* 27 *)
Lemma injective_ext_map_prod: forall In p1 p2 f,
 ext_map_prod_axioms In p1 p2 f ->
 (forall i, inc i In -> injective_graph (f i)) ->
 injective (ext_map_prod In p1 p2 f).
Lemma surjective_ext_map_prod: forall In p1 p2 f,
 ext_map_prod_axioms In p1 p2 f ->
 (forall i, inc i In -> range (f i) = p2 i) ->
 surjective (ext_map_prod In p1 p2 f). (* 21 *)
```

Let $f$ be a function from E to A , where A is a product $\mathrm{X}_{\mathrm{t}}$ over I. Consider the function $\mathrm{pr}_{1} \circ f$ from E to $\mathrm{X}_{1}$. Its extension to products is some function $\bar{f}$ from $\mathrm{E}^{\mathrm{I}}$ to $\Pi \mathrm{X}_{1}$. Let $d$ be the diagonal mapping from E to $\mathrm{E}^{\mathrm{I}}$. We have $f=\bar{f} \circ d$. If $f_{1}$ is a family of functions from E to $\mathrm{X}_{\mathrm{l}}$, and $\bar{f}$ is its extension to the products, then $\mathrm{pr}_{\mathrm{l}} \circ(\bar{f} \circ d)=f_{\mathrm{l}}$. The mapping from $f$ to $\bar{f}$ is a bijection between $\left(\Pi X_{t}\right)^{\mathrm{E}}$ and $\Pi \mathrm{X}_{\mathrm{l}}^{\mathrm{E}}$.

We prove the following facts one after the other. If $f$ is a function from E to A , then $\mathrm{pr}_{\mathrm{l}} \circ f$ is a function from $E$ to $X_{t}$. To $g \in A^{E}$ we associate a function from $E$ to $A$. The mapping $ı \mapsto G\left(\mathrm{pr}_{1} \circ f\right)$, where $G$ denotes the graph of a function, is an element of $\Pi X_{1}^{\mathrm{E}}$. We have a function $\mathrm{A}^{\mathrm{E}} \rightarrow \Pi \mathrm{X}_{1}^{\mathrm{E}}$. We define $\bar{f}$. We show $f=\bar{f} \circ d$. We show $\operatorname{pr}_{⿺} \circ(\bar{f} \circ d)=f_{1}$. We finally show that the mapping is bijective.

```
Definition fun_set_to_prod src F :=
 BL(fun f =>
 L(domain F)(fun i=> (graph (compose (pr_i F i)
 (corresp src (productb F) f)))))
 (set_of_gfunctions src (productb F))
 (productb (L (domain F) (fun i=> set_of_gfunctions src (V i F)))).
Lemma fun_set_to_prod1: forall F f i,
 fgraph F -> inc i (domain F) ->
 is_function f -> target f = productb F ->
 (is_function (compose (pr_i F i) f) &
 source (compose (pr_i F i) f) = source f &
 target (compose (pr_i F i) f) = V i F&
 (forall x, inc x (source f) -> W x (compose (pr_i F i) f) = V i (W x f))).
Lemma fun_set_to_prod2: forall src F f gf,
 fgraph F -> inc gf (set_of_gfunctions src (productb F)) ->
 f = (corresp src (productb F) gf) ->
 (is_function f & target f = productb F & source f = src).
Lemma fun_set_to_prod3: forall src F,
 fgraph F -> transf_axioms(fun f =>
 L(domain F)(fun i=> (graph (compose (pr_i F i)
 (corresp src (productb F) f)))))
 (set_of_gfunctions src (productb F))
 (productb (L (domain F) (fun i=> set_of_gfunctions src (V i F)))).
Lemma fun_set_to_prod4: forall src F,
 fgraph F -> (is_function (fun_set_to_prod src F)
 & source (fun_set_to_prod src F) = (set_of_gfunctions src (productb F))
 & target (fun_set_to_prod src F)
 = (productb (L (domain F) (fun i=> set_of_gfunctions src (V i F))))).
Definition fun_set_to_prod5 F f :=
 ext_map_prod (domain F) (fun i=> source f)(fun i=> V i F)
 (fun i => (graph (compose (pr_i F i) f))).
Lemma fun_set_to_prod6: forall F f, (* 40 *)
 fgraph F -> is_function f -> target f = productb F ->
 (is_function (fun_set_to_prod5 F f) &
 composable (fun_set_to_prod5 F f) (constant_functor (domain F) (source f))&
 compose (fun_set_to_prod5 F f) (constant_functor (domain F) (source f)) =f).
Lemma fun_set_to_prod7: forall src F f g,
 fgraph F ->
 (forall i, inc i (domain F) -> inc (f i) (set_of_gfunctions src (V i F))) ->
 g = ext_map_prod (domain F) (fun i=> src)(fun i=> V i F) f ->
 (forall i, inc i (domain F) ->
 f i = graph (compose (pr_i F i) (compose g (constant_functor
 (domain F) src)))). (* 47 *)
Lemma fun_set_to_prod8: forall src F,
 fgraph F -> bijective (fun_set_to_prod src F). (* 58 *)
```


## Chapter 7

## Equivalence relations

The code of the first two sections of this chapter was originally written by Carlos Simpson ${ }^{1}$. He used is_relation where we now write is_graph. For us, a relation is a function of type $\mathscr{E} \rightarrow \mathscr{E} \rightarrow$ Prop. If we denote the value by $x \sim y$, then it is true or false. An equivalence relation will be a relation with some properties; an equivalence will be a graph with some properties (in Bourbaki, an equivalence is a correspondence, see below).

### 7.1 Definition of an equivalence relation

We say that $x$ is related to $y$ by the graph $r$ and denote it by $x \stackrel{r}{\sim} y$ whenever the pair $(x, y)$ is in the graph. The set of related objects is called the substrate of the relation.

Definition substrate $r:=$ union2 (domain $r$ ) (range $r$ ).

We have some characterizations of the substrate. Only the last one requires that $r$ is a graph.

```
Lemma inc_pr1_substrate : forall r y, inc y r -> inc (P y) (substrate r).
Lemma inc_pr2_substrate : forall r y, inc y r >> inc (Q y) (substrate r).
Lemma inc_arg1_substrate: forall r x y, related r x y -> inc x (substrate r).
Lemma inc_arg2_substrate: forall r x y, related r x y -> inc y (substrate r).
Lemma substrate_smallest : forall r s,
 (forall y, inc y r -> inc (P y) s) ->
 (forall y, inc y r -> inc (Q y) s) ->
 sub (substrate r) s.
Lemma inc_substrate1 : forall r x,
 is_graph r -> inc x (substrate r) =
 ((exists y, inc (J x y) r) \/ (exists y, inc (J y x) r)).
```

We say that a property $\sim$ is symmetric if $a \sim b$ implies $b \sim a$, transitive if $a \sim b$ and $b \sim c$ implies $a \sim c$, reflexive on $x$ if $a \in x$ is equivalent to $a \sim a$. We say that the $\sim$ is an equivalence relation if it is symmetric and transitive. We say that it is an equivalence relation on E if moreover it is reflexive on E .

```
Definition reflexive_r (r:EEP) x :=
 forall y, inc y x = r y y.
```

[^9]```
Definition symmetric_r (r:EEP) :=
    forall x y, r x y -> r y x.
Definition transitive_r (r:EEP) :=
    forall x y z, r x y >> r y z -> r x z .
Definition equivalence_r (r:EEP) :=
    symmetric_r r & transitive_r r.
Definition equivalence_re (r:EEP) x :=
    equivalence_r r & reflexive_r r x.
```

The definitions for a graph are similar. We say that a graph is reflexive if its associated relation is reflexive on the substrate, i.e., if $x \stackrel{r}{\sim} y$ implies $x \stackrel{r}{\sim} x$ and $y \stackrel{r}{\sim} y$. An equivalence is a graph that is reflexive, symmetric, and transitive.

```
Definition is_reflexive r :=
    is_graph r \& (forall y, inc y (substrate r) ->related ryy).
Definition is_symmetric r :=
    is_graph r \& (forall x y, related rey x -> related r y x).
Definition is_transitive r :=
    is_graph r \&
    (forall \(x\) y \(z\), related \(r x y->\) related \(r y z->\) related \(r x z\) ).
Definition is_equivalence \(r\) :=
    is_graph r \& is_reflexive r \& is_transitive r \& is_symmetric r.
```

Some trivial consequences of the definitions.

```
Lemma reflexive_inc_substrate : forall r x,
    is_reflexive r -> inc x (substrate r) = inc (J x x) r.
Lemma reflexive_ap : forall r x,
    is_reflexive r -> inc x (substrate r) -> related r x x.
Lemma reflexive_ap2 : forall r x y,
    is_reflexive r -> related r x y -> related r x x.
Lemma symmetric_ap : forall r x y,
    is_symmetric r -> related r x y -> related r y x.
Lemma transitive_ap : forall r x z,
    is_transitive r ->
    (exists y, related r x y & related r y z) ->
    related r x z.
```

Some lemmas that show that if a graph is symmetric and transitive then it is reflexive.

```
Lemma symmetric_transitive_reflexive : forall r,
    is_symmetric r -> is_transitive r -> is_reflexive r.
Lemma show_Sequivalence_relation : forall r,
    is_graph r ->
    (forall x y, related r x y -> related r y x) ->
    (forall x y z, related r x y -> related r y z -> related r x z) ->
    is_equivalence r.
Lemma symmetric_transitive_equivalence : forall r,
    is_symmetric r -> is_transitive r -> is_equivalence r.
```

Some trivial properties of an equivalence.

```
Lemma reflexivity : forall r u,
    is_equivalence r -> inc u (substrate r) -> related r u u.
Lemma symmetricity : forall r u v,
```

```
    is_equivalence r -> related r u v -> related r v u.
Lemma transitivity : forall r u w,
    is_equivalence r ->
    (exists v, related r u v & related r v w) -> related r u w.
```

In the case of an equivalence, the characterization of the substrate is easy.

```
Lemma domain_is_substrate: forall g,
    is_equivalence g -> domain g = substrate g.
Lemma substrate_sub : forall r s,
    sub r s -> sub (substrate r) (substrate s).
Lemma inc_substrate : forall r x,
    is_equivalence r ->
    inc x (substrate r) = (exists y, related r x y).
```

If r has some properties then $\stackrel{r}{\sim}$ has the corresponding ones.

```
Lemma reflexive_reflexive: forall r,
    is_reflexive r -> reflexive_r (related r) (substrate r).
Lemma symmetric_symmetric: forall r,
    is_symmetric r -> symmetric_r (related r).
Lemma transitive_transitive: forall r,
    is_transitive r -> transitive_r (related r).
Lemma equivalence_equivalence: forall r,
    is_equivalence r -> equivalence_re (related r)(substrate r).
```

We say that r is the graph of \sim if $x \stackrel{r}{\sim} y$ is the same as $x \sim y$, whatever x and y. For every set E , we can define a set $r=g_{\mathrm{E}}(\sim)$, the graph of \sim on E . This is the graph of some relation whose substrate is a subset of E .

```
Definition is_graph_of g (r:EEP):=
    forall u v, r u v = related g u v.
Definition graph_on (r:EEP) x := Zo(product x x)(fun w => r (P w)(Q w)).
Lemma is_graph_graph_on: forall r x,
    is_graph(graph_on r x).
Lemma substrate_graph_on: forall r x,
    sub (substrate (graph_on r x)) x.
```

Assume that \sim is an equivalence relation on E. Then $g_{\mathrm{E}}(\sim)$ is the graph of \sim. The relation associated to this graph is \sim. Assume that \sim is an equivalence relation that has a graph g, then it is an equivalence relation on the domain of g (which is also the substrate of g). This graph is an equivalence. We shall often use the fact that an equivalence relation on E is associated to an equivalence.

```
Lemma equivalence_has_graph0: forall r x,
    equivalence_re r x -> is_graph_of (graph_on r x) r.
Lemma related_graph_on: forall r x u v,
    equivalence_re r x ->
    r u v = related (graph_on r x) u v.
Lemma equivalence_has_graph: forall r x,
    equivalence_re r x -> exists g, is_graph_of g r.
Lemma equivalence_if_has_graph: forall r g,
```

```
    is_graph g -> is_graph_of g r ->
    equivalence_r r -> equivalence_re r (domain g).
Lemma equivalence_if_has_graph2: forall r g,
    is_graph g -> is_graph_of g r ->
    equivalence_r r -> is_equivalence g.
Lemma equivalence_has_graph2:forall r x,
    equivalence_re r x -> exists g,
        is_equivalence g & (forall u v, r u v = related g u v).
```

For Bourbaki, an equivalence on a set E is a correspondence whose source and target are both equal to E , and whose graph F is such that the relation $(x, y) \in \mathrm{F}$ is an equivalence relation on E . We drop the condition is_correspondence because it is a consequence of the other ones. There is nothing more in the notion of a correspondence equivalence than in an equivalence.

```
Definition equivalence_cor r:=
    source r = target r &
    is_equivalence (graph r) & source r = (substrate (graph r)).
Definition graph_to_eq_cor g := corresp (domain g)(domain g) g.
Lemma equivalence_cor_prop1: forall r,
    equivalence_cor r -> is_correspondence r.
Lemma equivalence_graph_to_eq_cor: forall g,
    is_equivalence g -> equivalence_cor(graph_to_eq_cor g).
```

If we take a set E and equality on E (i.e., the relation " $x \in \mathrm{E}$ and $y \in \mathrm{E}$ and $x=y$ " between x and y), this gives an equivalence relation. The associated equivalence is the diagonal, and the associated correspondence is the identity function on E . This is the equivalence with the smallest classes (we shall see that to each equivalence can be associated a partition, and partitions can be compared, so that equivalences can be compared. We have found the finest one).

```
Definition restricted_eq x := fun u => fun v => inc u x & u = v.
Lemma equality_equivalence: forall x,
    equivalence_re(restricted_eq x) x.
Lemma graph_of_restricted_eq: forall x,
    is_graph_of(diagonal x)(restricted_eq x).
Lemma correspondance_of_restricted_eq: forall x,
    graph_to_eq_cor(diagonal x) = identity_fun x.
Lemma equivalence_relation_diagonal: forall x,
    is_equivalence (diagonal x).
Lemma substrate_diagonal: forall x, substrate(diagonal x) = x.
```

We can consider the relation on E where all elements are related. Its graph is $\mathrm{E} \times \mathrm{E}$.

```
Definition coarse u := product u u.
Lemma substrate_coarse : forall u, substrate (coarse u) = u.
Lemma related_product : forall a b x y,
    related (product a b) x y = (inc x a & inc y b).
Lemma related_coarse : forall u x y,
    related (coarse u) x y = (inc x u & inc y u).
Lemma equivalence_relation_coarse : forall u,
    is_equivalence (coarse u).
```

Equipotency is an equivalence relation without a graph.

Lemma equivalence_equipotent: equivalence_r equipotent.

The fifth example in Bourbaki is: Suppose $\mathrm{A} \subset \mathrm{E}$; then $(x \in \mathrm{E} \backslash \mathrm{A}$ and $y=x)$ or $(x \in \mathrm{~A}$ and $y \in$ $A)$ is a equivalence on E.

```
Definition Bourbaki_ex5 a e:=
    Zo(Cartesian.product e e)(fun y=>
            ((inc (P y)(complement e a) & (P y = Q y)) \/ (inc (P y) a & inc(Q y) a))).
Lemma Bourbaki5_reflexive: forall a e x,
    inc x e -> related (Bourbaki_ex5 a e) x x.
Lemma substrate_ex5: forall a e,
    substrate (Bourbaki_ex5 a e) = e.
Lemma related_bourbakiB5: forall a e x y,
            inc x e -> inc y e -> (related (Bourbaki_ex5 a e) x y) =
            ((inc x(complement e a) & x = y) \/ (inc x a & inc y a)).
Lemma equivalence_relation_bourbakiB5: forall a e,
    sub a e -> is_equivalence (Bourbaki_ex5 a e).
```

Consider a family of relations \sim_{i}. We can consider the relation $\forall i, x \sim_{i} y$. The graph of this relation is the intersection of the graphs of the \sim_{i}, in the case where each relation is a graph. Hence we state: if R is a nonempty set of equivalences, the intersection is an equivalence. If all elements of R are equivalences on the same set E, then the intersection is an equivalence on E.

```
Lemma relation_intersection : forall z,
    nonempty z -> (forall r, inc r z -> is_graph r) ->
    is_graph (intersection z).
Lemma related_intersection : forall z x y,
    nonempty z ->
    related (intersection z) x y =
    (forall r, inc r z -> related r x y).
Lemma substrate_intersection_sub : forall r z,
    inc r z -> sub (substrate (intersection z)) (substrate r).
Lemma reflexive_intersection : forall z,
    nonempty z -> (forall r, inc r z -> is_reflexive r) ->
    is_reflexive (intersection z).
Lemma transitive_intersection : forall z,
    nonempty z -> (forall r, inc r z -> is_transitive r) ->
    is_transitive (intersection z).
Lemma symmetric_intersection : forall z,
    nonempty z -> (forall r, inc r z -> is_symmetric r) ->
    is_symmetric (intersection z).
Lemma equivalence_relation_intersection : forall z,
    nonempty z -> (forall r, inc r z -> is_equivalence r) ->
    is_equivalence (intersection z).
Lemma substrate_intersection : forall r e,
    nonempty r -> (forall z, inc z r-> is_equivalence z) ->
    (forall z, inc z r -> substrate z = e) ->
    substrate (intersection r) = e.
```

We can consider the set of all equivalences on E. It is not empty.

```
Definition all_relations x := powerset (product x x).
Definition all_equivalence_relations x :=
    Zo (all_relations x) (fun r => (is_equivalence r)
        & (substrate r = x)).
Lemma inc_all_relations : forall r x,
    inc r (all_relations x) = (is_graph r & sub (substrate r) x).
Lemma inc_all_equivalence_relations : forall r x,
    inc r (all_equivalence_relations x) =
    (is_equivalence r & (substrate r = x)).
Lemma inc_coarse_all_equivalence_relations : forall u,
    inc (coarse u) (all_equivalence_relations u).
Lemma nonempty_all_equivalence_relations : forall u,
    nonempty (all_equivalence_relations u).
```

Proposition 1 [2, p. 114] says that a correspondence Γ between X and X is an equivalence on X if and only if X is the domain of $\Gamma, \Gamma=\Gamma^{-1}$ and $\Gamma \circ \Gamma=\Gamma$.

```
Lemma selfinverse_graph_symmetric: forall r,
    is_graph r-> (is_symmetric r = (r= inverse_graph r)).
Lemma idempotent_graph_transitive: forall r,
    is_graph r-> (is_transitive r = sub (compose_graph r r) r).
Lemma equivalence_pr: forall r, is_graph r >>
    (is_equivalence r = ((compose_graph r r) = r & r= inverse_graph r)).
Theorem equivalence_cor_pr: forall f,
    is_correspondence f ->
    (equivalence_cor f = (source f = target f &
        (source f = (domain (graph f))) & compose f f = f &
        f = inverse_fun f)).
```


7.2 Equivalence classes; quotient set

Let f be a function on E ; the relation $f(x)=f(y)$ is an equivalence relation on E . It has a graph $\mathrm{F}^{-1} \circ \mathrm{~F}$, where F is the graph of f. We shall denote it by \sim_{f}.

```
Definition equivalence_associated f :=
    fun x => fun y => (inc x (source f) & (inc y (source f)) & (W x f = W y f)).
Definition eq_rel_associated f :=
    compose_graph (inverse_graph (graph f)) (graph f).
Lemma equivalence_ea: forall f,
    is_function f -> equivalence_re(equivalence_associated f)(source f).
Lemma graph_of_ea: forall f,
    is_function f ->
    is_graph_of (eq_rel_associated f) (equivalence_associated f).
Lemma equivalence_graph_ea: forall f,
    is_function f->
    is_equivalence (eq_rel_associated f).
Lemma substrate_graph_ea: forall f,
    is_function f->
    substrate (eq_rel_associated f) = source f.
Lemma related_ea:forall f x y,
    is_function f ->
    related (eq_rel_associated f) x y =
    (inc x (source f) & inc y (source f) & W x f = W y f).
```

Bourbaki says that for every equivalence relation \sim on E , there is a function f such that $\sim=\sim_{f}$. Let G be the graph of the equivalence relation and $x \in \mathrm{E}$. Consider the cut of G at x, denoted by $\mathrm{G}(x)$; it is the set of all y such that $(x, y) \in \mathrm{G}$. We have $\mathrm{G}(x) \subset \mathrm{E}$. This will be called the equivalence class of x. The set of all objects of the form $\mathrm{G}(x)$ is the quotient set; denoted E / \sim (or E / R if the relation is R). If we denote by G_{x} the set all elements $z \in \mathrm{G}$ with $\mathrm{pr}_{1} z=x$, then $\mathrm{G}(x)=\mathrm{pr}_{2} \mathrm{G}_{x}$. We define here a class as the image of pr_{2}, then show that this definition is the same as Bourbaki's. An element of the class is a representative of the class.

```
Definition class (r x:Bset) := fun_image (Zo r (fun z => P z = x)) Q.
Definition gclass f := class (graph f).
```

We start with some trivial lemmas. Let R be a graph, and E its substrate. We shall denote by \bar{x} the class of x modulo R. We have $y \in \bar{x}$ if and only if $x \stackrel{\mathrm{R}}{\sim} y$. We have $\bar{x} \subset \mathrm{E}$. We have $x \in \mathrm{E}$ if and only if $\bar{x} \neq \varnothing$. The relations $x \stackrel{\mathrm{R}}{\sim} y$, and $\bar{x}=\bar{y}$ are equivalent if $x \in \mathrm{E}$ (or if $x \stackrel{\mathrm{R}}{\sim} x$ which is the same).

```
Lemma inc_class : forall r x y,
    is_graph \(r \rightarrow\) inc \(y(c l a s s ~ r x)=r e l a t e d r x y\).
```



```
Lemma sub_class_substrate: forall r x,
    is_equivalence \(r \rightarrow\) sub(class \(r\) ) (substrate r).
Lemma nonempty_class_symmetric : forall r x,
    is_symmetric r ->
    nonempty (class \(r x\) ) \(=\) inc \(x\) (substrate \(r\) ).
Lemma related_class_eq : forall ruv,
    is_equivalence r ->
    related r u u ->
    related \(r u v=(c l a s s r u=c l a s s r v)\).
```

The quotient set E / R is the set of all classes. We denote by \bar{y} the class of y for R ; this is a mapping from E to E / R. We denote by $\hat{x}=\tau_{z}(z \in x)$ some element of x (if x is non-empty of course). This is a mapping from E / R into E (a retraction of the canonical projection). We say is_class $r x$ if r is an equivalence on some set $\mathrm{E}, \hat{x} \in \mathrm{E}$ and $x=\overline{\hat{x}}$. If $x \in \mathrm{E} / \mathrm{R}$, then x is not empty, hence $\hat{x} \in x$, and x is a class. Thus if $x \in \mathrm{E}$, then \bar{x} is a class. The statement $a \stackrel{\mathrm{R}}{\sim} b$ is the same as saying that there is a class x such that $a \in x$ and $b \in x$. If $x \in \mathrm{E} / \mathrm{R}$ and $y \in x$ then $\hat{x} \stackrel{\mathrm{R}}{\sim} y$.

```
Definition quotient r := fun_image (substrate r) (class r).
Definition is_class r x := is_equivalence r
    & inc (rep x) (substrate r) & x = class r (rep x).
Lemma inc_rep_itself:forall r x, is_equivalence r ->
    inc x (quotient r) -> inc (rep x) x.
Lemma inc_quotient : forall r x, is_equivalence r ->
    inc x (quotient r) = is_class r x.
Lemma non_empty_in_quotient: forall r x,
    is_equivalence r -> inc x (quotient r) -> nonempty x.
Lemma is_class_class : forall r x, is_equivalence r ->
    inc x (substrate r) -> is_class r (class r x).
Lemma in_class_related : forall r y z,
    is_equivalence r ->
    related r y z = (exists x, is_class r x & inc y x & inc z x).
Lemma related_rep_in_class:forall r x y,
```

```
is_equivalence r -> inc x (quotient r) -> inc y x
-> related r (rep x) y.
```

A class x is a nonempty subset of E such that for all $y \in x$, properties $z \in x$ and $y \stackrel{\mathrm{R}}{\sim} z$ are equivalent. Two classes are equal or disjoint. If $x \in \mathrm{E}$ then $\bar{x} \in \mathrm{E} / \mathrm{R}$. If $x \in y$ and $y \in \mathrm{E} / \mathrm{R}$ then $x \in \mathrm{E}$. As a consequence, the union of E / R is E . If $x \in \mathrm{E} / \mathrm{R}$ then $\hat{x} \in \mathrm{E}$, and $\overline{\hat{x}}=x$. If $x \in \mathrm{E}$ then $x \in \bar{x}$ and $x \stackrel{\mathrm{R}}{\sim} \hat{\bar{x}}$. If u and v are in E / R, then $\hat{u} \stackrel{\mathrm{R}}{\sim} \hat{v}$ if and only if $u=v$. The relation $u \stackrel{\mathrm{R}}{\sim} v$ is equivalent to $u \in \mathrm{E}$ and $v \in \mathrm{E}$ and $\bar{u}=\bar{v}$. If $x \in y$ and $y \in \mathrm{E} / \mathrm{R}$ then $y=\bar{x}$.

```
Lemma is_class_rw : forall r x, is_equivalence r ->
    is_class r x = (nonempty x & sub x (substrate r) &
            (forall y z, inc y x -> (inc z x = related r y z)) ). (* 15 *)
Lemma class_dichot : forall r x y,
    is_class r x -> is_class r y -> (x = y \/ disjoint x y). (* 17 *)
Lemma inc_class_quotient : forall r x,
    is_equivalence r -> inc x (substrate r) ->
    inc (class r x) (quotient r).
Lemma inc_in_quotient_substrate : forall r x y,
    is_equivalence r -> inc x y -> inc y (quotient r)
    -> inc x (substrate r).
Lemma union_quotient : forall r,
    is_equivalence r -> union (quotient r) = substrate r.
Lemma inc_rep_substrate : forall r x, is_equivalence r ->
    inc x (quotient r) -> inc (rep x) (substrate r).
Lemma class_rep : forall r x, is_equivalence r ->
    inc x (quotient r) -> class r (rep x) = x.
Lemma inc_itself_class : forall r x,
    is_equivalence r ->inc x (substrate r) -> inc x (class r x).
Lemma related_rep_class : forall r x, is_equivalence r ->
    inc x (substrate r) -> related r x (rep (class r x)).
Lemma related_rep_rep : forall r u v,
    is_equivalence r -> inc u (quotient r) -> inc v (quotient r) ->
    related r (rep u) (rep v) = (u = v).
Lemma related_rw : forall r u v,
    is_equivalence r >> related r u v =
    (inc u (substrate r) & inc v (substrate r) & class r u = class r v).
Lemma is_class_pr: forall r x y,
    is_equivalence r -> inc x y -> inc y (quotient r)
    -> y = class r x.
```

The canonical projection is the mapping $x \mapsto \bar{x}$ from E onto E / R. We consider also the case where R is the equivalence associated to a function f. An important property is that this function is surjective.

```
Definition canon_proj(r:Bset):= BL(fun x=> class r x)
    (substrate r) (quotient r).
Definition canon_projc f := BL(fun x=> gclass f x)
    (source f) (quotient (graph f)).
Lemma source_canon_proj: forall r,
    source (canon_proj r) = substrate r.
Lemma source_canon_projc: forall f,
    source (canon_projc f) = source f.
Lemma target_canon_proj: forall r,
    target (canon_proj r) = quotient r.
```

```
Lemma target_canon_projc: forall f,
    target (canon_projc f) = quotient (graph f).
Lemma function_canon_proj: forall r,
    is_equivalence r -> is_function (canon_proj r).
Lemma function_canon_projc: forall r,
    equivalence_cor r -> is_function (canon_projc r).
Lemma W_canon_proj: forall r x,
    is_equivalence r ->
    inc x (substrate r) -> W x (canon_proj r) = class r x.
Lemma W_canon_projc: forall r x,
    equivalence_cor r ->
    inc x (source r) -> W x (canon_projc r) = gclass r x.
Lemma related_graph_canon_proj: forall r x y,
    is_equivalence r -> inc x (substrate r) -> inc y (quotient r) ->
    related (graph (canon_proj r)) x y = inc x y.
Lemma canon_proj_show_surjective:forall r x,
    is_equivalence r-> inc x (quotient r)
    ->W (rep x)(canon_proj r) =x.
Lemma canon_proj_surjective:forall r,
    is_equivalence r-> surjective (canon_proj r).
Lemma canon_projc_surjective:forall r,
    equivalence_cor r-> surjective (canon_projc r).
```

The next lemma says that if $\mathrm{A} \subset \mathrm{E}$ and $x \subset \overline{\mathrm{~A}}$ (where $\overline{\mathrm{A}}$ is the set of all \bar{a} for $a \in \mathrm{~A}$) then $x \in \mathrm{E} / \mathrm{R}$. We then state Criterion 55 [2, p. 115]: $u \stackrel{\mathrm{R}}{\sim} v$ if and only if $\bar{u}=\bar{v}$. The exact Bourbaki statement is "Let R be an equivalence relation on a set E , and let p be the canonical mapping of E onto E / R. Then $\mathrm{R}\{x, y\} \Longleftrightarrow(p(x)=p(y))$ ". The correct statement would be $\mathrm{R} \xi x, y \xi$ if and only if $x \in \mathrm{E}$ and $y \in \mathrm{E}$ and $p(x)=p(y)$. The proof is a bit sttrange. It starts with: "let x and y be elements of E such that $(x, y) \in \mathrm{G}$. Then $x \in \mathrm{E}$ and $y \in \mathrm{E}$; let us show..."

```
Lemma sub_im_canon_proj_quotient: forall r a x,
    is_equivalence r -> sub a (substrate r) ->
    inc x (image_by_fun (canon_proj r) a) ->
    inc x (quotient r).
Lemma related_e_rw: forall r u v,
    is_equivalence r -> (related r u v =
            (inc u (source (canon_proj r)) &
                inc v (source (canon_proj r)) &
                W u (canon_proj r) = W v (canon_proj r))).
Lemma related_ec_rw: forall f u v,
    equivalence_cor f-> (related (graph f) u v =
            (inc u (source (canon_projc f)) & inc v (source (canon_projc f)) &
                W u (canon_projc f) = W v (canon_projc f))).
```

If we consider the equivalence associated to the equality on a set E then each class is a singleton and E / R is equipotent to E.

```
Lemma class_diagonal: forall x u,
    inc u x -> class (diagonal x) u = singleton u.
Lemma bijective_canon_proj_diagonal: forall x,
    bijective (canon_proj (diagonal x)).
```

Consider now the equivalence associated to pr_{1}. We consider a product $\mathrm{E} \times \mathrm{F}$ and the relation $(x, y) \sim(x, z)$ for every x, y and z. This is an equivalence on $\mathrm{E} \times \mathrm{F}$, and classes are objects of the form $\{x\} \times F$. The function $x \mapsto\{x\} \times F$ is a bijection of E onto $(\mathrm{E} \times \mathrm{F}) / \mathrm{R}$.

```
Definition first_proj_equiv (x y:Bet) :=
    equivalence_associated(first_proj (product x y)).
Definition first_proj_equivalence (x y :Bset) :=
    eq_rel_associated (first_proj (product x y)).
Lemma first_proj_equiv_pr: forall x y a b,
    first_proj_equiv x y a b =
    (inc a (product x y) & inc b (product x y) & P a = P b).
Lemma graph_first_proj: forall x y,
    is_graph_of(first_proj_equivalence x y)(first_proj_equiv x y).
Lemma equivalence_first_proj: forall x y,
    is_equivalence (first_proj_equivalence x y).
Lemma first_proj_equivalence_related: forall x y a b,
    related (first_proj_equivalence x y) a b =
    (inc a (product x y) & inc b (product x y) & P a = P b).
Lemma substrate_first_proj_equivalence: forall x y,
    substrate(first_proj_equivalence x y) = product x y.
Lemma first_proj_equivalence_class:forall x y z,
    nonempty y ->
    is_class (first_proj_equivalence x y) z =
    exists u, inc u x & z = product (singleton u) y. (* 27 *)
Lemma first_proj_equiv_proj: forall x y,
    nonempty y->
    bijective (fun_function (fun u => product (singleton u) y)
            x (quotient (first_proj_equivalence x y))). (* 17 *)
```

For any equivalence, the quotient is a partition of the substrate.

```
Lemma sub_quotient_powerset: forall r,
    is_equivalence r -> sub (quotient r) (powerset (substrate r)).
Lemma partition_from_equivalence: forall r,
    is_equivalence r ->
    partition(quotient r)(substrate r).
```

We consider now the converse. Let f be a function and F its graph. Assume that F is a partition of X . We shall write X_{i} instead of $f(i)$. We can consider the relation $x \sim y$ defined by: there is an i such that $x \in \mathrm{X}_{i}$ and $y \in \mathrm{X}_{i}$. This relation has a graph on X , say r. Then r is an equivalence on X . We have $a \in \bar{b}$ (i.e., a and b are related by r) if and only if there is an i such that $a \in \mathrm{X}_{i}$ and $b \in \mathrm{X}_{i}$. If a set a is a class of r, then it has the form X_{i}. The converse is true if X_{i} is not empty. In other words, the image of f is the quotient X / r. We restate it as follows: if f is a function and the graph of f is a true partition of X , then $i \mapsto f(i)$ is a bijection from E to X / r.

```
Definition in_same_coset f x y:=
    exists i, inc i (source f) & inc x (W i f) & inc y (W i f).
Definition partition_relation f x :=
    graph_on (in_same_coset f) x.
Lemma reflexive_isc: forall f x, is_function f ->
    partition_fam (graph f) x -> reflexive_r (in_same_coset f) x.
Lemma symmetric_isc: forall f, symmetric_r (in_same_coset f).
Lemma transitive_isc: forall f x, is_function f ->
    partition_fam (graph f) x -> transitive_r (in_same_coset f).
```

```
Lemma equivalence_isc: forall f x, is_function f ->
    partition_fam (graph f) x -> equivalence_re (in_same_coset f) x.
Lemma partition_rel_graph: forall f x,
    is_function f -> partition_fam (graph f) x ->
    is_graph_of (partition_relation f x) (in_same_coset f).
Lemma partition_relation_pr: forall f x a b,
    is_function f -> partition_fam (graph f) x ->
    related (partition_relation f x) a b = in_same_coset f a b.
Lemma partition_is_equivalence: forall f x,
    is_function f -> partition_fam (graph f) x ->
    is_equivalence (partition_relation f x).
Lemma substrate_partition_relation: forall f x,
    is_function f -> partition_fam (graph f) x ->
    substrate (partition_relation f x)= x.
Lemma partition_relation_class: forall f x a,
    is_function f -> partition_fam (graph f) x ->
    is_class (partition_relation f x) a
    -> exists u, inc u (source f) & a = W u f.
Lemma partition_relation_class2: forall f x u,
    is_function f -> partition_fam (graph f) x ->
    inc u (source f) -> nonempty (W u f)
    -> is_class (partition_relation f x) (W u f).
Lemma bijective_partition_fun: forall f x,
    is_function f -> partition_fam (graph f) x ->
    (forall u, inc u (source f) -> nonempty (W u f))
    -> bijective (fun_function (fun u => W u f)
            (source f) (quotient (partition_relation f x))).
Lemma bijective_partition_fun: forall f x,
    is_function f -> partition_fam (graph f) x ->
    (forall u, inc u (source f) -> nonempty (W u f))
    -> bijective (fun_function (fun u => W u f)
            (source f) (quotient (partition_relation f x))).
```

With the same notations, a system of representatives is a set S such that $X_{i} \cap S$ is a singleton. The same name is given to an injective function g whose image is a system of representatives. In this case, for every i there is a unique j such that $g(j) \in X_{i}$. Conversely if this condition holds and g is injective, it is a system of representatives. As a consequence, every right inverse of the canonical projection of X on the quotient set defined by the partition X_{i} of X is a system of representatives.

```
Definition representative_system s f x :=
    is_function f & partition_fam (graph f) x & sub s x
    & (forall i, inc i (source f) -> is_singleton (intersection2 (W i f) s)).
Definition representative_system_function g f x :=
    injective g & (representative_system (range (graph g)) f x).
Lemma rep_sys_function_pr: forall g f x i,
    representative_system_function g f x -> inc i (source f)
    -> exists_unique (fun a=> inc a (source g) & inc (W a g) (W i f)).
Lemma rep_sys_function_pr2: forall g f x,
    injective g -> is_function f -> partition_fam (graph f) x -> sub (target g) x
    -> (forall i, inc i (source f)
            -> exists_unique (fun a=> inc a (source g) & inc (W a g) (W i f)))
```

```
    -> representative_system_function g f x.
Lemma section_canon_proj_pr: forall g f x y r,
    r = partition_relation f x -> is_function f -> partition_fam (graph f) x
    -> is_right_inverse g (canon_proj r) ->
    inc y x ->
    related r y (W (class r y) g). (* 15 *)
Lemma section_is_representative_system_function: forall g f x,
    is_function f -> partition_fam (graph f) x
    -> is_right_inverse g (canon_proj (partition_relation f x)) ->
    (forall u, inc u (source f) -> nonempty (W u f)) ->
    representative_system_function g f x. (* 45 *)
```


7.3 Relations compatible with an equivalence relation

We say that $\mathrm{P}(x)$ is compatible with \sim if $\mathrm{P}(x)$ and $x \sim y$ imply $\mathrm{P}(y)$. Every property is compatible with the equality.

```
Definition compatible_with_equiv_p (p:EP)(r:Bset) :=
    forall x x', p x -> related r x x' -> p x'.
Lemma trivial_equiv: forall p x,
    compatible_with_equiv_p p (diagonal x).
```

If p is compatible with \sim, we can define $\mathrm{P}(t)$ on the quotient E / R of \sim by:

$$
t \in \mathrm{E} / \mathrm{R} \text { and }(\exists x)(x \in \operatorname{tand} \mathrm{P} \xi x \xi)
$$

It is said to be induced by $p\{x\}$ on passing to the quotient (with respect to x) with respect to R. If there is $x \in t$ with $p(x)$, then for all $x \in t$ we have $p(x)$ This is Criterion C56. If x is in the substrate, then $p(x)$ is equivalent to $\mathrm{P}(\bar{x})$ where \bar{x} is the class of x.

```
Definition relation_on_quotient p r :=
    fun t => inc t (quotient r) & exists x, inc x t & p x.
Lemma rel_on_quo_pr: forall p r t,
    is_equivalence r -> compatible_with_equiv_p p r ->
    relation_on_quotient p r t = (inc t (quotient r) & forall x, inc x t -> p x).
Lemma rel_on_quo_pr2: forall p r y,
    is_equivalence r -> compatible_with_equiv_p p r ->
    (inc y (substrate r) & relation_on_quotient p r (W y (canon_proj r))) =
    (inc y (substrate r) & p y).
```


7.4 Saturated subsets

A subset A of the substrate of a relation r is said saturated if $x \in A$ is compatible with r. This is the same as saying that for every $y \in A$ the class of y is a subset of A, or that there exists a set B formed by classes modulo r whose union is A .

```
Definition saturated(r x:Bset) := compatible_with_equiv_p (fun y=> inc y x) r.
Lemma saturated_pr: forall r x,
    is_equivalence r -> sub x (substrate r) ->
```

```
    (saturated r x) = (forall y, inc y x -> sub (class r y) x).
Lemma saturated_pr2: forall r x,
    is_equivalence r -> sub x (substrate r) ->
    (saturated r x) = exists y, (forall z, inc z y -> is_class r z)
            & x = union y. (* 16 *)
```

