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Implémentation des Éléments de mathématiques de Bourbaki en
Coq,

partie 1
Théorie des ensembles

Résumé : Nous pensons qu'il est possible de mettre dans un ordinateur l'ensemble de
l'œuvre de Bourbaki. L'un des objectifs du projet Gaia concerne l'algèbre homologique (théorie
et algorithmes); dans une première étape nous voulons implémenter les neuf chapitres du
livre Algèbre. Au préalable, il faut implémenter la théorie des ensembles. Nous utilisons
l'Assistant de Preuve Coq; les choix fondamentaux et axiomes sont ceux proposées par Car-
los Simpson. Ce rapport liste et commente toutes les dé�nitions et théorèmes du Chapitre
théorie des ensembles. Presque tous les exercises ont été résolus. Le code est disponible sur
le site Web http://www-sop.inria.fr/marelle/gaia.

Mots-clés : Gaia, Coq, Bourbaki, mathématiques formelles, preuves, ensembles
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Chapter 1

Introduction

1.1 Objectives

Our objective (it will be called the Bourbaki Project in what follows) is to show that it
is possible to implement the work of N. Bourbaki, “Éléments de Mathématiques”[3], into a
computer, and we have chosen the C OQ Proof Assistant, see [7, 1]. All references are given
to the English version “Elements of Mathematics”[2], which is a translation of the French
version (the only major difference is that Bourbaki uses an axiom for the ordered pair in
the English version and a theorem in the French one). We start with the �rst book: theory
of sets. It is divided into four chapters, the �rst one describes formal mathematics (logical
connectors, quanti�ers, axioms, theorems). Chapters II and III form the basis of the theory;
they de�ne sets, unions, intersections, functions, products, equivalences, orders, integers,
cardinals, limits. The last chapter describes structures.

An example of structure is the notion of real vector space: it is de�ned on a set E, uses
the set R of real numbers as auxiliary set, has some characterization (there are two laws on
E, a zero, and a action of R over E), and has an axiom (the properties of the the laws, the
action, the zero, etc.). A complete example of a structure is the order; given a set A, we have
as characterization s 2 P (A £ A) and the axiom “ s±s Æs and s\ s¡ 1 Æ¢ A”. We shall see in
the second part of this report that an ordering satis�es this axiom, but it is not clear if this
kind of construction is adapted to more complicated structures (for instance a left module
on a ring). Given two sets A and A 0, with orderings s and s0, we can de�ne ¾(A,A0,s,s0), the
set of increasing functions from A to A 0. An element of this set is called a ¾-morphism. In
our implementation, the “set of functions f such that ...” does not exist 1; we may consider
the set of graphs of functions (this is well-de�ned), but we can also take another position: we
really need ¾to be a set if we try to do non-trivial set operations on it, for instance if we want
to de�ne a bijection between ¾ and ¾0; these are non-obvious problems, dealt with by the
theory of categories. There is however another practical problem; Bourbaki very often says:
let E be an ordered set; this is a short-hand for a pair (A, s). Consider now a monoid (A, Å).
Constructing an ordered monoid is trivial: the characterization is the product of the charac-
terizations, and the axiom is the conjunction of the axioms. The ordered monoid could be
(A,(s,Å)). If f is a morphism for s, and u 2 A, then the mapping x 7! f (x Å u) is a morphism
for s, provided that Å is compatible with s. If we want to convert this into a theorem in C OQ,
the easiest solution is to de�ne an object X equivalent to (A,( s,Å)), a way to extract X 0Æ(A,s)
and X00Æ(A,Å) from X, an operation s on A obtained from X or X 0, and change the de�nition

1We changed the type of a function in V4, so that this set exists now
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of ¾: it should depend on X 0 rather than on A and s. The compatibility condition is then a
property of X, ¾(X,Y) and ¾(X0,Y) are essentially the same objects, if f 2 ¾(X,Y) we can con-
sider f 0Æx 7! f (x Å u), and show f 02 ¾(X,Y). From this we can deduce the mapping from
¾(X0,Y) into ¾(X0,Y) associated to f 7! f 0.

1.2 Background

We started with the work of Carlos Simpson 2, who has implemented the Gabriel-Zisman
localization of categories in a sequence of �les: set.v, func.v, ord.v, comb.v, cat.v, and gz.v.
Only the �rst three �les in this list are useful for our project. The �le ord.z contains a lot of
interesting material, but if we want to closely follow Bourbaki, it is better to restart everything
from scratch. The �le func.v contains a lot of interesting constructions and theorems, that
can be useful when dealing with categories. For instance, it allows us to de�ne morphisms
on the category of left modules over a ring. The previous discussion about structures and
morphism explains why only half of this �le is used.

This report is divided in two parts. The �rst part deals with implementation of Chapter II,
“Theory of sets”, and the second part with chapter III, “Ordered sets, cardinals; integers” of [2]
Each of the six sections of Bourbaki gives a chapter in this report (we use the same titles as in
Bourbaki) but we start with the description of the two �les set.vand func.v by Carlos Simpson
(it is a sequence of modules). Their content covers most of Sections 1 and 2 (“Collectivizing
relations” and “Ordered pairs”).

1.3 Introduction to Coq

The proof assistant C OQ is a system in which you can de�ne objects, assume some prop-
erties (axioms), and prove some other properties (theorems); there is an interpreter (that
interprets sentences one after the other), and a compiler that checks a whole �le and saves
the de�nitions, axioms, theorems and proofs in a fast loadable binary �le. Here is an example
of a de�nition and a theorem.

Definition union2 (x y : Set) := union (doubleton x y).
Lemma union2_or : forall x y a, inc a (union2 x y) -> inc a x \/ inc a y.
Proof. ... Qed.

In C OQ, every object has a type; for instance doubleton is of type Set ! Set ! Set,
which means that it is a function of two arguments of type Set that returns an object of type
Set, and union is a function of one argument of type Set that returns an object of type Set.
Thus, the expression `union (doubleton x y) ' is well-typed if and only if x and y are of
type Set, and this object is of type Set. We de�ne ` union2 x y ' to be this expression. In the
de�nition we may indicate the type of arguments and return value, or omit them if C OQ can
deduce it (in most cases, type annotations are omitted).

The theorem says: for all x, y and a (of type Set) if a 2 x [ y then a 2 x or a 2 y. We give
here different variants of the proof of the theorem:

ir. unfold union2 in H. pose (union_exists H).
nin e. xd. pose (doubleton_or H1).

2http://math.unice.fr/~carlos/themes/verif.html
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nin o. rewrite H2 in H0. intuition.
rewrite H2 in H0; intuition.

The second proof is

ir. ufi union2 H. nin (union_exists H). nin H0.
nin (doubleton_or H1) ; [ left | right ] ; wrr H2.

The third proof is

rewrite/union2 => x y a ; rewrite union_rw.
by case => t [ aat td ]; case (doubleton_or td)=> <-; auto.

The current theorem is

Lemma setU2_hi x y a: inc a (x \cup y) -> inc a x \/ inc a y.
Proof. by case /setU_P => t aat /set2_P [] <-; auto. Qed.

Let's de�ne a task as a list of expressions of the form H 1 . . .Hn ` C, where H i is called
the i -th assumption and C the conclusion. A task is said trivial if the conclusion is one of
the assumptions. A proof script is a sequence of transformations that convert a task without
assumption like ` C into a list of trivial tasks. In this case, one can say Qed, and COQ considers
C as a theorem.

The following transformations are legal. One may add an axiom or a theorem to the list
of assumptions. If A and A ! B are assumptions, then B can be added as an assumption. If
C has the form 8 x,C0 or the form A ! C0, one may add the variable x or the proposition A
to the list of hypotheses, and replace the conclusion by C 0; the converse is possible. There
are rules that govern the logical connectors and and or . For instance, one may replace the
task H ` A ^ B by the two tasks H ` A and H ` B, or replace H ` A _ B by any of the two
tasks H ` A or H ` B. If assumption H i is A^ B it can be replaced by the two assumptions
HA and H B asserting A and B; if assumption H i is A_ B, the task can be replaced by the two
tasks HA ` C and HB ` C, where HA means the list of assumptions H where H i is replaced
by A. The connectors and and or are inductive objects; this means that the rules for ^ and
_ described above are not built-in in C OQ, but are deduced from a more general scheme. In
particular, there are in�nite objects in C OQ, but Bourbaki needs an axiom that says that there
is an in�nite set.

The mathematical proof is the following. By de�nition of a doubleton, t 2 {x, y} is equiv-
alent to t Æx or t Æy. We shall refer to this as theorem (D). On the other hand, a is in the
union of b if and only if there is c such that a 2 c and c 2 b. We shall refer to this as theorem
(U). By de�nition x [ y is

S
{x, y}, so that a 2 x [ y implies by (U) that there is t such that a 2 t

and t 2 {x, y}. By (D), t Æx or t Æy, from which we deduce a 2 x or a 2 y. In all four C OQ

proofs, you can see how de�nitions are unfolded, theorems (U) and (D) are introduced, the
equality t Æx or t Æy is rewritten, and the logical or connector is handled (either by auto ,
intuition or specifying a branch). The �rst proof is that of Carlos Simpson, the second one
is a slight simpli�cation of it (it avoids introducing two local variables e and o).

The two other proofs use the SSREFLECTtactics. In particular, after the the tactical ` =>', the
arrow `<- ' means r̀ewrite from right to left', the notation ` rewrite/union2 ' means `unfold
union2 '. Both theorems (U) and (D) say that two quantities X and Y are equivalent. We some-
times provide a variant of the form X Æ) Y and Y Æ) X (these variants are used in the �rst
two proofs). The theorem was once stated as X ÆY (the third proof thus uses rewrite ). In
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the last version, we use the construction ` case/D' meaning: use one of the two implications
X Æ) Y and Y Æ) X, then perform a case analysis (to introduce t or handle the disjunction).
The brackets in `case => t [ aat td ] ' mean: split the conjunction in two assumptions
a 2 t and t 2 {x, y}, named aat and td . In the last proof, there are no brackets, because we
replaced exists by exists2 . Moreover, the is no assumption td ; we apply theorem (D) to
t 2 {x, y}, and follow it by case analysis (the empty brackets) and a rewrite. The �nal auto
could be replace by ` [by left | by right] '.

The last proof uses the SSREFLECTstyle of programming. It is characterized by the fol-
lowing three properties: each line of the proof is formed of a single sentence (a sequence of
semi-colon separated statements that ends with a period); the code is indented according to
the number of tasks. Finally all local names are given explicitly ( x, y, t , td ) instead of being
computed by C OQ (like o, e, H2, etc); this makes the proof more robust (note also that the last
script uses much less names than the other ones). The third proof is slightly longer than the
second one (on average, the size of the proofs increased by 7% after conversion to SSREFLECT

style, but the possibility of chaining reduces this again).

1.4 Notations

Choosing tractable notations is a dif�cult task. We would like to follow the de�nitions of
Bourbaki as closely as possible. For instance he de�nes the union of a family (X ¶)¶2I (X¶2 G).
Classic French typography uses italic lower-case letters, and upright upper-case letters, but
the current math tradition is to use italics for both upper- and lower-case letters for variables;
constants like pr 1 and Card use upright font. The set of integers is sometimes noted N; but
Bourbaki uses only N. Some characters may have variants (for instance, the previous formula
contains a Fraktur variant of the letter G). In the XML version of this document we do not use
the Unicode character U+1D50A (because most browsers do not have the glyph), but a char-
acter with variant, so that there is little difference between G, G, G, G, G, G. In this document
we use only one variant of the Greek alphabet (Unicode provides normal, italic, bold, bold-
italic, sans-serif and sans-serif bold italic; as a consequence, the XML version shows generally
a slanted version of Greek characters, where the Pdf document uses an upright font).

We can easily replace lower Greek letters by their Latin equivalents (there is little differ-
ence between (X¶)¶2I and (X i )i 2I ). We can replace these unreadable old German letters by
more signi�cant ones. In the original version, C. Simpson reserved the letters A, B and E.
Thus, a phrase like: let A and B be two subsets of a set E, and I ÆA£ B, all four identi�ers are
reserved letters in Simpson's framework.

In the original version of C. Simpson, the following letters were de�ned: A B E I J L O P
Q R S V W X Y Z. This means that, if we use such a letter as a local name, we must use a full
quali�ed named in order to access the original meaning, for instance Coq.Init.Logic.I
for I (this is a proof of True and is rarely used). C OQ uses the letter O as the integer zero, but
provides the notations 0 and 0%natfor it (notations can be overloaded). In SSREFLECT, the
successor of n is denoted n.+1 instead of `S n'.

Quantities named R, B, X, Y, and Z by Simpson have been renamed to Ro, Bo, Xo, Yo and
Zo (and Xo has been withdrawn). Quantities V and W have been renamed Vg and Vf. Quantity
A has been removed (it was a pre�x version of &). Quantity E has been renamed as Bset then
asSet: this is the type of a Bourbaki set.

Given two objects x and y, one can construct a third object z, such that x and y can be
obtained from z. If x is of type A, and y of type B, then z is of type A ¤ B, the product of

Inria
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the types (the name is prod ). One can use the notation ( x, y) instead of `pair x y '; the two
quantities x and y can be obtained via ` fst z ' and `snd z' or `z.1 ' and `z.2 ' in SSREFLECT.
In what follows, we shall de�ne the cartesian product of two sets; here x, y and z will have the
same type (namely Set). Our cartesian product will be called product , the notation for the
pair constructor will be ` J x y ', while P and Q are notations for the two projectors, denoted
by Bourbaki as pr 1 and pr 2.

Bourbaki has a section titled “de�nition of a function by means of a term”. An example
would be x 7! (x,x) (x 2 N). This corresponds to the C OQ expression fun x:nat => (x,x) .
According to the C OQ documentation, the expression “de�nes the abstraction of the variable
x, of type nat , over the term (x,x) . It denotes a function of the variable x that evaluates to
the expression (x,x) ”. Bourbaki says “a mapping of A into B is a function f whose source
is equal to A and whose target is equal to B”. The distinction between the terms function
and mapping is subtle: there is a section called “sets of mappings of one set into another”; it
could have been: “sets of functions whose source is equal to some given set and whose target
is equal to some other given set”. It is interesting to note that the term `function' is used
only once in the exercises to Chapter III, in a case where `mapping' cannot be used because
Bourbaki does not specify the set B.

In what follows, we shall use the term `function' indifferently for S, or the mapping n 7!
nÅ1, or the abstraction n => S n. Given a set A, we can consider the graph g of this mapping
when n is restricted to A. This will be denoted by Lg. Given a set B, if our mapping sends
A to B, we can consider the (formal) function f associated to the mapping with source A
and target B. We shall denote this by Lf . These two objects f and g have the important
property that, if n is in A, there is an m denoted by f (n) or g(n) such that m Æn Å 1 (we
have the additional property that f (n ) is in B). A short notation is required for the mapping
(g,n) 7! g(n) or ( f ,n ) 7! f (n ). We shall use V or W, in the documentation, Vgand Vf in the
code.

There a possibility to change the C OQ parser and pretty printer, and give meanings to
(x,y) and { x : A | P } . As mentioned above, notations can be overloaded, so that 0 may
be the integer zero, in some cases, or the unit of a group in some other cases. We have seen
that A ¤ B denotes the type of the pair ( x, y), but it can denote the product of two integers, or
two elements of a group. We shall not overload existing notations, but add notations similar
to those existing in SSREFLECT. For instance ` \1c *c x = x ' means that the cardinal product
of the cardinal 1 and x is equal to x. The notation ` {inc (domain f), f =1g g} ' means
that the graphs f and g are functionally equal on the domain of f ; i.e., whenever x is the
domain of f , then Vf (x) ÆVg (x). The notation ` {inc X &, injective P} ' means that P is
injective on X, i.e., for any x and y, if x 2 X and y 2 X, then P(x) ÆP(y) implies x Æy.

1.5 Description of formal mathematics

Terms and relations. A mathematical theory T is a collection of words over a �nite alpha-
bet formed of letters, logical signs and speci�c signs. Logical signs are ä , ¿, _ , : (the �rst
two signs are speci�c to Bourbaki, the other ones, disjunction and negation, have their usual
meaning). Speci�c signs are Æ, 2, letters are x, y, A, A0, A00, A000, and “at any place in the text it
is possible to introduce letters other than those which have appeared in previous arguments”
[2, p. 15] (any number of prime signs is allowed; this is not in contradiction with the �nite-
ness of the alphabet). An assembly is a sequence of signs and links. Some assemblies are
well-formed according to some grammar rules. In Backus-Naur form they are:

Term := letter j ¿letter (Relation) j Ssign Term1 ... Termn
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Relation := : Relation j _ Relation Relation j Rsign Term1 ... Termn

Each sign has to be followed by the appropriate number of terms: ä takes none, 2 and Æare
followed by two terms, and one can extend Bourbaki to non-standard analysis [6] by intro-
ducing a speci�c sign st of weight 1 qualifying the relation that follows to be standard. Each
sign is substanti�c as ä (it yields a term) or relational as Æ(it yields a relation).

We shall see below that ¿x (R) has to be interpreted as the expression where all occur-
rences of x in R are replaced by ä and linked to the ¿. Parentheses are removed. This has one
advantage: there is no x in ¿x (R), hence substitution rules become trivial. For instance, the
function x 7! x Å y is constructed by using ¿, it is identical to the function z 7! z Å y. If we
want to replace y by z, we get x 7! x Å z, but not z 7! z Å z. In C OQ, the variable y appears
free in x 7! x Å y, and the variable x appears bound in the same expression. Renaming bound
variables is called ®-conversion. Two ®-convertible terms are considered equal in C OQ.