Given a function f and a set X , we consider X_{f} to be $f^{-1}\langle f\langle\mathrm{X}\rangle\rangle$. We have $y \in \mathrm{X}_{f}$ if and only if there is a $z \in \mathrm{X}$ such that $f(y)=f(z)$. If we have an equivalence relation r and f is the canonical projection onto the quotient set, then $f(y)=f(z)$ is the same as $\underset{\sim}{\sim} z$. If X is the singleton $\{x\}$, then X_{f} is the class of x modulo r. As a consequence X is saturated if and only if $\mathrm{X}=\mathrm{X}_{f}$. If X is part of the substrate, it is saturated if and only if it is the inverse image (of some set) by the canonical projection on the quotient set.

```
Definition inverse_direct_value f x :=
    image_by_fun (inverse_fun f) (image_by_fun f x).
Lemma class_is_inv_direct_value: forall r x,
    is_equivalence r -> inc x (substrate r) ->
    class r x = inverse_direct_value (canon_proj r) (singleton x). (* 21 *)
Lemma saturated_pr3: forall r x,
    is_equivalence r -> sub x (substrate r) ->
    saturated r x = (x= inverse_direct_value (canon_proj r) x). (* 21 *)
Lemma saturated_pr4: forall r x,
    is_equivalence r -> sub x (substrate r) ->
    saturated r x = (exists b, sub b (quotient r)
            & x = image_by_fun (inverse_fun (canon_proj r)) b).
```

The following lemmas show that saturated behaves friendly with union, intersection and complement.

```
Lemma saturated_union: forall r x,
    is_equivalence r -> (forall y, inc y x -> sub y (substrate r)) ->
    (forall y, inc y x -> saturated r y) ->
    (sub (union x) (substrate r) & saturated r (union x)).
Lemma saturated_intersection : forall r x,
    is_equivalence r -> nonempty x ->
    (forall y, inc y x -> sub y (substrate r)) ->
    (forall y, inc y x -> saturated r y) ->
    (sub (intersection x) (substrate r) & saturated r (intersection x)).
Lemma saturated_complement : forall r a,
    is_equivalence r -> sub a (substrate r) -> saturated r a ->
    saturated r (complement (substrate r) a).
```

The set X_{f} is called the saturation of x by r if f is the canonical projection associated to r. It is the union of classes of elements of x. It is the smallest saturated set that contains x. If X_{i} is a family of sets, A_{i} their saturations, then the saturation of $\cup \mathrm{X}_{i}$ is $\cup \mathrm{A}_{i}$.

```
Definition saturation_of (r x:Bset):=
    inverse_direct_value (canon_proj r) x.
Lemma saturation_of_pr: forall r x,
    is_equivalence \(r\)-> sub \(x\) (substrate \(r\) ) \(\rightarrow\)
    saturation_of \(\mathrm{r} x=\)
    union (Zo (quotient r) (fun \(z=>\) exists i, inc i \(x \& z=c l a s s r i)\) ). (* \(31 *\) )
Lemma saturation_of_smallest: forall r x,
    is_equivalence \(r\)-> sub \(x\) (substrate r) ->
    (saturated \(r\) (saturation_of \(r\) ) \&
```

```
    sub x (saturation_of r x)
    & (forall y, sub y (substrate r) -> saturated r y -> sub x y
    -> sub (saturation_of r x) y)). (* 32 *)
Definition union_image x f:=
    union (Zo x (fun z=> exists i, inc i (source f) & z = W i f)).
Lemma saturation_of_union: forall r f g,
    is_equivalence r -> is_function f -> is_function g ->
    (forall i, inc i (source f) -> sub (W i f) (substrate r)) ->
    source f = source g ->
    (forall i, inc i (source f) -> saturation_of r (W i f) = W i g)
    -> saturation_of r (union_image (powerset(substrate r)) f) =
    union_image (powerset(substrate r)) g. (* 28 *)
```


7.5 Mappings compatible with equivalence relations

We start with some properties of the function s that maps a non-empty set x to a representative: If R is an equivalence relation, this is a function from E / R to E; it is a section (right inverse) of the canonical projection.

```
Definition section_canon_proj (r:Bset) :=
    fun_function rep (quotient r) (substrate r).
Lemma source_section_canon_proj: forall r,
    source (section_canon_proj r) = (quotient r).
Lemma target_section_canon_proj: forall r,
    target (section_canon_proj r) = (substrate r).
Lemma axioms_section_canon_proj:forall r,
    is_equivalence r ->
    transf_axioms rep (quotient r) (substrate r).
Lemma W_section_canon_proj: forall r x,
    is_equivalence r ->
    inc \(x\) (quotient \(r\) ) \(->\) W x (section_canon_proj \(r\) ) \(=(r e p x)\).
Lemma function_section_canon_proj: forall r,
    is_equivalence r -> is_function (section_canon_proj r).
Lemma right_inv_canon_proj: forall r,
    is_equivalence r ->
    is_right_inverse (section_canon_proj r) (canon_proj r).
```

We say that a function f is compatible with R if the relation $f(x)=y$ is compatible; by definition this is: if $x \stackrel{\mathrm{R}}{\sim} x^{\prime}$ then $f(x)=y$ implies $f\left(x^{\prime}\right)=y$. By symmetry, these two relations are equivalent, and we can eliminate y. We first prove that our definition is the same as the original one, then show that this means that the function is constant on equivalence classes. This means that f can be factored through the canonical projection g (see below; we show here $g(x)=g(y)$ implies $f(x)=f(y)$). (see diagram (retraction/section) on page 66).

```
Definition compatible_with_equiv f r :=
    is_function f & source f = substrate r &
    forall x x', related r x x' -> W x f = W x' f.
Lemma compatible_with_equiv_pr: forall f r,
    is_function f -> source f = substrate r ->
    compatible_with_equiv f r =
```

```
    (forall y, compatible_with_equiv_p (fun x => y = W x f) r).
Lemma compatible_constant_on_classes: forall f r x y,
    is_graph r ->
    compatible_with_equiv f r -> inc y (class r x) -> W x f = W y f.
Lemma compatible_constant_on_classes2: forall f r x,
    is_equivalence r -> compatible_with_equiv f r ->
    is_constant_function(restriction_function f (class r x)).
Lemma compatible_with_proj: forall f r x y,
    is_equivalence r -> compatible_with_equiv f r ->
    inc x (substrate r) -> inc y (substrate r) ->
    W x (canon_proj r) = W y (canon_proj r) -> W x f = W y f.
```

Given two relations r and s, we say that the function f is compatible with r and s if $g \circ f$ is compatible with r, when g is the canonical projection of F / s. We can restate this as: $x \underset{\sim}{\sim} y$ implies $f(x) \stackrel{s}{\sim} f(y)$. If h is the canonical projection of E / r, then $h(x)=h(y)$ implies that $f(x)$ and $f(y)$ have the same class modulo s.

```
Definition compatible_with_equivs f r r' :=
    is_function f & target f = substrate r' &
    compatible_with_equiv (compose (canon_proj r') f) r.
Lemma compatible_with_pr:forall r r' f x y,
    is_equivalence r -> is_equivalence r' ->
    compatible_with_equivs f r r' ->
    related r x y -> related r' (W x f) (W y f).
Lemma compatible_with_pr2:forall r r' f,
    is_equivalence r -> is_equivalence r' ->
    is_function f ->
    target f = substrate r'-> source f = substrate r->
    (forall x y, related r x y >> related r' (W x f) (W y f)) ->
    compatible_with_equivs f r r'.
Lemma compatible_with_proj3 :forall r r' f x y,
    is_equivalence r -> is_equivalence r' ->
    compatible_with_equivs f r r'->
    inc x (substrate r) -> inc y (substrate r) ->
    W x (canon_proj r) = W y (canon_proj r) ->
    class r' (W x f) = class r' (W y f).
```

Assume that f is compatible with an equivalence r on E , let g be the canonical projection onto E / r and s a section of g. If f is compatible with r, there exists a unique function h such that $h \circ g=f$ and $h=f \circ s$. This mapping is said to be induced by f on passing to the quotient. This is critezrion C57 (for details, see page 193).

```
Definition fun_on_quotient r f :=
    compose f (section_canon_proj r).
Lemma exists_fun_on_quotient: forall f r,
    is_equivalence r -> is_function f -> source f = substrate r ->
    compatible_with_equiv f r =
    (exists h, composable h (canon_proj r) & compose h (canon_proj r) = f).
Lemma exists_unique_fun_on_quotient: forall f r h,
    is_equivalence r -> compatible_with_equiv f r ->
    composable h (canon_proj r) -> compose h (canon_proj r) = f ->
    h = fun_on_quotient r f.
Lemma compose_foq_proj :forall f r,
    is_equivalence r -> compatible_with_equiv f r ->
    compose (fun_on_quotient r f) (canon_proj r) = f.
```


(fun on quotient)

Assume that f is a function from E into E^{\prime} on which we have equivalence relations r and r^{\prime}. Let π and π^{\prime} be the canonical projections onto E / r and $\mathrm{E}^{\prime} / r^{\prime}, s$ and s^{\prime} associated sections. We can consider $f=f \circ s^{\prime}$, the mapping induced by f on passing on the quotient, or $f^{\prime \prime}=\pi \circ f \circ s$, the mapping induced by f on passing to the quotients with respect to r and s. We consider two cases: f is a mapping, and f is a graph. In order to simplify the statements, we write X and X^{\prime} instead of is_equivalence r or is_equivalence r^{\prime}.

```
Definition fun_on_rep f:EE := fun x=> f(rep x).
Definition fun_on_reps r' f := fun x=> W (f(rep x)) (canon_proj r').
Definition function_on_quotient r f b :=
    BL(fun_on_rep f) (quotient r)(b).
Definition function_on_quotients r r' f :=
    BL(fun_on_reps r' f)(quotient r)(quotient r').
Definition fun_on_quotients r r' f :=
    compose (compose (canon_proj r') f) (section_canon_proj r).
Lemma source_foq: forall r f b,
    source (function_on_quotient r f b)= quotient r.
Lemma source_foqs: forall r r' f,
    source (function_on_quotients r r' f)= quotient r.
Lemma source_foqc: forall r f,
    source (fun_on_quotient r f)= quotient r.
Lemma source_foqcs: forall r r' f,
    source (fun_on_quotients r r' f)= quotient r.
Lemma target_foq: forall r f b, target (function_on_quotient r f b) = b.
Lemma target_foqs: forall r r' f , target (function_on_quotients r r' f)= quotient r'.
Lemma target_foqc: forall r f, target (fun_on_quotient r f)= target f.
Lemma target_foqcs: forall r r' f, target(fun_on_quotients r r' f)= quotient r'.
Lemma axioms_foq: forall r f b, X->
    transf_axioms f (substrate r) b ->
    transf_axioms (fun_on_rep f) (quotient r) b.
Lemma axioms_foqs: forall r r' f, X -> X' ->
    transf_axioms f (substrate r)(substrate r') ->
    transf_axioms (fun_on_reps r' f) (quotient r) (quotient r').
Lemma axioms_foqc: forall r f, X->
    is_function f -> source f = substrate r ->
    composable f (section_canon_proj r).
Lemma axioms_foqcs:forall r r' f, X-> X'->
    is_function f >> source f = substrate r -> target f = substrate r' ->
    composable (compose (canon_proj r') f) (section_canon_proj r).
Lemma function_foq:forall r f b, X->
    transf_axioms f (substrate r) b ->
    is_function (function_on_quotient r f b).
Lemma function_foqs: forall r r' f, X-> X' ->
    transf_axioms f (substrate r) (substrate r') ->
    is_function (function_on_quotients r r' f).
```

```
Lemma function_foqc: forall r f, X-> X' ->
    source \(f=\) substrate \(r\)->
    is_function (fun_on_quotient \(r\) f).
Lemma function_foqcs:forall r r' f, X-> X' ->
    is_function \(f\)-> source \(f=\) substrate \(r ~->~ t a r g e t ~ f ~=~ s u b s t r a t e ~ r ' ~->~\)
    is_function (fun_on_quotients r r' f).
Lemma W_foq:forall r f b x, X->
    transf_axioms f (substrate r) b ->
    inc \(x\) (quotient \(r\) ) ->
    \(\mathrm{W} x\) (function_on_quotient \(\mathrm{r} f \mathrm{~b}\) ) \(=\mathrm{f}(\mathrm{rep} \mathrm{x}\) ).
Lemma W_foqc:forall r f x, X ->
        is_function f ->
    source \(f=\) substrate \(r\)-> inc \(x\) (quotient \(r\) ) ->
    \(\mathrm{W} x\) (fun_on_quotient \(r\) f) \(=W\) (rep \(x\) ) \(f\).
Lemma W_foqs: forall r r' f x, X -> X' ->
    transf_axioms f (substrate r) (substrate r') -> inc \(x\) (quotient r) ->
    W x (function_on_quotients r r' \(f\) ) = class r' ( \(f(r e p x)\) ).
Lemma W_foqcs:forall r r'f \(x\), X \(->\) X' \(\rightarrow\)
    is_function \(f\)-> source \(f=\) substrate \(r ~->~ t a r g e t ~ f ~=~ s u b s t r a t e ~ r, ~->~\)
    inc \(x\) (quotient \(r\) ) ->
```


More lemmas; statement fun_on_quotient_pr4 is the diagram on the right part of (fun on quotient) on page 128 .

```
Lemma fun_on_quotient_pr: forall r f x,
    W x f = fun_on_rep (fun w => W x f) (W x (canon_proj r)).
Lemma fun_on_quotient_pr2: forall r r' f x,
    W (W x f) (canon_proj r') =
    fun_on_reps r' (fun w => W x f) (W x (canon_proj r)).
Lemma composable_fun_proj: forall r f b, X->
    transf_axioms f (substrate r) b ->
    composable (function_on_quotient r f b) (canon_proj r).
Lemma composable_fun_projs: forall r r' f, X -> X' ->
    transf_axioms f (substrate r) (substrate r') ->
    composable (function_on_quotients r r' f) (canon_proj r).
Lemma composable_fun_projc: forall r f, X->
    compatible_with_equiv f r ->
    composable (fun_on_quotient r f) (canon_proj r).
Lemma composable_fun_projcs: forall r r' f, X-> X' ->
    compatible_with_equivs f r r'->
    composable (fun_on_quotients r r' f) (canon_proj r).
Lemma fun_on_quotient_pr3: forall r f x, X->
    inc x (substrate r) -> compatible_with_equiv f r ->
    W x f = W (W x (canon_proj r)) (fun_on_quotient r f).
Lemma fun_on_quotient_pr4: forall r r' f, X-> X' ->
    compatible_with_equivs f r r'->
    compose (canon_proj r') f = compose (fun_on_quotients r r' f)(canon_proj r).
Lemma fun_on_quotient_pr5: forall r r' f x, X-> X'->
    compatible_with_equivs f r r'->
    inc x (substrate r) ->
    W (W x f) (canon_proj r') =
    W (W x (canon_proj r)) (fun_on_quotients r r' f).
Lemma compose_fun_proj_ev: forall r f b x, X->
    compatible_with_equiv (fun_function f (substrate r) b) r ->
    inc x (substrate r) ->
    transf_axioms f (substrate r) b ->
```

```
    W x (compose (function_on_quotient r f b) (canon_proj r)) = f x.
Lemma compose_fun_proj_ev2: forall r r' f x, X-> X' ->
    compatible_with_equivs (fun_function f (substrate r) (substrate r')) r r' ->
    transf_axioms f (substrate r) (substrate r') ->
    inc x (substrate r) ->
    inc (f x) (substrate r') ->
    W (f x) (canon_proj r') =
    W x (compose (function_on_quotients r r, f) (canon_proj r)).
Lemma compose_fun_proj_eq: forall r f b, X->
    compatible_with_equiv (fun_function f (substrate r) b) r ->
    transf_axioms f (substrate r) b ->
    compose (function_on_quotient r f b) (canon_proj r) =
        fun_function f (substrate r) b.
Lemma compose_fun_proj_eq2: forall r r' f, X-> X' ->
    transf_axioms f (substrate r) (substrate r') ->
    compatible_with_equivs (fun_function f (substrate r) (substrate r')) r r'->
    compose (function_on_quotients r r' f) (canon_proj r) =
    compose (canon_proj r') (fun_function f (substrate r) (substrate r')).
```


(canonical decomposition)

Assume now that f is a function from E to F , and \sim the associated equivalence, for which x and y are equivalent if $f(x)=f(y)$. Then f is compatible and we can define f on the quotient. If we denote it by \bar{f}, and if \bar{x} is the class of x then $\bar{f}(\bar{x})=f(x)$. From $\bar{f}(\bar{x})=\bar{f}(\bar{y})$ we get $f(x)=f(y)$, so that x and y are in the same class: hence \bar{f} is injective. If we restrict this function to the image F^{\prime} of f we get a bijection, say f^{\prime}. The diagram (canonical decomposition) says that if we compose the projection π from E to E / \sim, the bijection f^{\prime} into F^{\prime} and the inclusion map from F^{\prime} to F , then we get f. If f is surjective then $\mathrm{F}=\mathrm{F}^{\prime}$ and we can simplify a bit: only three arrows are needed. Moreover, there is no need to restrict \bar{f} (this is shown on the right part of the diagram).

```
Lemma compatible_ea: forall f,
    is_function f ->
    compatible_with_equiv f (eq_rel_associated f).
Lemma ea_foq_injective: forall f,
    is_function f ->
    injective (fun_on_quotient (eq_rel_associated f) f).
Lemma ea_foq_on_im_bijective: forall f,
    is_function f ->
    bijective (restriction2 (fun_on_quotient (eq_rel_associated f) f)
            (quotient (eq_rel_associated f)) (range (graph f))). (* 22 *)
Lemma canonical_decompositiona: forall f,
    is_function f ->
    let r:= eq_rel_associated f in
            is_function (compose (restriction2 (fun_on_quotient r f)
                    (quotient r) (range (graph f)))
            (canon_proj r)). (* 17 *)
Lemma canonical_decomposition: forall f,
    is_function f ->
    let r:= eq_rel_associated f in
```

```
    f = compose (canonical_injection (range (graph f))(target f))
    (compose (restriction2 (fun_on_quotient r f)
        (quotient r) (range (graph f)))
    (canon_proj r)). (* 33 *)
Lemma surjective_pr7: forall f,
    surjective f ->
    canonical_injection (range (graph f))(target f) = identity_fun (target f).
Lemma canonical_decompositiona: forall f,
    is_function f ->
    let r:= eq_rel_associated f in
        is_function (compose (restriction2 (fun_on_quotient r f)
            (quotient r) (range (graph f)))
        (canon_proj r)).
Lemma canonical_decomposition_surj: forall f,
    surjective f ->
    let r:= eq_rel_associated f in
    f = compose (restriction2 (fun_on_quotient r f) (quotient r) (target f))
            (canon_proj r).
Lemma canonical_decompositionb: forall f,
    is_function f ->
    let r:= eq_rel_associated f in
            restriction2 (fun_on_quotient r f) (quotient r) (target f) =
            (fun_on_quotient r f).
Lemma canonical_decomposition_surj2: forall f,
    surjective f ->
    let r:= eq_rel_associated f in
    f = (compose (fun_on_quotient r f) (canon_proj r)).
```


7.6 Inverse image of an equivalence relation; induced equivalence relation

If ϕ is a function from E to F, S an equivalence on F , and u the canonical projection from F to F / S, the inverse image of S by ϕ is the equivalence R associated to $u \circ \phi$, characterized by $x \stackrel{\mathrm{R}}{\sim} y$ if and only if $\phi(x) \stackrel{\mathrm{S}}{\sim} \phi(y)$. If X is a class modulo S then $\phi^{-1}\langle\mathrm{X}\rangle$ is a class modulo R (if nonempty) and conversely.

```
Definition inv_image_relation f r :=
    eq_rel_associated (compose (canon_proj r) f).
Definition iirel_axioms f r :=
    is_function f & is_equivalence r & target f = substrate r.
Lemma iirel_function: forall f r,
    iirel_axioms f r >> is_function (compose (canon_proj r) f).
Lemma relation_iirel: forall f r,
    iirel_axioms f r -> is_equivalence (inv_image_relation f r).
Lemma substrate_iirel: forall f r,
    iirel_axioms f r -> substrate (inv_image_relation f r) = source f.
Lemma related_iirel: forall f r x y,
    iirel_axioms f r ->
    related (inv_image_relation f r) x y =
    (inc x (source f) & inc y (source f) & related r (W x f) (W y f)). (* 17 *)
Lemma class_iirel: forall f r x,
    iirel_axioms f r ->
    is_class (inv_image_relation f r) x =
```

```
exists y, is_class r y
    & nonempty (intersection2 y (range (graph f)))
    & x = inv_image_by_fun f y. (* 34 *)
```


(induced equivalence)

Let R be an equivalence on E, A a subset on E , and j the inclusion map $\mathrm{A} \rightarrow \mathrm{E}$. The inverse image of R by j is called the relation induced on A and is denoted by R_{A}. If x and y are in A , then they are related by R_{A} if and only if they are related by R. Classes for R_{A} are nonempty sets of the form $A \cap X$ where X is a class for R. The inclusion map is compatible with the relations. Let f and g be the canonical projections and h the function on the quotient. This function is injective, its range is the range of f. Hence h is the composition of a bijection k with the inclusion map.

```
Definition induced_relation (r a:Bset) :=
    inv_image_relation (canonical_injection a (substrate r)) r.
Definition axioms_induced_rel(r a :Bset) :=
        is_equivalence r & sub a (substrate r).
Lemma axioms_induced_rel_iirel : forall r a,
    axioms_induced_rel r a ->
    iirel_axioms (canonical_injection a (substrate r)) r.
Lemma equivalence_induced_rel: forall r a,
    axioms_induced_rel r a -> is_equivalence (induced_relation r a).
Lemma substrate_induced_rel: forall r a,
    axioms_induced_rel r a -> substrate (induced_relation r a) = a.
Lemma related_induced_rel: forall r a u v,
    axioms_induced_rel r a ->
    related (induced_relation r a) u v =
    (inc u a & inc v a & related r u v).
Lemma class_induced_rel: forall r a x,
    axioms_induced_rel r a ->
    is_class (induced_relation r a) x =
    exists y, is_class r y
            & nonempty (intersection2 y a)
            & x = (intersection2 y a).
Lemma compatible_injection_induced_rel: forall r a,
    axioms_induced_rel r a ->
    compatible_with_equivs (canonical_injection a (substrate r))
    (induced_relation r a) r.
Lemma injective_foq_induced_rel: forall r a,
    axioms_induced_rel r a ->
    injective (fun_on_quotients (induced_relation r a) r
            (canonical_injection a (substrate r))). (* 16 *)
Lemma image_foq_induced_rel: forall r a,
    axioms_induced_rel r a ->
    image_by_fun (fun_on_quotients (induced_relation r a) r
            (canonical_injection a (substrate r))) (quotient (induced_relation r a))
    = image_by_fun (canon_proj r) a. (* 54 *)
Definition canonical_foq_induced_rel r a :=
```

```
    restriction2 (fun_on_quotients (induced_relation r a) r
        (canonical_injection a (substrate r)))
    (quotient (induced_relation r a))
    (image_by_fun (canon_proj r) a).
Lemma bijective_canonical_foq_induced_re: forall r a,
    axioms_induced_rel r a -> bijective (canonical_foq_induced_rel r a). (* 15 *)
```


7.7 Quotients of equivalence relations

We say that a relation S is finer than R if S implies R . We say that an equivalence r is finer than s if $\stackrel{\mathcal{S}}{\sim}$ implies $\stackrel{r}{\sim}$, i.e., if for all x and $y, x \stackrel{\mathcal{s}}{\sim} y$ implies $x \stackrel{r}{\sim} y$. If r and s are equivalences on a same set, this is equivalent to $s \subset r$. If we denote by $\mathrm{C}_{s} x$ the class of x for s, it is also: for each x, there is an y such that $\mathrm{C}_{s} x \subset \mathrm{C}_{r} y$. Equivalently: each $\mathrm{C}_{r} y$ is saturated by s. We give two examples.

```
Definition finer_equivalence(s r:Bset):=
    forall x y, related s x y -> related r x y.
Definition finer_axioms(s r:Bset):=
    is_equivalence s & is_equivalence r & substrate r = substrate s.
Lemma finer_sub_equiv: forall s r,
    finer_axioms s r ->
    (finer_equivalence s r) = (sub s r).
Lemma finer_sub_equiv2: forall s r,
    finer_axioms s r ->
    (finer_equivalence s r) =
    (forall x, exists y, sub(class s x)(class r y)).
Lemma finer_sub_equiv3: forall s r,
    finer_axioms s r ->
    (finer_equivalence s r) =
    (forall y, saturated s (class r y)). (* 15 *)
Lemma finest_equivalence: forall r,
    is_equivalence r -> finer_equivalence (diagonal (substrate r)) r.
Lemma coarsest_equivalence: forall r,
    is_equivalence r -> finer_equivalence r (coarse (substrate r)).
```


Assume that R and S are two equivalences on E, S finer than R , and let f and g be the canonical projections. Then f is compatible with S . This gives a function h that satisfies $h\left(\mathrm{C}_{\mathrm{S}} x\right)=\mathrm{C}_{\mathrm{R}} x$; it is surjective.

```
Lemma compatible_with_finer: forall s r,
    finer_axioms s r ->
    finer_equivalence s r ->
```

```
    compatible_with_equiv (canon_proj r) s.
Lemma function_foq_finer: forall s r,
    finer_axioms s r ->
    finer_equivalence s r -> is_function(fun_on_quotient s (canon_proj r)).
Lemma function_foq_finer: forall s r,
    finer_axioms s r ->
    finer_equivalence s r -> is_function(fun_on_quotient s (canon_proj r)).
Lemma W_foq_finer: forall s r x,
    finer_axioms s r -> finer_equivalence s r -> inc x (quotient s) ->
    W x (fun_on_quotient s (canon_proj r)) = class r (rep x).
Lemma surjective_foq_finer: forall s r,
    finer_axioms s r ->
    finer_equivalence s r -> surjective(fun_on_quotient s (canon_proj r)).
```

On the quotient we can consider the equivalence induced by h. This will be denoted R / S. We have $\mathrm{C}_{\mathrm{S}} x \stackrel{\mathrm{R} / \mathrm{S}}{\sim} \mathrm{C}_{\mathrm{S}} y$ if and only if $x \stackrel{\mathrm{R}}{\sim} y$; this is the same as $g(x) \stackrel{\mathrm{R} / \mathrm{S}}{\sim} g(y)$. We have $x \in(\mathrm{E} / \mathrm{S}) /(\mathrm{R} / \mathrm{S})$ if and only if there exists $y \in \mathrm{E} / \mathrm{R}$ such that $y=g(y)$. We can consider the canonical decomposition of $h=j \circ h_{2} \circ h_{1}$. Since h is surjective, we can simplify this as $h=h_{2} \circ h_{1}$; here h_{1} is the canonical projection of E / S onto (E/S)/(R/S).

```
Definition quotient_of_relations (r s:Bset):=
    eq_rel_associated (fun_on_quotient s (canon_proj r)).
```

Lemma relation_quotient_of_relations:
forall r s, finer_axioms s r $->$ finer_equivalence s r ->
is_equivalence (quotient_of_relations r s).
Lemma substrate_quotient_of_relations:
forall r s, finer_axioms s r -> finer_equivalence s r ->
substrate (quotient_of_relations $r s$) = (quotient s).
Lemma related_quotient_of_relations: forall r s y
finer_axioms s r -> finer_equivalence s r ->
related (quotient_of_relations r s) x y $=$
(inc x (quotient s) \& inc y (quotient s) \&
related $r(r e p x)(r e p y))$.
Lemma related_quotient_of_relations_bis: forall r s x y,
finer_axioms s r -> finer_equivalence s r ->
inc x (substrate s) -> inc y (substrate s) ->
related (quotient_of_relations r s) (class s x) (class s y)
$=$ related $r \mathrm{x}$ y.
Lemma nonempty_image: forall f x,
is_function f \rightarrow nonempty $x \rightarrow$ sub x (source f) $->$
nonempty (image_by_fun f x).
Lemma cqr_aux: forall s x y u,
is_equivalence s-> sub y (substrate s) ->
$\mathrm{x}=$ image_by_fun (canon_proj s) y ->
inc $u x=$ (exists v, inc $v y \& u=c l a s s s v)$.
Lemma class_quotient_of_relations_bis: forall rsx,
finer_axioms s r -> finer_equivalence s r ->
inc x (quotient (quotient_of_relations $r s)$) =
exists y, inc y (quotient r) \& $x=$ image_by_fun (canon_proj s) y. (* 59 *)

Let S be an equivalence on E and g the canonical projection. Let T be an equivalence on the quotient, and R the inverse image of T by g. This is a relation on E, S is finer than R and R / S is nothing else than T.

Lemma quotient_canonical_decomposition: forall rs,

```
    let f := fun_on_quotient s (canon_proj r) in
    let qr := quotient_of_relations r s in
    finer_axioms s r -> finer_equivalence s r ->
    f = (compose (fun_on_quotient qr f) (canon_proj qr)).
Lemma quotient_of_relations_pr: forall s t,
    let r := inv_image_relation (canon_proj s) t in
    is_equivalence s -> is_equivalence t -> substrate t = quotient s ->
    t = quotient_of_relations r s. (* 25 *)
```


7.8 Product of two equivalence relations

Given two relations R and R^{\prime}, we can define $\mathrm{R} \times \mathrm{R}^{\prime}$ by $\left(x, x^{\prime}\right) \stackrel{\mathrm{R} \times \mathrm{R}^{\prime}}{\sim}\left(y, y^{\prime}\right)$ if and only if $x \stackrel{\mathrm{R}}{\sim} y$ and $x^{\prime} \stackrel{\mathrm{R}^{\prime}}{\sim} y^{\prime}$. In the definition that follows, we consider relations on sets E and E^{\prime}, and show that this gives a relation on $\mathrm{E} \times \mathrm{E}^{\prime}$ (the substrate is not the whole product: if E and E^{\prime} have two elements that are related, then the graphs of R and R^{\prime} have a single element, the graph of $R \times R^{\prime}$ has a single element, and its substrate has two elements, while $E \times E^{\prime}$ has four elements). If R and R^{\prime} are equivalence, so is the product, and the substrate is $E \times E^{\prime}$. A class in the product is a product of classes.

```
Definition substrate_for_prod(r r':Bset) :=
    product(substrate r)(substrate r').
Definition prod_of_relation(r r':Bset):=
    Zo(product(substrate_for_prod r r')(substrate_for_prod r r'))
    (fun y=> inc (J(P (P y))(P (Q y))) r & inc (J(Q (P y))(Q (Q y))) r').
Lemma prod_of_rel_is_rel: forall r r', is_graph (prod_of_relation r r').
Lemma substrate_prod_of_rel1: forall r r',
    sub (substrate (prod_of_relation r r'))(substrate_for_prod r r').
Lemma prod_of_rel_pr: forall r r' a b, (* 17 *)
    related (prod_of_relation r r') a b =
    ( is_pair a & is_pair b & related r (P a) (P b) & related r' (Q a) (Q b)).
Lemma substrate_prod_of_rel2:
    forall r r', is_symmetric r -> is_symmetric r' ->
        substrate (prod_of_relation r r') = substrate_for_prod r r'. (* 17 *)
Lemma prod_of_rel_refl:
    forall r r', is_reflexive r -> is_reflexive r' ->
        is_reflexive (prod_of_relation r r').
Lemma prod_of_rel_sym:
    forall r r', is_symmetric r -> is_symmetric r' ->
        is_symmetric (prod_of_relation r r').
Lemma prod_of_rel_trans:
    forall r r', is_transitive r -> is_transitive r' ->
        is_transitive (prod_of_relation r r').
Lemma substrate_prod_of_rel: forall r r',
    is_equivalence r ->is_equivalence r' ->
    substrate (prod_of_relation r r') = product(substrate r)(substrate r').
Lemma equivalence_prod_of_rel: forall r r',
    is_equivalence r -> is_equivalence r' ->
    is_equivalence (prod_of_relation r r').
Lemma related_prod_of_rel1: forall r r' x x' v,
    is_equivalence r -> is_equivalence r' ->
    inc x (substrate r) -> inc x' (substrate r') ->
    related (prod_of_relation r r') (J x x') v =
```

```
    (exists y, exists y', v = J y y' & related r x y & related r' x' y').
Lemma related_prod_of_rel2: forall r r' x x' v,
    is_equivalence r -> is_equivalence r' ->
    inc x (substrate r) -> inc x' (substrate r') ->
    related (prod_of_relation r r') (J x x') v =
    inc v (product (cut r x) (cut r' x')).
Lemma class_prod_of_rel2: forall r r' x,
    is_equivalence r -> is_equivalence r' ->
    is_class (prod_of_relation r r') x =
    exists u, exists v, is_class r u & is_class r' v & x = product u v. (* 21 *)
```

With the same notations, let π and π^{\prime} be the canonical projections. We can consider the function $\pi \times \pi^{\prime}$, it maps (x, y) to $\left(\pi(x), \pi^{\prime}(x)\right)$: its target is $(\mathrm{E} / \mathrm{R}) \times\left(\mathrm{E} / \mathrm{R}^{\prime}\right)$ This function is not the canonical projection $\pi^{\prime \prime}$ associated to $\mathrm{R} \times \mathrm{R}^{\prime}$, whose target is $(\mathrm{E} \times \mathrm{E}) /\left(\mathrm{R} \times \mathrm{R}^{\prime}\right)$. However there is a bijection h such that $\pi \times \pi^{\prime}=h \circ \pi^{\prime \prime}$.

```
Lemma function_ext_to_prod_rel: forall r r',
    is_equivalence r -> is_equivalence r' ->
    is_function (ext_to_prod(canon_proj r)(canon_proj r')).
Lemma W_ext_to_prod_rel: forall r r' x x',
    is_equivalence r -> is_equivalence r' ->
    inc x (substrate r) -> inc x' (substrate r') ->
    W (J x x') (ext_to_prod(canon_proj r)(canon_proj r')) =
    J (class r x) (class r' x').
Lemma compatible_ext_to_prod: forall r r',
    is_equivalence r -> is_equivalence r' ->
            compatible_with_equiv (ext_to_prod (canon_proj r) (canon_proj r'))
            (prod_of_relation r r').
Lemma compatible_ext_to_prod_inv: forall r r' x x',
    is_equivalence r -> is_equivalence r' ->
    is_pair x -> inc (P x) (substrate r) -> inc (Q x) (substrate r') ->
    is_pair x' -> inc (P x') (substrate r) -> inc (Q x') (substrate r') ->
    W x (ext_to_prod (canon_proj r) (canon_proj r')) =
    W x' (ext_to_prod (canon_proj r) (canon_proj r'))
    -> related (prod_of_relation r r') x x'.
Lemma related_ext_to_prod_rel: forall r r',
    is_equivalence r -> is_equivalence r' ->
    eq_rel_associated (ext_to_prod(canon_proj r)(canon_proj r')) =
    prod_of_relation r r'. (* 31 *)
Lemma decomposable_ext_to_prod_rel:forall r r',
    is_equivalence r -> is_equivalence r' ->
    exists h, bijective h &
        source h = quotient (prod_of_relation r r') &
        target h = product (quotient r) (quotient r')&
        compose h (canon_proj (prod_of_relation r r')) =
        ext_to_prod(canon_proj r)(canon_proj r'). (* 47 *)
```


7.9 Classes of equivalent objects

Let \sim be an equivalence relation; we do not assume that it has a graph. Let θx be the generic object associated to x. In Bourbaki's notation, this is $\tau_{y}(x \sim y)$. We could implement this via chooseT. Assume $x \sim x^{\prime}$. Then $x \sim y$ and $x^{\prime} \sim y$ are equivalent, and the properties of t say $\theta x=\theta x^{\prime}$. The quantity θx is the class of objects equivalent to x. Bourbaki notes that " $x \sim x$ and $x^{\prime} \sim x^{\prime}$ and $\theta x=\theta x^{\prime \prime}$ " is equivalent to $x \sim x^{\prime}$.

Assume now that there is a set T such that $y \sim y$ implies that there exists $x \in \mathrm{~T}$ such that $x \sim y$. Let Θ be the set of all θx for $x \in \mathrm{~T}$. If $y \sim y$, there exists $x \in \mathrm{~T}$ such that $x \sim y$, hence $\theta x=\theta y$ and thus $\theta y \in \Theta$. If $x \sim x$, then θx is the unique $z \in \Theta$ such that $x \sim z$.

Assume that $x \sim y$ implies $\mathrm{A} x=\mathrm{A} y$. We can consider the set of all $\mathrm{A} x$ such that $x \sim x$. If f maps t to $\mathrm{A} t$, then we have $\mathrm{A} x=f(\theta x)$. Bourbaki says that if we have an equivalence relation on a set E , then we can choose for $\mathrm{A} x$ the class of x, and f becomes a bijection from Θ into the quotient set.

We write θx and $\mathrm{A} x$ instead of $\theta(x)$ and $\mathrm{A}(x)$ in order to emphasize the fact that these objects are not functions. However, θx is a set. No code is associated to this section. It seems that this section is not used in the remaining of the work of Bourbaki; for instance, if we consider the relation X is equipotent to Y , then $\theta \mathrm{X}$ is the cardinal of X . Bourbaki proves the existence of the cardinal by repeating the arguments previously exposed in this section.

Chapter 8

Exercises

8.1 Section 1

1. Show that the relation $(x=y) \Longleftrightarrow(\forall X)((x \in X) \Longrightarrow(y \in X))$ is a theorem.
```
Lemma exercise1_1: forall x y, (x=y) = (forall z, inc x z -> inc y z).
Proof. ir. app iff_eq. ir. wrr H. ir. assert (inc x (singleton x)).
    fprops. sy. app (singleton_eq (H _ HO)). Qed.
```

2. Show that $\varnothing \neq\{x\}$ is a theorem. Deduce that $(\exists x)(\exists y)(x \neq y)$ is a theorem.
```
Lemma exercise1_2: exists x:Bset, exists y:Bset, x <> y.
Proof. assert (forall x:Bset, emptyset <> singleton x). red. ir.
    assert (inc x emptyset). rw H. fprops. elim (emptyset_pr HO).
    exists emptyset. exists (singleton emptyset). app H. Qed.
```

3. Let A and B be two subsets of a set X. Show that the relation $B \subset C A$ is equivalent to $A \subset C B$ and that the relation $\mathrm{CB} \subset \mathrm{A}$ is equivalent to $\mathrm{CA} \subset \mathrm{B}$.

We prove here only one implication, the other is obtained by symmetry.

```
Lemma exercise1_3x: forall a b x, sub a x -> sub b x ->
    (sub (complement x b) a -> sub (complement x a) b &
    sub b (complement x a) -> sub a (complement x b) ).
Proof. ir. split. ir. red. ir. rwi inc_complement H2. induction H2.
    apply by_cases with (inc x0 b). auto.
    ir. assert (inc x0 (complement x b)). rw inc_complement. intuition.
    elim H3. apply (H1 _ H5).
    ir. red. ir. rw inc_complement. split. app H.
    apply by_cases with (inc x0 b). ir. cp (H1 _ H3). rwi inc_complement H4.
    induction H4. elim H5. exact H2. auto.
Qed.
```

4. Prove that the relation $\mathrm{X} \subset\{x\}$ is equivalent to " $\mathrm{X}=\{x\}$ or $\mathrm{X}=\varnothing$ ".