The Appendix to Chapter I of [2] describes an algorithm that decides whether an assem-
bly is a term, a relation, or is ill-formed. It works in two stages. In the �rst stage, links are
ignored. A classical result in computer science is that there exists a program (called a parser)
that recognizes all signi�cant words (i.e., well-formed assemblies without links). We can as-
sociate a number to each sign (for instance 262 to 'a', 111 to '=') and thus to each assembly
(for instance, 262111262 to 'a=a'). This will be called the Gödel number of the assembly, see
[4] for an example. Two distinct assemblies have distinct Gödel numbers. The set of Gödel
numbers is a recursively enumerable set. Given assemblies A 1, A2, A3, etc, one can form the
concatenation A 1A2A3 . . .. If each assembly is a signi�cant word, there is a unique way to
recover Ai from the concatenation, hence from the Gödel number of the concatenation.

A demonstrative text for Bourbaki is a sequence of assemblies A 1A2 . . .An , that contains
a proof , which is a sub-sequence A 0

1A0
2 . . .A0

m of relations, where each A 0
i can be shown to be

true by application of a basic derivation rule that uses only A 0
j for j Ç i . Each A0

i is a theorem.

We shall use a variant: a proof-pair is a sequence of relations A 0
1A0

2 . . .A0
m satisfying the same

conditions as above, and a theorem is the last relation A 0
m in a proof-pair. If our basic rules

are simple enough, the property of a number g to be the Gödel number of a proof-pair is
primitive recursive. From this, one can deduce the existence of a true statement that has no
proof (this is Gödel's Theorem).

An assembly A containing links is analyzed by using antecedents, which are assemblies
of the form ¿x (R) (where x is some variable) that are identical to A if x is substituted in R
and links are added. The algorithm for deciding that an assembly with links is a term or a
relation is rather complicated. Bourbaki gives three examples of assemblies with links; the
antecedent of the �rst one is ¿x (x 2 y) (there is a single link); the antecedent of the second one
is ¿x (x 2 A0 Æ) x 2 A00) (there are two links); the third one is the empty set, see picture below.
One can replace these links by the De Bruijn indices, so that the empty set would become
¿::: 2 ¿:: 2 121. This has two drawbacks: the �rst one is that 121 could be understood
as one integer or a sequence of three integers, the second is that this notation assumes that
integers are already de�ned. The remedy to the �rst problem would be to insert a separator
(for instance a square) and a remedy to the second would be to use a base-one representation
of integers; the empty set would be ¿::: 2 ¿:: 2 ä ¡ ä ¡ ¡ä¡ . The scope of the second ¿
is the scope of its operator, thus :: 2 ää . This means that the two squares are in the scope
of both ¿, are are linked to the second and �rst ¿ respectively. The third square is in the
scope of the �rst ¿ only, hence is linked to the �rst ¿. Formal mathematics in Bourbaki is so
complicated that the ä symbol is, in reality, never used.

Inria
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Denote by ( Bjx) A the assembly obtained by replacing x, wherever it occurs in A, by the as-
sembly B. Bourbaki has some criteria of substitutions, CS1, CS2, etc, that are rules about sub-
stitutions. For instance CS3 says that ¿x(A) and ¿x0(A0) are identical if A0 is (x0jx) A provided
that x0 does not appear in A (informally: since x does not appear in ¿x (A), the name of the
variable x is irrelevant). Formative criteria CF1, CF2, etc., give rules about well-formedness
of assemblies. For instance CF8 says that (T jx) A is a term or a relation whenever A is a term
or a relation, T is a term, x is a letter.

Abbreviations are allowed, so that _: can be replaced by Æ) , and : 2 can be replaced
by 62. Abbreviations may take arguments, for instance ^ AB is the same as : _ : A: B. A term
may appear more than once, for instance () AB is the same as^ Æ) AB Æ) BA, and after
expansion :_:_: AB:_: BA. The logical connectors : , _ and ^ are written ~, \/ , and /\ in
COQ3. Note that in C OQ, A ! B is the type of a function from A to B but also means A Æ) B.
There is no limit on the number of abbreviations (Bourbaki invented ; as a variant of Ø).
Unicode provides a lot of symbols, but few of them are available in L ATEX or in Web browsers.

Starting with Section 2, Bourbaki switches to in�x notation. For instance, whenever A
and B are relations so is _:: _ : A: BA, by virtue of CF5 and CF9. Using abbreviations, this
relation can be written as Æ) ^ ABA. The in�x version is ( A and B) Æ) A. In order to remove
ambiguities, parentheses are required, but Bourbaki says: “Sometimes we shall leave out the
brackets” [2, p. 24], in the example above three pairs of brackets are left out. In some cases
Bourbaki writes A [ B [ C. This can be interpreted as (A [ B) [ C or A [ (B [ C). These are
two distinct objects that happen to be equal: formally, the relation (A [ B) [ C ÆA[ (B [ C)
is true. Similarly A _ B_ C is ambiguous, but it happens, according to C24, that (A _ B) _ C
and A _ (B _ C) are equivalent (formally: related by () ). In C OQ, we use union2 as pre�x
notation for [ , so we must chose between [ ([ AB)C or [ A([ BC). Function calls are left-
associative, and brackets are required where indicated. We use \/ or \cup as in�x notation
for _ or [ , parentheses may be omitted, the operator is right associative.

Theorems and proofs. Each relation can be true or false. To say that P is false is the same
as to say that : P is true. To say that P is either true or false is to say that P _ : P is true.
A relation is true by assumption or deduction. A relation can be both true and false, case
where the current theory is called contradictory (and useless, since every property is then
true). There may be relations P for which it is impossible to deduce that P is true and it is also
impossible to deduce that P is false (Gödel's theorem). A property can be independent of the
assumptions. This means that it is impossible to deduce P or : P; in other words, adding P
or : P does not make the theory contradictory. An example is the axiom of foundation (see
below), or the continuum hypothesis (every uncountable set contains a subset which has the
power of the continuum).

Some relations are true by assumption; these are called axioms. An axiom scheme is a
rule that produces axioms. The list of axioms and schemes used by Bourbaki are given at the
end of the document. A true relation is called a Theorem (or Proposition, Lemma, Remark,
etc). A conjecture is a relation believed to be true, for which no proof is currently found. As
said above, in Bourbaki, a theorem is a relation with a proof, which consists of a sequence of
true statements, the theorem is one of them, and each statement R in the sequence is either

3We originally used & instead of ^ , since it is easier to type; but this forbids using some other notations
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an axiom, follows by applications of rules (the axiom schemes) to previous statements, or
there are two previous statements S and T before R, where T has the form S Æ) R.

It is very easy for a computer to check that an annotated proof is correct (provided that we
use a parsable syntax); but a formal proof is in general huge. Examples of formal proofs can
be found in [4]; the theory used there is simpler than Bourbaki's, but contains arithmetics on
integers. We give here a proof of 1 Å 1 Æ2:

(1) 8a:8b:(a+Sb)=S(a+b) axiom 3
(2) 8b:(S0+Sb)=S(S0+b) speci�cation ( S0for a)
(3) (S0+S0)=S(S0+0) speci�cation ( 0 for b)
(4) 8a:(a+0)=a axiom 2
(5) (S0+0)=S0 speci�cation ( S0for a)
(6) S(S0+0)=SS0 add S
(7) (S0+S0)=SS0 transitivity (lines 3,6)

The proof is formed of the statements in the second column; the annotations of the third
column are not part of the formal proof. The line numbers can be used in the annotations.
In C OQ, the annotations are part of the proof. The principle is: a theorem is a function and
applying the theorem means applying the function. For instance, transitivity of equality is a
function eq_trans ; in line (7) we apply it to two arguments, the statements of lines 3 and 6.
The statement of line 6 is obtained by applying f_equal with argument S to the statement
that precedes (the f_equal theorem states that for every function f and equality a Æb we
have f (a) Æf (b)). In C OQ, a proof is a tree, the advantage is that we do not need to worry
about line numbers.

Bourbaki has over 60 criteria that help proving theorems. The �rst one says: if A and
A Æ) B are theorems, then B is a theorem. This is not a theorem, because it requires the fact
that A and B are relations. On the other hand x Æx is a theorem (the �rst in the book). The
difference is the following: if A and B are letters then A Æ) B is not well-formed. Until the
end of E.II.5, Bourbaki uses a special font as in A Æ) B to emphasize that A and B are to be
replaced by something else.

Criterion C1 works as follows. If R 1,R2, . . . ,Rn and S1,S2, . . . ,Sm are two proofs, if the �rst
one contains A, if the second one contains A Æ) B, then

R1,R2, . . . ,Rn ,S1,S2, . . . ,Sm ,B

is a proof that contains B. Assume that we have two annotated proofs R i and S j , where A is
Rn and A Æ) B is Sm . Each statement has a line number, and we can change these numbers
so that they are all different (this is a kind of ®-conversion). Let N and M be the line numbers
of Rn and Sm . We get an annotated proof by choosing a line number for the last statement,
and annotating it by: detachment N M (this is also known as syllogism, or Modus Ponens).

Criterion C6 says the following: assume P Æ) Q and Q Æ) R. From axiom scheme S4,
we get (Q Æ) R) Æ) ((P Æ) Q) Æ) (P Æ) R)). Applying Criterion C1 gives ( P Æ) Q) Æ)
(P Æ) R). Applying it again gives P Æ) R. If R1,R2, . . . ,Rn and S1,S2, . . . ,Sm are proofs of
P Æ) Q and Q Æ) R then a proof of P Æ) R is

R1,R2, . . . ,Rn ,S1,S2, . . . ,Sm ,R1,R2, . . . ,Rn ,S1,S2, . . . ,Sm ,A4,Dy ,Dy .

Here A4 and D y are to be replaced by the appropriate relation, or in the case of an annotated
proof, by the appropriate annotation (for instance in the case of A 4, we must give the values
of three arguments of the axiom scheme S4, in the case of detachment D y we must give the
position of the arguments of the syllogism in the proof tree).

Inria
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Criterion C8 says A Æ) A. This is a trivial consequence from S2, A Æ) (A_ A) and S1,
(A_ A) Æ) A. This is by de�nition : A_ A, and is called the “Law of Excluded Middle”.

There is a converse to C1. If we can deduce, from the statement that A is true, a proof
of B, then A Æ) B is true. This is called the method of the auxiliary hypothesis . Almost all
theorems we shall prove in C OQ have this form.

Criterion C21 says that _:: _ : A: BA is a theorem, whenever A and B are relations. We
have already seen this assembly and showed that it is a relation. If we could quantify rela-
tions, the criterion could be converted into a theorem that says “( 8 A)(8 B)((A and B) Æ) A)”.

If P and Q are propositions, one can show that :: P ) P, ((P ) Q) ) P) ) P, P_ : P,
: (: P^: Q) ) P_ Q and (P ) Q) ) (: P_ Q) are equivalent. These statements are unprovable
in C OQ. They are true in Bourbaki since the last statement is a tautology. In [4], there is
the Double-Tilde Rule that says that the string ` ~~' can be deleted from any theorem, and
can be inserted into any theorem provided that the resulting string is itself well-formed. We
solve this problem by adding the �rst statement as axiom. Then all theorems of Bourbaki
can be proved in C OQ. There are still two dif�culties: the �rst one concerns the status of ¿
(see below); the second concerns sets. Bourbaki says in the formalistic interpretation of what
follows, the word “set” is to be considered as strictly synonymous with “term” [2, p. 65]. Recall
that there are only two kinds of valid assemblies, namely terms and relations. We shall see
below how to implement sets in C OQ.

In C OQ, we can quantify everything so that criterion C21 becomes a conjunction of two
theorems ( proj1 and proj2 in the C OQ library); the �rst of them can be proved as follows.

Lemma example: forall A B, A /\ B -> A. intros. induction H. exact H. Qed.

There are three steps in the proof. We start with a single task without assumption: ` 8 A,B,
A^ B Æ) A, then introduce some names and assumptions in order to get A,B,A ^ B ` A,
then destruct the logical connector: A,B,H A,HB ` A. This is a trivial task since H A asserts the
conclusion A. The last step could have been trivial , since Coq is able to �nd the assump-
tion H A. In the second step, we could use destruct , case or elim (the COQ library uses
destruct ).

Printing the theorem yields

example =
fun (A B : Prop) (H : A /\ B) => and_ind (fun (H0 : A) (_ : B) => H0) H

: forall A B : Prop, A /\ B -> A
Arguments A, B are implicit
Argument scopes are [type_scope type_scope _]

This tells you that the arguments A and B are implicit (since they can be deduced from the
third argument H), and gives information about the scope used by notations. The theorem
has he form “name = proof : value”. The last line is the value of the theorem. The second line
is the proof. The proof could also be

fun A B : Prop => [eta and_ind (fun (H0 : A) (_ : B) => H0)]

Here `[eta f] ' is a notation for ` fun x => f x ' so that ` [eta f z ] ' is a notation for ` fun
x => f z x '. Note that the notations hide the argument H and its type. In the case A ^ B Æ)
B you would see:

fun A B : Prop => [eta and_ind (fun _ : A => id)]
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As you can see, this is not just a sequence of statements with their justi�cation, but function
calls. It applies and_ind to f2 and H where f2 is a function of two arguments that returns the
�rst one, and ignores the second (the proof of B). In the case of A ^ B Æ) B, you see a function
f 0
2 of two arguments that ignores the �rst argument, so that f 0

2(x) is the identity function (with
argument of type B, x being of type A and ignored). We show here the function:

and_ind =
fun A B P : Prop => and_rect (A:=A) (B:=B) (P:=P)

: forall A B P : Prop, (A -> B -> P) -> A /\ B -> P
Arguments A, B, P are implicit

Here and_rect is a function with �ve arguments, two propositions A and B, a type P, a func-
tion f : A ! B ! P and an object c of type A ^ B. It deduces two objects a and b of type A
and B, and applies f to it, yielding an object of type P. The �rst three arguments are implicit.
Now, and_ind is the same as and_rect (except for the type of P). This is a function that re-
turns an object of type P, given f and c. Note that the arguments of and_rect must be given
explicitly (they could be deduced from f , but f is not an argument). Assume that f returns
its �rst (resp. second) argument and P is the type of this argument. We get: if there is an
object of type A ^ B, there is an object of type P.

You could also use destruct or case. In this case you see

fun (A B : Prop) (H : A /\ B) => match H with | conj H0 _ => H0 end

This has to be understood as follows. The object H is of type and, and we perform a case
analysis on its constructors. There is only one, conj , that takes two arguments, says H 0 and
H1. The function returns H 0 (in this case, induction is the same as case analysis).

In SSREFLECT, you can say

Lemma example A B: A /\ B -> A. Proof. by case. Qed.

This yields the following proof

fun (A B : Prop) (_top_assumption_ : A /\ B) =>
(fun _evar_0_ : forall (a : A) (b : B), (fun _ : A /\ B => A) (conj a b) =>
match _top_assumption_ as a return ((fun _ : A /\ B => A) a) with
| conj x x0 => _evar_0_ x x0
end) (fun (a : A) (_ : B) => a)

Let's write H and z for the two variables introduced by SSREFLECT, and let f be the third fun .
This function returns A given any argument of type A ^ B. This function is called twice. In the
�rst case, the argument is ` conj a b ', where a and b are of type A and B, so that the argument
has the right type. In the second case, its argument is a, where a is bound to H, so has the
correct type. This means that we can replace f (x) by A in both cases. Now, the argument of
the second fun has type 8 a : A,8 b : B,A, this is the type of f2. Lines 3 and 4 become: “match
H as c return T with C end”, where T is A. Note that H has a single constructor; assume that
its arguments are u and v. We apply f2 and coerce this to type T; the coercion is trivial.

We show here the proof tree of the third variant of union2_or .

union2_or =
fun x y a : Set =>
eq_ind_r
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(fun _pattern_value_ : Prop => _pattern_value_ -> inc a x \/ inc a y)
(fun _top_assumption_ : exists y0 : Set, inc a y0 & inc y0 (doubleton x y) =>
match _top_assumption_ with
| ex_intro t (conj aat td) =>

match doubleton_or td with
| or_introl _top_assumption_1 =>

eq_ind t
(fun _pattern_value_ : Set => inc a _pattern_value_ \/ inc a y)
(or_introl (inc a y) aat) x _top_assumption_1

| or_intror _top_assumption_1 =>
eq_ind t

(fun _pattern_value_ : Set => inc a x \/ inc a _pattern_value_)
(or_intror (inc a x) aat) y _top_assumption_1

end
end) (union_rw a (doubleton x y))

: forall x y a : Set, inc a (union2 x y) -> inc a x \/ inc a y

The current version is bit longer; we show here only a part of it. You can see the two iffLR
and the exists2 .

setU2_hi =
fun (x y a : Set) (_top_assumption_ : inc a (x \cup y)) =>
(fun

_evar_0_ : forall (x0 : Set) (p : [eta inc a] x0)
(q : (inc^~ (doubleton x y)) x0),

(fun _ : exists2 z : Set, inc a z & inc z (doubleton x y) =>
inc a x \/ inc a y)
(ex_intro2 [eta inc a] (inc^~ (doubleton x y)) x0 p q) =>

match
iffLR (setU_P (doubleton x y) a) _top_assumption_ as e
return

((fun _ : exists2 z : Set, inc a z & inc z (doubleton x y) =>
inc a x \/ inc a y) e)

with
| ex_intro2 x0 x1 x2 => _evar_0_ x0 x1 x2
end)

...
(iffLR (set2_P t x y) _top_assumption_0))

Quanti�ed theories. As mentioned above, Bourbaki de�nes ¿x (R) as the construction ob-
tained by replacing all x in R by ä , adding ¿ in front, and drawing a line between ¿ and this
square. An example is ¿::: 2 ¿:: 2 äää . It corresponds to ¿x (::: 2 ¿y(:: 2 yx)x). The
positions of the parentheses is �xed by the structure, but not the names (without the links
the expression is ambiguous). If we admit that the double negation of P is P and use in�x
notation, the previous term is equivalent to ¿x (¿y(y 2 x) 62x). This is the empty set.