Lemma exercise1_4: forall a b,
sub a (singleton b$)=(\mathrm{a}=$ singleton $\mathrm{b} \backslash / \mathrm{a}=$ emptyset).
Proof. ir. ap iff_eq. ir.

```
apply by_cases with (sub (singleton b) a). ir. left. app extensionality.
ir. right. induction (emptyset_dichot a). am. elim HO. red. ir.
induction H1. cp (H _ H1). rw (singleton_eq H2). wr (singleton_eq H3). am.
ir. induction H. rw H. ap sub_refl. rw H. ap sub_emptyset_any. Qed.
```

5. Prove that $\varnothing=\tau_{X}\left(\tau_{x}(x \in \mathrm{X}) \notin \mathrm{X}\right)$.

There is no τ is Coq, so that we cannot prove this statement formally. The Bourbaki reasoning is as follows. We use Scheme S 7 that says that if P and Q are equivalent then $\tau_{\mathrm{X}} \mathrm{P}=\tau_{\mathrm{X}} \mathrm{Q}$. The empty set is defined as $\tau_{\mathrm{X}} \mathrm{P}$ where P is $(\forall x)(x \notin \mathrm{X})$. By definition, $(\forall x) \mathrm{R}$ is $\neg(\exists x) \neg \mathrm{R}$. C23 says that $\mathrm{R} \Longleftrightarrow \mathrm{S}$ is equivalent to $\neg \mathrm{R} \Longleftrightarrow \neg \mathrm{S}$. It suffices to show that $(\exists x)(\neg x \notin \mathrm{X})$ is equivalent to $\tau_{x}(x \in \mathrm{X}) \in \mathrm{X}$. By definition of \exists this last relation is $(\exists x)(x \in \mathrm{X})$. Criterion C31 says that $(\exists x) \mathrm{P}$ and $(\exists x) \mathrm{Q}$ are equivalent if P and Q are equivalent; C 24 says $x \in \mathrm{X}$ is equivalent to $\neg x \notin \mathrm{X}$. Qed.
6. Consider $(\forall y)\left(y=\tau_{x}((\forall z)(z \in x \Longleftrightarrow z \in y))\right.$. Show that this axiom A1' implies the axiom of extent A1.

We shall not prove this in Coq for the same reason as above. Assume that A and B are two sets such that $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A}$; said otherwise $z \in \mathrm{~A} \Longleftrightarrow z \in \mathrm{~B}$. The axioms say $\mathrm{A}=\tau_{x} \mathrm{P}$ and $B=\tau_{x} \mathrm{Q}$ for some P and Q . Scheme S 7 says $\mathrm{A}=\mathrm{B}$ if P equivalent to Q , which is true by transitivity of equivalence.

8.2 Section 2

1. Let $\boldsymbol{R}\{\boldsymbol{x}, \boldsymbol{y} \boldsymbol{\xi}$ be a relation, the letters \boldsymbol{x} and \boldsymbol{y} being distinct; let \boldsymbol{z} be a letter distinct from \boldsymbol{x} and \boldsymbol{y} which does not appear in $\boldsymbol{R} \boldsymbol{\xi} \boldsymbol{x}, \boldsymbol{y} \boldsymbol{\xi}$. Show that the relation $(\exists \boldsymbol{x})(\exists \boldsymbol{y}) \boldsymbol{R}\} \boldsymbol{x}, \boldsymbol{y} \boldsymbol{\xi}$ is equivalent to

$$
\left.(\exists z)\left(z \text { is an ordered pair and } \boldsymbol{R} \xi \mathrm{pr}_{1} z, \mathrm{pr}_{2} z\right\}\right)
$$

and the relation $(\forall \boldsymbol{x})(\forall \boldsymbol{y}) \boldsymbol{R} \boldsymbol{\}} \boldsymbol{x}, \boldsymbol{y} \boldsymbol{\xi}$ is equivalent to

$$
\left.(\forall z)\left(z \text { is an ordered pair } \Longrightarrow(\boldsymbol{R}\} \mathrm{pr}_{1} z, \mathrm{pr}_{2} z \xi\right)\right) .
$$

```
Lemma exercise2_1: forall R:EEP,
( (exists x, exists y, R x y) = (exists z, is_pair z & R(P z) (Q z)) &
    (forall x, forall y, R x y) = (forall z, is_pair z -> R(P z) (Q z))).
Proof. split. app iff_eq. ir. nin H; nin H. exists (J x x0). split.
    fprops. aw. ir. induction H. induction H.
    exists (P x). exists (Q x). am.
    ap iff_eq. ir. ap H. ir. assert (is_pair (J x y)). fprops.
    cp (H _ H0). awi H1. am.
Qed.
```

2. (a) Show that the relation $\{\{x\},\{x, y\}\}=\left\{\left\{x^{\prime}\right\},\left\{x^{\prime}, y^{\prime}\right\}\right\}$ is equivalent to $x=x^{\prime}$ and $y=y^{\prime}$.
(b) Let \mathscr{T}_{0} be the theory of sets, and let \mathscr{T}_{1} be the theory which has the same schemes and explicit axioms as \mathscr{T}_{0}, except for the axiom A3. Show that if \mathscr{T}_{1} is not contradictory, then \mathscr{T}_{0} is not contradictory.

In the French version, Bourbaki defines the pair (x, y) as $\{\{x\},\{x, y\}\}$ and proves (a) as Proposition 1 (thus Propositions in this section are numbered differently in the two editions). In the English version, there is a specific sign (that looks a bit like \supset) that defines a pair, and an axiom A3. Part (b) of the exercise is then: if the French version is not contradictory, then the English version is neither.

```
Definition xpair (x y : Bset) :=
    doubleton (singleton x) (doubleton x (singleton y)).
Lemma exercise2_2 : forall x y z w,
    (xpair x y = xpair z w) = (x = z & y = w).
Proof. ir. set (p1:= xpair x y). set (p2:= xpair z w). ap iff_eq. ir.
    ufi xpair p1; ufi xpair p2. assert (inc (singleton x) p2). wr H.
    uf p1. fprops. assert (x=z). ufi p2 HO. induction (doubleton_or HO).
    app singleton_inj.
    assert (inc z (singleton x)). rw H1. fprops. sy; app singleton_eq.
    split. am. assert (inc (doubleton x (singleton y)) p2). wr H.
    uf p1. fprops. ufi p2 H2. induction (doubleton_or H2).
    assert (singleton y = z).
    assert (inc (singleton y) (singleton z)). wr H3. fprops.
    app singleton_eq. assert (inc (doubleton z (singleton w)) p1). rw H.
    uf p2. fprops. ufi p1 H5. induction (doubleton_or H5).
    assert (singleton w = z). wr H1.
    assert (inc (singleton w) (singleton x)). wr H6. fprops.
    app singleton_eq. wri H7 H4. app singleton_inj.
    assert (inc (singleton w) (doubleton x (singleton y))). wr H6. fprops.
    induction (doubleton_or H7).
    assert (inc (singleton y) (doubleton z (singleton w))). rw H6. fprops.
    induction (doubleton_or H9).
    wri H1 H10; wri H8 H10; app singleton_inj. app singleton_inj.
    sy;app singleton_inj.
    assert (inc (singleton w) (doubleton x (singleton y))). rw H3. fprops.
    induction (doubleton_or H4).
    assert (inc (singleton y) (doubleton z (singleton w))). wr H3. fprops.
    induction (doubleton_or H6).
    wri H1 H7; wri H5 H7; app singleton_inj. app singleton_inj.
    sy;app singleton_inj.
    ir. induction H. uf p1; uf p2; rw H; rw HO; tv.
Qed.
```


8.3 Section 3

1. Show that the relations $x \in y, x \subset y, x=\{y\}$ have no graph with respect to x and y.
```
Definition has_no_graph (r:EEP):=
    ~(exists G, is_graph G & forall x y, r x y = inc (J x y) G).
Definition is_universal (r:EEP):= forall x, exists y, r x y.
Definition is_universal1 (r:EEP):= forall y, exists x, r x y.
```

Let Z be the set of all x in the domain of the graph of r with $x \notin x$. Assume Z related to some y by r. We have $\mathrm{Z} \in \mathrm{Z}$ for otherwise we would have $\mathrm{Z} \notin \mathrm{Z}$ thus $\mathrm{Z} \in \mathrm{Z}$. Contradiction.

```
Lemma is_universal_pr: forall r, is_universal r -> has_no_graph r.
```

```
Proof. ir. red. red. ir. induction HO.
    set (z:=Zo(domain x)(fun w => ~ (inc w w))). set(w:=z).
    assert (inc w z). apply by_cases with (inc z z). tv.
    ir. uf z. Ztac. nin H0. aw. red in H. nin (H w). exists x0. wrr H2.
    assert (inc w w). tv. ufi z H1. Ztac. app H4.
Qed.
```

If for any y there is an x such that x is related to y by r, then r has no graph (for otherwise the opposite relation would have the inverse graph).

```
Lemma is_universal1_pr: forall r, is_universal1 r -> has_no_graph r.
Proof. ir. set (r1:= fun x y => r y x). assert (is_universal r1).
    red. ir. red in H. uf r1. induction (H x). exists x0. am.
    cp (is_universal_pr H0). red in H1. red. red. ir. app H1. induction H2.
    induction H2. exists (inverse_graph x). split. app inverse_graph_is_graph.
    ir. aw. uf r1. rw H3. tv.
Qed.
```

The result is now trivial.

```
Lemma exercise3_1:
    has_no_graph (fun x y => inc x y) &
    has_no_graph (fun x y => sub x y) &
    has_no_graph (fun x y => x = singleton y).
Proof. ir. split. app is_universal_pr. red. ir. exists (singleton x). fprops.
    split. app is_universal_pr. red. ir. exists x. fprops.
    app is_universal1_pr. red. ir. exists (singleton y). tv. Qed.
```

2. Let G be a graph. Show that the relation $\mathrm{X} \subset \mathrm{pr}_{1} \mathrm{G}$ is equivalent to $\mathrm{X} \subset \mathrm{G}^{-1}\langle\mathrm{G}\langle\mathrm{X}\rangle\rangle$.
```
Lemma exercise3_2: forall g x, is_graph g ->
    sub x (domain g) =
    sub x (image_by_graph (inverse_graph g) (image_by_graph g x)).
Proof. ir. assert (Ha:is_graph (inverse_graph g)). app inverse_graph_is_graph.
    app iff_eq. ir. red. ir. assert (inc x0 (domain g)). app HO.
    awi H2. induction H2. aw. exists x1. split. aw. exists x0. split; am.
    uf related. aw. am.
    ir. red. ir. cp (HO _ H1). awi H2. induction H2. induction H2.
    ufi related H3. awi H3. aw. exists x1. am. am. am.
Qed.
```

3. Let G, H be two graphs. Show that the relation $\mathrm{pr}_{1} \mathrm{H} \subset \mathrm{pr}_{1} \mathrm{G}$ is equivalent to $\mathrm{H} \subset \mathrm{H} \circ \mathrm{G}^{-1} \circ \mathrm{G}$. Deduce that $\mathrm{G} \subset \mathrm{G} \circ \mathrm{G}^{-1} \circ \mathrm{G}$.
```
Lemma exercise3_3a: forall g h, is_graph g -> is_graph h ->
    sub (domain h) (domain g)=
    sub h (compose_graph h (compose_graph (inverse_graph g) g)).
Proof. ir. assert (is_graph (inverse_graph g)). app inverse_graph_is_graph.
        assert (is_graph (compose_graph (inverse_graph g) g)).
        app composition_is_graph. app iff_eq. ir. red. ir.
        assert (is_pair x). app HO. assert (inc (P x) (domain g)). app H3. aw.
        exists (Q x). aw. awi H6. induction H6.
        aw. split. am. exists (P x). split. aw. split. fprops. exists x0.
        split. am. aw. aw. am.
```

ir. red. ir. awi H4. induction H4. cp (H3 _ H4). awi H5. induction H5. induction H 6 . induction H 6 . awi H 6 . induction H 6 . induction H 8 . induction H 8 . aw. exists x2. am. am. am. am. am. am.
Qed.

```
Lemma exercise3_3b: forall g, is_graph g ->
    sub g (compose_graph g (compose_graph (inverse_graph g) g)).
Proof. ir. wr (exercise3_3a H H). ap sub_refl. Qed.
```

4. If G is a graph show that $\varnothing \circ \mathrm{G}=\mathrm{G} \circ \varnothing=\varnothing$ and that $\mathrm{G}^{-1} \circ \mathrm{G}=\varnothing$ if and only if $\mathrm{G}=\varnothing$.
```
Lemma exercise3_4: forall g, is_graph g ->
    (compose_graph g emptyset = emptyset &
        compose_graph emptyset g = emptyset &
        (compose_graph (inverse_graph g) g = emptyset) = (g = emptyset)).
Proof. ir. split. set_extens. awi H0. induction HO. induction H1.
    induction H1. elim (emptyset_pr H1). fprops. am. elim (emptyset_pr HO).
    split. set_extens. awi H0. induction HO. induction H1.
    induction H1. elim (emptyset_pr H2). am. fprops. elim (emptyset_pr HO).
    app iff_eq. ir. pose (emptyset_dichot g). induction o. am. induction H1.
    assert (inc (J (P y) (P y)) emptyset). wr HO. aw. split. fprops.
    exists (Q y). split. aw. app H. aw. app H.
    app inverse_graph_is_graph. elim (emptyset_pr H2).
    ir. rw H0. set_extens. awi H1. induction H1. induction H2. induction H2.
    elim (emptyset_pr H2). fprops. app inverse_graph_is_graph.
    elim (emptyset_pr H1). Qed.
```

5. Let A, B be two sets, G a graph.

Show that $(\mathrm{A} \times \mathrm{B}) \circ \mathrm{G}=\mathrm{G}^{-1}\langle\mathrm{~A}\rangle \times \mathrm{B}$ and $\mathrm{G} \circ(\mathrm{A} \times \mathrm{B})=\mathrm{A} \times \mathrm{G}\langle\mathrm{B}\rangle$.

Lemma exercise3_5: forall g a b, is_graph g -> (compose_graph (product a b) g = product (inv_image_by_graph g a) b \& compose_graph g (product a b) = product a (image_by_graph g b)).
Proof. ir. split. assert (is_graph (compose_graph (product a b)g)). app composition_is_graph. set_extens. awi H1. induction H1. induction H2. induction H2. awi H3. ee. aw. ee. am. exists x0. split. am. am. am. fprops. fprops. awi H1. ee. nin H2. nin H2. aw. split. am. exists x0. split. am. aw. fprops. fprops. am. assert (is_graph (compose_graph g (product a b))). app composition_is_graph. set_extens. awi H1. nin H1. nin H2. nin H2. awi H2. ee. aw. ee. am. am. exists x0. split; am. fprops. am. awi H1. ee. nin H3. nin H3. aw. split. am. exists x0. split. aw. ee. fprops. am. am. am. fprops. am.
Qed.
6. For each graph G let G^{\prime} be the graph $\left(\mathrm{pr}_{1} \mathrm{G} \times \mathrm{pr}_{2} \mathrm{G}\right)-\mathrm{G}$. Show that $\left(\mathrm{G}^{-1}\right)^{\prime}=\left(\mathrm{G}^{\prime}\right)^{-1}$, and that $\mathrm{G} \circ\left(\mathrm{G}^{-1}\right)^{\prime} \subset \Delta_{\mathrm{B}}^{\prime},\left(\mathrm{G}^{-1}\right)^{\prime} \circ \mathrm{G} \subset \Delta_{\mathrm{A}}^{\prime}$, if $\mathrm{A} \supset \mathrm{pr}_{1} \mathrm{G}$ and $\mathrm{B} \supset \mathrm{pr}_{2} \mathrm{G}$. Show that $\mathrm{G}=\left(\mathrm{pr}_{1} \mathrm{G}\right) \times\left(\mathrm{pr}_{2} \mathrm{G}\right)$ if and only if $\mathrm{G} \circ\left(\mathrm{G}^{-1}\right)^{\prime} \circ \mathrm{G}=\varnothing$.

```
Definition complement_graph g :=
    complement(product (domain g)(range g)) g.
```

Lemma complement_graph_g : forall g, is_graph (complement_graph g).

```
Proof. red. uf complement_graph. ir. rwi inc_complement H. nin H.
    rwi inc_product H. nin H; am. Qed.
Lemma exercise3_6a: forall g, is_graph g ->
    complement_graph (inverse_graph g) = inverse_graph(complement_graph g).
Proof. ir. uf complement_graph. set_extens. rwi inc_complement HO. nin HO.
    rwi domain_inverse HO. rwi range_inverse HO. rwi inc_product HO. ee.
    rw inverse_graph_pr. split. am. rw inc_complement. split.
    app product_pair_inc. red. ir. app H1. rw inverse_graph_pr. split. am. am.
    am. cp (complement_graph_g (g:=g)). am. am. am.
    rwi inverse_graph_pr H0. nin H0. rwi inc_complement H1. nin H1.
    rwi inc_product H1. rwi pr1_pair H1; rwi pr2_pair H1. ee.
    rw inc_complement. split. app product_inc. rww domain_inverse.
    rww range_inverse. red. ir. app H2. rwi inverse_graph_pr H5. nin H5. am.
    am. cp (complement_graph_g (g:=g)). am.
Qed.
Lemma exercise3_6b: forall g b, is_graph g -> sub (range g) b ->
    sub (compose_graph g (complement_graph (inverse_graph g)))
                (complement_graph (diagonal b)).
Proof. ir. red. ir. awi H1. nin H1. nin H2. nin H2. ufi complement_graph H2.
    rwi inc_complement H2. nin H2. rwi domain_inverse H2; rwi range_inverse H2.
    rwi inc_product H2. rwi pr1_pair H2; rwi pr2_pair H2. ee.
    uf complement_graph. rw inc_complement. split. app product_inc.
    rw domain_diagonal. app H0. rw range_diagonal. app H0. aw. exists x0. am.
    red. ir. app H4. aw. rwi inc_diagonal H7. ee. rww H9. am. am. am.
    cp (complement_graph_g (g:=(inverse_graph g))). am. am.
Qed.
Lemma exercise3_6c: forall a g, is_graph g -> sub (domain g) a ->
    sub (compose_graph (complement_graph (inverse_graph g)) g)
                (complement_graph (diagonal a)).
Proof. ir. red. ir. awi H1. nin H1. nin H2. nin H2. ufi complement_graph H3.
    rwi inc_complement H3. nin H3. rwi domain_inverse H3; rwi range_inverse H3.
    rwi inc_product H3. rwi pr1_pair H3; rwi pr2_pair H3. ee.
    uf complement_graph. rw inc_complement. split. app product_inc.
    rw domain_diagonal. app HO. aw. exists x0. am. rw range_diagonal. app HO.
    red. ir. app H4. aw. rwi inc_diagonal H7. ee. wrr H9. am. am. am. am.
    cp (complement_graph_g (g:=(inverse_graph g))). am.
Qed.
Lemma exercise3_6d: forall g, is_graph g ->
    ( g = product (domain g) (range g) ) =
    (compose_graph g (compose_graph (complement_graph (inverse_graph g)) g)
    = emptyset ).
Proof. ir. rw (exercise3_6a H). set (k:= complement_graph g).
    assert( (g = product (domain g) (range g)) = (k = emptyset)).
    app iff_eq. ir. uf k. uf complement_graph. wr HO. app complement_itself.
    uf k. uf complement_graph. ir. app extensionality. app sub_graph_prod.
    red. ir. apply by_cases with (inc x g). tv. ir.
    assert (inc x emptyset). wr HO. rw inc_complement. split;am.
    elim (emptyset_pr H3). rw HO.
    app iff_eq. ir. rw H1. rw inverse_graph_emptyset.
    cp (exercise3_4 H). ee. rw H3. rw H2. tv.
    ir. cp (emptyset_dichot k). nin H2. am. nin H2. cp H2.
    ufi k H2. ufi complement_graph H2. rwi inc_complement H2. nin H2.
    rwi inc_product H2. ee. awi H5; awi H6. nin H5; nin H6.
```

```
    assert (inc (J x0 x) emptyset). wr H1. aw. split. fprops.
    exists (P y). split. aw. split. fprops. exists (Q y). split.
    am. aw. uf k. app complement_graph_g.
    app inverse_graph_is_graph. am. app composition_is_graph.
    elim (emptyset_pr H7). am. am. am.
Qed.
```

7. A graph G is functional if and only if for each set X we have $\mathrm{G}\left\langle\mathrm{G}^{-1}\langle\mathrm{X}\rangle\right\rangle \subset \mathrm{X}$.
```
Lemma exercise3_7: forall g, is_graph g ->
    fgraph g = (forall x, sub (image_by_graph g (inv_image_by_graph g x)) x).
Proof. ir. assert (Ha: is_graph (inverse_graph g)). app inverse_graph_is_graph.
    uf inv_image_by_graph. app iff_eq. ir. red. ir. awi H1. nin H1.
    nin H1. awi H1. nin H1. nin H1. ufi related H3. awi H3. ufi related H2.
    red in H0. nin H0. assert (P(J x1 x2) = P (J x1 x0)). aw.
    cp (H4 _ _ H3 H2 H5). cp (pr2_injective H6). wrr H7. am. am. am.
    ir. red. split. am. ir. app pair_extensionality. app H. app H.
    app singleton_eq. app (HO (singleton (Q y))). aw. exists (P x). split.
    aw. exists (Q y). split. app singleton_inc. uf related. aw.
        rw H3. aw. app H. uf related. aw. app H.
Qed.
```

8. Let A, B be two sets, let Γ be a correspondence between A and B , and let Γ^{\prime} be a correspondence between B and A. Show that if $\Gamma^{\prime}(\Gamma(x))=\{x\}$ for all $x \in A$ and $\Gamma\left(\Gamma^{\prime}(y)\right)=\{y\}$ for all $y \in \mathrm{~B}$, then Γ is a bijection of A onto B and Γ^{\prime} is the inverse mapping.

There is an abuse of notation here (see exercise 11). In some cases $\Gamma(x)$ denotes $\Gamma\langle\{x\}\rangle$ and sometimes $\Gamma(\mathrm{X})$ denotes $\Gamma\langle\mathrm{X}\rangle$. The proof is a bit longish. In the comments, G and G^{\prime} are the graphs.

```
Lemma exercise3_8: forall g g', is_correspondence g -> is_correspondence g' ->
    source \(g\) = target \(g^{\prime}->\) source \(g^{\prime}=\) target \(g\)->
    (forall x, inc x (source g) -> image_by_fun g' (image_by_fun g (singleton x))
            = singleton \(x\) ) ->
    (forall \(x\), inc \(x\) (source \(g^{\prime}\) ) -> image_by_fun g (image_by_fun g' (singleton \(x\) ))
            = singleton x ) ->
    (bijective g \& bijective g' \& g = inverse_fun g').
Proof. ir. ufi image_by_fun H3. ufi image_by_fun H4.
    assert (Ha:is_graph (graph g)). fprops.
    assert (Hb:is_graph (graph g')). fprops.
```

If $x \in$ A then x is in the domain of G (since $\Gamma^{\prime}(\Gamma(x))$ is not empty). Same with G and G^{\prime} exchanged.

```
assert (Hc:source g = domain (graph g)). app extensionality. red. ir.
cp (H3 _ H5). assert (inc x (singleton x)). app singleton_inc. wri H6 H7.
awi H7. nin H7. nin H7. awi H7. nin H7. nin H7. aw. exists x0.
wr (singleton_eq H7). am. am. am. fprops.
assert (Hd:source g' = domain (graph g')). app extensionality. red. ir.
cp (H4 _ H5). assert (inc x (singleton x)). app singleton_inc. wri H6 H7.
awi H7. nin H7. nin H7. awi H7. nin H7. nin H7. aw. exists x0.
wr (singleton_eq H7). am. am. am. fprops.
```

We show $(x, y) \in \mathrm{G}$ and $(y, z) \in \mathrm{G}^{\prime}$ implies $x=z$; same with G and G^{\prime} exchanged.

```
assert (forall x y z, inc (J x y)(graph g) -> inc (J y z)(graph g') -> x = z).
ir. assert (inc x (source g)). rw Hc. aw. exists y. am.
sy. ap singleton_eq. wr (H3 _ H7). aw. exists y. split. aw. exists x.
split. fprops. am. am.
assert (forall x y z, inc (J x y)(graph g') -> inc (J y z)(graph g) -> x = z).
ir. assert (inc x (source g')). rw Hd. aw. exists y. am.
sy. ap singleton_eq. wr (H4 _ H8). aw. exists y. split. aw. exists x.
split. fprops. am. am.
```

We show: if $x \in \mathrm{~A}$ there is an y such that $(x, y) \in \mathrm{G}$ and $(y, x) \in \mathrm{G}^{\prime}$.

```
assert (forall x, inc x (source g) -> exists y,
    inc (J x y) (graph g) & inc (J y x) (graph g')).
ir. cp (H3 _ H7). assert (inc x (singleton x)). fprops. wri H8 H9.
awi H9. nin H9. nin H9. awi H9. nin H9. nin H9.
rwi (singleton_eq H9) H11. exists x0. intuition. am. am.
assert (forall x, inc x (source g') -> exists y,
    inc (J x y) (graph g') & inc (J y x) (graph g)).
ir. cp (H4 _ H8). assert (inc x (singleton x)). fprops. wri H9 H10.
awi H10. nin H10. nin H10. awi H10. nin H10. nin H10.
rwi (singleton_eq H10) H12. exists x0. intuition. am. am.
```

We show $(x, y) \in \mathrm{G}$ and $(x, z) \in \mathrm{G}$ implies $y=z$.

```
assert (fgraph (graph g)). red. split. am. ir.
assert (is_pair x). app Ha. assert (J (P x) (Q x) = x). aw.
wri H13 H9. assert (inc (P x) (source g)). rw Hc. aw. exists (Q x). am.
cp (H7 _ H14). nin H15. nin H15. cp (H6 _ _ _ H16 H9).
assert (is_pair y). app Ha. assert (J (P y) (Q y) = y). aw.
wri H19 H10. wri H11 H10. cp (H6 _ _ _ H16 H10).
wr H13; wr H19; wr H17; wr H2O; wr H11; tv.
assert (fgraph (graph g')). red. split. am. ir.
assert (is_pair x). app Hb. assert (J (P x) (Q x) = x). aw.
wri H14 H10. assert (inc (P x) (source g')). rw Hd. aw. exists (Q x). am.
cp (H8 _ H15). nin H16. nin H16. cp (H5 _ _ _ H17 H10).
assert (is_pair y). app Hb. assert (J (P y) (- (Q y) = y). aw.
wri H20 H11. wri H12 H11. cp (H5 _ _ _ H17 H11).
wr H14; wr H2O; wr H18; wr H21; wr H12; tv.
```

We show $(x, y) \in \mathrm{G}$ and $(y, x) \in \mathrm{G}^{\prime}$ are equivalent.
assert(is_function g). wri is_functional H9. nin H9. red. intuition. assert (is_function g'). wri is_functional H10. nin H10. red. intuition. assert (graph g = inverse_graph (graph g')). set_extens. assert (is_pair x). app Ha. assert ($J(P \times$) $(Q \bar{x})=x$). aw. wr H15. wri H15 H13. aw. assert (inc (P x) (source g)). rw Hc. aw. exists (Q x). am. cp (H 7 _ H16). nin H17. nin H17. cp (H6 _ _ _ H18 H13). wrr H19.
assert (is_pair x). assert (is_graph (inverse_graph (graph g'))). ap inverse_graph_is_graph. app H14. assert (J ($P_{\text {x }}$) (Q x) = x). aw. wri H15 H13. awi H13. wr H15.
assert (inc (P x) (source g)). rw H1. app range_correspondence. aw. exists (Q x). am. cp (H7 _ H16). nin H17. nin H17. cp (H6 _ _ _ H13 H17). rww H19. am. am.
assert(g = inverse_fun g'). uf inverse_fun. wr H1. rw H2. wr H13. sy. app corr_propc.

Bijectivity of Γ is easy.

```
assert (bijective g). red. split. red. split. am. ir.
cp (defined_lem H11 H15). assert (inc (W x g) (source g')). rw H2.
fprops. cp (H8 _ H19). nin H2O. nin H2O. cp (H5 _ _ _ H18 H2O).
rwi H17 H20. cp (defined_lem H11 H16). cp (H5 _ _ _ H23 H2O). rww H24.
ap surjective_pr5. am. ir. wri H2 H15. cp (H8 _ H15). nin H16.
nin H16. exists x. split. rw Hc. aw. exists y. am. am.
split. am. split. assert (g) = inverse_fun g). rw H14.
rw inverse_fun_involutive. tv. am. rw H16. app inverse_bij_is_bij1. am.
Qed.
```

9. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ be sets, f a mapping of A into B, g a mapping of B into C, h a mapping of C into D . If $g \circ f$ and $h \circ g$ are bijections, show that all of f, g, h are bijections.
```
Lemma exercise3_9: forall f g h,
    is_function f -> is_function g -> is_function h->
    source g = target f -> source h = target g ->
    bijective(compose g f) -> bijective (compose h g) ->
    (bijective f & bijective g & bijective h).
Proof. ir. assert (composable g f). red. intuition.
    assert (composable h g). red. intuition.
    assert(injective g). red in H5; nin H5. app (inj_right_compose H7 H5).
    assert(surjective g). red in H4; nin H4. app (surj_left_compose H6 H9).
    assert (bijective g). red. intuition. split.
    app (bij_right_compose H6 H4 H10). split. am.
    app (bij_left_compose H7 H5 H10).
Qed.
```

10. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be sets, f a mapping of A into B, g a mapping of B into C, h a mapping of C into A. Show that if two of the three mappings $h \circ g \circ f, g \circ f \circ h, f \circ h \circ g$ are surjections and the third is an injection, then f, g, h are all bijections.

The French version claims that the same conclusion holds if two of the three mappings are injections and the third is a surjection. We assume here $h \circ g \circ f$ injective, $g \circ f \circ h$ surjective and $f \circ h \circ g$ injective or surjective. Other cases are equivalent, by renaming variables.

```
Lemma exercise3_10: forall f g h,
    is_function f -> is_function g -> is_function h->
    source g = target f -> source h = target g -> source f = target h ->
    injective (compose h (compose g f)) ->
    surjective (compose g (compose f h)) ->
    (injective (compose f (compose h g))
        \/ surjective (compose f (compose h g))) ->
    (bijective f & bijective g & bijective h).
Proof. ir.
    assert (composable f h). red. ee; am.
    assert (composable h g). red. ee; am.
    assert (composable g f). red; ee; am.
    wri compose_assoc H5; try am.
    assert (is_function (compose h g)). fprops.
    assert (composable (compose h g) f). red. ee. am. am. aw.
    cp (inj_right_compose H12 H5).
    assert (is_function (compose f h)). fprops.
    assert (composable g (compose f h)). red. ee. am. am. aw.
```

```
cp (surj_left_compose H15 H6)
```

In both cases we know that f is injective and g surjective. If $f \circ h \circ g$ is injective, we deduce g injective; but surjectivity of g says $f \circ h$ injective; hence f is surjective. Injectivity of g in the second relation says $f \circ h$ surjective. Thus f, g and $f \circ h$ are injective and surjective; the result follows.

```
nin H7.
wri compose_assoc H7; try am.
assert (composable (compose f h) g). red. ee. am. am. aw.
cp (inj_right_compose H17 H7).
cp (surj_left_compose2 H15 H6 H18).
cp (surj_left_compose H8 H19).
cp (inj_left_compose2 H17 H7 H16).
assert (bijective (compose f h)). red. ee;am.
assert (bijective f). red. ee;am. ee. am. red; ee; am.
app (bij_right_compose H8 H22 H23).
```

The second case is similar.

```
assert (composable f (compose h g)). red. ee. am. am. aw.
cp (surj_left_compose H17 H7).
cp (surj_left_compose2 H17 H7 H13).
cp (inj_left_compose2 H12 H5 H18).
cp (inj_right_compose H9 H20). assert (bijective g). red; ee;am.
ee. red; ee; am. am.
assert (bijective (compose h g)). red. ee;am.
app (bij_left_compose H9 H23 H22).
Qed.
```

11. *Find the error in the following argument: let \mathbb{N} denote the set of all natural numbers and let A denote the set of all integers $n>2$ for which there exists three strictly positive integers x, y, z such that $x^{n}+y^{n}=z^{n}$. Then the set A is not empty (in other words, "Fermat's last theorem" is false). For let $\mathrm{B}=\{\mathrm{A}\}$ and $\mathrm{C}=\{\mathbb{N}\} ; \mathrm{B}$ and C are sets consisting of a single element, hence there is a bijection f of B onto C . We have $f(\mathrm{~A})=\mathbb{N}$; if A were empty we would have $\mathbb{N}=f(\phi)=\varnothing$ which is absurd.*

We have $f\langle\phi\rangle=\varnothing$ and $f(\phi)=\mathbb{N}$. Writing the first relation as $f(\phi)=\varnothing$ creates an ambiguity, but has not as consequence that \varnothing is equal to \mathbb{N}.

8.4 Section 4

1. Let G be a graph. Show that the following three propositions are equivalent: (a) G is a functional graph, (b) if X, Y are any two sets, then $\mathrm{G}^{-1}(\mathrm{X} \cap \mathrm{Y})=\mathrm{G}^{-1}(\mathrm{X}) \cap \mathrm{G}^{-1}(\mathrm{Y})$. (c) The relation $\mathrm{X} \cap \mathrm{Y}=\varnothing$ implies $\mathrm{G}^{-1}(\mathrm{X}) \cap \mathrm{G}^{-1}(\mathrm{Y})=\varnothing$.
```
Lemma exercise4_1a: forall g, is_graph g ->
    functional_graph g = (forall x y, inv_image_by_graph g (intersection2 x y)=
        intersection2 (inv_image_by_graph g x) (inv_image_by_graph g y)).
Proof. ir. assert (is_graph (inverse_graph g)). app inverse_graph_is_graph.
    uf inv_image_by_graph. app iff_eq. ir. set_extens. awi H2.
    nin H2. nin H2. app intersection2_inc. aw. exists x1. split.
```

```
app (intersection2_first H2). am. aw. exists x1. split.
app (intersection2_second H2). am. am.
cp (intersection2_first H2). awi H3. cp (intersection2_second H2). awi H4.
nin H3; nin H4. nin H3; nin H4. rwi inverse_graph_pr2 H5.
rwi inverse_graph_pr2 H6. cp (H1 _ _ _ H5 H6). aw. exists x1. split.
app intersection2_inc. rww H7. rw inverse_graph_pr2. am. am. am. am. am. am.
ir. red. ir. cp (H1 (singleton y)(singleton y')).
set (u:=intersection2 (singleton y) (singleton y')).
assert (inc x (image_by_graph (inverse_graph g) u)). uf u. rw H4.
app intersection2_inc. aw. exists y. split. fprops. rww inverse_graph_pr2.
aw. exists y'. split. fprops. rww inverse_graph_pr2. awi H5. nin H5. nin H5.
ufi u H5. cp (intersection2_first H5). wr (singleton_eq H7).
cp (intersection2_second H5). wr (singleton_eq H8). tv. am.
Qed.
Lemma exercise4_1b: forall g, is_graph g ->
    functional_graph g = (forall x y, intersection2 x y = emptyset ->
            intersection2 (inv_image_by_graph g x) (inv_image_by_graph g y)=emptyset).
Proof. ir. app iff_eq. ir. rwi exercise4_1a H0. wr HO. rw H1.
    uf inv_image_by_graph. rw image_by_emptyset. tv. am.
    ir. red. ir. assert (is_graph (inverse_graph g)). app inverse_graph_is_graph.
    set (v:= intersection2 (image_by_graph (inverse_graph g) (singleton y))
            (image_by_graph (inverse_graph g) (singleton y'))).
    assert (inc x v). uf v. app intersection2_inc. aw. exists y. split. fprops.
    rww inverse_graph_pr2. aw. exists y'. split. fprops. rww inverse_graph_pr2.
    cp (emptyset_dichot (intersection2 (singleton y) (singleton y'))).
    nin H5. cp (HO _ _ H5). assert (inc x emptyset). wr H6. am.
    elim (emptyset_pr H7). nin H5.
    cp (intersection2_first H5). wr (singleton_eq H6).
    cp (intersection2_second H5). wr (singleton_eq H7). tv.
Qed.
```

2. Let G be a graph. Show that for each set X we have $\mathrm{G}(\mathrm{X})=\mathrm{pr}_{2}\left(\mathrm{G} \cap\left(\mathrm{X} \times \mathrm{pr}_{2} \mathrm{G}\right)\right.$) and $\mathrm{G}(\mathrm{X})=$ $\mathrm{G}\left(\mathrm{X} \cap \mathrm{pr}_{1} \mathrm{G}\right)$.

Lemma exercise4_2a: forall g x, is_graph g -> image_by_graph g x = range(intersection2 g (product x (range g))).
Proof. ir. assert(is_graph (intersection2 g (product x (range g)))). red. ir. cp (intersection2_first HO). app H.
set_extens. awi H1. nin H1. nin H1. aw. exists x1.
app intersection2_inc. app product_pair_inc. aw. exists x1. am. am.
awi H1. nin H1. aw. exists $x 1$. cp (intersection2_second H1).
cp (product_pair_pr H2). nin H3. split. am. cp (intersection2_first H1).
am. am.
Qed.
Lemma exercise4_2b: forall g x, is_graph g -> image_by_graph g x = image_by_graph g (intersection2 x (domain g)).
Proof. ir. set_extens. awi HO. nin HO. nin HO. aw. exists x1. split. app intersection2_inc. aw. exists x0. am. am. am. awi H0. nin H0. nin H0. aw. exists x1. split. app (intersection2_first H0). am. am.
Qed.
3. Let $\mathrm{X}, \mathrm{Y}, \mathrm{Y}^{\prime}, \mathrm{Z}$ be four sets. Show that $\left(\mathrm{Y}^{\prime} \times \mathrm{Z}\right) \circ(\mathrm{X} \times \mathrm{Y})=\varnothing$ if $\mathrm{Y} \cap \mathrm{Y}^{\prime}=\varnothing$ and that $\left(\mathrm{Y}^{\prime} \times \mathrm{Z}\right) \circ$ $(\mathrm{X} \times \mathrm{Y})=\mathrm{X} \times \mathrm{Z}$ if $\mathrm{Y} \cap \mathrm{Y}^{\prime} \neq \varnothing$.

```
Lemma exercise4_3a: forall x y y' z, intersection2 y y' = emptyset ->
    compose_graph(product y' z)(product x y) = emptyset.
Proof. ir. cp (emptyset_dichot (compose_graph (product y' z) (product x y))).
    nin H0. ir. am. nin H0. awi H0. nin H0. nin H1. nin H1.
    cp (product_pair_pr H1). cp (product_pair_pr H2).
    assert (inc x0 emptyset). wr H. app intersection2_inc. nin H3; am. nin H4; am.
    elim (emptyset_pr H5). app product_is_graph. app product_is_graph.
Qed.
Lemma exercise4_3b: forall x y y' z, nonempty(intersection2 y y') ->
    compose_graph(product y' z)(product x y) = product x z.
Proof. ir. nin H. set_extens. awi H0. nin H0. nin H1. nin H1.
    cp (product_pair_pr H1). cp (product_pair_pr H2). nin H3; nin H4.
    app product_inc. app product_is_graph. app product_is_graph.
    rwi inc_product HO. nin HO. nin H1.
    aw. split. am. exists y0. split. app product_pair_inc.
    app (intersection2_first H). app product_pair_inc.
    app (intersection2_second H). app product_is_graph. app product_is_graph.
Qed.
```

4. Let $\left(\mathrm{G}_{\mathrm{l}}\right)_{\llcorner\in \mathrm{I}}$ be a family of graphs. Show that for every set X we have $\left(\cup_{\mathrm{l} \in \mathrm{I}} \mathrm{G}_{\mathrm{l}}\right)\langle X\rangle=\bigcup_{\imath \in \mathrm{I}} \mathrm{G}_{\mathrm{l}}\langle X\rangle$, and that for every object $x,\left(\bigcap_{\mathrm{L} \in \mathrm{I}} \mathrm{G}_{\mathrm{l}}\right)\langle\{x\}\rangle=\bigcap_{\mathrm{L} \in \mathrm{I}} \mathrm{G}_{\mathrm{l}}\langle\{x\}\rangle$. Give an example of two graphs G, H and a set X such that $(\mathrm{G} \cap \mathrm{H})\langle\mathrm{X}\rangle \neq \mathrm{G}\langle\mathrm{X}\rangle \cap \mathrm{H}\langle\mathrm{X}\rangle$.

We have to show that $(\exists y \in \mathrm{X})(\exists i)(x, y) \in \mathrm{G}_{i}$ is the same as $(\exists i)(\exists y \in \mathrm{X})(x, y) \in \mathrm{G}_{i}$.

```
Lemma exercise4_4a: forall g x,
    fgraph g -> (forall i, inc i (domain g) -> is_graph (V i g)) ->
    image_by_graph(unionb g) x =
    unionb (L(domain g) (fun i=> image_by_graph(V i g) x)).
Proof. ir. assert (Ha:is_graph (unionb g)). red. ir. rwi unionb_rw H1.
    nin H1. nin H1. app (HO _ H1).
    set_extens. awi H1. nin H1. nin H1. red in H2. rwi unionb_rw H2.
    nin H2. nin H2. apply unionb_inc with x2. bw. bw. aw. exists x1. ee. am. am.
    app H0. am. rwi unionb_rw H1. nin H1. nin H1. bwi H1. bwi H2. awi H2. nin H2.
    nin H2. aw. exists x2. split. am. red. apply unionb_inc with x1. am. am.
    app HO. am.
Qed.
```

We have to show that $(\exists y \in \mathrm{X})(\forall i)(x, y) \in \mathrm{G}_{i}$ is the same as $(\forall i)(\exists y \in \mathrm{X})(x, y) \in \mathrm{G}_{i}$. We cannot exchange quantifiers. However, if X is a singleton $\{u\}, y \in \mathrm{X}$ is equivalent to $y=u$, and this commutes. We need two subgoals: $\bigcap_{\mathrm{l} \in \mathrm{I}} \mathrm{G}_{\mathrm{l}}$ is a graph, $\mathrm{G}_{\mathrm{l}}\langle\{x\}\rangle$ is a nonempty family.

```
Lemma exercise4_4b: forall g x,
    fgraph g -> (forall i, inc i (domain g) -> is_graph (V i g)) ->
    nonempty g -> is_singleton x ->
    image_by_graph(intersectionb g) x =
    intersectionb (L(domain g) (fun i=> image_by_graph(V i g) x)).
Proof. ir. assert(Ha:is_graph (intersectionb g)). red. ir.
    rwi intersectionb_rw H3. cp (nonempty_domain H1). nin H4.
    cp (H3 _ H4). cp (H0 _ H4). app H6. am.
    red in H2. nin H2. rw H2.
    assert (Hb:nonempty
```

```
    (L (domain g) (fun i => image_by_graph (V i g) (singleton x0)))).
    cp (nonempty_domain H1). nin H3.
    set (ff:= (fun i => image_by_graph (V i g) (singleton x0))).
    exists (J y (ff y)). uf fcreate. app aw. exists y. split. am. tv.
    set_extens. awi H3. nin H3. nin H3. cp (singleton_eq H3). rwi H5 H4.
    red in H4. rwi intersectionb_rw H4.
    ap intersectionb_inc. am. bw. ir. bw. aw. exists x0.
    split. fprops. red. app H4. app HO. am. am.
    aw. exists x0. split. fprops. red. apply intersectionb_inc. am. ir.
    rwi intersectionb_rw H3. bwi H3. cp (H3 _ H4). bwi H5.
    awi H5. nin H5. nin H5. rwi (singleton_eq H5) H6. am. app H0. am. am.
Qed.
```

Let us turn now to the example. We want to find X, G and H such that $p(\mathrm{X}) \neq q(\mathrm{X})$. We have $p(\mathrm{X})=p\left(\mathrm{X}^{\prime}\right)$ and $q(\mathrm{X})=q\left(\mathrm{X}^{\prime}\right)$ where X^{\prime} is the intersection of X and the domain of G or H . We know $p(\mathrm{X})=q(\mathrm{X})$ if X is a singleton. Thus X, G and H must have at least two elements. We give here the minimal solution: X has two elements, G is the identity in X , and H permutes the elements.

```
Lemma exercise4_4c:
    let x:=emptyset in let y:= singleton emptyset in
            let g:= doubleton(J x x)(J y y) in let h:= doubleton(J x y)(J y x)
                in let z:= doubleton x y in
                image_by_graph (intersection2 g h) z <>
                intersection2 (image_by_graph g z)(image_by_graph h z).
Proof. ir. assert (x <> y). red. ir. assert (inc emptyset y). uf y. fprops.
    wri H HO. ufi x HO. elim (emptyset_pr HO).
    assert (Ha:is_graph g). red. uf g. ir. nin (doubleton_or HO).
    rw H1. fprops. rw H1. fprops.
    assert (Hb:is_graph h). red. uf g. ir. nin (doubleton_or HO).
    rw H1. fprops. rw H1. fprops.
    assert (Hc:image_by_graph g z = z). set_extens. awi HO. nin HO. nin HO.
    nin (doubleton_or H1).
    cp (pr2_injective H2). rw H3. uf z. fprops.
    cp (pr2_injective H2). rw H3. uf z. fprops. am.
    ufi z HO. nin (doubleton_or HO). aw. exists x. split. uf z. fprops.
    rw H1. red. uf g. fprops. aw. exists y. split. uf z. fprops. rw H1. red.
    uf g. fprops.
    assert (Hd:image_by_graph h z = z). set_extens. awi HO. nin HO. nin HO.
    nin (doubleton_or H1).
    cp (pr2_injective H2). rw H3. uf z. fprops.
    cp (pr2_injective H2). rw H3. uf z. fprops. am.
    nin (doubleton_or HO). aw. exists y. split. uf z. fprops. rw H1. red. uf h.
    fprops. aw. exists x. split. uf z. fprops. rw H1. red. uf h. fprops.
    rw Hc. rw Hd. rw intersection2idem.
    cp (emptyset_dichot (intersection2 g h)). nin HO. rw HO.
    assert(image_by_graph emptyset z = emptyset). set_extens. awi H1. nin H1.
    nin H1. red in H2. elim (emptyset_pr H2). fprops. elim (emptyset_pr H1).
    rw H1. red. ir. assert (inc x emptyset). rw H2. uf z. fprops.
    elim (emptyset_pr H3).
    (* nonempty(intersection2 g h) contradicts x<>y *) nin HO. elim H.
    cp (intersection2_first H0). ufi g H1. nin (doubleton_or H1).
    cp (intersection2_second HO). ufi h H3. nin (doubleton_or H3).
    rwi H2 H4. app (pr2_injective H4). rwi H2 H4. app (pr1_injective H4).
    cp (intersection2_second H0). ufi h H3. cp (doubleton_or H3). nin H4.
    rwi H2 H4. sy. app (pr1_injective H4). rwi H2 H4. sy. app (pr2_injective H4).
```

Qed.
5. Let $\left(\mathrm{G}_{\mathrm{l}}\right)_{\mathrm{i} \in \mathrm{I}}$ be a family of graphs and let H be a graph. Show that

$$
\left(\bigcup_{\mathrm{l} \in \mathrm{I}} \mathrm{G}_{\mathrm{l}}\right) \circ \mathrm{H}=\bigcup_{\mathrm{l} \in \mathrm{I}}\left(\mathrm{G}_{\mathrm{l}} \circ \mathrm{H}\right) \quad \text { and } \quad \mathrm{H} \circ\left(\bigcup_{\mathrm{l} \in \mathrm{I}} \mathrm{G}_{\mathrm{l}}\right)=\bigcup_{\mathrm{l} \in \mathrm{I}}\left(\mathrm{H} \circ \mathrm{G}_{\mathrm{l}}\right) \text {. }
$$

Lemma exercise4_5: forall gh,
fgraph g -> (forall i, inc i (domain g) -> is_graph (V i g)) -> is_graph h->
(compose_graph (unionb g) h =
unionb (L (domain g) (fun i=> compose_graph (V i g) h))
\& compose_graph h (unionb g) =
unionb (L(domain g) (fun i=> compose_graph h (Vig))).
Proof. ir. assert(Ha:is_graph (unionb g)). red. ir. rwi unionb_rw H2.
nin H2. nin H2. app (HO _ H 2).
split. set_extens. awi H2. nin H2. nin H3. nin H3.
rwi unionb_rw H4. nin H4. nin H4. apply unionb_inc with x1. bw. bw. aw.
ee. am. exists $x 0$. ee. am. am. app H0. am. am.
rwi unionb_rw H2. nin H2. nin H2. bwi H2. bwi H3. awi H3. nin H3. nin H4.
nin H4. aw. split. am. exists x1. split. am.
apply unionb_inc with x0. am. am. am. app HO. am.

Second part. The proof is almost identical.

```
    set_extens. awi H2. nin H2. nin H3. nin H3.
    rwi unionb_rw H3. nin H3. nin H3. apply unionb_inc with x1. bw. bw. aw.
    ee. am. exists x0. ee. am. am. app H0. am. am.
    rwi unionb_rw H2. nin H2. nin H2. bwi H2. bwi H3. awi H3. nin H3. nin H4.
    nin H4. aw. split. am. exists x1. split. apply unionb_inc with x0. am. am.
    am. app HO. am. am.
Qed.
```

6. A graph G is functional if and only if for each pair of graphs $\mathrm{H}, \mathrm{H}^{\prime}$ we have

$$
\left(\mathrm{H} \cap \mathrm{H}^{\prime}\right) \circ \mathrm{G}=(\mathrm{H} \circ \mathrm{G}) \cap\left(\mathrm{H}^{\prime} \circ \mathrm{G}\right) .
$$

We start with a lemma that shows that $\mathrm{H} \cap \mathrm{H}^{\prime}$ is a graph.

```
Lemma exercise4_6a: forall h h',
    is_graph h -> is_graph (intersection2 h h').
Proof. red. ir. cp (intersection2_first H0). app H. Qed.
```

Note that $\left(H \cap H^{\prime}\right) \circ G \subset(H \circ G) \cap\left(H^{\prime} \circ G\right)$ is true for any graphs.

```
Lemma exercise4_6: forall g, is_graph g ->
    fgraph g = (forall h h', is_graph h -> is_graph h' ->
            compose_graph (intersection2 h h') g =
            intersection2 (compose_graph h g) (compose_graph h' g)).
Proof. ir. app iff_eq. ir.
    set_extens. awi H3. nin H3. nin H4. nin H4. app intersection2_inc.
    aw. split. am. exists x0. split. am. app (intersection2_first H5).
    aw. split. am. exists x0. split. am. app (intersection2_second H5).
    am. app exercise4_6a.
```

```
cp (intersection2_first H3). cp (intersection2_second H3).
awi H4; awi H5. nin H4; nin H5. nin H6; nin H7. nin H6; nin H7.
red in H0. nin HO. assert (P (J (P x ) x0) = P (J (P x) x1)). aw.
cp (H10 _ _ H6 H7 H11). cp (pr2_injective H12).
aw. split. am. exists x0. split. am. app intersection2_inc. rww H13.
app exercise4_6a. am. am. am. am. am. am. am. am.
```

Converse. If $(x, y) \in \mathrm{G}$ and $\left(x, y^{\prime}\right) \in \mathrm{G}$ we consider the mappings $y \mapsto x$ and $y^{\prime} \mapsto x$. Then (x, x) is in $\mathrm{H} \circ \mathrm{G}$ and $\mathrm{H}^{\prime} \circ \mathrm{G}$. Thus $\mathrm{H} \cap \mathrm{H}^{\prime}$ is nonempty.

```
ir. red. split. am. ir.
set (h:= singleton(J (Q x) (P x))).
set (h':= singleton(J (Q y) (P y))).
assert (is_graph h). uf h. red. ir. rw (singleton_eq H4). fprops.
assert (is_graph h'). uf h'. red. ir. rw (singleton_eq H5). fprops.
assert (inc (J (P x)(P x)) (compose_graph h g)). aw. split. fprops.
exists (Q x). split. assert (is_pair x). app H. rw (pair_recov H6). am.
uf h. fprops.
assert (inc (J (P y)(P y)) (compose_graph h' g)). aw. split. fprops.
exists (Q y). split. assert (is_pair y). app H. rw (pair_recov H7). am.
uf h'. fprops.
assert (inc (J (P x) (P x)) (compose_graph (intersection2 h h') g)).
rw H0. app intersection2_inc. rww H3. am. am. awi H8. nin H8. nin H9. nin H9.
cp (intersection2_first H10). ufi h H11. cp (singleton_eq H11).
cp (intersection2_second H10). ufi h H13. cp (singleton_eq H13).
app pair_extensionality. app H. app H.
wr (pr1_injective H12). wr (pr1_injective H14). tv. am. app exercise4_6a.
Qed.
```

7. Let $\mathrm{G}, \mathrm{H}, \mathrm{K}$ be three graphs. Prove the relation $(\mathrm{H} \circ \mathrm{G}) \cap \mathrm{K} \subset\left(\mathrm{H} \cap\left(\mathrm{K}^{\circ} \mathrm{G}^{-1}\right)\right) \circ\left(\mathrm{G} \cap\left(\mathrm{H}^{-1} \circ \mathrm{~K}\right)\right)$.
```
Lemma exercise4_7: forall g h k, is_graph g ->is_graph h ->is_graph k ->
    sub(intersection2 (compose_graph h g) k)
        (compose_graph(intersection2 h (compose_graph k (inverse_graph g)))
            (intersection2 g (compose_graph (inverse_graph h) k))).
Proof. ir. red. ir. cp (intersection2_first H2). awi H3. nin H3. nin H4.
    nin H4. cp (intersection2_second H2). assert (J (P x)(Q x)=x). aw.
    aw. split. am. exists x0. split.
    app intersection2_inc. aw. split. fprops. exists (Q x). split.
    rww H7. aw. fprops.
    app intersection2_inc. aw. split. fprops. exists (P x). split.
    aw. rww H7. fprops.
    app exercise4_6a. app exercise4_6a. am. am.
Qed.
```

8. Let $\mathfrak{R}=\left(\mathrm{X}_{\mathrm{t}}\right)_{\in \in \mathrm{I}}$ and $\mathfrak{S}=\left(\mathrm{Y}_{\mathrm{K}}\right)_{\kappa \in \mathrm{K}}$ be two coverings of a set E . (a) Show that if \mathfrak{R} and \mathfrak{S} are partitions of E and if \mathfrak{R} is finer than \mathfrak{S}, then for every $\kappa \in \mathrm{K}$ there exists $\mathrm{I} \in \mathrm{I}$ such that $\mathrm{X}_{1} \subset \mathrm{Y}_{\kappa}$. (b) Give an example of two coverings \mathfrak{R} and \mathfrak{S} such that \mathfrak{R} is finer than \mathfrak{S} but such that the property stated in (a) is not satisfied. (c) Give an example of two partitions \mathfrak{R} and \mathfrak{S} such that for every $\kappa \in \mathrm{K}$ there exists $\mathfrak{\in} \in \mathrm{I}$ such that $\mathrm{X}_{1} \subset \mathrm{Y}_{\mathrm{K}}$, but such that \mathfrak{R} is not a refinement of \mathfrak{S}.

The French version does not assume that \mathfrak{R} is a partition. We must however assume $\mathrm{Y}_{\mathrm{K}} \neq \varnothing$.

```
Lemma exercise4_8a: forall dr r ds s x,
    covering_f dr r x -> covering_f ds s x ->
    partition_fam (L ds s) x -> coarser_covering ds s dr r ->
    (forall k, inc k ds -> nonempty (s k)) ->
    forall k, inc k ds -> exists i, inc i dr & sub (r i) (s k).
Proof. ir. red in H1. ee. cp (H3 _ H4). nin H7. assert (inc y x). wr H6.
    apply unionb_inc with k. bw. bw. red in H. assert (inc y (unionf dr r)).
    app H. cp (unionf_exists H9). nin H10. nin H10. exists x0. split. am.
    red in H2. cp (H2 _ H10). nin H12. nin H12. assert (inc y (s x1)). app H13.
    red in H5. bwi H5. cp (H5 _ _ H4 H12). nin H15. rww H15.
    red in H15. assert (inc y emptyset). wr H15. bw.
    app intersection2_inc. elim (emptyset_pr H16).
Qed.
```

We consider a covering R, and take for S the union of R and another set. Then R if finer than S .

```
Lemma exercise4_8b: let a:= emptyset in let \(\mathrm{b}:=\) singleton emptyset in
    let \(\mathrm{x}:=\) doubleton \(\mathrm{a} b\) in let \(\mathrm{dr}:=\) singleton a in let \(\mathrm{r}:=\) fun _ \(=>\mathrm{x}\)
        in let ds:= x in let \(\mathrm{s}:=\) variant a x (singleton a ) in
            (covering_f dr r x \& covering_f ds s x \&
                    coarser_covering ds s dr r \&
                    (forall k, inc k ds -> nonempty ( s )) \&
                    ~ (forall \(k\), inc \(k\) ds \(->\) exists \(i\), inc i dr \& sub (r i) (s k))).
Proof. ir.
    assert (Ha: b<> a). uf a; uf b. red. ir.
    assert (inc emptyset (singleton emptyset)). fprops. rwi H HO.
    elim (emptyset_pr HO).
    split. red. red. ir. apply unionf_inc with a. uf dr. fprops.
    uf r. am. split. red. red. ir. apply unionf_inc with a. uf ds. fprops.
    uf x. fprops. uf s. rw variant_if_rw. am. tv.
    split. red. ir. exists a. split. uf ds. uf x. fprops.
    uf s. rw variant_if_rw. uf r. fprops. tv. split. ir. ufi ds H. ufi x H.
    nin (doubleton_or H). rw HO. uf s. rw variant_if_rw. uf x.
    exists a. fprops. tv. rw HO. uf s. rw variant_if_not_rw.
    app nonempty_singleton. am.
    assert (inc emptyset (singleton emptyset)). fprops.
    red. ir. assert (inc b ds). uf ds. uf x. fprops.
    cp ( HO _ H1). nin H 2 . nin H2. ufi r H3. ufi s H3. rwi variant_if_not_rw H3.
    assert (inc b (singleton a)). app H3. elim Ha. app singleton_eq. am.
Qed.
```

Second counter example. The mapping $\kappa \mapsto t$ is injective. If I and K have the same number of elements, both partitions are equivalent. If K has a single element, then R if finer than S. Thus we need S_{1} and $S_{2}, R_{1} \subset S_{1}, R_{2} \subset S_{2}$ and R_{3} that is neither in S_{1} nor in S_{2}, thus has an element in S_{1} and another one in S_{2}. Thus E has at least four elements; we could use $\varnothing,\{\varnothing\}$, $\{\{\varnothing\}\}$ and $\{\{\{\varnothing\}\}\}$, but it is a bit longish to prove that all elements are distinct.

```
Inductive four_points : Bset := | fpa | fpb | fpc | fpd.
Inductive three_points : Bset := | tpa | tpb | tpc.
Lemma exercise4_8c:
    let x:= four_points in let dr:= three_points in
        let r:= fun i=> Yo (i = (Ro tpa)) (singleton (Ro fpa))
            (Yo (i = (Ro tpc)) (singleton (Ro fpb)) (doubleton (Ro fpc) (Ro fpd)))
```

```
in let ds:= doubleton(Ro fpa) (Ro fpb)
    in let \(s:=\) variant (Ro fpa) (doubleton (Ro fpa) (Ro fpc))
        (doubleton (Ro fpb) (Ro fpd))
        in (partition_fam (L ds s) x \&
            partition_fam (L dr r) x\&
        (forall \(k\), inc \(k\) ds \(->\) exists i, inc i dr \& sub (r i) (s k))\&
        ~( coarser_covering ds s dr r )).
```

The first step is to prove that S is a partition. We have $\mathrm{S}_{a}=\{a, c\}$ and $\mathrm{S}_{b}=\{b, d\}$.

```
Proof. ir.
    assert (Ha: Ro fpa <> Ro fpb). red. ir. cp (R_inj H). discriminate HO.
    assert (Hb: Ro fpa <> Ro fpd). red. ir. cp (R_inj H). discriminate HO.
    assert (Hc: Ro fpc <> Ro fpb). red. ir. cp (R_inj H). discriminate HO.
    assert (Hd: Ro fpc <> Ro fpd). red. ir. cp (R_inj H). discriminate HO.
    assert (He: Ro fpa <> Ro fpc). red. ir. cp (R_inj H). discriminate HO.
    assert (Hf: Ro fpb <> Ro fpd). red. ir. cp (R_inj H). discriminate HO.
    assert (Hi: Ro tpa <> Ro tpb). red. ir. cp (R_inj H). discriminate HO.
    assert (Hj: Ro tpb <> Ro tpc). red. ir. cp (R_inj H). discriminate HO.
    assert (Hk: Ro tpc <> Ro tpa). red. ir. cp (R_inj H). discriminate HO.
    split. red. split. app create_axioms. split. red. ir.
    bwi H. bwi HO. ufi ds H; ufi ds HO. cp (doubleton_or H). cp (doubleton_or HO).
    nin H1. nin H2. left. rww H2. right. rw H1; rw H2. bw.
    uf s. rw variant_if_rw. rw variant_if_not_rw.
    red. set_extens. cp (intersection2_first H3). cp (doubleton_or H4).
    nin H5. cp (intersection2_second H3). nin (doubleton_or H6).
    elim Ha. wr H5; wrr H7. elim Hb. wr H5; wrr H7.
    cp (intersection2_second H3). nin (doubleton_or H6).
    elim Hc. wr H5; wrr H7. elim Hd. wr H5; wrr H7. elim (emptyset_pr H3).
    intuition. tv. uf ds. fprops. uf ds. fprops.
    nin H2. right. rw H1; rw H2. bw. uf s. rw variant_if_not_rw. rw variant_if_rw.
    red. ap is_emptyset. ir. red. ir. cp (intersection2_first H3).
    cp (doubleton_or H4). nin H5. cp (intersection2_second H3).
    nin (doubleton_or H6). elim Ha. wr H5; wrr H7. elim Hc. wr H5; wrr H7.
    cp (intersection2_second H3). nin (doubleton_or H6).
    elim Hb. wr H5; wrr H7. elim Hd. wr H5; wrr H7. tv. intuition.
    uf ds. fprops. uf ds. fprops. left. rww H2.
```

We show that S is a covering.

```
set_extens. cp (unionb_exists H). nin HO. nin HO. bwi HO. bwi H1.
ufi ds HO. cp (doubleton_or HO). nin H2.
rwi H2 H1. ufi s H1. rwi variant_if_rw H1. cp (doubleton_or H1). nin H3.
rw H3. app R_inc. rw H3. app R_inc. tv.
rwi H2 H1. ufi s H1. rwi variant_if_not_rw H1. cp (doubleton_or H1). nin H3.
rw H3. app R_inc. rw H3. app R_inc. intuition. am.
nin H. wr H. elim x1. apply unionb_inc with (Ro fpa). bw. uf ds.
fprops. bw. uf s. rw variant_if_rw. fprops. tv. uf ds. fprops.
apply unionb_inc with (Ro fpb). bw. uf ds. fprops. bw. uf s.
rw variant_if_not_rw. fprops. intuition. uf ds. fprops.
apply unionb_inc with (Ro fpa). bw. uf ds. fprops. bw. uf s.
rw variant_if_rw. fprops. tv. uf ds. fprops.
apply unionb_inc with (Ro fpb). bw. uf ds.
fprops. bw. uf s. rw variant_if_not_rw.
fprops. intuition. uf ds. fprops.
```

We prove now that R is a partition. Since R has three elements it is a bit longer (we must show that 6 pairs of sets are disjoint). We have $\mathrm{R}_{a}=\{a\}$ and $\mathrm{R}_{b}=\{c, d\}, \mathrm{R}_{c}=\{b\}$.

```
split. red. split. gprops. split. red. ir. bwi H. bwi HO. bw. uf r. ufi dr H.
ufi dr HO. nin H; nin HO. wr H; wr HO. elim xO. rww Y_if_rw.
elim x1. left. tv. right. rw Y_if_not_rw. rw Y_if_not_rw. red. set_extens.
cp (intersection2_first H1). cp (intersection2_second H1).
cp (doubleton_or H3). nin H4. rwi (singleton_eq H2) H4. elim He. am.
rwi (singleton_eq H2) H4. elim Hb. am. elim (emptyset_pr H1). am. intuition.
right. rw Y_if_not_rw. rw Y_if_rw. red. set_extens.
cp (intersection2_first H1). cp (intersection2_second H1).
cp (singleton_eq H2). cp (singleton_eq H3). elim Ha; wr H4; wrr H5.
elim (emptyset_pr H1). tv. am. rw Y_if_not_rw. rw Y_if_not_rw. elim x1.
rw Y_if_rw. right.
red. set_extens. cp (intersection2_first H1). cp (intersection2_second H1).
rwi (singleton_eq H3) H2. nin (doubleton_or H2). elim He. am. elim Hb. am.
elim (emptyset_pr H1). tv. left. tv. rw Y_if_not_rw. rw Y_if_rw. right.
red. set_extens. cp (intersection2_first H1). cp (intersection2_second H1).
rwi (singleton_eq H3) H2. nin (doubleton_or H2). elim Hc. sy; am.
elim Hf. am. elim (emptyset_pr H1). tv. am. am. intuition.
rw Y_if_not_rw. rw Y_if_rw. elim x1. rw Y_if_rw. right. red.
set_extens. cp (intersection2_first H1). cp (intersection2_second H1).
rwi (singleton_eq H3) H2. cp (singleton_eq H2). elim Ha. am.
elim (emptyset_pr H1). tv. right. rw Y_if_not_rw. rw Y_if_not_rw. red.
set_extens. cp (intersection2_first H1). cp (intersection2_second H1).
rwi (singleton_eq H2) H3. nin (doubleton_or H3). elim Hc. sy; am. elim Hf. am.
elim (emptyset_pr H1). am. intuition. left. tv. tv. am.
```

We now show that R is a covering.
set_extens. cp (unionb_exists H). nin H0. nin H0. bwi H0. bwi H1. ufi r H1. ufi dr H0. nin H0. wri H0 H1. induction x2. rwi Y_if_rw H1.
rw (singleton_eq H1). app R_inc. tv. rwi Y_if_not_rw H1. rwi Y_if_not_rw H1. cp (doubleton_or H1). nin H2. rw H2. app R_inc. rw H2. app R_inc. am. intuition. rwi Y_if_not_rw H1. rwi Y_if_rw H1. rw (singleton_eq H1).
app R_inc. tv. am. am. nin H. wr H. induction x1.
apply unionb_inc with (Ro tpa). bw. app R_inc. bw. uf r. rw Y_if_rw.
app singleton_inc. tv. app R_inc. apply unionb_inc with (Ro tpc). bw.
app R_inc. bw. uf r. rw Y_if_not_rw. rw Y_if_rw. app singleton_inc. tv. am.
app R_inc. apply unionb_inc with (Ro tpb). bw. app R_inc. bw.
uf r. rw Y_if_not_rw. rw Y_if_not_rw. fprops. am. intuition. uf dr. app R_inc. apply unionb_inc with (Ro tpb). bw. app R_inc. bw.
uf r. rw Y_if_not_rw. rw Y_if_not_rw. fprops. am. intuition. ap R_inc.

We show that for all $\kappa \in K$ there exists $\mathrm{t} \in \mathrm{I}$ such that $\mathrm{X}_{\mathrm{t}} \subset \mathrm{Y}_{\kappa}$. This is $\mathrm{R}_{a} \subset \mathrm{~S}_{a}$ and $\mathrm{R}_{c} \subset \mathrm{~S}_{b}$.

```
split. ir. ufi ds H. cp (doubleton_or H). nin HO. rw HO. uf s.
rw variant_if_rw. exists (Ro tpa). split. app R_inc. uf r.
rw Y_if_rw. red. ir. rw (singleton_eq H1). fprops. tv. tv.
rw HO. uf s. rw variant_if_not_rw. exists (Ro tpc). split. app R_inc. uf r.
rw Y_if_not_rw. rw Y_if_rw. red. ir. rw (singleton_eq H1).
fprops. tv. am. intuition.
```

Now, we show that R_{b} is not a subset of any S_{1}.

```
    red. ir. red in H. induction (H _ (R_inc tpb)). nin H0. ufi r H1.
    rwi Y_if_not_rw H1. rwi Y_if_not_rw H1.
    assert (inc (Ro fpc) (s x0)). app H1. fprops.
    assert (inc (Ro fpd) (s x0)). app H1. fprops.
    ufi ds HO. cp (doubleton_or HO). nin H4. rwi H4 H3. ufi s H3.
    rwi variant_if_rw H3. cp (doubleton_or H3). nin H5. app Hb. sy; am.
    app Hd. sy; am. tv. rwi H4 H2. ufi s H2. rwi variant_if_not_rw H2.
    nin (doubleton_or H2). app Hc. app Hd. intuition. am. intuition.
Qed.
```


8.5 Section 5

* Montrer que si X, Y sont deux ensembles tels que $\mathfrak{P}(\mathrm{X}) \subset \mathfrak{P}(\mathrm{Y})$, on a $\mathrm{X} \subset \mathrm{Y}$. This exercise appears only in the French version.

```
Lemma exercise5_f1: forall x y, sub(powerset x) (powerset y) -> sub x y.
Proof. ir. red. ir. assert (sub (singleton x0) y). app powerset_sub. app H.
    app powerset_inc. red. ir. rw (singleton_eq H1). am. red in H1.
    app (H1 x0). fprops.
Qed.
```

* Soient E un ensemble f une application de $\mathfrak{P}(\mathrm{E})$ dans lui-même telle que la relation $\mathrm{X} \subset \mathrm{Y}$ entraîne $f(\mathrm{X}) \subset f(\mathrm{Y})$. Soit V l'intersection des ensembles $\mathrm{Z} \subset \mathrm{E}$ tels que $f(\mathrm{Z}) \subset \mathrm{Z}$ et soit W la réunion des ensembles $\mathrm{Z} \subset \mathrm{E}$ tels que $\mathrm{Z} \subset f(\mathrm{Z})$. Montrer que $f(\mathrm{~V})=\mathrm{V}$ et $\mathrm{W}=f(\mathrm{~W})$ et que pour tout ensemble $\mathrm{Z} \subset \mathrm{E}$ tel que $f(\mathrm{Z})=\mathrm{Z}$ on $\mathrm{a} \mathrm{V} \subset \mathrm{Z} \subset \mathrm{W}$.

This exercise appears only in the French version. It says: let E be set and f a mapping from $\mathfrak{P}(\mathrm{E})$ into itself such that $\mathrm{X} \subset \mathrm{Y}$ implies $f(\mathrm{X}) \subset f(\mathrm{Y})$. Let V be the intersection of the sets $\mathrm{Z} \subset \mathrm{E}$ for which $f(\mathrm{Z}) \subset \mathrm{Z}$ and let W be the union of the sets $\mathrm{Z} \subset \mathrm{E}$ such that $\mathrm{Z} \subset f(\mathrm{Z})$. Show that $f(\mathrm{~V})=\mathrm{V}$ and $\mathrm{W}=f(\mathrm{~W})$ and that for every set $\mathrm{Z} \subset \mathrm{E}$ such that $f(\mathrm{Z})=\mathrm{Z}$ one has $\mathrm{V} \subset \mathrm{Z} \subset \mathrm{W}$.

```
Lemma exercise5_f2: forall f x v w,
    is_function \(f\) \(\rightarrow\) source \(f=\) (powerset \(x\) ) \(\rightarrow\) target \(f=\) powerset \(x\)->
    (forall a b, inc a (powerset \(x\) ) -> inc b (powerset \(x\) ) -> sub a b
            -> sub (W a f) (W b f)) ->
    v = intersection(Zo (powerset \(x\) ) (fun \(z=>\) sub (W z f) z)) ->
    w = union(Zo (powerset \(x\) ) (fun \(z=>\) sub \(z(W \operatorname{z}))\) ) ->
    ( W v \(f=\mathrm{v}\) \& W w \(\mathrm{f}=\mathrm{w}\) \& (forall z , sub z x \(->\mathrm{W} \mathrm{z} f=\mathrm{z}\)->
            (sub v z \& sub z w))).
Proof. ir.
    set ( \(q:=(Z o\) (powerset \(x\) ) (fun \(z=>\operatorname{sub}(W z f) z))\).
    assert (nonempty q). uf q. exists x. Ztac. app inc_x_powerset_x.
    app powerset_sub. wr H1. app inc_W_target. rw H0. app inc_x_powerset_x.
    set ( \(p:=(Z o\) (powerset \(x)\) (fun \(z=>\) sub \(z(W \operatorname{z})))\) ).
    assert (Ha:forall z, sub z x -> \(W\) z \(f=z\)-> sub v z). ir.
    assert (inc z q). uf q. Ztac. app powerset_inc. rw H7. fprops. rw H3.
    fold q. app intersection_sub.
```



```
    assert (inc \(z\) p). uf p. Ztac. app powerset_inc. rw H7. fprops. rw H4.
    fold p. app union_sub.
    assert (Hc:forall z, inc z q -> inc (W z f) q). ir. ufi q H6. Ztac. clear H6.
    assert (inc (W z f) (powerset x)). wr H1. wri HO H7. fprops. uf q. Ztac.
    assert (Hd:forall \(z\), inc \(z p\)-> inc ( \(W\) z f) p). ir. ufi p H6. Ztac. clear H6.
```

```
assert (inc (W z f) (powerset x)). wr H1. wri HO H7. fprops. uf p. Ztac.
assert (He:inc v (powerset x)). app powerset_inc. rw H3. red. ir.
nin H5. fold q in H6. cp (intersection_forall H6 H5). unfold q in H5.
Ztac. cp (powerset_sub H8). app H10.
assert (Hf:inc w (powerset x)). app powerset_inc. rw H4. red. ir.
cp (union_exists H6). nin H7. nin H7. Ztac. cp (powerset_sub H9). app H11.
assert (Hg:sub (W v f) v). red. ir. rw H3. app intersection_inc. ir.
fold q in H7. assert (sub v y). rw H3. app intersection_sub. ufi q H7. Ztac.
cp (H2 _ _ He H9 H8). app H10. app H11.
assert (Hh:sub w (W w f)). red. ir. rwi H4 H6. cp (union_exists H6). nin H7.
nin H7. assert (sub x1 w). rw H4. app union_sub. Ztac.
cp (H2 _ _ H10 Hf H9). app H12. app H11.
split. apply extensionality. am. assert (inc v q). uf q. Ztac. cp (Hc _ H6).
set (k:= W v f). rw H3. app intersection_sub.
split. apply extensionality. assert (inc w p). uf p. Ztac. cp (Hd _ H6).
set (k:= W w f). rw H4. app union_sub. am. ir. split. app Ha. app Hb.
Qed.
```

1. Let $\left(\mathrm{X}_{\mathrm{t}}\right)_{\mathrm{t} \in \mathrm{I}}$ be a family of sets. Show that if $\left(\mathrm{Y}_{\mathrm{t}}\right)_{\mathrm{t} \in \mathrm{I}}$ is a family of sets such that $\mathrm{Y}_{\mathrm{t}} \subset \mathrm{X}_{\mathrm{t}}$ for each $\mathrm{t} \in \mathrm{I}$ then $\prod_{\mathrm{t} \in \mathrm{I}} \mathrm{Y}_{i}=\bigcap_{\mathrm{t} \in \mathrm{I}} \mathrm{pr}_{\mathrm{t}}^{-1}\left(\mathrm{Y}_{\mathrm{t}}\right)$.
```
Lemma exercise5_1: forall id x y,
    (forall i, inc i id -> sub (y i) (x i)) -> nonempty id ->
    productf id y =
    intersectionf id (fun i=> inv_image_by_fun (pr_i (L id x) i) (y i)).
Proof. ir. set_extens. app intersectionf_inc. ir. uf inv_image_by_fun.
    assert (Ha: fgraph (L id x)). gprops.
    assert (Hb:is_function (pr_i (L id x) j)). app function_pri. bw.
    rwi productf_pr H1. ee. aw. exists (V j x0). split. app H4. rww H3.
    assert (inc j (domain (L id x))). bw.
    assert(inc x0 (productb (L id x))). rw productb_pr. split. am.
    split. bw. ir. rwi H3 H6. bw. app (H _ H6). app H4.
    rww H3. am. wr (W_pri Ha H5 H6). red. app defined_lem.
    app is_graph_function.
    assert (inc (rep id) id). app nonempty_rep.
    cp (intersectionf_forall H1 H2). simpl in H3. ufi inv_image_by_fun H3.
    assert (Ha: fgraph (L id x)). gprops.
    assert (Hb:is_function (pr_i (L id x) (rep id))). app function_pri. bw.
    awi H3. nin H3. nin H3. red in H4. cp (inc_pr1graph_source Hb H4).
    rwi source_pri H5. rwi productb_pr H5. nin H5; nin H6.
    rw productf_pr. split. am. split. bwi H6. am. ir.
    rwi H6 H8. bwi H8. cp (intersectionf_forall H1 H8). simpl in H9.
    ufi inv_image_by_fun H9.
    assert (Hc:is_function (pr_i (L id x) i)). app function_pri. bw.
    awi H9. nin H9. nin H9. red in H10. cp (W_pr Hc H10).
    rwi W_pri H11. wr H11. am. am. bw. rw productb_pr. intuition. am.
    app is_graph_function. am. app is_graph_function.
Qed.
```

2. Let A, B be two sets. For each subset G of $\mathrm{A} \times \mathrm{B}$ let $\tilde{\mathrm{G}}$ be the mapping $x \mapsto \mathrm{G}\langle\{x\}\rangle$ of A into $\mathfrak{P}(\mathrm{B})$. Show that the mapping $\mathrm{G} \mapsto \tilde{\mathrm{G}}$ is a bijection from $\mathfrak{P}(\mathrm{A} \times \mathrm{B})$ onto $(\mathfrak{P}(\mathrm{B}))^{\mathrm{A}}$.

Note that \tilde{G} is in $\mathscr{F}(A ; \mathfrak{P}(\mathrm{B}))$. The French edition says: let \tilde{G} be the graph of the mapping etc, so that \tilde{G} is in $(\mathfrak{P}(B))^{\mathrm{A}}$.

```
Lemma exercise5_2: forall a b,
    bijective (BL(fun g => L a (fun x => image_by_graph g (singleton x)))
            (powerset (product a b)) (set_of_gfunctions a (powerset b))).
Proof. ir.
    set(tilde:=(BL (fun g => L a (fun x => image_by_graph g (singleton x)))
            (powerset (product a b)) (set_of_gfunctions a (powerset b)))).
```

 We first prove that the mapping \(\mathrm{G} \mapsto \tilde{\mathrm{G}}\) is a function.
    ```
assert (transf_axioms
    (fun g => L a (fun x => image_by_graph g (singleton x)))
    (powerset (product a b)) (set_of_gfunctions a (powerset b))).
    red. ir. cp (powerset_sub H).
    set (faux:=BL(fun x => image_by_graph c (singleton x)) a (powerset b)).
    assert(is_function faux). uf faux. app af_function. red. ir.
    ap powerset_inc. red. ir. awi H2. nin H2. nin H2. red in H3. cp (HO _ H3).
    rwi inc_product H4. awi H4. intuition. red. ir. cp (HO _ H3).
    rwi inc_product H4. nin H4; am.
    assert (graph faux = (L a (fun x => image_by_graph c (singleton x))))
    uf faux. uf BL. simpl. tv. wr H2.
    assert (source faux = a). uf faux. app af_source. wr H3.
    assert (target faux = powerset b). uf faux. app af_target. wr H4.
    app inc_set_of_gfunctions.
    assert (is_function tilde). uf tilde. app af_function.
```

We prove that the mapping is injective.