Denote by (T jx) R the expression R where all free occurrences of the letter x have been
replaced by the term T. Paragraph 2.4.1 of [1] explains that this is a natural operation in C OQ;
the right amount of ®-conversions are done so that free occurrences of variables in T are
still free in all copies of T. For instance, if R is ( 9z)(z Æx), if we replace x by z, the result
becomes (9w )(w Æz). These conversions are not needed in Bourbaki: there is no x in ¿x (R)
and no z in ( 9z)(z Æx). Of course, if we want to simplify ( zjx) (9z)(z Æx), we can replace it by
(zjx) (9w )(w Æx) (thanks to rule CS8) then by ( 9w )((zjx) (w Æx)) (thanks to rule CS9), then
simplify as ( 9w )(w Æz).
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Bourbaki de�nes ( 8 x)R as “not (( 9x) not R)”, whereas `forall x:T, R ' is a COQ prim-
itive, whose meaning is (generally) obvious; instead of T, any type can be given, it may be
omitted if it is deducible via type inference. The expression ( 8 T x)R is de�ned in Bourbaki,
similar to the C OQ expression, but not used later on; we shall not use it here. The dual ex-
pression `exists x:A, R ' is equivalent in C OQ to `ex(fun x:A=>R) '. Note that the syntax
rules allow ` forall x y, P x y ' or `exists x y, P x y '. There is a similar construction
{̀x:A | P} '. These are de�ned by

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> exists x, P x

Inductive sig (A : Type) (P : A -> Prop) : Type :=
exist : forall x : A, P x -> {x | P x}

If y is of type `{x:A | P} ', then there is x of type A satisfying P; it is ` sval y '. If y is of type
`exists x, P ', then there is an x satisfying P, and it can be used in proof; however, there is
no function y ! x. This can be restated as: if f : A ! B is a surjective function, for any y : B
there is x : A such that f (x) Æy, but there is no function g such that f (g(y)) Æy; a form of the
axiom of choice is needed.

Bourbaki de�nes ( 9x)R as (¿x(R)jx)R. Write y instead of ¿x(R). Our expression is ( yjx)R.
It does not contain the variable x, since x is not in y. If (9x)R is true, then R is true for at least
one object, namely y. This object is explicit: we do not need to introduce a speci�c axiom of
choice. Axiom scheme S5 states the converse: if for some T, (T jx)R is true, then ( 9x)R is true.

Let's give an example of a non-trivial rule. As noted in [4], it is possible to show, for each
integer n , that 0 Å n Æn (where addition is de�ned by n Å 0 Æn and n Å Sm ÆS(n Å m)), but
it is impossible to prove 8 n,0Å n Æn. The following induction principle is thus introduced:
“Suppose u is a variable, and X{u} is a well-formed formula in which u occurs free. If both
8 u : hX{u} ¾X{Su/ u}i and X{0/ u} are theorems, then 8 u : X{u} is also a theorem.”

Criterion C61 [2, p. 168] is the following: Let R änäbe a relation in a theory T (where n is
not a constant of T ). Suppose that the relation

Rä0äand (8 n)((n is an integer and R änä) Æ) Rän Å 1ä)

is a theorem of T . Under these conditions the relation

(8 n)((n is an integer) Æ) Ränä)

is a theorem of T .

The syntax is different, but the meaning is the same. This criterion is a consequence of the
fact that a non-empty set of integers is well-ordered. In C OQ a consequence of the de�nition
of integers is the following induction principle (which follows trivially from the fact that one
can de�ne recursive functions):

nat_ind: forall P : nat -> Prop,
P 0 -> (forall n : nat, P n -> P n.+1) -> forall n : nat, P n

Equality. In Bourbaki, equality is de�ned by the two axioms schemes S6 and S7, as well as
axiom A1 (see section 8.1 for details). The �rst scheme says that if P is a property depending
on a variable z, if x Æy, then P(x) and P(y) are equivalent. The second scheme says that if Q
and R are two properties depending on a variable z, if Q(z) and R(z) are equivalent for all z,
then ¿z(Q) Æ¿z(R). The axiom says that if x 2 A is equivalent to x 2 B then A ÆB (the converse
being true by S6).
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Let R(z) be a relation. If R( x) and R(y) implies x Æy, then R is said single-valued. If
moreover there exists x such that R( x) is true, then R is said functional . In this case R(x)
is equivalent to x Æ¿z(R). Proof. The relation ( 9z)R is the same as R(¿z(R)). Since this is
true, R(x) implies x Æ¿z(R), since R is single-valued. Conversely, if x Æ¿z(R) then R(x) is
equivalent to R( ¿z(R)) which is true.

Let Q(z) and R(z) be two functional relations, x and y denote ¿z(Q), and ¿z(R) respec-
tively. By S7, if, for all z, Q(z) and R(z) are equivalent then x Æy, and in this case, the converse
is true (if for some z, Q(z) is true, we have z Æx, thus z Æ¿z(R) and R(z) is true). Example.
If y È 0 is an integer, there exists a unique x such that y Æx Å 1. Denote by p(y) the quantity
¿x (y ÆxÅ1). We have then the conclusion: y ÆxÅ1 if and only if x Æp(y). Thus p(y1) Æp(y2)
if and only if y1 Æy2. From now on, we can forget that p is de�ned via ¿ and equality is de-
�ned by S7.

Let Q(x) and R(x) be two relations, and P( z) the following relation ( 8 x)(x 2 z () Q(x)).
It is single-valued by the axiom of extent. Assume that it is functional 4; applying ¿z to it gives
a set denoted by { x,Q(x)}; assume that R shares the same property. The previous argument
says {x,Q(x)} Æ{x,R(x)} if and only if ( 8 x)(Q(x) () R(x)). For instance { a,b} Æ{b,a}. More-
over {a} Æ{b} is equivalent to a Æb.

Consider now an equivalence relation P( x, y): we assume that P(x, y) implies P( y,x), and
that P(x, y) and P(y,z) imply P( x,z). Let x be ¿z(P(a,z)), and y be ¿z(P(b,z)). We have that
P(a,z) () P(b,z) is equivalent to P( a,b), so that S7 says that P(a,b) implies x Æy. Con-
versely, assume a and b in the domain of P; this means that for some z, P(a,z) is true, it
implies that P( a,x) is true; we also assume P(b, y) true. Then from S6 we get: if x Æy then
P(a, y) is true, thus P( a,b). Thus: x Æy if and only if P( a,b) is true. Example: Let P be the
property that a Æ(®,¯ ) and b Æ(®0, ¯ 0) are pairs of integers such that ®Å ¯ 0 Æ®0Å ¯ . This
is an equivalence relation, and the domain is the set of pairs of integers. De�ne ¯ ¡ ® as
¿zP((®,¯ ), z). If ®and ¯ are integers, this is a pair of integers and ¯ ¡ ®Æ¯ 0¡ ®0 if and only if
®Å ¯ 0Æ®0Å ¯ . We can from now on forget that this quantity is de�ned via ¿.

Consider an equivalence relation whose domain is a set E. Let C( a) be the equivalence
class of a, namely the set of all z 2 E such that P(a,z) is true. Then P( a,z) is equivalent
to z 2 C(a), and x Æ¿z(z 2 C(a)). Denote by r (X) the quantity ¿z(z 2 X), so that x Ær (C(a)).
Now, P(a,b) implies C( a) ÆC(b) thus x Æy and scheme S7 is not required. Conversely, if a 2 E
and x Ær (C(a)) then x 2 C(a) and P(a,x). It follows, as before, that if b 2 E and y Ær (C(b))
and x Æy then P(a,b) is true. The quantity r (X) will be called the representative of the set X;
it satis�es r (X) 2 X whenever X is non-empty. Whenever possible we shall use r rather than
¿. There are two exceptions: for de�ning cardinals and ordinals (equivalence classes are not
sets). Our current implementation of cardinals and ordinals differs from that of Bourbaki
(see second part of this report), and this use of ¿ is not needed any more.