```
red. split. red. split. am. uf tilde. rw af_source. intros x y Hx Hy.
aw. ir.
set (fx:= L a (fun x0 => image_by_graph x (singleton x0))).
set (fy:= L a (fun x0 => image_by_graph y (singleton x0))).
cp (powerset_sub Hx). cp (powerset_sub Hy).
set_extens. cp (H2 _ H4). rwi inc_product H5. ee.
assert (inc (Q x0) (V (P x0) fy)). uf fy. wr H1. rw create_V_rewrite.
aw. exists (P x0). split. fprops. red. aw.
red. ir. cp (H2 _ H8). rwi inc_product H9. nin H9; am. am.
ufi fy H8. rwi create_V_rewrite H8. awi H8. nin H8. nin H8.
red in H9. rwi (singleton_eq H8) H9. aw. awi H9. am. am.
red. ir. cp (H3 _ H9). rwi inc_product H10. nin H10; am. am.
cp (H3 _ H4). rwi inc_product H5. ee.
assert (inc (Q x0) (V (P x0) fx)). uf fx. rw H1. rw create_V_rewrite.
aw. exists (P x0). split. fprops. red. aw.
red. ir. cp (H3 _ H8). rwi inc_product H9. nin H9; am. am.
ufi fx H8. rwi create_V_rewrite H8. awi H8. nin H8. nin H8.
red in H9. rwi (singleton_eq H8) H9. aw.
red. ir. cp (H2 _ H9). rwi inc_product H10. nin H10; am. am.
```

We prove that the mapping is surjective.

```
app surjective_pr6. ir. ufi tilde H1. rwi af_target H1.
cp (set_of_gfunctions_inc H1). nin H2. ee. uf tilde. rw af_source.
set (g:=Zo (product a b) (fun z => inc (Q z) (V (P z) y))).
assert(inc g (powerset (product a b))). app powerset_inc. red.
uf g. ir. Ztac. am.
assert (Ha:is_graph g). red. uf g. ir. Ztac. rwi inc_product H8. nin H8. am.
exists g. split. am. aw. app function_extensionality.
```

```
    wr H5. fprops. app create_axioms. rw create_domain. wr H5. wr H3.
    red in H2; ee; sy; am. ir.
    assert (inc x0 a). wri H5 H7. red in H2. ee. wr H3. rww H9.
    rww create_V_rewrite.
    set_extens. change (inc x1 (cut g x0)). rw cut_pr. red. uf g. Ztac.
    app product_pair_inc. assert (sub (V x0 y) b). wr H5.
    change (sub (W x0 x) b). wr powerset_inc_rw. wr H4. wri H3 H8. fprops.
    app H10. aw. am. awi H9. nin H9. nin H9. rwi (singleton_eq H9) H10.
    red in H10. ufi g H10. Ztac. awi H12. am. am.
Qed.
```

3. ${ }^{*}$ Let $\left(\mathrm{X}_{i}\right)_{1 \leq i \leq n}$ be a finite family of sets. For each subset H of the index set $[1, n] \operatorname{let} \mathrm{P}_{\mathrm{H}}=$ $\bigcup_{i \in \mathrm{H}} \mathrm{X}_{i}$ and $\mathrm{Q}_{\mathrm{H}}=\bigcap_{i \in \mathrm{H}} \mathrm{X}_{i}$. Let \mathfrak{F}_{k} be the set of subsets of $[1, n]$ which have k elements. Show that

$$
\bigcup_{\mathrm{H} \mathfrak{\mathfrak { r }}}^{k} \mid \mathrm{Q}_{\mathrm{H}} \supset \bigcap_{\mathrm{H} \mathfrak{\mathfrak { r }} \tilde{\mathfrak{F}}_{k}} \mathrm{P}_{\mathrm{H}} \text { if } k \leq(n+1) / 2
$$

and that

$$
\bigcup_{\mathrm{H} \mathfrak{\mathfrak { F } _ { k }}} \mathrm{Q}_{\mathrm{H}} \subset \bigcap_{\mathrm{H} \mathfrak{r} \widetilde{\mathfrak{F}}_{k}} \mathrm{P}_{\mathrm{H}} \text { if } k \geq(n+1) / 2
$$

Bourbaki defines integers and finite sets only later. We can define finite sets by induction. We could try to say: let I be the index, T be a subset of I, and consider all H equipotent to T. The condition $k \leq n / 2$ is equivalent to: there is an injection from T into the complementary. The condition is however $k \leq(n+1) / 2$, this makes the result non-obvious.

8.6 Section 6

1. For a graph G to be the graph of an equivalence relation on a set E , it is necessary and sufficient that $\mathrm{pr}_{1} \mathrm{G}=\mathrm{E}, \mathrm{G} \circ \mathrm{G}^{-1} \circ \mathrm{G}=\mathrm{G}$ and $\Delta_{\mathrm{E}} \subset \mathrm{G}\left(\Delta_{\mathrm{E}}\right.$ being the diagonal of E$)$.
```
Lemma exercise6_1: forall x g, is_graph g ->
    (is_equivalence g & substrate g = x) =
    (domain g = x & range g = x &
        compose_graph g (compose_graph (inverse_graph g) g) = g
        & sub (diagonal x) g).
Proof. ir. app iff_eq. ir. nin H0. split. wr H1. app domain_is_substrate.
    split. wr H1. set_extens. uf substrate. ap union2_second. am.
    ufi substrate H2. pose (union2_or H2). nin o. awi H3.
    nin H3. red in HO; ee. red in H6; ee. ufi related H7. aw.
    exists x1. app H7. am. am. split. set_extens. awi H2. nin H2. nin H3.
    nin H3. awi H3. nin H3. nin H5. nin H5. awi H6.
    red in H0. ee. red in H9. nin H9. cp (H10 _ _ H6). red in H8. nin H8.
    cp (H12 _ _ _ H5 H11). cp (H12 _ _ _ H13 H4). red in H14.
    awi H14. am. am. am. am. app inverse_graph_is_graph.
    app composition_is_graph. am.
    assert (is_pair x0). app H. assert (J (P x0) (Q x0) = x0). aw.
    assert (inc (J (P x0) (P x0)) g). app reflexivity. app inc_pr1_substrate.
    aw. split. am. exists (P x0). split. aw. split. fprops.
    exists (P x0). split. red in H3. am. aw. app inverse_graph_is_graph. rww H4.
    app composition_is_graph. red. ir. rwi inc_diagonal H2. ee.
    assert (J (P x0) (Q x0) = x0). aw. wr H5.
    change(related g (P x0) (Q x0)). wr H4. app reflexivity. rww H1.
```


Now the converse

ir. assert (substrate $g=x$). ee. uf substrate. rw H0. rw H1. ap union2idem. assert (forall u, inc $u x$-> inc (J u u) g). ir. ee. app H5. rw inc_diagonal. split. fprops. split. aw. aw. assert(is_symmetric g). red. split. am. ir. ee.
assert (related g y y). red. app H2. wr H4. aw. exists x0. am. assert (related g x0 x0). red. app H2. wr H0. aw. exists y. am. red. wr H5. aw. split. fprops. exists x0. split. aw. split. fprops. exists y. split. am. aw. app inverse_graph_is_graph. am. app composition_is_graph. split. ee. red. split. am. split. red. split. am. ir. red. app H2. wrr H1. split. red. split. am. ir. red. wr H5. aw. split. fprops. exists y. split. aw. split. fprops. exists y. split. am. aw. app H2. wr HO. aw. exists z. am. app inverse_graph_is_graph. am. app composition_is_graph. am. am.
Qed.
2. If G is a graph such that $\mathrm{G} \circ \mathrm{G}^{-1} \circ \mathrm{G}=\mathrm{G}$ show that $\mathrm{G}^{-1} \circ \mathrm{G}$ and $\mathrm{G} \circ \mathrm{G}^{-1}$ are graphs of equivalences on $\mathrm{pr}_{1} \mathrm{G}$ and $\mathrm{pr}_{2} \mathrm{G}$ respectively.

We first compute the substrate of the relations.

```
Lemma exercise6_2: forall g, is_graph g ->
    compose_graph g (compose_graph (inverse_graph g) g) = g ->
    (is_equivalence (compose_graph (inverse_graph g) g) &
        substrate (compose_graph (inverse_graph g) g) = domain g & 
        is_equivalence (compose_graph g (inverse_graph g)) &
        substrate (compose_graph g (inverse_graph g)) = range g).
Proof. ir.
    assert(Ha:is_graph (inverse_graph g)). app inverse_graph_is_graph.
    assert (Hb:is_graph (compose_graph (inverse_graph g) g)).
    app composition_is_graph.
    assert (Hc:is_graph (compose_graph g (inverse_graph g))).
    app composition_is_graph.
    assert (forall x y z t, related g x y >> related g z y >> related g z t ->
            related g x t). ir. red. wr HO. aw. split. fprops. exists z.
    split. aw. split. fprops. exists y. split. am. aw. am.
    assert (Hd:substrate (compose_graph (inverse_graph g) g) = domain g).
    set_extens. rwi inc_substrate1 H2. nin H2. nin H2. awi H2. nin H2. nin H3.
    nin H3. awi H4. aw. exists x1. ufi related H1. app (H1 _ _ _ _ H3 H4 H4).
    am. am. am. nin H2. awi H2. nin H2. nin H3. nin H3. awi H4. aw.
    exists x1. ufi related H1. app (H1 _ _ _ _ H4 H3 H3). am. am. am. am.
    awi H2. nin H2. wri HO H2. awi H2. nin H2. nin H3. nin H3.
    cp (inc_pr1_substrate H3). awi H5. am. am. am. am.
    assert (He:substrate (compose_graph g (inverse_graph g)) = range g).
    set_extens. rwi inc_substrate1 H2. nin H2. nin H2. awi H2. nin H2. nin H3.
    nin H3. awi H3. aw. exists x1. ufi related H1. app (H1 _ _ _ _ H4 H4 H3).
    am. am. am. nin H2. awi H2. nin H2. nin H3. nin H3. awi H3. aw.
    exists x1. ufi related H1. app (H1 _ _ _ _ H3 H3 H4). am. am. am. am.
    awi H2. nin H2. wri HO H2. awi H2. nin H2. nin H3. nin H3. awi H3.
    nin H3. nin H5. nin H5.
    assert (inc (J x2 x) (compose_graph g (inverse_graph g))). aw.
    split. fprops. exists x1. split;am.
    cp (inc_pr2_substrate H7). awi H8. am. am. am. am. am. am.
```

We apply proposition $1 . \Gamma$ is an equivalence if $\Gamma=\Gamma^{-1}$ and $\Gamma \circ \Gamma=\Gamma$. If Γ is the composition of G and G^{-1} in any order, the relation is true. The second is a consequence of the assumption and associativity of composition.

```
split. rw equivalence_pr. split. wr composition_associative. uf h. rww HO.
app composition_is_graph. am. uf h. am.
rw inverse_compose. fold h. assert (g = inverse_graph h). uf h.
rww inverse_graph_involutive. wrr H2. am. uf h. am. uf h. am.
split. am. split. rw equivalence_pr. split. rw composition_associative.
rwi composition_associative HO. fold h in HO. rww HO. am. am. am.
uf h. am. am. app composition_is_graph.
rw inverse_compose. fold h. assert (g = inverse_graph h). uf h.
rww inverse_graph_involutive. wrr H2. am. am. am. am.
Qed.
```

3. Let E be a set, A a subset of E , and R the equivalence relation associated with the mapping $\mathrm{X} \mapsto \mathrm{X} \cap \mathrm{A}$ of $\mathfrak{P}(\mathrm{E})$ into $\mathfrak{P}(\mathrm{E})$. Show that there exists a bijection from $\mathfrak{P}(\mathrm{A})$ onto the quotient set $\mathfrak{P}(\mathrm{E}) / \mathrm{R}$.

If \sim is the equivalence associated, then B and B^{\prime} are related if they have the same intersection with A . If $u \in \mathrm{~A}$, we can consider the set of all B whose intersection with A is u is a class. This is our bijection (called canonical in the French edition).

```
Definition intersection_with x a :=
    BL(fun w=> intersection2 w a) (powerset x) (powerset x).
Definition intersection_with_canon x a :=
    BL (fun b => Zo(powerset x)(fun c=> intersection2 c a = b))
    (powerset a)(quotient (equivalence_associated (intersection_with x a))).
```

We first show that we have a function.

```
Lemma exercise6_3: forall a x,
    sub a x -> bijective (intersection_with_canon x a).
Proof. ir.
    assert(Ha: forall u, sub u a -> intersection2 u a = u).
    ir. app extensionality. app intersection2sub_first.
    red. ir. app intersection2_inc. app HO.
    assert (Hb:transf_axioms (fun w0 => intersection2 w0 a)
        (powerset x) (powerset x)). red. ir. app powerset_inc.
    apply sub_trans with c. app intersection2sub_first. app powerset_sub.
    assert (is_function (intersection_with x a)).
    uf intersection_with. app af_function.
    set(r:= eq_rel_associated (intersection_with x a)).
    assert (is_equivalence r). uf r. app equivalence_graph_ea.
    assert (transf_axioms (fun b => Zo(powerset x)
            (fun c=> intersection2 c a = b)) (powerset a)(quotient r)).
    red. ir. cp (powerset_sub H2).
    set (w:= Zo (powerset x) (fun c0 => intersection2 c0 a = c)).
    assert(nonempty w). exists c. uf w. Ztac. app powerset_inc.
    apply sub_trans with a. am. am.
    assert (sub w (powerset x)). uf w. app Z_sub.
    assert(inc (rep w) (powerset x)). app H5. app nonempty_rep.
    rw inc_quotient. red. split. am. split. uf r. rw substrate_graph_ea.
    uf intersection_with. rw af_source. am. am.
    assert(intersection2 (rep w) a = c).
```

```
set (b:= rep w). assert (inc b w). uf b. app nonempty_rep. ufi w H7.
Ztac. rw H9. tv.
set_extens. rw inc_class. uf r. rw related_ea. uf intersection_with.
rw af_source. split. am. split. app H5. aw. ufi w H8. Ztac. rww H10.
app H5. am. red in H1; nin H1;am.
rwi inc_class H8. ufi r H8. rwi related_ea H8.
nin H8. nin H9. ufi intersection_with H9. rwi af_source H9
ufi intersection_with H10. awi H10. uf w. Ztac. wr H10. am. am. am. am. am.
am. red in H1; nin H1;am. am.
assert (is_function (intersection_with_canon x a)).
uf intersection_with_canon. app af_function.
```

We prove injectivity.
red. split. red. split. am. uf intersection_with_canon. rw af_source. ir. awi H6. cp (powerset_sub H4). cp (powerset_sub H5).
assert (inc $x 0$ (Zo (powerset x) (fun $c=>$ intersection2 $c a=y)$).
wr H6. Ztac. app powerset_inc. apply sub_trans with a. am. am. Ztac.
sy. wr H11. app Ha. am. am. am. am.
We prove now the surjectivity.

```
app surjective_pr6. uf intersection_with_canon. rw af_source. rw af_target.
ir. rwi inc_quotient H4. ufi is_class H4. nin H4. clear H4. nin H5.
rwi substrate_graph_ea H4. ufi intersection_with H4. rwi af_source H4.
assert(inc (intersection2 (rep y) a) (powerset a)). app powerset_inc. red. ir.
app (intersection2_second H6).
cp (powerset_sub H6).
exists (intersection2 (rep y) a). split. am. aw.
set_extens. rwi H5 H8. rwi inc_class H8. ufi intersection_with H8.
rwi related_ea H8. ee. rwi af_source H9. awi H10. Ztac. am. am. am. am. am.
red in H1. nin H1; am. Ztac. rw H5. rw inc_class. rw related_ea.
uf intersection_with. rw af_source. split. am. split. am.
aw. sy. am. am. red in H1; nin H1; am. am. am.
```

4. Let G be the graph of an equivalence on a set E . Show that if A is a graph such that $\mathrm{A} \subset \mathrm{G}$ and $\mathrm{pr}_{1} \mathrm{~A}=\mathrm{E}$ (resp. $\mathrm{pr}_{2} \mathrm{~A}=\mathrm{E}$) then $\mathrm{G} \circ \mathrm{A}=\mathrm{G}$ (resp. $\mathrm{A} \circ \mathrm{G}=\mathrm{G}$); furthermore, if B is any graph, we have $(\mathrm{G} \cap \mathrm{B}) \circ \mathrm{A}=\mathrm{G} \cap(\mathrm{B} \circ \mathrm{A})(r e s p \mathrm{~A} \circ(\mathrm{G} \cap \mathrm{B})=\mathrm{G} \cap(\mathrm{A} \circ \mathrm{B}))$.
```
Lemma exercise6_4: forall g a b x,
    let comp := compose_graph in let inter:= intersection2 in
    is_equivalence g -> is_graph a -> is_graph b -> substrate g = x -> sub a g ->
    (domain \(\mathrm{a}=\mathrm{x} \rightarrow\) comp \(\mathrm{g} \mathrm{a}=\mathrm{g}\) \&
    range a = x -> comp a g = g \&
    (domain \(\mathrm{a}=\mathrm{x}->\operatorname{comp}(\) inter g b\() \mathrm{a}=\) inter \(\mathrm{g}(\operatorname{comp} \mathrm{b} a)) \&\)
    (range \(\mathrm{a}=\mathrm{x}->\) comp a (inter g b) \(=\) inter \(\mathrm{g}(\) comp a b))).
Proof. ir. assert (Ha: is_graph g). red in H; nin H;am.
    split. ir. uf comp. set_extens. awi H5. nin H5. nin H6. nin H6.
    assert (related g ( \(\mathrm{P} x 0\) ) ( Q x 0 )). app transitivity. exists \(\mathrm{x} 1 . \mathrm{split}\).
    red. app H3. am. red in H8. assert ( \(\mathrm{J}(\mathrm{P} x 0)(\mathrm{Q} x 0)=\mathrm{xO}\) ). aw.
    wrr H9. am. am. assert (is_pair x0). app Ha.
    assert (inc (P x0) (domain a)). rw H4. wr H2. app inc_pr1_substrate.
    awi H7. nin H7. aw. split. am. exists x1. split. am.
    cp (H3 _ H7). change (related g x1 (Q x0)). apply transitivity. am.
    exists ( P x0). split. app symmetricity. red. aw. am.
```


Second claim.

```
split. ir. uf comp. set_extens. awi H5. nin H5. nin H6. nin H6.
assert (related g (P x0) (Q x0)). app transitivity. exists x1. split.
am. red. app H3. red in H8. assert (J (P x0) (Q x0) = x0). aw.
wrr H9. am. am. assert (is_pair x0). app Ha.
assert (inc (Q x0) (range a)). rw H4. wr H2. app inc_pr2_substrate.
awi H7. nin H7. aw. split. am. exists x1. split.
change (related g (P x0) x1). app symmetricity. apply transitivity. am.
exists (Q x0). split. red. app H3. app symmetricity. red. aw. am. am.
```

Third claim.

```
split. ir. uf comp; uf inter. set_extens. awi H5. nin H5. nin H6. nin H6.
cp (intersection2_first H7). cp (intersection2_second H7).
assert (J (P x0) (Q x0) = x0). aw. wr H10. app intersection2_inc.
change (related g (P x0) (Q x0)). app transitivity. exists x1. split.
red. app H3. am. aw. split. am. exists x1. intuition.
am. red. ir. cp (intersection2_first H6). app Ha.
cp (intersection2_first H5). cp (intersection2_second H5).
assert (is_pair x0). app Ha.
assert (inc (P x0) (domain a)). rw H4. wr H2. app inc_pr1_substrate.
awi H7. nin H7. nin H10. nin H10. aw. split. am. exists x1. split. am.
app intersection2_inc. cp (H3 _ H10). change (related g x1 (Q x0)).
apply transitivity. am. exists (P x0). split. app symmetricity. red.
aw. red. ir. cp (intersection2_first H12). app Ha.
```

Last claim.

```
ir. uf comp. uf inter. set_extens. awi H5. nin H5. nin H6. nin H6.
cp (intersection2_first H6). cp (intersection2_second H6).
assert (J (P x0) (Q x0) = x0). aw. app intersection2_inc.
wr H10. change (related g (P x0) (Q x0)). app transitivity. exists x1. split.
am. red. app H3. aw. split. am. exists x1. intuition.
red. ir. cp (intersection2_first H6). app Ha. am.
cp (intersection2_first H5). cp (intersection2_second H5).
assert (is_pair x0). app Ha. awi H7. nin H7. nin H9. nin H9.
aw. split. am. exists x1. split. app intersection2_inc.
change (related g (P x0) x1). app symmetricity. apply transitivity. am.
exists (Q x0). split. red. app H3. app symmetricity. red. aw. am.
red. ir. cp (intersection2_first H11). app Ha. am. am.
Qed.
```


5. Show that every intersection of graphs of equivalences on a set E is the graph of an equiv-

 alence on E . Give an example of two equivalences on a set E such that the union of their graphs is not the graph of an equivalence on E .We have already shown the first property. Let's show that the union of two symmetric relations is symmetric.

```
Lemma symmetric_union: forall a b, is_symmetric a -> is_symmetric b ->
    is_symmetric (union2 a b).
Proof. red. ir. red in H; nin H. red in HO; nin HO.
    split. red. ir. cp (union2_or H3). nin H4. app H. app H0.
    ir. red in H3. cp (union2_or H3). nin H4. red. app union2_first.
```

app H1. red. app union2_second. app H2. Qed.

We show here that if $\mathrm{G} \subset \mathrm{E} \times \mathrm{E}$, then the substrate of $\mathrm{G} \cup \Delta_{\mathrm{E}}$ is E .

```
Lemma substrate_union_diag: forall x g,
    sub g (coarse x) -> substrate (union2 g (diagonal x)) = x.
Proof. ir. ufi coarse H. assert (is_graph g). red. ir. cp (H_ HO).
    rwi inc_product H1. nin H1. am.
    assert(is_graph (union2 g (diagonal x))). red. ir. nin (union2_or H1).
    app HO. rwi inc_diagonal H2. nin H2. am.
    set_extens. rwi inc_substrate1 H2. nin H2.
    nin H2. nin (union2_or H2). cp (H _ H3). rwi inc_product H4. nin H4.
    nin H5. awi H5. am. rwi inc_pair_diagonal H3. nin H3. am. nin H2.
    nin (union2_or H2). cp (H _ H3). rwi inc_product H4. nin H4.
    nin H5. awi H6. am. rwi inc_pair_diagonal H3. nin H3. wr H4. am. am.
    assert (inc (J x0 x0) (union2 g (diagonal x))). app union2_second.
    rw inc_pair_diagonal. split. am. tv. cp (inc_pr1_substrate H3). awi H4. am.
Qed.
```

If a and b are in E , we can consider $\Delta_{\mathrm{E}} \cup\{(a, b),(b, a)\}$. Its substrate is E.
Definition special_equivalence a b x :=
union2 (doubleton (J a b) (J b a)) (diagonal x).
Lemma substrate_special_equivalence:forall a b x,
inc $a \mathrm{x} \rightarrow$ inc $\mathrm{b} x$ \rightarrow substrate (special_equivalence a b x) $=\mathrm{x}$.
Proof. ir. uf special_equivalence. app substrate_union_diag. red. ir. cp (doubleton_or H1). uf coarse. nin H2. rw H2. app product_pair_inc. rw H2. app product_pair_inc.
Qed.
We show that this is an equivalence.

```
Lemma special_equivalence_ea:forall a b x,
    inc a x -> inc b x -> is_equivalence(special_equivalence a b x).
Proof. ir.
    assert (is_graph (special_equivalence a b x)). uf special_equivalence.
    red. ir. nin (union2_or H1). nin (doubleton_or H2). rw H3. fprops.
    rw H3. fprops. rwi inc_diagonal H2. nin H2. am.
    app symmetric_transitive_equivalence.
    red. split. am. uf special_equivalence. ir. red in H2. nin (union2_or H2).
    red. app union2_first. nin (doubleton_or H3).
    assert (J y x0 = J b a). rw (pr1_injective H4). rw (pr2_injective H4). tv.
    rw H5. fprops.
    assert (J y x0 = J a b). rw (pr1_injective H4). rw (pr2_injective H4). tv.
    rw H5. fprops. red. app union2_second.
    rwi inc_pair_diagonal H3. rw inc_pair_diagonal. intuition. wrr H5.
    red. split. ir. am. uf related. uf special_equivalence. ir.
    nin (union2_or H2). nin (doubleton_or H4). rw (pr1_injective H5).
    nin (union2_or H3). nin (doubleton_or H6). rw (pr2_injective H7).
    app union2_first. fprops. rw (pr2_injective H7).
    app union2_second. rw inc_pair_diagonal. split. am. tv.
    rwi inc_pair_diagonal H6. nin H6. wr H7. rw (pr2_injective H5).
    app union2_first. fprops.
    rw (pr1_injective H5). nin (union2_or H3). nin (doubleton_or H6).
    rw (pr2_injective H7). app union2_second. rww inc_pair_diagonal.
```

```
    split. am. tv. rw (pr2_injective H7). app union2_first. fprops.
    rwi inc_pair_diagonal H6. nin H6. wr H7.
    rw (pr2_injective H5). app union2_first. fprops.
    rwi inc_pair_diagonal H4. nin H4. rww H5.
Qed.
```

If we have two such equivalences with (a, b) and (a, c), transitivity of the union would imply that b and c are related in one of the two graphs. If all three elements are distinct this is not possible.

```
Lemma exercise6_5: let x := three_points in
    let g1:= special_equivalence (Ro tpa) (Ro tpb) x in
            let g2:= special_equivalence (Ro tpa) (Ro tpc) x in
                (is_equivalence g1 & is_equivalence g2 & substrate g1 = x & 
                substrate g2 = x & ~ (is_equivalence (union2 g1 g2))).
Proof. ir. split. uf g1. app special_equivalence_ea. uf x. ap R_inc.
    uf x; ap R_inc. split. uf g2. app special_equivalence_ea. uf x. ap R_inc.
    uf x; ap R_inc. split. uf g1; uf x. rw substrate_special_equivalence. tv.
    ap R_inc. ap R_inc. split. uf g2; uf x. rw substrate_special_equivalence. tv.
    ap R_inc. ap R_inc. red. ir. red in H. ee. red in H1. nin H1.
    assert (related (union2 g1 g2) (Ro tpb) (Ro tpa)). red. app union2_first.
    uf g1. uf special_equivalence. app union2_first. fprops.
    assert (related (union2 g1 g2) (Ro tpa) (Ro tpc)). red. app union2_second.
    uf g2. uf special_equivalence. app union2_first. fprops.
    cp (H3 _ _ _ H4 H5). red in H6. nin (union2_or H6).
    ufi g1 H7. ufi special_equivalence H7. nin (union2_or H7).
    nin (doubleton_or H8). cp (pr1_injective H9). cp (R_inj H10).
    discriminate H11. cp (pr2_injective H9). cp (R_inj H10). discriminate H11.
    rwi inc_diagonal H8. nin H8. nin H9. awi H10. cp (R_inj H10).
    discriminate H11.
    ufi g1 H7. ufi special_equivalence H7. nin (union2_or H7).
    nin (doubleton_or H8). cp (pr1_injective H9). cp (R_inj H10).
    discriminate H11. cp (pr2_injective H9). cp (R_inj H10). discriminate H11.
    rwi inc_diagonal H8. nin H8. nin H9. awi H10. cp (R_inj H10).
    discriminate H11.
Qed.
```

6. Let G, H be the graphs of two equivalences on E . Then $\mathrm{G} \circ \mathrm{H}$ is the graph of an equivalence on E if and only if $\mathrm{G} \circ \mathrm{H}=\mathrm{H} \circ \mathrm{G}$. The graph $\mathrm{G} \circ \mathrm{H}$ is then the intersection of all the graphs of equivalences on E wich contain both G and H .

We show that if $\mathrm{G} \circ \mathrm{H}$ is an equivalence then $\mathrm{G} \circ \mathrm{H}=\mathrm{H} \circ \mathrm{G}$. This uses symmetry.

```
Lemma exercise6_6a: forall G H,
    is_equivalence G -> is_equivalence H ->
    (is_equivalence (compose_graph G H) =
            (compose_graph G H = compose_graph H G)).
Proof. ir. app iff_eq. ir. assert (is_graph G). red in HO; nin HO; am.
    assert (is_graph H). red in H1; nin H1; am. set_extens.
    assert (is_pair x). awi H5. nin H5. am. am. am.
    assert (J (P x)(Q x) = x). aw. wri H7 H5.
    cp (symmetricity H2 H5). red in H8. awi H8. nin H8. nin H9. nin H9.
    aw. split. am. exists x0. split. app symmetricity. app symmetricity. am. am.
    awi H5. nin H5. nin H6. nin H6. assert (J (P x)(Q x) = x). aw.
    wr H8. app symmetricity. red. aw. split. fprops. exists x0.
    split. app symmetricity. app symmetricity. am. am.
```

Converse. We use proposition one that says that an equivalence satisfies $\Gamma=\Gamma^{-1}$ and $\Gamma \circ \Gamma=\Gamma$.

```
    ir. assert (is_graph G). red in HO; nin HO; am.
    assert (is_graph H). red in H1; nin H1; am.
    assert(is_graph (compose_graph G H)). ap composition_is_graph.
    assert(is_graph (compose_graph H G)). ap composition_is_graph.
    rwi (equivalence_pr H4) H1. rwi (equivalence_pr H3) H0.
    rw equivalence_pr. split.
    assert (compose_graph (compose_graph G H) (compose_graph G H) =
    compose_graph (compose_graph G H) (compose_graph H G)).
    wrr H2. rw H7. clear H7. rw composition_associative.
    assert(compose_graph (compose_graph G H) H = compose_graph G H).
    wr composition_associative. nin H1. rw H1. tv. am. am. am. rw H7. rw H2.
    wr composition_associative. nin HO. rw HO. tv. am. am. am. am. am. am.
    rw inverse_compose. nin H0. wr H7. nin H1. wr H8. am. am. am. am.
Qed.
```

We show here that if G and H are equivalences on E , then the substrate of $\mathrm{G} \circ \mathrm{H}$ is E .

```
Lemma exercise6_6b: forall G H,
    is_equivalence G -> is_equivalence H -> substrate G = substrate H ->
    substrate (compose_graph G H) = substrate G.
Proof. ir.
    assert (is_graph G). red in HO; ee; am.
    assert (is_graph H). red in H1; ee; am.
    set_extens. ufi substrate H5. nin (union2_or H5). awi H6.
    nin H6. awi H6. nin H6. nin H7. nin H7. rw H2.
    assert (x = P (J x x1)). aw. rw H9. app inc_pr1_substrate. am. am.
    app composition_is_graph. awi H6. nin H6. awi H6. nin H6. nin H7. nin H7.
    assert (x = Q (J x1 x)). aw. rw H9. app inc_pr2_substrate. am. am.
    app composition_is_graph. cp (reflexivity H0 H5). rwi H2 H5.
    cp (reflexivity H1 H5). assert (related (compose_graph G H) x x).
    red. aw. split. fprops. exists x. split. am. am.
    app (inc_arg1_substrate H8).
Qed.
```

We prove that the composition is the smallest equivalence that contains G and H .

```
Lemma exercise6_6c: forall G H,
    is_equivalence G -> is_equivalence H >> substrate G = substrate H ->
    (sub G (compose_graph G H) & sub H (compose_graph G H)
            &forall W, is_equivalence W -> sub G W -> sub H W ->
                sub (compose_graph G H) W).
Proof. ir. assert (is_graph G). red in HO; nin HO; am.
    assert (is_graph H). red in H1; nin H1; am.
    assert (is_graph (compose_graph G H)). ap composition_is_graph.
    split. red. ir. assert (J (P x)(Q x) =x). aw. app H3.
    wr H7. aw. split. app H3. exists (P x). split. app reflexivity.
    wr H2. app inc_pr1_substrate. rww H7. app H3. split.
    red. ir. assert (is_pair x). app H4.
    assert (J (P x) (Q x) =x). aw. wr H8. aw. split. am. exists (Q x).
    split. rww H8. app reflexivity. rw H2. app inc_pr2_substrate.
    ir. red. ir. assert (is_pair x). app H5. assert (J (P x) (Q x) =x). aw.
    wri H11 H9. awi H9. nin H9. nin H12. nin H12.
    assert (related WO (P x) (Q x)). ap transitivity. am. exists x0.
    split. red. app H8. red. app H7. wr H11. am. am. am. am. am. am.
```

We know that the domain of an equivalence is the substrate. We show here that the same is true for the domain.

```
Lemma range_is_substrate: forall g,
    is_equivalence g -> range g = substrate g.
Proof. ir. set_extens. uf substrate. ap union2_second. am.
    ufi substrate HO. pose (union2_or HO). nin o. awi H1.
    nin H1. red in H; ee. red in H4; ee. ufi related H5. aw.
    exists x0. app H5. red in H; ee. app H. am.
Qed.
```

If G is an equivalence on E then $\mathrm{G} \subset \mathrm{E} \times \mathrm{E}$.

```
Lemma sub_coarse: forall g,
    is_equivalence g -> sub g (coarse (substrate g)).
Proof. ir. assert (is_graph g). red in H; nin H; am. cp (sub_graph_prod HO).
    rwi range_is_substrate H1. rwi domain_is_substrate H1. am. am. am.
Qed.
```

The set of all graphs of equivalences on E is a subset of $\mathfrak{P}(E \times E)$, according to the two previous lemmas. We can consider the intersection of all these equivalences that contain G or H (there is at least one, the coarsest equivalence). The intersection is the smallest.

```
Lemma exercise6_6d: forall G H,
    is_equivalence G -> is_equivalence H -> substrate G = substrate H ->
    compose_graph G H = compose_graph H G ->
    (compose_graph G H) = intersection(Zo (powerset (coarse (substrate G)))
            (fun W => is_equivalence W & sub G W & sub H W)).
Proof. ir. set (E:= substrate G). assert (sub G (coarse E)). uf E.
    app sub_coarse. assert (sub H (coarse E)). uf E. rw H2. app sub_coarse.
    cp (exercise6_6c HO H1 H2).
    ap extensionality. red. ir. app intersection_inc. exists (coarse E).
    Ztac. ap powerset_inc. fprops. split. ap equivalence_relation_coarse.
    split. am. am. ir. Ztac. cp (H14 _ H10 H11 H12). app H15.
    red. ir. wri (exercise6_6a H0 H1) H3.
    assert (inc (compose_graph G H) (Zo (powerset (coarse E))
                            (fun W : Bset => is_equivalence W & sub G W & sub H W))).
    Ztac. app powerset_inc. uf E. wr (exercise6_6b H0 H1 H2). app sub_coarse.
    split. am. intuition. ap (intersection_forall H7 H8).
```

Qed.
7. Let $\mathrm{G}_{0}, \mathrm{G}_{1}, \mathrm{H}_{0}, \mathrm{H}_{1}$ be the graphs of four equivalences on a set E such that $\mathrm{G}_{1} \cap \mathrm{H}_{0}=\mathrm{G}_{0} \cap \mathrm{H}_{1}$ and $\mathrm{G}_{1} \circ \mathrm{H}_{0}=\mathrm{G}_{0} \circ \mathrm{H}_{1}$. For each $x \in \mathrm{E}$, let R_{0} (resp. S_{0}) be the relation induced on $\mathrm{G}_{1}(x)$ (resp. $\left.\mathrm{H}_{1}(x)\right)$ by the equivalence relation $(x, y) \in \mathrm{G}_{0}$ (resp. $(x, y) \in \mathrm{H}_{0}$). Show that there exists a bijection of the quotient set $\mathrm{G}_{1}(x) / \mathrm{R}_{0}$ onto the quotient set $\mathrm{H}_{1}(x) / \mathrm{S}_{0}$. (if $\mathrm{A}=\mathrm{G}_{1}(x) \cap \mathrm{H}_{1}(x)$, show that both quotient sets are in one-to-one correspondence with the quotient set of A by the equivalence relation induced by R_{0} on A ; this relation is equivalent to that induced by S_{0} on A).

This exercice is missing in the French edition. This is the statement we want to prove.

```
Lemma exercise6_7: forall G0 G1 HO H1 E x,
    is_equivalence GO -> substrate GO = E ->
    is_equivalence HO -> substrate HO = E ->
```

```
is_equivalence G1 -> substrate G1 = E ->
is_equivalence H1 -> substrate H1 = E ->
intersection2 G1 HO = intersection2 GO H1 ->
compose_graph G1 HO = compose_graph GO H1 ->
inc x E -> (
    let G1x := image_by_graph G1 (singleton x) in
        let H1x := image_by_graph H1 (singleton x) in
            let RO := induced_relation GO G1x in
            let SO := induced_relation HO H1x in
                equipotent (quotient RO) (quotient SO)).
```

Let's start with some properties of these relations.

```
Proof. ir. set (A:= intersection2 G1x H1x).
    set(Ar :=induced_relation RO A).
    set(As :=induced_relation SO A).
    assert (Ha: is_graph GO). nin H; am.
    assert (Hb: is_graph HO). nin H3; am.
    assert (Hc: is_graph G1). nin H5; am.
    assert (Hd: is_graph H1). nin H7; am.
    assert (He:axioms_induced_rel G0 G1x). red. split. am. rw H2. uf G1x. red. ir.
    awi H12. nin H12. nin H12. red in H13. wr H6. app (inc_arg2_substrate H13).
    am.
    assert (Hf:axioms_induced_rel H0 H1x). red. split. am. rw H4. uf H1x. red. ir.
    awi H12. nin H12. nin H12. red in H13. wr H8. app (inc_arg2_substrate H13).
    am.
    assert (is_equivalence RO). uf RO. app equivalence_induced_rel.
    assert (is_equivalence SO). uf SO. app equivalence_induced_rel.
    assert (forall u, inc u G1x = related G1 x u). ir. uf G1x. aw.
    app iff_eq. ir. nin H14. nin H14. rwi (singleton_eq H14) H15. am.
    ir. exists x. split. fprops. am.
    assert (forall u, inc u H1x = related H1 x u). ir. uf H1x. aw.
    app iff_eq. ir. nin H15. nin H15. rwi (singleton_eq H15) H16. am.
    ir. exists x. split. fprops. am.
    assert(forall u v, related RO u v =
        (related G1 x u & related G1 x v & related G0 u v)).
    ir. uf RO. rw (related_induced_rel u v He). rw H14; rw H14. tv.
    assert(forall u v, related SO u v =
        (related H1 x u & related H1 x v & related HO u v)).
    ir. uf S0. rw (related_induced_rel u v Hf). rw H15; rw H15. tv.
```

Let's show that R_{0} and S_{0} induce the same relation on A. This uses $G_{1} \cap H_{0}=G_{0} \cap H_{1}$.
assert(axioms_induced_rel RO A). red. split. am. red. ir. ufi A H18. assert (related R0 x0 x0). rw H16. cp (intersection2_first H18). ufi G1x H19. awi H19. nin H19. nin H19. rwi (singleton_eq H19) H2O. split. am. split. am. app reflexivity. rw H2. wr H6.
app (inc_arg2_substrate H20). nin H5; am. app (inc_arg2_substrate H19).
assert (axioms_induced_rel SO A). red. split. am. red. ir.
ufi A H19. assert (related S0 x0 x0). rw H17. cp (intersection2_second H19).
ufi H1x H2O. awi H2O. nin H2O. nin H2O. rwi (singleton_eq H2O) H21.
split. am. split. am. app reflexivity. rw H4. wr H8.
app (inc_arg2_substrate H21). nin H7; am. app (inc_arg2_substrate H2O).
assert (is_equivalence Ar). uf Ar. app equivalence_induced_rel.
assert (is_equivalence As). uf As. app equivalence_induced_rel.