Finally, we may have ¿z(Q) Æ¿z(R) even when Q and R are non-equivalent. For instance
consider two distinct elements a, b, the three sets {x}, {y} and {x, y}, denoted by X, Y and Z.
The quantities r (X), r (Y) and r (Z) take the values a and b, thus cannot be distinct. We have
r (X) Æa and r (Y) Æb. Thus one of r (X) Ær (Z) and r (Y) Ær (Z) must be true, but which one is
undecidable.

In our framework, few objects are de�ned via ¿, and Axiom Scheme S7 is rarely used. For
instance {1 Å 1} Æ{2} is a trivial consequence of 1 Å 1 Æ2, and Criterion C44. Let's prove this
criterion and the �rst three theorems of Bourbaki.

Theorem 1 is x Æx. Bourbaki uses an auxiliary theory in which x is not a constant, so that

4For instance, if Q is x 62x then P is not functional
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(8 x)(R () R) is true, whatever the relation R. Note that x is a letter, thus a term, and it could
denote the set of real numbers R, case where quanti�cation over x makes no sense, while R
is just a notation. Scheme S7 gives ¿x (R) Æ¿x (R). This can be rewritten as ( ¿xRjx)(x Æx).
Let S denote x Æx and R denote : S. By de�nition of the universal quanti�er, the previous
relation is :: (8 x)(S), from which follows ( 8 x)(x Æx). It follows that, whatever x (even if x is
a constant) we have x Æx.

Theorem 2 says (x Æy) () (y Æx). Let's show one implication. Assume x Æy. We apply
S6 to y Æx, considered as a function of y. It says x Æx () y Æx, the conclusion follows by
Theorem 1.

Theorem 3 says (x Æy ^ y Æz) Æ) x Æz. The same argument as above says that if x Æy,
then x Æz () y Æz, making the theorem obvious.

The same argument shows that if T ÆU , and if V is a term (depending on a parameter z),
then VäTäÆVäU ä. This is Criterion C44, and is known in C OQ as eq_ind , while Scheme S6
is eq_rec . Theorem 1 is the de�nition eq_refl , other theorems are eq_symand eq_trans 5

There is no equivalent of Scheme S7 in C OQ. The Leibniz equality says that two objects
x and y are equal iff every property which is true of x is also true of y. We shall later on
de�ne special terms called sets. They satisfy x Æy if x ½ y and y ½ x. This makes equality
weaker. In fact, if x 6Æy, the middle excluded law implies that there exists some a such that
either a 2 x and not a 2 y or a 2 y and not a 2 x. Thus, assuming that 0 and 1 are sets, one
of the following statements is true: there exists a such that a 2 1 and a 620, or there exists b
such that b 2 0 and b 621, or 0 Æ1 (with the Bourbaki de�nition of integers as cardinals, the
�rst assumption is true, but nothing can be said of a). In Bourbaki all terms are sets. In our
work, we shall consider objects that are not sets. For instance, neither 1 nor 2 (considered as
natural numbers) are sets. The relations 1 Å 1 Æ2 and 1 6Æ2 are the consequence of the fact
that these objects have the same (or different) normal forms (modulo ®-conversion).

Carlos Simpson introduced an axiom that says that two propositions are equal if they are
equivalent. This is not possible in Bourbaki (since equality applies only to sets). Assume that
we have shown a theorem H that says P () Q. Let e be the equality P ÆQ; thanks to the
axiom, the equality is true, and we case rewrite it. In fact we can rewrite H as well (thanks to
the setoid rewrite rules). Better yet, we can use the constructions move/Hand apply/H . This
explains why the axiom has been removed in Version 5.

One can add an axiom that says if f and g are two functions, of type A ! B, and if f (x) Æ
g(x) whenever x is of type A, then f Æg. A stronger form is the following, introduced by
Carlos Simpson, but not used anymore

(*
Axiom prod_extensionality :

forall (x : Type) (y : x -> Type) (u v : forall a : x, y a),
(forall a : x, u a = v a) -> u = v.

Axiom proof_irrelevance : forall (P : Prop) (q p : P), p = q.
*)

We are sometimes faced to the following problem: given a proposition P, two sets a and b,
we want to select a if P is true, and b otherwise. Bourbaki uses ¿x ((x Æa ^ P) or (x Æb ^: P)).
Assume that can �nd two functions A( p) and B(q) whose values are a and b, whenever p is
a proof of P and q a proof of : P. Consider the relation R: for any p and q as above, we have

5These lemmas have alternate names, and SSREFLECTrede�nes them, and provides alternatives erefl , esym
and etrans .
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y ÆA(p) and y ÆB(q), and let's apply ¿y . If P is true, it has proof a p and y ÆA(p) Æa; if P
is false, then : P is true and has a proof q so that y ÆB(q) Æb. The trick is the following; the
expression ¿y(R) is in general unde�ned, since there are undecidable propositions (there are
also true propositions without proofs). However, we consider ¿y(R) only in the case where
we know a proof of P or a proof of : P. The proof irrelevance axiom says that if p and p0

are two proofs of P, then p Æp0, which implies A( p) ÆA(p0), and makes some proofs easier.
Example. Let I be a non-empty set, X i a family of set indexed by i 2 X; we may de�ne the
intersection by { y 2 Xi ,8 j 2 I, y 2 X j }. This de�nition depends on i , assumed to satisfy i 2 I; it
exists because I is non-empty. Assume now that we have two proofs that I is non-empty; this
give two possible indices i , and we must show that our de�nition is independent of i (which
is obvious here).

In C OQ, there is a data type bool that contains two values true and false (say T and F),
and it is easy to de�ne a function whose value is a if P ÆT and b otherwise (if P ÆF). Thus one
can say one can say (if 1<=2 then 3 else 4) . (we assume here that we use the ssrnat
library where · is of type bool rather than Prop). We do not use the bool datatype, thus
cannot use the if-then-else construction.

1.6 The theory of sets

According to Bourbaki, “the theory of setsis a theory which contains the relational sings Æ,
2 (of weight 2); in addition to the schemes S1 to S7 given in Chapter I, it contains the Scheme
S8, and the explicit axioms A1, A2, A4, and A5. These explicit axioms contain no letters; in
other words, the theory of sets is a theory without constants . Since the theory of sets is an
equalitarian theory, the results of Chapter I are applicable.”

The English version[2] is a bit different: there is a substanti�c sign ¾, of weight 2, and
an axiom A3 that governs its use. If we write ( x, y) instead of ¾ xy, then for any sets x and
y, the assembly (x, y) is well-formed and is a set. It is called an ordered pair; in the French
version [3], a pair is de�ned in terms of symbols, and the axiom is replaced by a theorem (see
discussion below, 2.9).

The last axiom of Bourbaki states that there exists an in�nite set. It is equivalent to the
existence of the set of natural numbers and will be discussed in the second part of this report.
The other axioms, as well as axiom scheme S8, use the symbols 2, ½ or Coll xR, that are not
de�ned in C OQ. The notation x ½y is a short-hand for:

(8 z)((z 2 x) Æ) (z 2 y)).

If x are y are two distinct letters, and R a relation that does not depend on y, the relation

(9y)(8 x)((x 2 y) () R)

is denoted by Coll xR, and read as: the relation R is collectivizing in x. The �rst axiom (axiom
of extent) in Bourbaki says:

(8 x)(8 y)((x ½y) and ( y ½x)) Æ) (x Æy).

We can restate it as: if x and y are two sets, then x Æy if and only if z 2 x is equivalent to z 2 y.
As a consequence, if R(x) is collectivizing in x, there exists a unique set y such that x 2 y if
and only if R( x) is true. It is denoted by { x,R(x)}, or {x j R(x)} or Ex (R(x)).

Some relations are not collectivizing, for instance x 62x. In fact, if we assume that this is
equivalent to x 2 y, replacing x by y gives: y 62y is equivalent to y 2 y, which is absurd. Almost
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all sets de�ned by Bourbaki are obtained by application of Axiom A2 (the relation “ x Æa or
x Æb” is collectivizing), Axiom A4 (the relation x ½y is collectivizing) or Scheme S8 (Scheme
of Selection and Union); a notable exception is the set of integers, for which a special axiom
is required. Scheme S8 is a bit complicated. In [5], it is replaced by the axiom

(8 x)(9y)(8 z)(z 2 y) () ((9t )(t 2 x and z 2 t ))

that asserts the existence of the union of sets, and the following scheme (Scheme of Replace-
ment):

If E is a relation that depends on x, y, a1, . . . ,ak , then for all x1, x2, ..., xk , if
we denote by R(x, y) the relation E( x, y,x1, . . .xn ), the assumption ( 8 x)(8 y)(8 y0)
R(x, y) ÆR(x, y0) Æ) y Æy0implies that, for all t , the relation ( 9u)(u 2 t and R(u,v))
is collectivizing in v.