```
ir. uf A. uf G1x. uf H1x. app iff_eq. ir. split. cp (intersection2_first H22)
awi H23. nin H23. nin H23. rwi (singleton_eq H23) H24. am. am.
cp (intersection2_second H22).
awi H23. nin H23. nin H23. rwi (singleton_eq H23) H24. am. am.
ir. nin H22. app intersection2_inc. aw. exists x. split. fprops. am.
aw. exists x. split. fprops. am.
assert (forall u v, related \(A r u v=\) (related G1 x u \& related G1 x v \&
    related \(\mathrm{H} 1 \mathrm{x} u\) \& related H 1 x v \& related GO u v)).
ir. uf Ar. rw (related_induced_rel u v H18). rw H16. rw H22. rw H22.
app iff_eq. intuition. intuition.
assert (forall u v, related As \(u\) v \(=\) (related G1 \(x\) u \& related G1 x v \&
    related H1 x u \& related H1 x v \& related HO u v)).
ir. uf As. rw (related_induced_rel u v H19). rw H17. rw H22. rw H22.
app iff_eq. intuition. intuition.
assert (forall u v, related Ar u v = related As u v).
ir. rw H23; rw H24. ap iff_eq. ir. ee;try am.
assert (related H1 u v). app transitivity. exists x. split.
app symmetricity. am. assert (inc (J u v) (intersection2 G0 H1)).
app intersection2_inc. red. wri H9 H31. app (intersection2_second H31).
ir. ee;try am. assert (related G1 u v). app transitivity. exists x. split.
app symmetricity. am. assert (inc (J u v) (intersection2 G0 H1)). wr H9.
app intersection2_inc. red. app (intersection2_first H31).
assert (equipotent (quotient Ar) (quotient As)).
assert (Ar = As). rw graph_extensionality. am. nin H2O; am. nin H21;am.
rw H26. ap equipotent_reflexive.
```

If π is the canonical projection onto E / R, and $A \subset E$, we know that the quotient set A / R_{A} is isomorphism to $\pi\langle\mathrm{A}\rangle$. Replacing E by $\mathrm{G}_{1}(x)$ and R by R_{0}, we see that we must show $\pi\langle\mathrm{A}\rangle=$ $\pi\left\langle\mathrm{G}_{1}(x)\right\rangle$. It seems possible to construct an example where $\mathrm{G}_{1}(x)$ is not empty but A is empty; case where the previous relation is false. We think that the exercise is wrong, but do not have a counterexample.

Abort.
8. Let E, F be two sets, let R be an equivalence relation on F , and let f be a mapping of E into F. If S is the equivalence relation which is the inverse image of R under f, and if $\mathrm{A}=f\langle\mathrm{E}\rangle$, define a canonical bijection of E / S onto $\mathrm{A} / \mathrm{R}_{\mathrm{A}}$.

The first thing to do is to show that S ands R_{A} are equivalence relations.

```
Lemma exercise6_8: forall f r,
    is_equivalence r -> is_function f -> target f = substrate r ->
    (exists g, bijective g & source g = quotient (inv_image_relation f r) &
            target g = quotient (induced_relation r (image_of_fun f))).
Proof. ir. set (s := inv_image_relation f r).
    set (A:= (image_of_fun f)). set (Ra := induced_relation r A).
    assert (iirel_axioms f r). red. intuition. assert (A = range (graph f)).
    uf A. uf image_of_fun. red in H0. nin HO. nin H3. rw H4.
    rw image_by_graph_domain. tv. fprops.
    assert (is_equivalence s). uf s. app relation_iirel.
    assert (axioms_induced_rel r A). red. split. am. wr H1. rw H3.
    app range_correspondence. red in HO; nin HO; am.
    assert (is_equivalence Ra). uf Ra. app equivalence_induced_rel.
```

Let's quote the properties of class_iirel and class_induced_rel: If X is a class modulo R then $f^{-1}\langle X\rangle$ is a class modulo S (if nonempty) and conversely. Classes for R_{A} are nonempty sets of
the form $\mathrm{A} \cap \mathrm{X}$ where X is a class for R . If a is a class for S we take X such that $a=f^{-1}\langle\mathrm{X}\rangle$, and consider $b=\mathrm{A} \cap \mathrm{X}$. This gives our function. We can do the reverse operation.

We denote by $f_{1}(a, \mathrm{X})$ the property $a=f^{-1}\langle\mathrm{X}\rangle, a \cap \mathrm{~A} \neq \varnothing$ and $\mathrm{X} \in \mathrm{F} / \mathrm{R}$. We denote by $f_{2}(a)$ a class that satisfies this property, from which we deduce $f_{3}(a)$ a class for R_{A}.

```
set (f1:= fun x=> fun y => is_class r y
    & nonempty (intersection2 y A) & x = inv_image_by_fun f y).
assert(forall x, inc x (quotient s) -> exists y, f1 x y). ir.
rwi inc_quotient H7. ufi s H7. rwi (class_iirel x H2) H7. nin H7.
exists x0. uf f1. rw H3. am. am.
set (f2:= fun x => choose (fun y => f1 x y)).
assert (forall x, inc x (quotient s) -> f1 x (f2 x)).
ir. assert (ex (f1 x)). cp (H7 _ H8). am. cp (choose_pr H9).
set (w:= choose (f1 x)). fold w in H10. assert (w = f2 x). tv. wrr H11.
set (f3:= fun x => intersection2 (f2 x) A).
assert (forall x, inc x (quotient s) -> inc (f3 x) (quotient Ra)).
ir. uf Ra. cp (H8 _ H9). ufi f1 H10. rw inc_quotient. rw class_induced_rel.
exists (f2 x). intuition. am. am.
```

It is now obvious to find a function from E / S to A / R_{A}.

```
set (g:= BL f3 (quotient s) (quotient Ra)).
assert (is_function g). uf g. app af_function.
assert (source g = quotient s). uf g. fprops.
assert (target g = quotient Ra). uf g. fprops.
exists g. ee; try am.
```

Our function is injective. Let $\mathrm{X}=f_{2}(a)$ and $\mathrm{X}^{\prime}=f_{2}\left(a^{\prime}\right)$. From $g(a)=g\left(a^{\prime}\right)$ we get $f_{3}(a)=$ $f_{3}\left(a^{\prime}\right)$, namely $\mathrm{X} \cap \mathrm{A}=\mathrm{X}^{\prime} \cap \mathrm{A}$. This is a nonempty set, it constains an element of the form $f(z)$. We have $a=f^{-1}\langle\mathrm{X}\rangle$ and $a^{\prime}=f^{-1}\langle\mathrm{X}\rangle^{\prime}$. These two classes have a common element z, hence are equal.

```
red. split. red. split. am. rw H11. ir. ufi g H15. awi H15. ufi f3 H15.
cp (H8 _ H13). cp (H8 _ H14). ufi f1 H16. ufi f1 H17. ee.
nin H18. assert (inc y0 (f2 y)). ap (intersection2_first H18).
assert (inc y0 (f2 x)). wri H15 H18. ap (intersection2_first H18).
assert (inc y0 (range (graph f))). wr H3. ap (intersection2_second H18).
awi H24. nin H24. assert (inc x0 x). rw H21. uf inv_image_by_fun. aw.
exists y0. intuition. fprops. assert (inc x0 y). rw H19.
uf inv_image_by_fun. aw. exists y0. intuition. fprops.
rwi inc_quotient H13. rwi inc_quotient H14. nin (class_dichot H13 H14).
am. red in H27. assert (inc x0 emptyset). wr H27. app intersection2_inc.
elim (emptyset_pr H28). am. am. fprops. am. am. am. am.
```

Surjectivity is easy. Take $y \in \mathrm{~A} / \mathrm{R}_{\mathrm{A}}$. There is some $x \in \mathrm{~F} / \mathrm{R}$ such that $y=x \cap \mathrm{~A}$ and we want to find $u \in \mathrm{E} / \mathrm{S}$ such that $g(u)=x \cap \mathrm{~A}, u=f^{-1}\langle x\rangle$. Define $u=f^{-1}\langle x\rangle$. The construction of g uses the axiom of choice, so that we must show uniqueness, namely $x=f_{2}(u)$. This is a consequence of the fact the these two classes have a common element.

```
app surjective_pr6. rw H12. ir. rwi inc_quotient H13. ufi Ra H13.
rwi class_induced_rel H13. nin H13. nin H13.
set (u:= inv_image_by_fun f x).
assert (inc u (quotient s)). uf s. rw inc_quotient. rw class_iirel.
exists x. wr H3. intuition. am. am. exists u. split. rww H11. uf g.
```

```
aw. uf f3. cp (H8 _ H15). ufi f1 H16.
nin H14. nin H14. cp (intersection2_second H14). rwi H3 H18. awi H18.
nin H18. assert (inc x0 u). uf u. uf inv_image_by_fun. aw. exists y0.
split. ap (intersection2_first H14). am. fprops. nin H16. nin H2O.
rwi H21 H19. ufi inv_image_by_fun H19. awi H19. nin H19. nin H19.
assert (x1 = y0). red in H0. nin HO. nin H23. red in H23.
app (H23 _ _ _ H22 H18).
assert (inc y0 (intersection2 x (f2 u))). app intersection2_inc.
ap (intersection2_first H14). wrr H23.
nin (class_dichot H13 H16). wrr H25. red in H25. rwi H25 H24.
elim (emptyset_pr H24). fprops. fprops. am. am.
```

9. Let F, G be two sets, let R be an equivalence relation of F , let p be the canonical mapping of F onto F / R and let f be a surjection of G onto F / R. Show that there exists a set E , a surjection g of E onto F and a surjection h of E onto G such that $p \circ g=f \circ h$.

The set E is the disjoint union of F and G , we write it as $\mathrm{E}_{a} \cup \mathrm{E}_{b}$.

```
Lemma exercise6_9: forall F G p f r,
    is_equivalence r -> F = substrate r -> p = canon_proj r ->
    surjective f -> source f = G -> target f = quotient r ->
    exists E, exists g, exists h,
    (surjective g & surjective h & source g = E & source h = E & target g = F
            & target h = G & compose p g = compose f h).
Proof. ir. set (a:= Ro two_points_a). set (b:= Ro two_points_b).
    assert (Hab: b <> a). uf a; uf b; red. ir. cp (R_inj H5). discriminate H6.
    set (Ea:= product F (singleton a)). set (Eb:=product G (singleton b)).
    set (E:= union2 Ea Eb).
    assert (Ha:is_graph E). red. ir. ufi E H5. nin (union2_or H5). ufi Ea H6.
    rwi inc_product H6; nin H6; am. ufi Eb H6. rwi inc_product H6; nin H6; am.
    assert (Hb:forall x, inc x E -> (Q x =a \/ Q x = b)). ir. ufi E H5.
    nin (union2_or H5). ufi Ea H6. rwi inc_product H6; nin H6; nin H7. left.
    app singleton_eq. ufi Eb H6. rwi inc_product H6; nin H6; nin H7. right.
    app singleton_eq.
    assert (Hc:forall x, inc x G -> inc (W x f) (quotient r)).
    ir. wr H4. app inc_W_target. red in H2; nin H2; am. rww H3.
    assert (Hd:forall x, inc x G -> inc (rep (W x f)) F). ir. rw HO.
    fprops.
```

We consider the function g; it is the identity on E_{a} if we identify E_{a} with F , so that the image is F . Let $x \in \mathrm{E}_{b}$; we can identify E_{b} with G , hence assume $x \in \mathrm{G}$ so that $f(x) \in \mathrm{F} / \mathrm{R}$. We define $g(x)$ to be a representative of the class of $f(x)$. This is an element of F . We have $p(g(x))=f(x)$.

```
set (gz :=fun z=> Yo (Q z = a) (P z) (rep (W (P z) f))).
assert (He:forall z, inc z Ea -> gz z = P z). uf Ea.
ir. rwi inc_product H5. nin H5. nin H6. uf gz. rw Y_if_rw. tv.
ap (singleton_eq H7).
assert (Hf:forall z, inc z Ea -> inc (gz z) F).
ir. rw He. ufi Ea H5. rwi inc_product H5. nin H5. nin H6. am. am.
assert (Hg:forall z, inc z Eb -> gz z = rep (W (P z) f)). uf Eb. ir.
rwi inc_product H5. nin H5. nin H6. uf gz. rw Y_if_not_rw. tv.
rw (singleton_eq H7). ap Hab.
assert (Hh:forall z, inc z Eb -> inc (gz z) F). ir. rw Hg. ap Hd.
ufi Eb H5. rwi inc_product H5. nin H5. nin H6. am. am.
```

```
assert (transf_axioms gz E F). red. ir. ufi E H5. nin (union2_or H5).
app Hf. app Hh.
set (g:= BL gz E F). assert (source g = E). uf g. app af_source.
assert (target g = F). uf g. app af_target.
assert(is_function g). uf g. app af_function.
assert(surjective g). app surjective_pr6. rw H7; rw H6. ir.
assert (inc (J y a) Ea). uf Ea. app product_pair_inc. fprops.
assert (inc (J y a) E). uf E. app union2_first.
exists (J y a). split. am. uf g. aw. rw He. aw. am.
assert(forall x, inc x Eb -> W (W x g) (canon_proj r) = W (P x) f).
ir. uf g. aw. rw Hg. app class_rep. app Hc.
ufi Eb H10. rwi inc_product H10. nin H10. nin H11. am. am. uf E.
app union2_second. wr HO. app Hh. uf E. app union2_second.
```

We define now h similarly.
set (ha:= fun x => (rep (inv_image_by_fun f(singleton(W x (canon_proj r))))). assert (Hi:forall x, inc x F ->
ha $x=$ rep (inv_image_by_fun $f($ singleton (class r x)))).
ir. uf ha. aw. wr H0. am.
assert (Hj:forall x, inc x F ->
sub (inv_image_by_fun f (singleton(class r x))) G).
ir. red. ir. ufi inv_image_by_fun H12. awi H12. nin H12. nin H12. red in H13.
red in H2; nin H2. wr H3. app (inc_pr1graph_source H2 H13).
red in H2; nin H2. fprops.
assert(Hk:forall x, inc x F ->
inc (ha x) (inv_image_by_fun f (singleton (class r x)))).
ir. rw Hi. app nonempty_rep.
assert (inc (class r x) (target f)). rw H4. app inc_class_quotient.
wrr H0. cp (surjective_pr2 H2 H12). nin H13. nin H13. exists x0.
uf inv_image_by_fun. aw. exists (class r x). split. fprops. red. rw H14.
ap defined_lem. red in H2; nin H2; am. am. red in H2; nin H2; fprops. am.
assert (Hl:forall x, inc x F \rightarrow inc (ha x) G). ir. ap (Hj _ H11). ap Hk. am.

assert (forall z, inc $z E->$ inc (hz z) G). ir. ufi E H11.
nin(union2_or H11). ufi Ea H12. rwi inc_product H12. nin H12. nin H13.
uf hz. rww Y_if_rw. app Hl. rw (singleton_eq H14). tv.
ufi Eb H12. rwi inc_product H12. nin H12. nin H13.
uf hz. rww Y_if_not_rw. rw (singleton_eq H14). am.
$\operatorname{set}(h:=B L h z E G)$. assert (is_function h). uf h; app af_function.
assert (source h = E). uf h; app af_source.
assert (target h = G). uf h; app af_target.
assert (surjective h). app surjective_pr6. rw H13; rw H14. ir.
assert (inc (J y b) Eb). uf Eb. app product_pair_inc. fprops.
assert (inc (J y b) E). uf E. app union2_second.
exists (J y b). split. am. uf h. aw. uf hz. rw Y_if_not_rw. aw. aw.
assert (forall x, inc x Ea $->$ W (W x h) f $=W$ (P x) (canon_proj r)).
ir. uf h. aw. uf hz. ufi Ea H16. rwi inc_product H16. ee.
rw Y_if_rw. cp (Hk _ H17). ufi inv_image_by_fun H19. awi H19. nin H19.
nin H19. red in H2O. red in H2. nin H2. wr (W_pr H2 H2O).
rw (singleton_eq H19). tv.
red in H2; nin H2; fprops. rww (singleton_eq H18). uf E. app union2_first.
wr H0. ufi Ea H16. rwi inc_product H16. ee. am.
We are now ready to prove the main result.
exists E. exists g. exists h. ee;try am.

```
assert (composable p g). red. split. rw H1. app function_canon_proj. split.
am. rw H1. aw. rw H7. sy; am.
assert (composable f h). red. split. red in H2; nin H2;am. split. am.
rw H14. am. ap funct_extensionality. fprops. fprops. aw. aw.
rw H1. aw. sy. rw H4. tv.
```

The non-obvious point is to show $p(g(x))=f(h(x))$.
ir. aw. awi H19. rwi H6 H19.
ufi E H19. nin (union2_or H19). rw H16. uf g. aw. rw He. rw H1. aw.
wr He. wr HO. app Hf. am. am. wr He. wr HO. app Hf. am. am.
uf h. uf hz. aw. rw Y_if_not_rw. rw H1. app H10. ufi Eb H20.
rwi inc_product H 20 ; ee. rw (singleton_eq H22). am.
Qed.
10. (a) if $R\{x, y\}$ is any relation, then " $R\{x, y\}$ and $R\{y, x\}$ " is a symmetric relation. Under what condition is it reflexive on a set E ?
*(b) Let $\mathrm{R}\{x, y \xi$ be a reflexive and symmetric relation on a set E . Let $\mathrm{S} \xi x, y \xi$ be the relation "There exists an integer $n>0$ and a sequence $\left(x_{i}\right)_{0 \leq i \leq n}$ of elements of E such that $x_{0}=x$, $x_{n}=y$ and for each index i such that $0 \leq i<n, \mathrm{R}\left\{x_{i}, x_{i+1}\right\}$ ". Show that $\mathrm{S} \xi x, y \xi$ is an equivalence relation on E and that its graph is the smallest of all graphs of equivalences on E which contain the graph of R . The equivalence classes with respect to S are called the connected components of E with respect to the relation R .
(c) Let \mathfrak{F} be the set of subsets A of E such that for each pair of elements (y, z) such that $y \in \mathrm{~A}$ and $z \in \mathrm{E}-\mathrm{A}$, we have " not $\mathrm{R} \xi y, z \xi$ ". For each $x \in \mathrm{E}$ show that the intersection of the sets $\mathrm{A} \in \mathfrak{F}$ such that $x \in \mathrm{~A}$ is the connected component of x with respect to the relation R .*

Part a is trivial.

```
Section Exercice6_10.
Lemma Exercise6_10_a: forall r:EEP,
    symmetric_r (fun x y => r x y & r y x).
Proof. ir. red. ir. intuition. Qed.
Lemma exercise6 10 b: forall r E,
    reflexive_r r E -> reflexive_r (fun x y => r x y & r y x) E.
Proof. uf reflexive_r. ir. rw H. app iff_eq. intuition. intuition.Qed.
```

We consider now a context in which R is reflexive and symmetric on E.

```
Variables (R:EEP) (E:Bset).
Variables (A1: reflexive_r R E)(A2: symmetric_r R)
    (A3: forall x y, R x y -> inc x E).
```

Defining the relation S is easy.

```
Inductive chain:Type :=
    chain_pair: Bset -> Bset -> chain
    | chain_next: Bset -> chain -> chain.
Fixpoint chain_head x :=
    match x with chain_pair u _ => u | chain_next u _ => u end.
Fixpoint chain_tail x :=
    match x with chain_pair _ u => u | chain_next _ u => chain_tail u end.
```

```
Fixpoint chained_r x :=
    match x with chain_pair u v => R u v
        | chain_next u v => R u (chain_head v) & chained_r v
    end.
Definition relS x y := exists c:chain,
    chained_r c & chain_head c = x & chain_tail c = y.
```

For the transitivity, we need to concatenate lists.

```
Fixpoint concat_chain x y {struct x} : chain :=
    match x with chain_pair u _ => chain_next u y
| chain_next u v => chain_next u (concat_chain (x:=v) y) end.
Lemma head_concat : forall x y,
    chain_head (concat_chain x y) = chain_head x.
Proof. ir. induction x. simpl. tv. simpl. tv. Qed.
Lemma tail_concat : forall x y,
    chain_tail (concat_chain x y) = chain_tail y 
Proof. ir. induction x. simpl. tv. simpl. tv. Qed.
Lemma chained_concat: forall x y,
    chained_r x -> chained_r y -> chain_tail x = chain_head y ->
    chained_r (concat_chain x y).
Proof. ir. induction x. simpl. split. simpl in H. simpl in H1. wrr H1. am.
    simpl. split. rw head_concat. simpl in H. nin H. am. simpl in H1.
    simpl in H. nin H. app IHx.
Qed.
Lemma transitiveS: forall x y z, relS x y -> relS y z -> relS x z.
Proof. ir. nin H. nin HO. ee. exists (concat_chain x0 x1). split.
    app chained_concat. rww H1. split. rww head_concat. rww tail_concat.
Qed.
```

For the symmetry, we need to reverse the list. One way to reverse the list L is to start with an empty list L^{\prime}, and recursively add the head of L to the head of L^{\prime}, as long as L is not empty. In this case, L and L' have at least two elements, this gives some special cases to deal with.

```
Fixpoint reconc_chain (x y:chain) {struct x} :chain:=
    match x with chain_pair u v => chain_next v (chain_next u y)
        | chain_next u v => reconc_chain v (chain_next u y) end.
Lemma tail_reconc: forall x y, chain_tail (reconc_chain x y) = chain_tail y.
Proof. intro x. induction x. ir. simpl. tv. ir. simpl.
    assert ( chain_tail(chain_next b y) = chain_tail y). simpl. tv. wr H.
    app IHx.
Qed.
Lemma head_reconc: forall x y, chain_head (reconc_chain x y) = chain_tail x.
Proof. intro x. induction x. auto. ir. simpl. app IHx.
Qed.
Lemma chained_reconc: forall x y, chained_r x -> chained_r y ->
    R (chain_head y) (chain_head x) -> chained_r (reconc_chain x y).
Proof. intro x. induction x. ir. simpl in H1. simpl in H. simpl. split.
    app A2. split. app A2. am. simpl. ir. nin H. app IHx. simpl. intuition.
Qed.
```

We define now the reverse.

```
Fixpoint chain_reverse x:=
    match x with chain_pair u v => chain_pair v u
        | chain_next u v =>
            match v with chain_pair u' v' => chain_next v' (chain_pair u' u)
                | chain_next u' v' => reconc_chain v' (chain_pair u' u)
            end end.
Lemma head_reverse: forall x, chain_head (chain_reverse x) = chain_tail x.
Proof. ir. induction x. auto. induction x. simpl. tv. simpl. app head_reconc.
Qed.
Lemma tail_reverse: forall x, chain_tail (chain_reverse x) = chain_head x.
Proof. ir. induction x. auto. induction x. simpl. tv. simpl. rw tail_reconc.
    simpl. tv.
Qed.
Lemma chained_reverse: forall x, chained_r x -> chained_r (chain_reverse x).
Proof. ir. induction x. simpl. simpl in H. app A2. induction x.
    simpl. simpl in H. split. app A2. nin H. am. app A2. nin H. am.
    simpl. simpl in H. ee. app chained_reconc. simpl. app A2.
Qed.
Lemma symmetricS: forall x y, relS x y -> relS y x.
Proof. ir. red in H. nin H. ee. exists (chain_reverse x0). split.
    app chained_reverse. split. rww head_reverse. rww tail_reverse.
Qed.
```

We make use of A3 for the first time here. It says that if x is related by S , it is in E . As a consequence our relation is an equivalence relation and its graph is an equivalence on E.

```
Lemma equivalenceS: equivalence_re relS E.
Proof. ir. red. split. red. split. red. ir. app symmetricS. red. ir.
    apply transitiveS with y. am. am. red. ir. app iff_eq. ir.
    exists (chain_pair y y). split. simpl. wrr A1. simpl. intuition.
    ir. red in H. nin H. ee. nin x. simpl in H. simpl in HO. wr HO. app (A3 H).
    simpl in H. simpl in HO. wr HO. nin H. app (A3 H).
Qed.
Definition Sgraph := graph_on relS E.
Lemma equivalence_Sgraph: is_equivalence Sgraph.
Proof. uf Sgraph. cp (equivalence_has_graph0 equivalenceS).
    assert (is_graph (graph_on relS E)). app is_graph_graph_on.
    cp equivalenceS. nin H1.
    app (equivalence_if_has_graph2 H0 H H1).
Qed.
Lemma substrate_Sgraph: substrate Sgraph =E.
Proof. uf Sgraph. app extensionality. app substrate_graph_on. red. ir.
    assert (relS x x). cp equivalenceS. nin H0. wr H1. am.
    cp equivalenceS. rwi (related_graph_on x x H1) HO.
    app (inc_arg1_substrate HO).
Qed.
```

We can now show that this is the smallest relation. If r is an equivalence implied by R , the transitivity says that two elements (in particular head and tail) of a chained_r chain are related by r.

```
Lemma S_is_smallest: forall r, is_equivalence r ->
    (forall x y, R x y -> inc (J x y) r) -> sub Sgraph r.
Proof. ir.
    assert (forall w, chained_r w -> inc (J (chain_head w) (chain_tail w)) r).
```

```
ir. induction w. simpl. simpl in H1. app HO.
simpl. simpl in H1. nin H1. red in H; ee. red in H4. nin H4.
app (H6 _ _ _ (HO _ _ H1) (IHw H2)).
red. uf Sgraph. uf graph_on. ir. Ztac. nin H4. nin H4. nin H5.
assert (J (P x) (Q x) = x). aw. rwi inc_product H3; ee;am.
wr H7. wr H5. wr H6. app H1.
Qed.
```

We define here the set \mathfrak{F} and some set $\mathrm{C}(x)$. We have to show that this is the class of x for S.

```
Definition setF:= Zo (powerset E)(fun A => forall y z, inc y A ->
    inc z (complement E A) -> not (R y z)).
Definition connected_comp x := intersection(Zo setF (fun A => inc x A)).
```

We first rewrite the condition on \mathfrak{F}, then prove that every element of \mathfrak{F} is stable by S , hence contains equivalence classes. Each equivalence class is in \mathfrak{F}. The result is then obvious.

```
Lemma setF_pr: forall A a b,
    inc \(A\) setF \(\rightarrow\) inc \(a A \rightarrow R\) \(A b->\) inc \(b A\).
Proof. ir. ufi setF H. Ztac. apply by_cases with (inc b A). tv. ir.
    assert (inc b (complement E A)). rw inc_complement. split.
    assert (R b a). app A2. app (A3 H5). am. cp (H3 _ _ H0 H5). elim H6. am.
Qed.
Lemma setF_pr2: forall A a b,
    inc \(A\) setF \(\rightarrow\) inc \(a \operatorname{A} \rightarrow\) relS \(a b>i n c ~ b A\).
Proof. ir. red in H1. nin H1. ee. wr H3. wri H2 HO. clear H2; clear H3.
    induction \(x\). simpl in H1. ap (setF_pr H HO H1). simpl. simpl in H1.
    simpl in HO. nin H1. cp (setF_pr H HO H1). app IHx.
Qed.
Lemma setF_pr3: forall A a, inc A setF \(\rightarrow\) inc a A \(\rightarrow\) sub (class Sgraph a) A.
Proof. ir. red. ir. rwi inc_class H1. ufi Sgraph H1. wri related_graph_on H1.
        ap (setF_pr2 H HO H1). ap equivalenceS. cp equivalence_Sgraph. red in H2.
        nin H2. am.
Qed.
Lemma setF_pr4: forall a, inc a E -> inc (class Sgraph a) setF.
Proof. ir. uf setF. cp equivalence_Sgraph. Ztac. ap powerset_inc.
        wr substrate_Sgraph. app sub_class_substrate. red in HO; ee.
        ir. rwi inc_complement H5. nin H5. red. ir. app H6. rwi inc_class H4.
        red in H3. nin H3. cp (H8 _ _ H4). rw inc_class. ap H8. cp (A2 H7).
        cp equivalenceS. uf Sgraph. wr related_graph_on.
        ufi Sgraph H9. wri related_graph_on H9. nin H9. nin H9. nin H12. red.
        exists (chain_next z x). split. simpl. rw H12. split;am. simpl.
        split. tv. am. am. am. am. am.
Qed.
Lemma connected_comp_class: forall x, inc x E ->
    class Sgraph x = connected_comp x.
Proof. ir. set_extens. uf connected_comp. app intersection_inc. exists E. Ztac.
    uf setF. Ztac. app powerset_inc. fprops. ir. rwi inc_complement H2.
    nin H2. elim H3. am. ir. Ztac. ap (setF_pr3 H2 H3). am.
    ufi connected_comp HO.
    assert (inc (class Sgraph x) (Zo setF (fun A => inc x A)) ). Ztac.
    app setF_pr4. rw inc_class. app reflexivity. ap equivalence_Sgraph.
    rw substrate_Sgraph. am. cp equivalence_Sgraph. nin H1; am.
    ap (intersection_forall H0 H1).
Qed.
```

11. (a) Let $\mathrm{R}\{x, y\}$ be a reflexive and symmetric relation on a set E . R is said to be intransitive of order 1 if for any four distinct elements x, y, z, t of E , the relations $\mathrm{R} \xi x, y\}, \mathrm{R}\{x, z \xi, \mathrm{R}\} x, t \xi$, $\mathrm{R} \xi y, z \xi$ and $\mathrm{R} \xi y, t \xi$ imply $\mathrm{R} \xi z, t \xi$. A subset A of E is said to be stable with respect to the relation R if $\mathrm{R}\{x, y\}$ for all x and y in A . If a and b are two distinct elements of E such that R$\} a, b \xi$ show that the set $\mathrm{C}(a, b)$ of elements $x \in \mathrm{E}$ such that $\mathrm{R}\{a, x\}$ and $\mathrm{R} \xi b, x\}$ is stable and that $\mathrm{C}(x, y)=$ $\mathrm{C}(a, b)$ for each pair of distinct elements x, y of $\mathrm{C}(a, b)$. The sets $\mathrm{C}(a, b)$ (for each ordered pair (a, b) such that R$\} a, b \xi)$ and the connected components (Exercise 10) with respect to R which consist of a single element are called the constituents of E with respect to the relation R. Show that the intersection of two distinct constituents of E contains at most one element and that if $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three mutually distinct constituents at least one of the sets $\mathrm{A} \cap \mathrm{B}, \mathrm{B} \cap \mathrm{C}$, $\mathrm{C} \cap \mathrm{A}$ is empty.
(b) Conversely, let $\left(\mathrm{X}_{\lambda}\right)_{\lambda \in \mathrm{L}}$ be a covering of a set E consisting of non-empty subsets of E having the following properties: (1) if λ and μ are two distinct indices, $\mathrm{X}_{\lambda} \cap \mathrm{X}_{\mu}$ contains at most one element; (2) if λ, μ, v are three distinct letters, then at least one of the three sets $\mathrm{X}_{\lambda} \cap \mathrm{X}_{\mu}, \mathrm{X}_{\mu} \cap \mathrm{X}_{\nu}, \mathrm{X}_{\nu} \cap \mathrm{X}_{\lambda}$ is empty. Let $\mathrm{R} \xi x, y \xi$ be the relation "There exists $\lambda \in \mathrm{L}$ such that $x \in \mathrm{X}_{\lambda}$ and $y \in \mathrm{X}_{\lambda}$ "; show that R is reflexive on E , symmetric and intransitive of order 1 , and that the X_{λ} are the constituents of E with respect to R .
(c) * Similarly, a relation $\mathrm{R}\{x, y \xi$ which is reflexive and symmetric on E is said to be intransitive of order $n-3$ if, for every family $\left(x_{i}\right)_{1 \leq i \leq n}$ of distinct elements of E , the relations $\mathrm{R} \xi x_{i}, x_{j} \xi$ for each pair $(i, j) \neq(n-1, n)$ imply $\mathrm{R}\left\{x_{n-1}, x_{n}\right\}$. Generalize the results of (a) and (b) to intransitive relations of any order. Show that a relation which is intransitive of order p is also intransitive of order q for all $q>p$.*

This is a follow-up to the previous exercise. We still assume that R is reflexive and symmetric on E (i.e., A1, A2 and A3 are assumed). We give a short definition and show that it is equivalent to the long one.

```
Definition intransitive1 := forall x y z t,
    x <> y -> R x y -> R x z l> R x t -> R y z -> R y t -> R z t.
Lemma intransitive1pr :
    let intransitive_alt:= forall x y z t,
        x <> y -> x <> z -> x <> t -> y <> z -> y <> t -> z <> t ->
        inc x E -> inc y E -> inc z E -> inc t E ->
        R x y >> R x z >> R x t >> R y z ->> R y t >> R z t in
        intransitive1 = intransitive_alt.
Proof. uf intransitive1. app iff_eq. ir. app (H x y z t H0 H10 H11 H12 H13 H14).
    ir. nin (equal_or_not x z). wrr H6.
    nin (equal_or_not x t). wrr H7. app A2.
    nin (equal_or_not y z). wrr H8.
    nin (equal_or_not y t). wrr H9. app A2.
    assert (inc z E). cp (A2 H4). app (A3 H10).
    nin (equal_or_not z t). wr H11. wrr A1.
    app (H x y z t). app (A3 H1). app (A3 H4). cp (A2 H5). app (A3 H12).
Qed.
```

We now define and study $\mathrm{C}(a, b)$.

```
Definition stableR A:= forall a b, inc a A -> inc b A -> R a b.
Definition Cab a b:= Zo E (fun x => R a x & R b x).
Lemma Cab_stable: forall a b, a<> b -> R a b -> intransitive1 ->
    stableR (Cab a b).
```

```
Proof. ir. red. ir. ufi Cab H2. Ztac. clear H2. ufi Cab H3. Ztac. red in H1.
    app (H1 a b a0 b0).
Qed.
Lemma Cab_trans: forall a b x y, a<> b -> R a b -> intransitive1 ->
    x<> y -> inc x (Cab a b) -> inc y (Cab a b) -> (Cab a b)= (Cab x y).
Proof. ir. red in H1. ufi Cab H3. Ztac. clear H3.
    ufi Cab H4. Ztac. clear H4.
    set_extens. ufi Cab H4. Ztac. clear H4. uf Cab. Ztac. split.
    app (H1 a b x x0). app (H1 a b y x0).
    ufi Cab H4. Ztac. clear H4. uf Cab. Ztac. split.
    app (H1 x y a x0). app (H1 a b x y). app A2. app A2.
    app (H1 x y b x0). app (H1 a b x y). app A2. app A2.
Qed.
```

A constituent is either a C or a connected component that has a single element. Let's characterize these. The non-trivial point here is to show that, if x is related to no other element than itself by R , the same is true for S . Hence, consider a chain from x to y. By symmetry, we have a chain from y to x for which we can use induction (if $y \sim x$, then $x=y$ by symmetry of R and equality; if $y \sim z$ and z is chained to x, we get $z=x$ by induction, hence $y \sim x$ and we proceed as above).

```
Lemma singleton_component: forall A, sub A E ->
    (inc A (quotient Sgraph) & is_singleton A) =
    (exists a, A = singleton a & forall b, R a b -> a = b).
Proof. ir. cp equivalence_Sgraph. rename HO into Ha.
    ap iff_eq. ir. ee. nin H1. exists x. split. am. ir.
    assert (related Sgraph x b). uf Sgraph. wr related_graph_on. red.
    exists (chain_pair x b). simpl. intuition. app equivalenceS.
    rwi in_class_related H3. nin H3. ee. assert (A = x0). rwi inc_quotient HO.
    nin (class_dichot HO H3). am. red in H6. assert (inc x emptyset).
    wr H6. app intersection2_inc. rw H1. fprops. elim (emptyset_pr H7). am.
    wri H6 H5; rwi H1 H5; rww (singleton_eq H5). am.
    ir. nin HO. nin HO. split. rw inc_quotient. red.
    assert (inc x E). ap H. rw HO. fprops.
    assert (rep A = x). assert (nonempty A). exists x. rw HO. fprops.
    cp (nonempty_rep H3). rewrite HO in H4. cp (singleton_eq H4). rww HO. rw H3.
    split. am. split. rw substrate_Sgraph. am.
    set_extens. rw inc_class. rwi H0 H4. rw (singleton_eq H4). app reflexivity.
    rw substrate_Sgraph. am. nin Ha; am. rw H0; fprops. rwi inc_class H4.
    assert (related Sgraph x0 x). app symmetricity.
    ufi Sgraph H5. wri related_graph_on H5. nin H5. nin H5. nin H6.
    assert (forall c, chained_r c -> chain_tail c = x -> chain_head c = x). ir.
    induction c. simpl. simpl in H8. simpl in H9. rwi H9 H8. sy. app H1. app A2.
    simpl in H8. nin H8. simpl in H9. simpl. rwi IHc H8. sy. app H1. app A2. am.
    am. rwi (H8 _ H5 H7) H6. rw H6. fprops. ap equivalenceS. nin Ha; am. am.
    red. exists x. am.
Qed.
```

The intersection of two distinct constituents has at least one element. This is obvious if the constituents are singletons. Consider $\mathrm{C}(a, b)$ and $\mathrm{C}\left(a^{\prime}, b^{\prime}\right)$. Assume that they contain u and v. If these elements are distinct then $\mathrm{C}(a, b)=\mathrm{C}(u, v)=\mathrm{C}\left(a^{\prime}, b^{\prime}\right)$.

```
Lemma constituant_inter2 : forall A B,
    is_constituant A -> is_constituant B -> intransitive1 ->
```

```
    A = B \/ small_set (intersection2 A B).
Proof. ir. red in H; red in H0. nin H. right. nin H. nin H. rw H. red. ir.
    cp (intersection2_first H3). cp (intersection2_first H4).
    rw (singleton_eq H5). rw (singleton_eq H6). tv.
    nin HO. nin HO. nin HO. right. rw HO. red. ir.
    cp (intersection2_second H3). cp (intersection2_second H4).
    rw (singleton_eq H5). rw (singleton_eq H6). tv.
    nin H. nin H. nin H0. nin H0. nin (equal_or_not A B). left. tv.
    right. red. ir. ee. nin (equal_or_not u v). am.
    cp (intersection2_first H3). cp (intersection2_first H4).
    rwi H H10; rwi H H11. cp (Cab_trans H7 H8 H1 H9 H10 H11).
    cp (intersection2_second H3). cp (intersection2_second H4).
    rwi H0 H13; rwi H0 H14. cp (Cab_trans H5 H6 H1 H9 H13 H14).
    wri H H12. wri H15 H12. wri H0 H12. elim H2. am.
Qed.
```

Consider the case of the intersection of three distinct constituents A, B and C . If A and B are distinct singletons, there intersection is empty. If A is a component $\{x\}$ and if $x \in \mathrm{C}(a, b)$ then x is related to at least two distinct elements, absurd. Assume $\mathrm{A}=\mathrm{C}(a, b), \mathrm{B}=\mathrm{C}\left(a^{\prime}, b^{\prime}\right)$ and $\mathrm{C}=\mathrm{C}\left(a^{\prime \prime}, b^{\prime \prime}\right)$, where the six points are disjoint and related two by two. We have to show that at least one intersection is empty. However we can construct a set E formed of seven points, these six, and an additional one x. Assume that x is related to all points, so that $x \in \mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C}$. The French edition of Bourbaki adds a last case: ou les trois ensembles sont identiques. Hence the claim is: if $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are three mutually distinct constituents at least one of the sets $A \cap B, B \cap C, C \cap A$ is empty, or the three sets are identical.