The conclusion is the same as in S8. This scheme is more powerful than S8; for instance, it
implies the axiom of the set of two elements A2. In fact we can deduce the existence of the
empty set ; from this scheme (or from S8). Applying A4 to the empty set asserts the existence
of a set that has a single element which is ; , applying A4 again asserts the existence of a set
t with two elements ; and {; }. If a and b are any elements, and R(u,v) is “ u Æ ; and v Æa
or u Æ{; } and v Æb”, we get as conclusion: there exists a set formed solely of a and b. The
assumption is clear: for �xed u, there is a unique v such that R(u,v). Question: can we apply
S8 to this case? the answer is yes, provided that there exists a set Xa such that a 2 Xa and a set
Xb such that b 2 Xb . Such sets exist by virtue of Axiom A2. Hence A2 is required in Bourbaki,
a conclusion of other axioms in [5]. The rules introduced below are closer to a Scheme of
Replacement than to a Scheme of Selection and Union.

In the previous section, we have given a proof with seven lines that says 1 Å 1 Æ2. The
analogue proof is trivial in C OQ (both objects have the same normal form SSO). We have also
seen that the induction principle for integers in Bourbaki is the same as that of integers in
COQ; as a consequence, if we can identify the C OQintegers with the integers of Bourbaki,
then a lot of theorems will become trivial (i.e., are already proved by someone else). For this
reason, all types, such as nat , will be a set. In the framework of C. Simpson, one can show
that False is the empty set and True is {; }. In our framework, a set is any type whose sort is
Set. Thus nat will be a set, but neither False nor True (whose sort is Prop).

Let N be the set of integers (i.e., the type nat ) and N2 the set of even integers, de�ned as
follows

Definition even n := ~odd n.
Lemma ed (n:nat): even(n.*2).
Lemma de n: even n -> n = (n./2).*2.

Definition N2 := { z : nat | even z}.
Definition to_N2 n := (exist (fun z => even z) n.*2 (@ed n)).
Lemma N2_a (z:N2): exists u, sval z = u.*2.
Lemma N2_b (z:nat): sval (to_N2 z) = z.*2.

We have already explained that an object y of type N2 is the combination of an integer z
(namely `sval y ') and a proof that z is even. On the other hand, for any integer n , t̀o_N2
n' has type N2; its value is the double of n . We say that N2 is a subtype of N and write this
as N2 ½ N; this should be understood as: the function sval is an injection N2 ! N. The
Bourbaki interpretation will be: for all x, x 2 N2 Æ) x 2 N, where x 2 N should be the same
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as x is an integer, or, x has type nat . However, if x is of type N2, it is not a set (according to
our de�nitions) and it is of course not of type N. For this reason, we interpret x 2 y as: there
is x0 of type y, such that x ÆR y(x0), for some injective mapping R y . In this case, N2 ½ N
is a consequence of R N2(y) ÆR N(val (y)). One could postulate that R a(y) ÆR b(val (y)),
whenever a is a sigma-type based on b; but this is not really needed. Without this postulate,
the statement N2 ½ N might be wrong; but this causes no trouble: according to Bourbaki,
there is a unique set N 2 such that x 2 N2 if and only if n is an even integer, and we have
N2 ½ N. There is no reason why this should be equal (as a C OQ object) to N2. One could
postulate, as did Simpson, that R N(n ) is the n-th von Neumann ordinal; this would imply
that R 2 is Prop.

Notes. A reference of the form E.II.4.2 refers to [2], Theory of Sets, Chapter 2, section 4,
subsection 2 (properties of union and intersection).

The document gives no proofs, except for the exercises. In order to show how dif�cult
some theorems are, the numbers of lines of the proof is sometimes indicated in a comment.

Some statistics: there are 171 lemmas in jset, 98 in jfunc, 424 in set2 (correspondences),
364 in set3 and set31 (union; intersection, products) and 257 in set4 (equivalence relations).

In version 2, �les jset and jfunc have been merged into set1, �les set3 and set31 have also
been merged. The number of theorems in these four �les is now 279, 431, 375 and 257.

In Version 3, many trivial theorems have been removed, so that these numbers are re-
spectively 202, 397, 338 and 242.

In Version 4, these numbers are respectively 241, 406, 322 and 241.

In Version 5, these numbers are respectively 221, 408, 318 and 241.

In Version 6, these numbers are respectively 326, 431, 297 and 227.
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Chapter 2

Sets

This chapter describes the content of the �le sset1.v, that is an adaptation of the work of
C. Simpson. It is formed of several modules, that will be commented one after the other. It
implements the basis of the theory of sets; this is a logical theory (as described in the previous
chapter) that contains a speci�c sign 2 and some rules about its usage; we must de�ne the
COQ equivalent inc and the associated rules.

2.1 Module Axioms

De�nitions. In our code, the term property denotes the type Set! Prop. For instance,
if P is a property and x a set, then P(x) is a proposition. The term relation denotes the
type Set! Set! Prop. For instance inc and sub are relations. Relations can be re�exive,
symmetric, antisymmetric, transitive (in SSREFLECT, reflexive means 8 x : T, R(x,x), where
R has type T ! T ! bool ). We say that T is a functional term (in short fterm ) if T( x) is a set,
whenever x is a set. In some cases, we assume that T(x, y) is a set, whenever x and y are sets.
The types fterm , fterm2 , property and relation are often inferred by C OQ, but we may
give them explicitly for emphasis.

Let p(x) be a property; if p(x) and p(y) imply x Æy, then p is said single-valued ; we
consider also the case where p is a conjunction, i.e., the case where p(x), p(y), q(x) and q(y)
imply x Æy. If p(x) and p(y) imply f (x) Æf (y), then p is said single-valued modulo f ; we
sometimes say that f is constant on p.

Definition property := Set -> Prop.
Definition relation := Set -> Set -> Prop.
Definition reflexive_r (R: relation) := forall x, R x x.
Definition symmetric_r (R: relation) := forall x y, R x y -> R y x.
Definition transitive_r (R: relation) := forall y x z, R x y -> R y z -> R x z.
Definition antisymmetric_r (R: relation) := forall x y, R x y -> R y x -> x = y.

Definition fterm:= Set -> Set.
Definition fterm2:= Set -> Set -> Set.
Definition singl_val (p: property):=

forall x y, p x -> p y -> x = y.
Definition singl_val2 (p q: property):=

forall x y, p x -> q x -> p y -> q y -> x = y.
Definition singl_val_fp (p: property) (f: fterm) :=

forall x y, p x -> p y -> f x = f y.
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Definition exactly_one (P Q: Prop) := (P \/ Q) /\ ~(P /\ Q).

Some trivial lemmas. Given a conjunction A ^ B, we get A or B via proj1 , or proj2 . We
extend this to three-terms conjunctions. We also restate trivial properties of equivalence.

Lemma proj31 A B C: [/\ A, B & C] -> A.
Lemma proj32 A B C: [/\ A, B & C] -> B.
Lemma proj33 A B C: [/\ A, B & C] -> C.

Lemma iff_sym (P Q: Prop): (P <-> Q) -> (Q <-> P).
Lemma iff_trans (P Q R: Prop): (P <-> Q) -> (Q <-> R) -> (P <-> R).
Lemma iff_neg (P Q: Prop): (P <-> Q) -> ( ~ P <-> ~ Q).

Is element of. We assert existence of a function R such that, for any set x and any y : x,
R x (y) is a set. Moreover, for any set x, the function R x is injective.

Parameter Ro : forall x : Set, x -> Set.
Axiom R_inj : forall (x : Set), injective (@Ro x).

We de�ne ` x 2 y' to be: there is an object a of type y such that R a Æx. Inclusion x ½y is
de�ned as in Bourbaki. These two operations are called inc and sub in our framework. We
also conider x ( y (strict subset).

Definition inc (x y : Set) := exists a : y, Ro a = x.
Definition sub (a b : Set) := forall x : E, inc x a -> inc x b.
Definition ssub (a b : Set) := (sub a b) /\ (a <> b).

Extensionality. The axiom of extent is the same as in Bourbaki: if x ½ y and y ½ x then
x Æy. It could be restated as: ½is antisymmetric.

Axiom extensionality : antisymmetric_r sub.

Let X be a type; if x : X we say that x inhabits X and that X is inhabited . If X is a set, we
saynonemptyinstead of inhabited (in fact, thanks to R , the two properties are equivalent).

CoInductive nonempty (x : Set) : Prop :=
nonempty_intro : forall y : Set, inc y x -> nonempty x.

The axiom of choice. The restricted form of the axiom of choice says that there is a function
c, such that c(y) 2 y, whenever y is a non-empty set. We can generalize it to any predicate
p(x), and any type t .