```
Lemma constituant_inter3 : forall A B C,
    is_constituant A -> is_constituant B -> is_constituant C -> intransitive1 ->
    A = B \/ A = C \/ B = C \/ intersection2 A B = emptyset
    \/ intersection2 A C = emptyset \/ intersection2 B C = emptyset
    \/ (intersection2 A B = intersection2 A C &
            intersection2 B C = intersection2 A C).
Proof. ir. nin (equal_or_not A B). left. tv. right.
    nin (equal_or_not A C). left. tv. right.
    nin (equal_or_not B C). left. tv. right.
    nin H. nin H. nin H. nin H6.
    nin HO. nin HO. ee. left. set_extens.
    cp (intersection2_first H10). rwi H H11. cp (singleton_eq H11).
    cp (intersection2_second H10). rwi HO H13. cp (singleton_eq H13).
    wri H14 H0; wri H12 H. wri H0 H. elim H3. am. elim (emptyset_pr H10).
    nin HO. nin HO. ee. left. set_extens.
    cp (intersection2_first H10). rwi H H11. cp (singleton_eq H11).
    cp (intersection2_second H10). rwi H12 H13. rwi HO H13. ufi Cab H13. Ztac.
    cp (A2 H15). wri (H7 _ H17) H8. cp (A2 H16). wri (H7 _ H18) H8. elim H8. tv.
    elim (emptyset_pr H10).
    nin H0. nin HO. ee. right. right. nin H1. nin H1. ee. left.
    set_extens.
    cp (intersection2_first H10). rwi H0 H11. cp (singleton_eq H11).
    cp (intersection2_second H10). rwi H1 H13. cp (singleton_eq H13).
    wri H14 H1; wri H12 H0; wri H1 H0. elim H5. am. elim (emptyset_pr H10).
    nin H1. nin H1. left. set_extens. cp (intersection2_first H8). rwi H0 H9.
    cp (singleton_eq H9). cp (intersection2_second H8). ee.
    rwi H10 H11. rwi H1 H11. ufi Cab H11. Ztac.
    cp (A2 H15). wri (H7 _ H17) H12. cp (A2 H16). wri (H7 _ H18) H12. elim H12.
    tv. elim (emptyset_pr H8). nin H1. nin H1. right. right. left.
```

```
ee. set_extens. cp (intersection2_second H8). rwi H1 H9.
cp (singleton_eq H9). cp (intersection2_first H8).
rwi H10 H11. nin H0. nin H0. ee. rwi HO H11. ufi Cab H11. Ztac.
cp (A2 H15). wri (H7 _ H17) H12. cp (A2 H16). wri (H7 _ H18) H12. elim H12.
tv. elim (emptyset_pr H8).
```

We assume $\mathrm{A}=\mathrm{C}\left(x, x_{2}\right), \mathrm{B}=\mathrm{C}\left(x_{0}, x_{3}\right)$ and $\mathrm{C}=\mathrm{C}\left(x_{1}, x_{4}\right)$. We assume $y \in \mathrm{~A} \cap \mathrm{~B}, y_{0} \in \mathrm{~A} \cap \mathrm{C}$ and $y_{1} \in \mathrm{~B} \cap \mathrm{C}$. From the first relation we get $y \in \mathrm{~A}$, then $y \in \mathrm{E}$ (these two assumptions are cleared). We also get $\mathrm{R}(x, y)$ and $\mathrm{R}\left(x_{2}, y\right)$. This makes 12 relations.

```
nin (emptyset_dichot (intersection2 A B)). left. tv. right.
nin (emptyset_dichot (intersection2 A C)). left. tv. right.
nin (emptyset_dichot (intersection2 B C)). left. tv. right.
nin H; nin HO; nin H1. nin H; nin HO; nin H1. nin H; nin HO; nin H1.
nin H9; nin H10; nin H11. nin H6; nin H7; nin H8.
cp (intersection2_first H6); cp (intersection2_second H6).
cp (intersection2_first H7); cp (intersection2_second H7).
cp (intersection2_first H8); cp (intersection2_second H8).
rwi H H15; rwi H H17; rwi H0 H16; rwi HO H19; rwi H1 H18; rwi H1 H2O.
unfold Cab in H15, H16, H17, H18, H19, H2O.
pose (Z_all H15). nin a. nin H22. clear H15. clear H21.
pose (Z_all H16). nin a. nin H21. clear H16. clear H15.
pose (Z_all H17). nin a. nin H16. clear H17. clear H15.
pose (Z_all H18). nin a. nin H17. clear H18. clear H15.
pose (Z_all H19). nin a. nin H18. clear H19. clear H15.
pose (Z_all H20). nin a. nin H19. clear H2O. clear H15.
```

We obtain three more relations by intransitivity: elements y, y_{0} and y_{1} are related. We first prove that each intersection has at most one point.

```
assert (small_set (intersection2 A B)). assert (is_constituant A). red.
right. exists x. exists x2. intuition. assert (is_constituant B). red.
right. exists x0. exists x3. intuition. cp (constituant_inter2 H15 H2O H2).
nin H29. elim H3. tv. am
assert (small_set (intersection2 A C)). assert (is_constituant A). red.
right. exists x. exists x2. intuition. assert (is_constituant C). red.
right. exists x1. exists x4. intuition. cp (constituant_inter2 H20 H29 H2).
nin H30. elim H4. tv. am.
assert (small_set (intersection2 B C)). assert (is_constituant C). red.
right. exists x1. exists x4. intuition. assert (is_constituant B). red.
right. exists x0. exists x3. intuition. cp (constituant_inter2 H30 H29 H2).
nin H31. elim H5. tv. am.
red in H2.
cp (H2 _ _ _ _ H9 H12 H16 H22 H25 H23).
cp (H2 _ _ _ _ H10 H13 H21 H18 H24 H27).
cp (H2 _ _ _ _ H11 H14 H17 H19 H26 H28).
```

Since x and x_{2} are related to y and y_{0}, if these two elements are distinct, then they are related to y_{1}. This implies $y_{1} \in \mathrm{~A}$. Since $\mathrm{A} \cap \mathrm{B}$ has a single point, this gives $y_{1}=y$. Similarly $y_{1}=y_{0}$. This implies $y=y_{0}$. Absurd. Finally we get $y=y_{0}=y_{1}$.

```
assert (y= y0). nin (equal_or_not y y0). am.
cp (H2 _ _ _ _ H33 (A2 H3O) (A2 H22) H31 (A2 H16) H32).
cp (H2 _ _ _ _ H33 (A2 H3O) (A2 H23) H31 (A2 H25) H32).
assert (inc y1 A). rw H. uf Cab. Ztac. cp (A2 H35). ap (A3 H36).
```

```
assert (inc y1 (intersection2 A C)). app intersection2_inc.
ap (intersection2_second H8). cp (H2O _ H37 H7).
assert (inc y1 (intersection2 A B)). app intersection2_inc.
ap (intersection2_first H8). cp (H15 _ _ H39 H6). wrr H40.
assert (y = y1). assert (inc y (intersection2 B C)).
app intersection2_inc. app (intersection2_second H6). rw H33.
app (intersection2_second H7). cp (H29 _ _ H38 H8). tv.
```

The conclusion is then obvious. We close our section.

```
split. set_extens. rw (H15 _ _ H35 H6). rww H33. rw (H2O _ _ H35 H7). wrr H33.
set_extens. rw (H29 _ _ H35 H8). wr H34; rww H33. rw (H2O _ _ H35 H7).
wr H33. rww H34.
End Exercice6_10.
```

We consider now part b. Given an assumption on X and E we define a relation R .

```
Definition exercise6_11b_assumption X E:=
    union X = E
    & (forall A, inc A X -> nonempty A)
    & (forall A B, inc A X -> inc B X -> A = B \/ small_set (intersection2 A B))
    & (forall A B C, inc A X -> inc B X -> inc C X ->
        ( A=B \/ A = C \/ B = C \/ intersection2 A B = emptyset
            \/ intersection2 A C = emptyset
            \/ intersection2 B C = emptyset
            \/ (intersection2 A B = intersection2 A C &
            intersection2 A B = intersection2 B C))).
Definition exercise6_11b_rel X x y := exists A, inc A X & inc x A & inc y A.
```

We start with trivial facts.

Lemma exercise6_11b1: forall E X, exercise6_11b_assumption X E -> reflexive_r (exercise6_11b_rel X) E.
Proof. ir. red. ir. app iff_eq. ir. red. red in H. ee. wri H HO. cp (union_exists HO). nin H4. exists x . intuition. ir. red in HO. nin HO. nin HO. nin H. wr H. nin H1. ap (union_inc H1 HO).
Qed.
Lemma exercise6_11b2: forall E X, exercise6_11b_assumption X E -> symmetric_r (exercise6_11b_rel X).
Proof. ir. red. uf exercise6_11b_rel. ir. nin H0. exists x0. intuition.
Qed.
Let's show intransitivity. We assume the four points distinct. We have $x \in x_{0} \cap x_{1} \cap x_{2}$, $y \in x_{0} \cap x_{3} \cap x_{4}, z \in x_{1} \cap x_{3}$ and $t \in x_{2} \cap x_{4}$. We must show that z and t are in a common set. If one of x_{1}, x_{3} is one of x_{2}, x_{4}, the result is obvious. We hence get four inequalities between sets. We know that $\mathrm{A} \neq \mathrm{B}$ implies that the intersection is empty or a singleton. Hence we get $x_{1} \cap x_{2}=\{x\}$ and $x_{3} \cap x_{4}=\{y\}$.

```
Lemma exercise6_11b3: forall E X, exercise6_11b_assumption X E ->
    let R := exercise6_11b_rel X in
            forall x y z t,
                x <> y -> x<>z -> x <> t -> y <> z -> y <> t -> z <> t ->
                R x y ->> R x z >> R x t >> R y z >> R y t >> R z t.
Proof. ir. unfold R in *. unfold exercise6_11b_rel in *.
```

```
nin H6; nin H7; nin H8; nin H9; nin H10. ee.
nin (equal_or_not x1 x2). exists x1. wri H21 H16. intuition.
nin (equal_or_not x1 x4). exists x1. wri H22 H12. intuition.
nin (equal_or_not x3 x2). exists x3. wri H23 H16. intuition.
nin (equal_or_not x3 x4). exists x3. wri H24 H12. intuition.
assert (intersection2 x1 x2 = singleton x). set_extens.
assert (inc x (intersection2 x1 x2)). app intersection2_inc.
red in H. ee. nin (H28 _ _ H7 H8). elim H21. am. rw (H3O _ _ H25 H26). fprops.
rw (singleton_eq H25). app intersection2_inc.
assert (intersection2 x3 x4 = singleton y). set_extens.
assert (inc y (intersection2 x3 x4)). app intersection2_inc.
red in H. ee. nin (H29 H9 H10). elim H24. am.
rw (H31 _ _ H26 H27). fprops. rw (singleton_eq H26). app intersection2_inc.
```

We assume $x_{0}=x_{1}$, and study the consequences. We get $x_{0}=x_{3}$ since y and z are two distinct elements in both sets. The case $x_{0}=x_{4}$ is trivial. Consider $x_{2}=x_{4}$; if this is true, we have $x_{0}=x_{2}$ since x and y are in both sets; the result is trivial. In the other case, we have three distinct sets $x_{0}=x_{1}=x_{3}, x_{2}$ and x_{4}. The intersections of two of them are nonempty. Since these intersections contain distinct elements x, y, t, the sets must be the same and the result is trivial.

```
nin (equal_or_not x0 x1).
assert (x0 = x3).
assert (inc y (intersection2 x0 x3)). app intersection2_inc.
assert (inc z (intersection2 x0 x3)). wri H27 H18. app intersection2_inc.
red in H; ee. nin (H31 _ _ H6 H9). am. cp (H33 _ _ H28 H29). elim H3. am.
nin (equal_or_not x0 x4). exists x0. wri H27 H18. wri H29 H12. intuition.
nin (equal_or_not x2 x4).
assert (inc x (intersection2 x0 x2)). app intersection2_inc.
assert (inc y (intersection2 x0 x2)). app intersection2_inc. rww H30.
red in H; ee. nin (H34 _ _ H6 H8). exists x3. intuition. wr H28. rww H36.
cp (H36 _ _ H31 H32). elim HO. am.
wri H27 H21.
red in H. ee. cp (H33 _ _ _ H6 H8 H10). nin H34. elim H21. am. nin H34.
elim H29. am. nin H34. elim H30; am.
assert (inc x (intersection2 x0 x2)). app intersection2_inc.
assert (inc y (intersection2 x0 x4)). app intersection2_inc.
assert (inc t (intersection2 x2 x4)). app intersection2_inc.
nin H34. rwi H34 H35. elim (emptyset_pr H35). nin H34.
rwi H34 H36. elim (emptyset_pr H36). nin H34. rwi H34 H37.
elim (emptyset_pr H37). exists x3. intuition. wr H28. wri H39 H37.
app (intersection2_first H37).
```

We consider now the case $x_{0} \neq x_{1}$. The intersection of these sets is then $\{x\}$. It implies $x_{1} \neq x_{3}$ for otherwise y would be in $x_{0} \cap x_{1}$. Thus $x_{1} \cap x_{3}=\{z\}$.

```
ir. assert (intersection2 x0 x1 = singleton x).
assert (inc x (intersection2 x0 x1)). app intersection2_inc.
red in H. ee. nin (H3O _ _ H6 H7). elim H27. tv. red in H32. set_extens.
rw (H32 _ _ H28 H33). fprops. rw (singleton_eq H33). am.
nin (equal_or_not x1 x3). assert (inc y (singleton x)).
wr H28. app intersection2_inc. rww H29. elim HO. rww (singleton_eq H3O).
assert (intersection2 x1 x3 = singleton z).
assert (inc z (intersection2 x1 x3)). app intersection2_inc.
red in H. ee. nin (H32 _ _ H7 H9). elim H29. tv. red in H34. set_extens.
rw (H34 _ _ H30 H35). fprops. rw (singleton_eq H35). am.
```

Now we compare x_{0} and x_{4}. Assume first equality.

```
ir.
nin (equal_or_not x0 x4).
assert (x0 = x2).
assert (inc x (intersection2 x0 x2)). app intersection2_inc.
assert (inc t (intersection2 x0 x2)). rw H31. app intersection2_inc.
red in H; ee. nin (H35 _ _ H6 H8). am. cp (H37 _ _ H32 H33). elim H2. am.
nin (equal_or_not x0 x3). ir. exists x0. wri H33 H14. wri H31 H12. intuition.
assert (inc x (intersection2 x0 x1)). app intersection2_inc.
assert (inc y (intersection2 x0 x3)). app intersection2_inc.
assert (inc z (intersection2 x1 x3)). app intersection2_inc.
nin H. ee. cp (H39 _ _ _ H6 H7 H9). nin H40. elim H27. am. nin H40.
elim H33. am. nin H4O. elim H29. am. nin H4O.
rwi H4O H34. elim (emptyset_pr H34). nin H4O. rwi H40 H35.
elim (emptyset_pr H35). nin H40. rwi H40 H36.
elim (emptyset_pr H36). exists x2. intuition. wr H32. wri H42 H36.
app (intersection2_first H36).
```

Here $x_{0} \neq x_{4}$. The intersection is $\{y\}$. From this we get $x_{2} \cap x_{4}=\{t\}$.

```
ir. assert (intersection2 x0 x4 = singleton y).
assert (inc y (intersection2 x0 x4)). app intersection2_inc.
red in H. ee. nin (H34 _ _ H6 H10). elim H31. tv. red in H36. set_extens.
rw (H36 _ _ H32 H37). fprops. rw (singleton_eq H37). am.
nin (equal_or_not x2 x4). assert (inc x (singleton y)).
wr H32. app intersection2_inc. wrr H33. elim H0. rww (singleton_eq H34).
ir. assert (intersection2 x2 x4 = singleton t).
assert (inc t (intersection2 x2 x4)). app intersection2_inc.
red in H. ee. nin (H36 _ _ H8 H10). elim H33. tv. red in H38. set_extens.
rw (H38 _ _ H34 H39). fprops. rw (singleton_eq H39). am.
```

On can prove $x_{1} \cap x_{4}=x_{2} \cap x_{3}=\varnothing$ but this relation is helpless. The only remaining pairs of sets are $\left(x_{0}, x_{2}\right)$ and $\left(x_{0}, x_{3}\right)$. The case $x_{0}=x_{2}=x_{3}$ is trivially excluded. The cases $x_{0} \neq x_{2}$ and $x_{0} \neq x_{3}$ are easy.

```
nin (equal_or_not x0 x2). nin (equal_or_not x0 x3).
elim H23. wr H35; wr H36; tv. nin H; ee. cp (H39 _ _ _ H6 H7 H9).
nin H4O. elim H27. am. nin H40. elim H36. am. nin H40. elim H29. am.
nin H40. assert (inc x emptyset). wr H40. rw H28. fprops.
elim (emptyset_pr H41). nin H40. assert (inc y emptyset). wr H40.
app intersection2_inc. elim (emptyset_pr H41). nin H40.
assert (inc z emptyset). wr H40. app intersection2_inc.
elim (emptyset_pr H41). nin H40. rwi H28 H41. rwi H30 H41.
elim H1. app (singleton_inj H41).
nin H. ee. cp (H38 _ _ _ H6 H8 H10).
nin H39. elim H35. am. nin H39. elim H31. am. nin H39. elim H33. am.
nin H39. assert (inc x emptyset). wr H39. app intersection2_inc.
elim (emptyset_pr H40). nin H39. assert (inc y emptyset). wr H39.
app intersection2_inc. elim (emptyset_pr H40). nin H39.
assert (inc t emptyset). wr H39. app intersection2_inc.
elim (emptyset_pr H40). nin H39. rwi H39 H40. rwi H32 H40. rwi H34 H40.
elim H4. app (singleton_inj H40).
Qed.
```

We show now that the elements of X are the constituents. Let $p_{1}(u)$ the property that u has the form $\mathrm{C}(a, b), p_{2}(u)$ the property that u is a connected component formed of a single
element. If u satisfies these conditions, then $u \in \mathrm{X}$. We are asked to show the converse. Assume that $u \in \mathrm{X}$; if it has at least two elements, it satisfies p_{1}. Assume that it has a single element x. Assume that there is no other set v containing x; then p_{2} is true. Assume now that there is another set v containing x; then p_{1} and p_{2} are false. (Example: E has two elements a and b, X has two elements $\{a, b\}$ and $\{a\}$). The assumptions on X say: if v and ν^{\prime} are two sets containing x, then the intersection is a singleton. Denote by $p_{3}(u)$ this condition. It does not imply $u \in \mathrm{X}$.

Thus we prove the following.

```
Lemma exercise6_11b4: forall E X, exercise6_11b_assumption X E ->
    let R := exercise6_11b_rel X in
        let p1 := fun u => (exists a, exists b, a<> b & R a b & u =
            Zo E (fun x => R a x & R b x)) in
            let p2:= fun u => (exists x, u = singleton x & inc x E&
                forall y, inc y E >> R x y -> x = y) in
            let p3:= fun u => (exists v, inc v X & u <> v & sub u v & is_singleton u) in
                (forall u, inc u X -> p1 u \/ p2 u \/ p3 u ) &
                (forall u, p1 u -> inc u X) & (forall u, p2 u -> inc u X).
```

We show here that singletons satisfy p_{2} or p_{3}.

Proof. ir. split. ir. apply by_cases with (is_singleton u). ir. right. apply by_cases with (p3 u). ir. right. tv. ir. left. red in H1. nin H1. exists x. split. am. split. red in H. ee. wr H. apply union_inc with u. rw H1. fprops. am. ir. red in H4. red in H4. nin H4. apply by_cases with ($\mathrm{x}=\mathrm{y}$). tv. ir. elim H2. exists x0. ee. am. rw H1. red. ir. elim H5. wri H8 H7. rw (singleton_eq H7). tv. rw H1. red. ir. rw (singleton_eq H8). am. red. exists x. tv.

Our set u is not empty, hence has an element y. We show here that if it has another another element x, then $p_{1}(u)$ is satisfied. If x_{0} is related to x and y, there exists two sets x_{1} that contains y and x_{0}, and x_{2} that contains x and x_{0}. We want to show $x_{0} \in u$. This is clear if $x_{1}=u$ or $x_{2}=u$. Assume these two pairs distinct. If $x_{1}=x_{2}$, the intersection $x_{1} \cap u$ is a singleton, containing x and y, absurd. We can then use property (2).

```
ir. left. red in H. ee. nin (H2 _ HO). exists y.
apply by_cases with (exists v, inc v u & v <> y). ir. nin H6. nin H6.
exists x. split. auto. split. red. red. exists u. auto. set_extens.
Ztac. wr H. apply union_inc with u. am. am. split. red. red. exists u.
intuition. red. red. exists u. intuition. Ztac. nin H10. nin H11. ee.
nin (equal_or_not x1 u). wrr H16. nin (equal_or_not x2 u). wrr H17.
assert (inc x (intersection2 u x2)). app intersection2_inc.
assert (inc y (intersection2 u x1)). app intersection2_inc.
nin (equal_or_not x1 x2).
nin (H3 _ _ HO H10). elim H16. sy. am. red in H21. wri H2O H18.
elim H7. app H21. ir. cp (H4 _ _ _ HO H10 H11). nin H21. elim H16. sy; am.
nin H21. elim H17. sy; am. nin H21. elim H2O. am. nin H21.
assert (inc y emptyset). wr H21. app intersection2_inc.
elim (emptyset_pr H22). nin H21. assert (inc x emptyset). wr H21.
app intersection2_inc. elim (emptyset_pr H22). nin H21.
assert (inc x0 emptyset). wr H21.
app intersection2_inc. elim (emptyset_pr H22). nin H21.
```

nin (H3 _ _ HO H10). elim H16. sy. am. red in H23. wri H21 H18.
elim H7. app H23.

To finish, we must show show that a nonempty set that is not a singleton has at least two elements.

```
ir. elim H1. red. exists y. set_extens. nin (equal_or_not x y).
rw H8. fprops. ir. elim H6. exists x. split; am. rww (singleton_eq H7).
```

We show here that $p_{1}(u)$ implies $u \in \mathrm{X}$. Consider x and x_{0} two distinct elements, and $u=\mathrm{C}\left(x, x_{0}\right)$. The two elements x and x_{0} are related, this means that they are in a set x_{1}. We have $u=x_{1}$. The proof is the same as above.

```
split. ir. nin HO. nin HO; nin HO. ee. nin H. ee. red in H1. red in H1.
nin H1. ee.
assert (u = x1). rw H2. set_extens. Ztac.
nin H10. nin H10. nin H12. nin H11. nin H11. nin H14.
nin (equal_or_not x1 x3). rww H16. nin (equal_or_not x1 x4). rww H17.
assert (inc x (intersection2 x1 x3)). app intersection2_inc.
assert (inc x0 (intersection2 x1 x4)). app intersection2_inc.
nin (equal_or_not x3 x4).
nin (H4 _ _ H1 H10). elim H16. am. red in H21. wri H2O H19
elim H0. app H21. ir. cp (H5 _ _ _ H1 H1O H11). nin H21. elim H16. am.
nin H21. elim H17. am. nin H21. elim H20. am. nin H21.
assert (inc x emptyset). wr H21. app intersection2_inc.
elim (emptyset_pr H22). nin H21. assert (inc x0 emptyset). wr H21.
app intersection2_inc. elim (emptyset_pr H22). nin H21.
assert (inc x2 emptyset). wr H21.
app intersection2_inc. elim (emptyset_pr H22). nin H21.
nin (H4 _ _ H1 H10). elim H16. am. red in H23. wri H21 H19.
elim HO. app H23.
Ztac. wr H. apply union_inc with x1. am. am. split. red; red. exists x1.
intuition. red. red. exists x1. intuition. rw H8. am.
```

We show that $p_{2}(u)$ implies $u \in \mathrm{X}$.

```
intuition. red. red. exists x1. intuition. rw H8. am.
ir. red in HO. nin HO. ee. red in H. ee. wri H H1. cp (union_exists H1).
nin H6. nin H6. assert (u = x0). set_extens. rwi H0 H8.
rw (singleton_eq H8). am. assert (inc x1 E). wr H. apply union_inc with x0.
am. am. assert (R x x1). red. red. exists x0. intuition. wr (H2 _ H9 H10).
rw HO. fprops. rww H8.
```

Part c. We do not know how to generalize. The last claim is obvious. Assume R intransitive of order $p-3$, let $q>p$ and consider q distinct elements, which are related (with the exception of x_{q-1} and x_{q}; discard the $q-p$ first elements. The missing relation is true by intransitivity.

Chapter 9

Summary

9.1 The axioms

We give here the list of all axiom schemes.
S1: If \boldsymbol{A} is a relation in \mathscr{T}, the relation $(\boldsymbol{A}$ or $\boldsymbol{A}) \Longrightarrow \boldsymbol{A}$ is an axiom of \mathscr{T}.
S2: If \boldsymbol{A} and \boldsymbol{B} are relations in \mathscr{T}, the relation $\boldsymbol{A} \Longrightarrow(\boldsymbol{A}$ or $\boldsymbol{B})$ is an axiom of \mathscr{T}.
S3: If \boldsymbol{A} and \boldsymbol{B} are relations in \mathscr{T}, the relation $(\boldsymbol{A}$ or $\boldsymbol{B}) \Longrightarrow(\boldsymbol{B}$ or $\boldsymbol{A})$ is an axiom of \mathscr{T}.
S4: If $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are relations in \mathscr{T}, the relation $(\boldsymbol{A} \Longrightarrow \boldsymbol{B}) \Longrightarrow((\boldsymbol{C}$ or $\boldsymbol{A}) \Longrightarrow(\boldsymbol{C}$ or $\boldsymbol{B}))$ is an axiom of \mathscr{T}.
S5: If \boldsymbol{R} is a relation in \mathscr{T}, if \boldsymbol{T} is a term in \mathscr{T}, and if \boldsymbol{x} a letter, then the relation $(\boldsymbol{T} \mid \boldsymbol{x}) \boldsymbol{R} \Longrightarrow$ $(\exists \boldsymbol{x}) \boldsymbol{R}$ is an axiom.
S6: Let \boldsymbol{x} be a letter, let \boldsymbol{T} and \boldsymbol{U} be terms in \mathscr{T}, and let $\boldsymbol{R} \boldsymbol{\{} \boldsymbol{x} \boldsymbol{\xi}$ a relation in \mathscr{T}; then the relation $(\boldsymbol{T}=\boldsymbol{U}) \Longrightarrow(\boldsymbol{R}\} \boldsymbol{T}\} \Longleftrightarrow \boldsymbol{R}\} \boldsymbol{U}\})$ is an axiom.
S7: If \boldsymbol{R} and \boldsymbol{S} are relations in \mathscr{T}, and if \boldsymbol{x} is a letter, then the relation $((\forall \boldsymbol{x})(\boldsymbol{R} \Longleftrightarrow \boldsymbol{S})) \Longrightarrow$ $\left(\tau_{x}(R)=\tau_{\boldsymbol{x}}(\boldsymbol{S})\right.$) is an axiom.
S8: Let \boldsymbol{R} be a relation, let \boldsymbol{x} and \boldsymbol{y} be distinct letters, and let \boldsymbol{X} and \boldsymbol{Y} be letters distinct from \boldsymbol{x} and \boldsymbol{y} which do not appear in \boldsymbol{R}. Then the relation

$$
(\forall \boldsymbol{y})(\exists \boldsymbol{X})(\forall \boldsymbol{x})(\boldsymbol{R} \Longrightarrow(\boldsymbol{x} \in \boldsymbol{X})) \Longrightarrow(\forall \boldsymbol{Y})\left(\operatorname{Coll}_{\boldsymbol{x}}((\exists \boldsymbol{y})((\boldsymbol{y} \in \boldsymbol{Y}) \text { and } \boldsymbol{R}))\right.
$$

is an axiom.
The French edition has only four axioms since A3 is a theorem.
A1. $(\forall x)(\forall y)((x \subset y)$ and $y \subset x) \Longrightarrow(x=y))$.
A2. $(\forall x)(\forall y) \operatorname{Coll}_{z}(z=x$ or $z=y)$.
A3. $(\forall x)\left(\forall x^{\prime}\right)(\forall y)\left(\forall y^{\prime}\right)\left(\left((x, y)=\left(x^{\prime}, y^{\prime}\right)\right) \Longrightarrow\left(x=x^{\prime}\right.\right.$ and $\left.\left.y=y^{\prime}\right)\right)$
A4. $(\forall X) \mathrm{Coll}_{\mathrm{Y}}(\mathrm{Y} \subset \mathrm{X})$.
A5. There exists an infinite set.

9.2 The Zermelo Fraenkel Theory

An alternative to the Bourbaki theory is the Zermelo Fraenkel theory. It has the usual interpretation of the quantifiers \forall and \exists, but not the symbol τ, thus is missing a choice function. With the notations of [6] the axioms are

B1. $\forall x \forall y[\forall z(z \in x \Longleftrightarrow z \in y) \Longrightarrow x=y]$ (Axiom of extent, A1).
B0. $\forall x \forall y \exists z \forall t[t \in z \Longleftrightarrow(t=x$ or $t=y)]$ (Axiom of the pair, A2).

B2. $\forall x \exists y \forall z[z \in y \Longleftrightarrow \exists t(t \in x$ and $z \in t)]$ (Axiom of the union).
B3. $\forall x \exists y \forall z[z \in y \Longleftrightarrow z \subset x]$ (Axiom of the set of subsets, A4).
B4. $\exists x \exists y[\forall z(z \notin y)$ and $y \in x$ and $\forall u[u \in x \Longrightarrow \exists v[v \in x$ and $\forall t(t \in v \Longleftrightarrow t=u$ or $t \in u)]]]$ (Axiom of infinity)

SS. $\forall x_{1} \ldots \forall x_{k}\left\{\forall x \forall y \forall y^{\prime}\left[\mathrm{E}\left(x, y, x_{1}, \ldots, x_{k}\right)\right.\right.$ and $\left.\mathrm{E}\left(x, y^{\prime}, x_{1}, \ldots, x_{k}\right) \Longrightarrow y=y^{\prime}\right] \Longrightarrow \forall t \exists w \forall v[v \in$ $w \Longleftrightarrow \exists u\left[u \in t\right.$ and $\left.\left.\left.\mathrm{E}\left(u, v, x_{1}, \ldots, x_{k}\right)\right]\right]\right\}$ (Scheme of Substitution).

SC. $\forall x_{1} \ldots \forall x_{k} \forall x \exists y \forall z\left[z \in y \Longleftrightarrow\left(z \in x\right.\right.$ and $\left.\left.\mathrm{A}\left(z, x_{1}, \ldots, x\right)\right)\right]$ (Scheme of comprehension)
AC. $\forall a\{[\forall x(x \in a \Longrightarrow x \neq \varnothing)$ and $\forall x \forall y(x \in a$ and $y \in a \Longrightarrow x=y$ or $x \cap y=\varnothing)] \Longrightarrow \exists b \forall x \exists u(x \in$ $a \Longrightarrow b \cap x=\{u\})\}$ (Axiom of choice).

AF. $\forall x[x \neq \varnothing \Longrightarrow \exists y(y \in x$ and $y \cap x=\varnothing)]$ (Axiom of foundation).
Comments. The Zermelo-Frankel theory consists in axioms B1, B2, B3, B4, and scheme SS. From SS, one can deduce SC and B0. The Zermelo theory consists in B1, B0, B2, B3, B4 and SC. It is a weaker theory. Axiom AF is independent of all other axioms, it excludes some weird sets; it is useful in modeling.

Scheme SS depends on a relation E that takes at least two arguments. Fix all parameters but the first two ones. Assume that $\mathrm{E}(x, y)$ is functional in y (i.e, if $\mathrm{E}(x, y)=\mathrm{E}\left(x, y^{\prime}\right)$ implies $\left.y=y^{\prime}\right)$. Rewrite $\mathrm{E}(x, y)$ as $y=f(x)$. The scheme says that for all t, there is a w containing those v of the form $v=f(u)$ for some $u \in t$. Scheme SC says that for every relation $\mathrm{A}(z)$ (that may depend on other parameters), and for every set x there is a set w containing those $v \in x$ that satisfy A.

Consider now axiom B4. The parameter z has to be zero (a.k.a the empty set), and v has to be $u \cup\{u\}$. Denote this by $\mathrm{S}(u)$. Now B4 says: there exists a set x, containing zero, and such that $u \in x \Longrightarrow \mathrm{~S}(u) \in x$. In part two of this report, we shall define pseudo-ordinals. Then the set of finite pseudo-ordinals (which is also the set of finite cardinals with the definition of [6]) is the smallest set satisfying B4. Thus B4 is equivalent to the existence of this set. This axiom is equivalent to A 5 (remember that it asserts existence of an infinite set, where "infinite" is a very complicated expression, since it depends on the addition of cardinals, see part two of this report).

Consider now axiom AC. It says that for every set a, if a is formed of non-empty, mutually disjoint sets, there exists a set b that meets each element of a exactly once. Denote by $f(x)$ this element the only element of the the intersection of x and b. Then (informally) f is a function such that $f(x) \in x$. More formally, the axiom is equivalent to: for every set A, there exists a function $f: \mathfrak{P}(\mathrm{A})-\varnothing \rightarrow$ A such that $f(x) \in x$. It is also equivalent to say that a product of non-empty sets is non-empty; it is also equivalent to Zermelo's Theorem (every set can be well-ordered, see part 2). We shall use Zermelo' Theorem in order to show that cardinals are well-ordered. A consequence of this fact is the Cantor-Bernstein theorem: if there is an injection from A into B and an injection of B into A, then there is a bijection of A onto B. But this result is independent of AC.

9.3 Tactics

We start with some abreviations. They have in general two letters as in $r w$; they have the form $r w i$ when they apply to a given hypothesis.

Ltac ir := intros.

```
Ltac rw u := rewrite u.
Ltac rwi u h := rewrite u in h.
Ltac wr u := rewrite <- u.
Ltac wri u h := rewrite <- u in h.
Ltac ap h := apply h.
Ltac om := omega.
Ltac am := assumption.
Ltac tv := trivial.
Ltac eau := eauto.
Ltac sy := symmetry.
Ltac uf u := unfold u.
Ltac ufi u h := unfold u in h.
Ltac nin h := induction h.
Ltac uh a := red in a.
```

Tactics where the last letter is doubled are extensions that call $t v$ or $a m$ in order to solve a goal.

```
Ltac app u := (ap u; try tv; try am).
Ltac rww u := (rw u; try tv; try am).
Ltac rwii u h:= (rwi u h; try tv; try am).
Ltac wrr u := (wr u; try tv; try am).
```

This tactic is helps solving $a=b$ by application of the axiom of extent for sets.

```
Ltac set_extens:= app extensionality; unfold sub; intros.
```

We define here a tactic ee that removes all conjunctions.

```
Ltac au := first [ solve [am] | auto ].
Ltac EasyDeconj :=
    match goal with
    | |- (_ & _) => ap conj; [ EasyDeconj | EasyDeconj ]
    | |- (and _ _) => ap conj; [ EasyDeconj | EasyDeconj ]
    | |- (_ \ _) => ap conj; [ EasyDeconj | EasyDeconj ]
    | |- _ => idtac
    end.
Ltac EasyExpand :=
    match goal with
    | id1:(?X1 /\ ?X2) |- _ => nin id1; EasyExpand
    | |- _ => EasyDeconj
    end.
Ltac ee := EasyExpand.
```

The $c p$ tactic is a variant of set or pose.

```
Ltac Remind u :=
    set (recalx := u);
        match goal with
        | recalx:?X1 |- _ => assert X1; [ exact recalx | clear recalx ]
        end.
Ltac cp := Remind.
```

The Ztac tactic can be used when then conclusion or an assumption contain $x \in\{y \in$ $z \mid \mathrm{P}(y)\}$; it replaces by: $x \in z$ and $\mathrm{P}(w)$.

```
Ltac Ztac :=
    match goal with
    | id1:(inc ?X1 (Zo _ _)) |- _ => pose (Z_all id1); ee
    | |- (inc _ (Zo _ _)) => ap Z_inc; au
    | _ => idtac
    end.
```

The fprops tactic applies lemmas from the fprops data base. The tactics aw and srw apply rewrite rules from the $a w$ and $s w$ data base. The tactics awi and srwi apply these rules in a given hypothesis, rather than the conclusion.

```
Ltac fprops := auto with fprops.
Ltac aw := autorewrite with aw; try tv; try am
Ltac srw:= autorewrite with sw.
Ltac srwi u:= autorewrite with sw in u.
Ltac awi u:= autorewrite with aw in u.
```


9.4 Rewriting rules

The srw and srwi tactics use the following rewriting rules ${ }^{1}$ double_complement, inc_complement, empty_product2, empty_product1.

The aw and awi tactics use the following rewriting rules: pr1_pair, pr2_pair, fun_image_rw, range_pr, domain_pr, create_domain, create_V_rewrite, range_emptyset, domain_emptyset, inc_pair_diagonal, restriction_graph_pr, image_by_graph_pr, cut_pr, inverse_graph_pair, inverse_graph_emptyset, inverse_diagonal, inverse_product, inv_image_graph_pr, inc_compose W_af_function, source_compose, target_compose, compose_related, graph_compose, W_compose, pair_recov, W_canon_proj, source_canon_proj target_canon_proj.

The tactic fprops uses the following lemmas: sub_refl, singleton_inc, pair_is_pair, doubleton_first, doubleton_second, fcompose_axioms, nonempty_singleton, product_is_graph, emptyset_is_graph, diagonal_is_graph, range_correspondence, domain_correspondence, is_graph_correspondence, restricted_graph_is_graph, inverse_graph_is_graph, correspondence_inverse_fun, composition_is_graph, fgraph_function is_graph_function, function_acreate, product_pair_inc, inc_W_target, function_canon_proj, inc_rep_substrate.

9.5 List of Theorems

We give here the list of all theorems, propositions, lemmas, corollaries, together with the Coq names, a page reference, and the statement (we use quotes for exact citations).

Section one

Proposition 1 (sub_refl) $« x \subset x »$, 15 .
Proposition 2 (sub_trans) «($x \subset y$ and $y \subset z) \Longrightarrow(x \subset z) »$, [15].
Theorem 1 «The relation $(\forall x)(x \notin \mathrm{X})$ is functional in $\mathrm{X} . »$ This theorem asserts existence and uniqueness of the empty set, [15].

[^10]
Section 2

Theorem 1 asserts existence of the product $\mathrm{X} \times \mathrm{Y}$ of two sets, 26.
Proposition 1 (product_monotone and variants) «If $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ are non-empty sets, the relation $\mathrm{A}^{\prime} \times \mathrm{B}^{\prime} \subset \mathrm{A} \times \mathrm{B}$ is equivalent to " $\mathrm{A}^{\prime} \subset \mathrm{A}$ and $\mathrm{B}^{\prime} \subset \mathrm{B}$ "), 28.
Proposition 2 (empty_product_pr) Let A and B be two sets. The relation $\mathrm{A} \times \mathrm{B}=\varnothing$ is equivalent to ' $\mathrm{A}=\varnothing$ or $\mathrm{B}=\varnothing^{\prime}$ », 27,

Section 3

Proposition 1 (range_domain_exists) asserts existence and uniqueness of the range and domain of a graph, 42.
Proposition 2 (image_by_increasing) «Let G be a graph and let X, Y be two sets; then the relation $\mathrm{X} \subset \mathrm{Y}$ implies $\mathrm{G}\langle\mathrm{X}\rangle \subset \mathrm{G}\langle\mathrm{Y}\rangle$ », 45 .
Corollary (image_of_large).
Proposition 3 (inverse_compose) «Let $\mathrm{G}, \mathrm{G}^{\prime}$ be two graphs,. The inverse of $\mathrm{G}^{\prime} \circ \mathrm{G}$ is then ${ }_{\mathrm{G}}^{\mathrm{G}} \circ^{-1} \mathrm{G}^{\prime} », 48$.
Proposition 4 (composition_associative) is associativity of composition of graphs, 48.
Proposition 5 (image_composition) says $\left(\mathrm{G}^{\prime} \circ \mathrm{G}\right)\langle\mathrm{A}\rangle=\mathrm{G}^{\prime}\langle\mathrm{G}\langle\mathrm{A}\rangle\rangle$, 48.
Proposition 6 (is_function_compose) says «If f is a mapping of A into B and g is a mapping of B into C , then $g \circ f$ is a mapping of A into $\mathrm{C} », 84$.
Proposition 7 (bijective_inv_function and inv_function_bijective) says «Let f be a mapping of A into B. Then f^{-1} is a function if and only if f is bijective», 64.
Proposition 8 (inj_if_exists_left_inv, and variants) says under which conditions a function has a left or right inverse, 67.
Corollary (bijective_from_compose).
Theorem 1 (inj_compose) and variants) studies the relationship between injectivity, surjectivity and composition, 69.
Proposition 9 (exists_left_composable and variants) explains when a function can be factored through another one, 71.

Section 4

Proposition 1 (uniont_rewrite, intersectiont_rewrite and variants) says that if $f: \mathrm{K} \rightarrow \mathrm{I}$ is a function, $\left(\mathrm{X}_{\mathrm{t}}\right)_{\in \mathrm{I}}$ a family of sets, then the union and the intersection of the family is the union and the intersection of $\mathrm{X}_{f(\mathrm{\kappa})}$ over K , 80].
Proposition 2 (union_assoc and intersection_assoc) states associativity of union and intersection, [81].
Proposition 3 (image_of_union and image_of_intersection) says that if Γ is a correspondence, $\Gamma\left\langle\cup \mathrm{X}_{\mathrm{t}}\right\rangle=\bigcup \Gamma\left\langle\mathrm{X}_{\mathrm{t}}\right\rangle$ and $\Gamma\left\langle\cap \mathrm{X}_{\mathrm{t}}\right\rangle \subset \cap \Gamma\left\langle\mathrm{X}_{\mathrm{t}}\right\rangle$, 82.
Proposition 4 (inv_image_of_intersection) says equality holds for the inverse image of intersection, 82].
Corollary (inj_image_of_intersection).
Proposition 5 (complementary_union and complementary_intersection) studies the complementary of unions and intersections, [82].
Proposition 6 (inv_image_of_comp) studies the inverse image of the complementary, [84].
Corollary (inj_image_of_comp).

Proposition 7 (agrees_on_covering and prolongation_covering) says that if X_{1} is a covering of E, then two functions that agree on each X_{1} agree on E, and a function defined on each X_{1} can be extended to E if the obvious compatibility conditions hold, [86].
Proposition 8 (prolongation_partition) says that if $\left(\mathrm{X}_{1}\right)_{1}$ is a partition of X and $f_{1} \in$ $\mathscr{F}\left(\mathrm{X}_{1}, \mathrm{~T}\right)$, then there exists a unique $f \in \mathscr{F}(\mathrm{X}, \mathrm{T})$ that extends every $f_{1}, ~[89]$.
Proposition 9 (disjoint_union_lemma) asserts existence of the disjoint union, 89.
Proposition 10 (disjoint_union_pr) relates sum and union, 89.

Section 5

Proposition 1 (surjective_etp and injective_etp) says: if f is surjective (resp. injective), then its restriction to the set of sets is surjective (resp. injective), 91.
Proposition 2 (injective_c3f and surjective_c3f) states under which conditions $f \mapsto$ $v \circ f \circ u$ is injective or surjective, 93 .
Corollary (bijective_c3f).
Proposition 3 (bijective_fpfa and bijective_spfa) says that $\mathscr{F}(\mathrm{B} \times \mathrm{C} ; \mathrm{A}), \mathscr{F}(\mathrm{B} ; \mathscr{F}(\mathrm{C} ; \mathrm{A})$ and $\mathscr{F}(\mathrm{C} ; \mathscr{F}(\mathrm{B} ; \mathrm{A}))$ are canonically isomorphic, 94 .
Proposition 4 (bijective_pc) says: Given a family X_{t} and a bijection f, the product $\Pi \mathrm{X}_{\mathrm{t}}$ is isomorphic to the product $\prod \mathrm{X}_{f(1)}, 101$.
Propositions 6 and 5 (prolongation_exists and surjective_prj) if X_{1} is nonempty for $1 \notin \mathrm{~J}$, then pr_{J} is surjective from the product into the partyial product 102.
Corollary1 (surjective_pri).
Corollary2 (nonempty_product and variants).
Corollary3 (productb_monotone1, productb_monotone2).
Proposition 7 (bijective_pam) states associativity of the product, 103.
Proposition 8 (distrib_union_inter and distrib_inter_union) states distributivity of union over intersection and intersection over union, [104].
Corollary (distrib_union2_inter and distrib_inter2_union)).
Proposition 9 (distrib_prod_union and distrib_prod_intersection) states distributivity of product over union and intersection, 106].
Corollary 1 (partition_product).
Corollary 2 (distrib_prod2_union and distrib_prod2_intersection) .
Proposition 10 (distrib_inter_prod and distrib_prod_intersection) says that the intersection of a product is the product of the intersection, 107.
Corollary (distrib_prod_inter2_prod and distrib_inter_prod_inter).
Proposition 11 says that composition of extensions is extension of compositions.
Corollary (injective_ext_map_prod and injective_ext_map_prod).

Section 6

Proposition 1 (equivalence_cor_pr) says: «A correspendence Γ between X and X is an equivalence on X if and only if it satisfies the following conditions: (a) X is the domain of Γ; (b) $\Gamma=\Gamma^{-1}$; (c) $\Gamma \circ \Gamma=\Gamma$ », 118.
Criterion C55 (related_e_rw) characterizes the canonical projection, 121.
Criterion C56 (rel_on_quo_pr) «Let $\mathrm{R}\left\{x, x^{\prime} \xi\right.$ be an equivalence relation on a set E and let $\mathrm{P} \xi x \xi$ be a relation that does not contain the letter x^{\prime} and is compatible (with respect to x) with the equivalence relation $\xi x, x^{\prime} \xi$. Then, if t does not appear in
$\mathrm{P}\{x\}$, the relation " $t \in \mathrm{E} / \mathrm{R}$ and $(\exists x)(x \in t$ and $\mathrm{P} \xi x\})$ " is equivalent to the relation " $t \in \mathrm{E} / \mathrm{R}$ and $(\forall x)(x \in t$ and $\mathrm{P} \xi x\})$ "». 124 .
Criterion C57 exists_unique_fun_on_quotient) «Let R be an equivalence relation on a set E , and let g be the canonical mapping of E onto E / R. Then a mapping f of E into F is compatible with R is and only if f can be put in the form $h \circ g$, where h is a mapping of E / R into F . The mapping h is uniquely defined by f; if f is any section of g, we have $h=f \circ s . » 127$

9.6 Notations and Definitions

In many cases we indicate the page on which an object is defined.

Symbols

$x \wedge y$ is often replaced by "and". The Coq equivalent is $八$.
$x \vee y$ is often replaced by "or". The Coq equivalent is $\backslash /$.
$\neg x$ is often replaced by "not". The Coq equivalent is \sim.
\square is a dummy variable for Bourbaki, (5).
$\mathrm{R}\{x\}$ is a Bourbaki notation, meaning that R is a relation that may depend on x. If R is a relation that depends on y, it is also $(x \mid y) \mathrm{R}$.
$\tau_{x}(\mathrm{R})$ is a Bourbaki notation, it is the generic element satisfying R$\left.\} x\right\}, 9 \mid$.
$x \Longrightarrow y$ is represented in Coq by $\mathrm{x}->\mathrm{y}$.
$x \mapsto y$ is represented in Coq by fun $\mathrm{x} \Rightarrow \mathrm{y}$.
$x \rightarrow y$ is a Coq notation meaning the type of functions from type x to type y.
$x=y$ is equality. We use it as synonym to \Longleftrightarrow.
$(a \mid b) c$ is a Bourbaki notation, meaning the relation obtained by replacing b by a in c, (6).
x : y is a Coq notation meaning that x is of type y.
$f(x)$ is the value of the function f at point x, parentheses are sometimes omitted.
$f\langle x\rangle$ is the value of f on the set x, see fun_image, image_by_graph, image_by_fun.
$\stackrel{-1}{f}\langle x\rangle$, see inverse_image.
$(\forall x) \mathrm{P}$ and forall x, p are similar constructions, 10.
$(\exists x) \mathrm{P}$ and exists x, p are similar constructions, 10.
(\exists ! x) P means sometimes exists_unique.
$x \in y, x \ni y$ (is element of): see inc and elt.
$x \subset y$ (is subset of): see sub.
\varnothing (empty set): see emptyset.
$\{x, \mathrm{R}\}$ (set of x such that R): see $Z o$.
$\{x\},\{x, y\}$: see singleton or doubleton.
$a-b, a \backslash b$, Сa: see complement.
(x, y) (ordered pair): see J.
$\cup X, \bigcup_{\mathrm{t} \in \mathrm{I}} \mathrm{X}_{\mathrm{t}}$, see union.
$a \cup b, a \cap b$, see union2, intersection2.
$\mathrm{A} \times \mathrm{B}, u \times v, \mathrm{R} \times \mathrm{R}^{\prime}$, see product, ext_to_prod, prod_of_relation.
$f \circ g$, see fcompose, gcompose, compose_graph, compose, composeC.
Δ_{A}, see diagonal.
$\stackrel{-1}{\mathrm{G}}$ see inverse_graph, inverse_fun or inverseC.
$x \mapsto y$ or $x \rightarrow y$ is the function that maps x to y, for instance $x \mapsto \sin x$ (source and target are implicit).
$\boldsymbol{x} \rightarrow \boldsymbol{T}(\boldsymbol{x} \in \boldsymbol{A}, \boldsymbol{T} \in \boldsymbol{C})$, is the function with source A, target C that maps x to T, 59].
$\left(f_{x}\right)_{x \in \mathrm{~A}}$ is a shorthand for $x \rightarrow f(x)(x \in \mathrm{~A})$; see above, the piece $\boldsymbol{T} \in \boldsymbol{C}$ is implicit.
\hat{f}, see extension_to_parts
F^{E}, see set_of_gfunctions.
$\mathscr{F}(\mathrm{E} ; \mathrm{F})$ see set_of_functions.
$\Phi(\mathrm{E}, \mathrm{F})$ see set_of_sub_functions.
f_{x}, f_{y} sometimes denotes the mappings $y \mapsto f((x, y))$ or $x \mapsto f((x, y))$, implemented as first_partial_fun, second_partial_fun, 94].
\tilde{f}, sometimes denotes the mappings $x \mapsto f_{x}$ or $y \mapsto f_{y}$. Implemented as first_partial_function, second_partial_function, 94 .
$f \mapsto \tilde{f}$, implemented as first_partial_map, second_partial_map, is a bijection from $\mathscr{F}(\mathrm{B} \times \mathrm{C} ; \mathrm{A})$ into $\mathscr{F}(\mathrm{B} ; \mathscr{F}(\mathrm{C} ; \mathrm{A})$ or $\mathscr{F}(\mathrm{C} ; \mathscr{F}(\mathrm{B} ; \mathrm{A})), 94$.
$\prod_{\imath \in \mathrm{I}} \mathrm{X}_{\mathrm{t}}$ see productt.
$\left(x_{\mathrm{t}}\right)_{\mathrm{t} \in \mathrm{I}}$ denotes an element of a product indexed by I.
$x \stackrel{r}{\sim} y$ is sometimes used instead of $r(x, y)$ or $(x, y) \in r$, especially when r is the graph of an equivalence relation.
$g_{\mathrm{E}}(\sim)$, the graph of \sim on E, see graph_on.
\sim_{f} may denote eq_rel_associated f.
\bar{x}, may denote the equivalence class of x, see class.
\hat{x} may denote a representative of the equivalence class x.
$\mathrm{E} / \sim, \mathrm{E} / \mathrm{R}$, see quotient.
R / S see quotient_of_relations.
X_{f} sometimes means $f^{-1}\langle f\langle\mathrm{X}\rangle\rangle$, see inverse_direct_value.
R_{A} see induced_relation.
I is not defined. We use it as a paragraph separator.

Letters

\mathscr{B} see Bo.
$\mathscr{C}_{\mathrm{C}}(a, b), \mathscr{C}_{\mathrm{T}}(p, q), \mathscr{C}(p)$: see by_cases $a b$, choose T and choose.
$\mathrm{C}_{x y} a$ stands for constant_function $x y a$, it is the constant function from x to y with value a, 53.
$\mathrm{C}_{\mathrm{R}} x$ may denote the equivalence class of x for R , see class.
Coll $_{x} R$ says that R is collectivizing in $x, 11$.
\mathscr{E}, see Bset.
$\mathscr{E}_{x}(\mathrm{R})$ appears in the English version where $\{x, \mathrm{R}\}$ is used in the French version; see $Z o$. I_{A}, see identity.
$\mathrm{I}_{x y}$ see inclusionC, canonical_injection.
$\mathscr{L}_{\mathrm{X}} f, \mathscr{L} f, \mathscr{L}_{\mathrm{A} ; \mathrm{B}} f$ (creating functions): see L, acreate, $B L$.
$\mathscr{M} f, \mathscr{M}_{\mathrm{A} ; \mathrm{B}} f$ (inverse of \mathscr{L}), see bcreate1 and bcreate.
$\mathfrak{P}(x)$, see powerset.
$\operatorname{pr}_{1} z, \operatorname{pr}_{2} z, \mathrm{pr}_{\mathrm{I}} f, \mathrm{pr}_{\mathrm{J}} f$ (projections), see $\mathrm{P}, \mathrm{Q}, p r_{-} i, p r_{-} j$.
$\mathscr{R} x$ see Ro.
$\mathrm{R}_{a b} f$ (restriction) see 58].
$V_{(x, f),} \nu_{f} x$ (value of a function): see V.
$\mathscr{W}_{f} x$ (value of a function): see W.
$\mathscr{X}(f, y)$, see $X o$.
$\mathscr{Y}(\mathrm{P}, x, y)$ see Yo.
$\mathcal{Z}(x, \mathrm{P})$ see $Z o$.

Words

acreate $f, \mathscr{L} f$, is the correspondence associated to the Coq function f, 45.
agrees_on $x f f^{\prime}$, agreeC $x f f^{\prime}$ is the property that for all $a \in x, f(a)$ and $f^{\prime}(a)$ are defined and equal, 56].
bcreate $f A B, \mathscr{M}_{\mathrm{A} ; \mathrm{B}} f$, is a kind of inverse of \mathscr{L}, [52].
bcreatel $f, \mathscr{M} f$, is a kind of inverse of $\mathscr{L} 52$.
bijective f, bijectiveC f, means that f is a bijection, 61.
$B L f a b, \mathscr{L}_{\mathrm{A} ; \mathrm{B}} f$, fun_function fa b, is function from A to B whose graph is $\mathscr{L}_{\mathrm{A}} f$, [59].
Bset or \mathscr{E} is the type of sets, [11].
$B o, \mathscr{B}$, is an inverse of \mathscr{R}, 15.
by_cases $a b, \mathscr{C}_{\mathrm{C}}(a, b)$, defines an object by applying a if P is true, and b if P is false, [16].
canonical_injection $x y, \mathrm{I}_{x y}$, is the inclusion map on $x \subset y$, , 63.
canon_proj r, is the mapping $x \mapsto \bar{x}$ from E onto E / R, the quotient set of $r, 120$.
class $r x$ is the class of x for the equivalence relation $r, 119$.
choose $p, \mathscr{C}(p)$, is some x such that $p(x)$ is true, the empty set if no x satisfies p, 17.
chooseT p q, $\mathscr{C}_{\mathrm{T}}(p, q)$, is our basic axiom of choice, [13].
coarse x is $x \times x$, 116.
coarser_covering IfJg, coarser_c fg, two definitions that say for all $j \in \mathrm{~J}$ there is $i \in \mathrm{I}$ such that $g_{j} \subset f_{i}$ or for all $g_{j} \in g$ there is $f_{i} \in f$ such that $g_{j} \subset f_{i}$, [85].
compatible_with_equiv_p pr means that $p(x)$ and $x \stackrel{r}{\sim} y$ implies $p(y), 124$.
compatible_with_equiv $f r$ means that $x \stackrel{r}{\sim} y$ is equivalent to $f(x)=f(y), 126$.
compatible_with_equivs $f r r^{\prime}$ means that $x \stackrel{r}{\sim} y$ is equivalent to $f(x) \stackrel{r^{\prime}}{\sim} f(y), 127$.
complement $a b, a-b, a \backslash b, \mathrm{C} b$, is the set of element of a not in $b, 21$.
composableCfg, composable fg is the condition on correspondences (resp. functions) f and g for $f \circ g$ to be a correspondence (resp. function), 49, [60].
compose_graph fg, $f \circ g$, composition of two graphs, 47.
compose fg, composeCfg, $f \circ g$, is the composition of two functions, 49, 55.
constant_graph s x is the graph of the constant function with domain s and value x, 100.
correspondenceC is a data type with three slots, source, target and graph, 43
corr_value f associates to a correspondence f its triple (G, A, B), 43.
covering $f x$, covering_fIf x, covering_s $f x$, three variants of a family of sets (defined by f and I) whose union contains x, [84].
cut $x p$ is the set of all x that satisfy $p, 19$.
cut $r x$ is $r\langle x\rangle$, 46.
diagonal A, Δ_{A}, is the set of all (x, x) such that $x \in \mathrm{~A}, 43$.
diagonal_application A is the diagonal mapping $x \mapsto(x, x)$ of A into Δ_{A}, 63.
diagonal_graphp IE is the set of graphs of constant functions from I to E, 100.
disjoint x y means $x \cap y=\varnothing$, 87].
disjoint_union f, disjoint_union_fam f are two variants of the disjoint union of the family of sets f, [89].
domain f is the set of x for which there is an y with $(x, y) \in f$, it is $\operatorname{pr}_{1}\langle f\rangle$, 31.
doubleton $x y,\{x, y\}$, is a set with elements x and $y, 20$.
$E E E$ is a shorthand for the type Bset \rightarrow Bset \rightarrow Bset.
$E E P$ is a shorthand for the type Bset \rightarrow Bset \rightarrow Prop.
elt $x y, x \ni y$, is the same as $y \in x$, 15.
empty_function, empty_functionC is the identity on \varnothing, 53].
emptyset, \varnothing, is a set without elements, 15 .
eq_rel_associated f is the graph of the equivalence relation $f(x)=f(y)$, 118.
equipotent $x y$ means that there is a bijection from x to y.
equivalence_associated f is the equivalence relation $f(x)=f(y)$, 118.
equivalence_r r, equivalence_re $r x$, says that the relation r is an equivalence relation (in x), 113.
equivalence_corr r says that the correspondence r is associated to an equivalence, [116.
exists_unique $p,(\exists!x) p$, (this notation is not in Bourbaki) means that there exists a unique x such that $p(x)$, 15.
extends $g f$, extendsC $g f$ says $g(x)=f(x)$ whenever $f(x)$ is defined, 57.
ext_map_prod $I X Y g$ is the function $\left(x_{1}\right)_{\mathrm{t} \in \mathrm{I}} \mapsto\left(g_{\mathrm{t}}\left(x_{\mathrm{l}}\right)\right)_{\mathrm{t} \in \mathrm{I}}$ from $\prod_{\mathrm{I}} \mathrm{X}_{\mathrm{l}}$ into $\prod_{\mathrm{I}} \mathrm{Y}_{\mathrm{t}}, 109$.
ext_to_prod $u v$ is the function $(x, y) \mapsto(u(x), v(y))$, sometimes denoted $u \times v, 73$
extension_to_parts f, denotes the function $x \mapsto f\langle x\rangle$, from $\mathfrak{P}(\mathrm{A})$ to $\mathfrak{P}(\mathrm{B})$, 91,
finer_equivalence s r, comparison of equivalences, $x \stackrel{s}{\sim} y$ implies $x \stackrel{r}{\sim} y$, 133.
first_proj g is the function $x \mapsto \operatorname{pr}_{1} x(x \in g)$.
first_proj_equiv $x y$, first_proj_equivalence $x y$, is the equivalence associated to first_proj on the set $x \times y, 121$.
fcompose $f g, f \circ g$, composition of two graphs, without assumption, 33].
fcomposable fg says that graphs g and $f \circ g$ have the same domain, 33.
fgraph f says that f is a functional graph, 31.
functional_graph f says that f is a functional graph, 50.
fun_image $x f, f\langle x\rangle$, is the value of f on the set $x, ~[23$.
fun_on_quotientrf,function_on_quotientrfb, function_on_quotients, fun_on_quotients $r r^{\prime} f$, the function obtained from f on passing to the quotient of r (or r and r^{\prime}), 127, 128.
fun_set_to_prod $E X$ is the canonical bijection between $\left(\Pi X_{t}\right)^{\mathrm{E}}$ and $\Pi \mathrm{X}_{\mathrm{t}}^{\mathrm{E}}, 111$.
function_prop $f s t$, function_prop_sub $f s t$. This is the property that f is a function from s into t, or into a subset of t, 86].
gcompose $f g, f \circ g$, composition of two graphs, assumes that range g is a subset of domain f, 33].
graphf is a part of a correspondence, 43].
graph_on $r X$ is the graph of the relation r restricted to X , 115.
identity $A, \mathrm{I}_{\mathrm{A}}$, is is the graph of the identity function on the set $\mathrm{A},[34]$.
identity_fun $A, \mathrm{I}_{\mathrm{A}}$, is the identity function on the set $\mathrm{A}, 49$.
$I M$ stands for the image of a function. Its axioms implement the Scheme of Selection and Union, 14].
image_by_fun $f A, f\langle\mathrm{~A}\rangle$, is $\{t, \exists x \in \mathrm{~A}, t=f(x)\}$, 45.
image_by_graph $f A, f\langle\mathrm{~A}\rangle$ is $\{t, \exists x \in \mathrm{~A},(x, t) \in f\}$, 45].
image_of_fun f, is the image of f, 45.
inc $x y$ or $x \in y$ means that x is an element of $y, 11$.
inclusionC $x y, \mathrm{I}_{x y}$, is the inclusion map on $x \subset y$ as a Coq function, 55.
induced_relation $R A, \mathrm{R}_{\mathrm{A}}$, is the equivalence induced by R on $\mathrm{A}, 132$.
injective f, injective $C f$, means that f is an injection, 61.
in_same_coset f is the relation "there exists i such that $x \in f(i)$ and $y \in f(i)$ " between x and $y, 122$.
intersection $X, \cap \mathrm{X}$, is the intersection of a set of sets, 25].
intersectiont $I f$, intersectionf $x f$, intersectiont $g, \bigcap_{1 \in \mathrm{I}} X_{\mathrm{l}}$ is the set of elements a such that forall $\mathrm{t} \in \mathrm{I}$ we have $a \in \mathrm{X}_{\mathrm{t}}$, 78.
intersection $2 X Y, \mathrm{X} \cap \mathrm{Y}$, is the intersection of two sets [25].
intersection_covering, intersection of coverings, 85].
inverse_direct_value $f X, \mathrm{X}_{f}$, is $f^{-1}\langle f\langle\mathrm{X}\rangle\rangle, 125$.
inverse_graph $G, \stackrel{-1}{\mathrm{G}}$, inverse graph of the graph $\mathrm{G}, 46$.
inverse_funf or inverseC a bfH, f^{-1}, inverse of the function $f, 47,, 64$.
inverse_image $x f, \stackrel{-1}{f}\langle x\rangle$, is the inverse value of f on the set $x, 32$.
inv_image_relation $f r$, is the inverse image of the relation r under the function $f,[131]$.
inv_image_by_graph $f x$, inv_image_by_fun $r x,-\stackrel{-1}{f}\langle x\rangle$, direct image of a set by the inverse function, 47
inv_corr_value t associates to a $t=(\mathrm{G}, \mathrm{A}, \mathrm{B})$ its correspondence f, 43.
inv_graph_canon G is the bijection $(x, y) \mapsto(y, x)$ from G to G^{-1}, 63.
is_class $r x$ says that x is an equivalence class for $r, 119$
is_correspondence f says that f is associated to a triple ($\mathrm{G}, \mathrm{A}, \mathrm{B}$), 44
is_equivalence r says that the graph r is an equivalence, [114].
is_function f says that f is a function in the sense of Bourbaki, 50].
is_graph f says that f is a set of pairs, 31].
is_graph_of $g r$ is true if g is the graph of the relation r, 115].
is_left_inverse $r f$ means that r is a retraction or left-inverse of f, and $r \circ f$ is the identity, 66.
is_reflexive r says that the graph r is reflexive, 114 .
is_restriction $f g$ says that f is the restriction of g to some set, 31]
is_right_inverse $s f$ means that s is a section or right-inverse of f, and $f \circ s$ is the identity, 66.
is_singleton x means that x is a singleton.
is_symmetric r says that the graph r is symmetric, 114.
is_transitive r says that the graph r is transitive, [114].
$J x y$, or (x, y), is an ordered pair, formed of two items x and y, 22].
$L X f$, fcreate $X f, \mathscr{L}_{\mathrm{X}} f$ is the graph formed of all $(x, f(x))$ with $x \in \mathrm{X}$, 33].
largest_partition x is the set of all singletons of x.
left_inverseC, left inverse of a Coq function, 67.
LHS is the left hand side of an equality.
Lvariant abxy, variant a $x y$, Lvariantc $x y$, these are functions whose range is the doubleton $\{x, y\}, 87$.
mutually_disjoint f says that for all distinct i and $j, f(i)$ and $f(j)$ are disjoint, 87]
$x \neq y$, neq $x y, x<>y$ is inequality, [15].
one_point is the basic singleton, 20.
$P z, \mathrm{pr}_{1} z$ denotes x if z is the pair $(x, y), 22$.
partial_fun1 $f y$, partial_fun1 $f x$, partial functions, 72].
partition $y x$, partition_s $y x$, partition_fam f, thee variants that say that y or f is a partition of x, 87].
partition_relation $f x$ is the equivalence relation associated to the partition f of x, [122].
partition_with_complement $X A$, is the partition of X formed of A and its complementary set, 87].
powerset $x, \mathfrak{P}(x)$, is the set of subsets of $x, 23$.
$\operatorname{pr}_{1} z, \operatorname{pr}_{2} z$ stand for $p r 1 z$ and $p r 2 z$. These are also denoted by P and Q . If z is the pair (x, y), these functions return x and y respectively, [22].
pr_ifi, pr_itfi, $\mathrm{pr}_{i} f$, denotes a component of an element of a product. 98].
$p r_{-} j f J, \operatorname{pr}_{\mathrm{J}} f$, is the function $\left(x_{\mathrm{t}}\right)_{\in \in \mathrm{I}} \mapsto\left(x_{\mathrm{l}}\right)_{\mathrm{I} \in \mathrm{J}}, 102$.
prod_assoc_map is the function whose bijectivity is the "theorem of associativity of products", 103.
prod_of_function $u v$, is the function $x \mapsto(u(x), v(x))$, 108.
prod_of_products_canon $F F^{\prime}$, is the bijection between $\prod_{\mathrm{t}} \times \prod \mathrm{F}_{\mathrm{t}}^{\prime}$ and $\Pi\left(\mathrm{F}_{1} \times \mathrm{F}_{\mathrm{t}}^{\prime}\right), 108$.
prod_of_relation $R R^{\prime}, \mathrm{R} \times \mathrm{R}^{\prime}$, is the product of two equivalences, 135.
product $A B, \mathrm{~A} \times \mathrm{B}$, is the set of all pairs (a, b) with $a \in \mathrm{~A}$ and $b \in \mathrm{~B}$, 26. See also ext_to_prod $u v$.
productt I X, product bg or productf If, $\prod_{\mathrm{I} \in \mathrm{I}} \mathrm{X}_{\mathrm{I}}$ is the product of a family of sets, 97 .
product1 $x a$ is the product of the family defined on the singleton $\{a\}$ via value $x, 99$.
product1_canon $x a$ is the canonical application from x into product1 $x a, 99$.
product $2 x y$ is the product of the family defined on the doubleton $\{a, b\}$ via value x and $y, 100$.
product2_canon $x y$ is the canonical application from $x \times y$ into product $2 x y, 100$.
product_compose, auxiliary function used for change of variables in a product, [101.
$Q z, \operatorname{pr}_{2} z$ denotes y if z is the pair $(x, y), 22$.
quotient $R, \mathrm{E} / \mathrm{R}$, is the set of equivalence classes of $\mathrm{R}, 119$
quotient_of_relations $r s, \mathrm{R} / \mathrm{S}$, is the quotient of two equivalences, 134
range f is the set of y for which there is an x with $(x, y) \in f$, it is $\mathrm{pr}_{2}\langle f\rangle, 31$.
reflexive_r $r x$ says that the relation r is reflexive in $x, 113$.
related $r x y$ is a shot-hand for $(x, y) \in r, 42$.
relation_on_quotient $p r$ is the relation induced by $p(x)$ on passing to the quotient (with respect to x) with respect to $\mathrm{R}, \boxed{124}$
rep x is an element y such that $y \in x$, whenever x is not empty, [17.
representative_system $s f x$ means that, for all i, $s \cap \mathrm{X}_{i}$ is a singleton, where X_{i} is a partition of x associated to the function f, 123.
representative_system_function $g f x$, means that g is an injection whose image is a system of representatives (see definition above), 123.
restr $x G$ is the restriction to x of the graph G , 34].
restricted_eq E is the relation " $x \in \mathrm{E}$ and $y \in \mathrm{E}$ and $x=y$ ", 116.
restriction_function $f x$ is like restr, but f and the restrictions are functions, [56].
restriction2_axioms $f x y$ is the condition: f is a function whose source contains x, whose target contains y, moreover $a \in x$ implies $f(a) \in y$, [58].
restriction2 $f x y$, restriction2C $f x y$, restriction of f as a function $x \rightarrow y, 58$.
restrictionCfH is the restriction to x of the function $f: a \rightarrow b$, where H proves $x \subset a$ implicitly, [56].
restriction_product $f j$ is the product of the restrictions of Πf to $\mathrm{J}, 102$.
restriction_to_image f is the restriction of the Coq function f to its range, 75].
retraction: see is_left_inverse.
RHS is the right hand side of an equality.
right_inverseC, right inverse of a Coq function, 67.
Ro x or $\mathscr{R} x$ converts its argument x of type u to a set, which is an element of u, [13].
saturated $r x$ means: for every $y \in x$, the class of x for the relation r is a subset of x, 124.
saturation_of $r x$ is the saturation of x for r, 125.
second_projg is the function $x \mapsto \operatorname{pr}_{2} x(x \in g)$.
section: see is_right_inverse.
section_canon_proj R is the function from E / R into E induced by rep, 126.
set_of_correspondences $A B$ means the set of triples associated to correspondences from A to B, it is $\mathfrak{P}(A \times B) \times\{A\} \times\{B\}, 44$.
set_of_endomorphisms E, is the set of triples (G, E, E) associated to functions from E into E, 92]
set_of_functions $E F$, denoted $\mathscr{F}(\mathrm{E} ; \mathrm{F})$, is the set of triples $(\mathrm{G}, \mathrm{E}, \mathrm{F})$ associated to functions from E into F, 92]
set_of_gfunctions $E F$, denoted F^{E}, is the set of graphs of functions from E to $\mathrm{F}, 92$
set_of_sub_functions $E F$, denoted $\Phi(\mathrm{E} ; \mathrm{F})$ is the set of triples $(\mathrm{G}, \mathrm{A}, \mathrm{F})$ associated to functions from $\mathrm{A} \subset \mathrm{E}$ into F , 92
singleton $x,\{x\}$, is a set with one element, 20.
sof_value x y z converts three elements into a correspondence, 92.
small_set x means that x has at most one element, [53].
smallest_partition x is the singleton $\{x\}$.
source f contains (resp. is equal to) the domain of the graph of a correspondence f (resp. function f) [43], [50].
strict_sub $x y, x \subsetneq y$, means $x \subset y$ and $x \neq y$, 15.
sub $x y, x \subset y$, means that x is a subset of $y, 11$.
surjective f, surjectiveC f, means that f is a surjection, 61.
substrate r is the union of the domain and range 113.
symmetric_r r says that the relation r is symmetric, 113].
target f contains the range of the graph of a correspondence f, 43].
transf_axioms f A B says that for all $x \in$ A we have $f(x) \in \mathrm{B}$, case where $\mathscr{L}_{\mathrm{A} ; \mathrm{B}} f$ is a function, 59.
transitive_r r says that the relation r is transitive, 113 .
two_points is the basic doubleton, 20.
union $X, \cup \mathrm{X}$, is the union of a set of sets, 24],
uniont $I f$, unionf $x f$, uniont g, $\bigcup_{\mathrm{t} \in \mathrm{I}} \mathrm{X}_{\mathrm{t}}$ is the set of elements a such that $a \in \mathrm{X}_{\mathrm{t}}$ for some $t \in I, 78$.
union2 $a b, a \cup b$, is the union of two sets, 24.
$V x f, V(x, f)$ or $V_{f} x$, is the value at the point x of the graph $f, 23$.
variant, see Lvariant.
$W x f, \mathscr{W}_{f} x$, is the value at the point x of the function $f, 50$.
Xo $f y, \mathscr{X}(f, y)$, this is $f(x)$ if $y=\mathscr{R} x$, 18.
Yo $P x y, \mathscr{Y}(\mathrm{P}, x, y)$, is a function that associates to z the value x is P is true, and y if P is false, 17.
Zo $x R, \mathcal{Z}(x, \mathrm{R}), \mathscr{E}_{x}(\mathrm{R})$ or $\{x, \mathrm{R}\}$: it is the set of all x that satisfy $\mathrm{R}, 11$. 18 .

Bibliography

[1] Yves Bertod and Pierre Castéran. Interactive Theorem Proving and Program Development. Springer, 2004.
[2] N. Bourbaki. Elements of Mathematics, Theory of Sets. Springer, 1968.
[3] N. Bourbaki. Éléments de mathématiques, Théorie des ensembles. Diffusion CCLS, 1970.
[4] Coq Development Team. The Coq reference manual. http://coq.inria.fr.
[5] Douglas Hofstadter. Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books, 1979.
[6] Jean-Louis Krivine. Théorie axiomatique des ensembles. Presses Universitaires de France, 1972.
[7] Edward Nelson. Internal set theory: a new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 1977.

Contents

1 Introduction 3
1.1 Objectives 3
1.2 Background 4
1.3 Notations 4
1.4 Description of formal mathematics 5
2 Sets 11
2.1 Module Axioms 11
2.2 Module constructions 15
2.3 Module Little 19
2.4 Module Basic Realization 21
2.5 Module Complement 21
2.6 Module Pair 22
2.7 Module Image 23
2.8 Module Powerset 23
2.9 Module Union 24
2.10 Module Intersection 25
2.11 Module Transposition 25
2.12 Module Bounded 26
2.13 Module Cartesian 26
2.14 Module Back 28
3 Functions 31
3.1 Module Function 31
3.2 Module FunctionSet 35
3.3 Module Notation 36
3.4 Module Universe 38
4 Correspondences 41
4.1 Graphs and correspondences 42
4.2 Inverse of a correspondence 46
4.3 Composition of two correspondences 47
4.4 Functions 49
4.5 Restrictions and extensions of functions 55
4.6 Definition of a function by means of a term 59
4.7 Composition of two functions. Inverse function 60
4.8 Retractions and sections 66
4.9 Functions of two arguments 72
5 Union and intersection of a family of sets 77
5.1 Definition of the union and intersection of a family of sets 78
5.2 Properties of union and intersection 81
5.3 Complements of unions and intersections 82
5.4 Union and intersection of two sets 83
5.5 Coverings 84
5.6 Partitions 87
5.7 Sum of a family of sets 89
6 Product of a family of sets 91
6.1 The axiom of the set of subsets 91
6.2 Set of mappings of one set into another 92
6.3 Definition of the product of a family of sets 97
6.4 Partial products 102
6.5 Associativity of products of sets 103
6.6 Distributivity formulae 104
6.7 Extensions of mappings to products 109
7 Equivalence relations 113
7.1 Definition of an equivalence relation 113
7.2 Equivalence classes; quotient set 118
7.3 Relations compatible with an equivalence relation 124
7.4 Saturated subsets 124
7.5 Mappings compatible with equivalence relations 126
7.6 Inverse image of an equivalence relation; induced equivalence relation 131
7.7 Quotients of equivalence relations 133
7.8 Product of two equivalence relations 135
7.9 Classes of equivalent objects 136
8 Exercises 139
8.1 Section 1 139
8.2 Section 2 140
8.3 Section 3 141
8.4 Section 4 148
8.5 Section 5 157
8.6 Section 6 160
9 Summary 187
9.1 The axioms 187
9.2 The Zermelo Fraenkel Theory 187
9.3 Tactics 188
9.4 Rewriting rules 190
9.5 List of Theorems 190
9.6 Notations and Definitions 193

Centre de recherche INRIA Sophia Antipolis - Méditerranée 2004, route des Lucioles - BP 93-06902 Sophia Antipolis Cedex (France)

Centre de recherche INRIA Bordeaux - Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble - Rhône-Alpes : 655, avenue de l'Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille - Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d'Ascq Centre de recherche INRIA Nancy - Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique 615, rue du Jardin Botanique - BP 101-54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris - Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105-78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes - Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex Centre de recherche INRIA Saclay - Île-de-France : Parc Orsay Université - ZAC des Vignes: 4, rue Jacques Monod - 91893 Orsay Cedex

[^0]: ${ }^{1}$ http://math.unice.fr/~carlos/themes/verif.html
 ${ }^{2}$ This is called 'pair' in Simpson and in version 1 of this report

[^1]: ${ }^{3}$ We cannot consider 5 as a number, since numbers are not yet defined, and we cannot consider 5 as a digit, since there are only a finite number of digits, and this would limit the size of assemblies

[^2]: ${ }^{4}$ In version 2, files jset and jfunc have been merged into set1, files set3 and set31 have also been merged. The number of theorems in these four files is now 279, 431, 375 and 257.

[^3]: ${ }^{1}$ Only in version 1 if the software

[^4]: ${ }^{2}$ The four axioms of this paragraph have been withdrawn in the second edition, since they are not needed for our purpose.

[^5]: ${ }^{4}$ Was pair in the first version

[^6]: ${ }^{5}$ It has been withdrawn in version 2

[^7]: ${ }^{1}$ In version 2, the modules have been moved to the file setl

[^8]: ${ }^{2}$ This module has been withdrawn in the second edition.

[^9]: ${ }^{1}$ http://math.unice.fr/~carlos/themes/verif.html

[^10]: ${ }^{1}$ In version 2, we added theorems to the lists shown here