Assume that t is any type, p of type t ! Prop, and q proves that t is inhabited. We assert
the existence of a function CT such that c ÆCT(p,q) is of type t , and if there exists an object
x of type t such that p(x) is true, then p(c) is true.

Section Choose.
Variable (t : Type).
Implicit Type (p : t -> Prop) (q:inhabited t).

Parameter chooseT : forall p q, t.
Axiom chooseT_pr : forall p q, ex p -> p (chooseT p q).

End Choose.
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Images. The scheme of selection and union is the following: Given a relation R( x, y); as-
sume that for �xed y, we have a set Ey such that R( x, y) implies x 2 Ey . Then, for every Y,
there is a set ZY containing all x for which there is an y 2 Y such that R(x, y). A simple case is
when R is independent of y. Another simple case is when R has the form x Æf (y). It is called
the axiom of replacement . The axiom of the set of two elements (shown later) says that we
can select Ey Æ{f (y)}. As a consequence the image of a set by a function is a set. We de�ne
here a parameter IM, and the corresponding axiom.

Parameter IM : forall x : Set, (x -> Set) -> Set.

Axiom IM_P : forall (x : Set) (f : x -> Set) (y : Set),
inc y (IM f) <-> exists a : x, f a = y.

Double negation axiom. The excluded middle axiom says that P or its negation is true. This
is equivalent to say that the double negation of P implies P.

Axiom p_or_not_p: forall P:Prop, P \/ ~ P.

Lemma equal_or_not (x y:Set): x = y \/ x <> y.
Lemma inc_or_not (x y:Set): inc x y \/ ~ (inc x y).
Lemma excluded_middle (p:Prop): ~ ~ p -> p.

2.2 Module constructions

These lemmas say that x ½x, and if x ½ y and y ½z, then x ½z; if one ½is replaced by (
in the assumption, then the same holds in the conclusion.

Lemma sub_refl x: reflexive_r sub.
Lemma sub_trans b: transitive_r sub.
Lemma ssub_trans1 b a c: ssub a b -> sub b c -> ssub a c.
Lemma ssub_trans2 b a c: sub a b -> ssub b c -> ssub a c.

Empty sets. We say that a set is empty if it has no element; by extensionality, x is empty if
and only if it is equal to ; . Bourbaki proves existence of ; by considering the complement of
x in itself. In C OQ, the situation is simpler: we de�ne ; as a type without constructor, hence
there is no a 2 x, since there is no b : x.

Definition empty (x : Set) := forall y : Set, ~ inc y x.
CoInductive emptyset : Set :=.

By excluded middle, a set is empty or nonempty. We deduce that non-empty is the same
as not empty.

Lemma R_inc (x : Set) (a : x): inc (Ro a) x.

Lemma in_set_0 x: ~ inc x emptyset.
Lemma set0_P x: empty x <-> x = emptyset.
Lemma not_nonempty_empty: ~(nonempty emptyset).
Lemma emptyset_dichot x: x = emptyset \/ nonempty x.
Lemma nonemptyP x: nonempty x <-> (x <> emptyset).

Lemma sub_0set x: sub emptyset x.
Lemma sub_set0 x: sub x emptyset <-> (x = emptyset).
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An inverse for R . We de�ne a function B that takes 3 arguments, x, y and H, two sets and a
proof of x 2 y. The �rst two arguments are implicit: they are deduced from the type of H. We
shall sometimes write B (H : x 2 y). The function uses the axiom of choice CT(p,q) to select
an object a of type y such that p(a), namely R a Æx. Assumption H says that such an object
exists, and as a consequence it implies q, a proof that the type y is inhabited. Thus p(B ) is
true, i.e.,

R (B (H : x 2 y)) Æx.

If we replace x by R z, we get R (B (H)) ÆR z, hence, by injectivity

B (H : R z 2 y) Æz.

Definition Bo (x y : Set) (hyp : inc x y) :=
chooseT (fun a : y => Ro a = x)

(match hyp with | ex_intro w _ => inhabits w end)

Lemma B_eq x y (hyp : inc x y): Ro (Bo hyp) = x.
Lemma B_back (x:Set) (y:x) (hyp : inc (Ro y) x): Bo hyp = y.

Axiom of choice for sets. Let p be a property of sets. Since the empty set is a set, we get
a function C (p), such that p(C (p)) is true whenever there is a set x satisfying p. Note that
if p and q are equivalent properties, we do not pretend that C (p) ÆC (q). Thus C (p) is not
equivalent to Bourbaki's ¿.

Definition choose (p: property) := chooseT p (inhabits emptyset).
Lemma choose_pr p: ex p -> p (choose p).

Representatives of nonempty sets. If we apply the axiom of choice to x 2 y we get: there is
a function r (x) such that r (x) 2 x, for every nonempty set x. It will be denoted by rep z .

Definition rep (x : Set) := choose (fun y : Set => inc y x).
Lemma rep_i x: nonempty x -> inc (rep x) x.

Set of elements such that P. In Bourbaki, the “Scheme of selection and union” is the follow-
ing : we have four distinct variables x, y, X and Y, and a relation R that depends on x and y,
but not on X, Y. The assumption is 8 y,9X,8 x,R Æ) x 2 X. The conclusion is that for every Y,
the relation 9y, y 2 Y^ R is collectivizing in x. Said otherwise, for every Y, there is a set Z such
that x 2 Z is equivalent to the existence of y 2 Y such that R. A simple case is when R does not
depend on y. Then, the assumption 8 x,R(x) Æ) x 2 X implies the existence of Z such that
x 2 Z is equivalent to R( x). In particular, if Q( x) is any relation, there is a set Z such that x 2 Z
is equivalent to x 2 Y^ Q(x). Here is the C OQ implementation.

CoInductive Zorec (x : Set) (f : x -> Prop) : Set :=
Zorec_c : forall a: x, f a -> Zorec f.

Definition Zo (x:Set) (p:property) :=
IM (fun (z : Zorec (fun (a : x) => p (Ro a))) => let (a, _) := z in Ro a).

Consider a set X and a function f de�ned on the type X. We shall later on consider the
case where f takes its values in Set. An object is of type ` Zorec X f ' if and only if it is a pair
(a,b) where a is of type X, and b of type f (a) and such a pair is created by Zorec_c. When we
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construct a pair, we have to provide a proof of f (a), and when we destruct the pair, we can
extract the proof.

The construction ` let (a,_) := z in F ' means: replace in F all occurrences of a by
the �rst �eld of the instance z. Using IM, we thus get the set of all a : X satisfying f . If p(x) is
a predicate de�ned for x 2 X, and f (a) Æp(R a), we get the set of all x 2 X satisfying p.

The set is denoted in Bourbaki by Ex (P and x 2 A). In the French version, it is denoted by
{x j P and x 2 A}; Bourbaki notes that this may be abbreviated as { x 2 A j P}.

Lemma Zo_i x (p: property) y: inc y x -> p y -> inc y (Zo x p).
Lemma Zo_hi x (p: property) y: inc y (Zo x p) -> p y.
Lemma Zo_S x (p: property) : sub (Zo x p) x.
Lemma Zo_P x (p: property) y : inc y (Zo x p) <-> (inc y x /\ p y).

We have {x 2 X,p(x)} Æ{x 2 X,q(x)}, whenever p and q are equivalent in X.

Lemma Zo_exten1 (X : Set) (p q: property):
(forall x, inc x X-> (p x <-> q x)) -> Zo X p = Zo X q.

Lemma Zo_exten2 (X Y: Set) (p q: property):
(forall x, (inc x X /\ p x <-> inc x Y /\ q x)) -> Zo X p = Zo Y q.

2.3 Module Little

Given two sets x and y, we construct a set, a doubleton , denoted by { x, y}, satisfying
z 2 {x, y} () z Æx _ z Æy, as the image of bool by the function f that associates x to true,
and y to false. Bourbaki uses Axiom A2 to show existence of such a set.

Definition doubleton (x y : Set) :=
IM (fun z => if z then x else y).

Lemma set2_1 x y: inc x (doubleton x y).
Lemma set2_2 x y: inc y (doubleton x y).
Lemma set2_hi z x y: inc z (doubleton x y) -> z = x \/ z = y.
Lemma set2_P z x y : inc z (doubleton x y) <-> (z = x \/ z = y).

Lemma doubleton_inj x y z w :
doubleton x y = doubleton z w -> (x = z /\ y = w) \/ (x = w /\ y = z).

Lemma set2_ne x y: nonempty (doubleton x y).
Lemma sub_set2 x y z: inc x z -> inc y z -> sub (doubleton x y) z.
Lemma set2_C : commutative doubleton.
Lemma set2_pr a b X:

inc a X -> inc b X ->
(forall z : Set, inc z X -> z = a \/ z = b)
-> X = doubleton a b.

The set `doubleton x x ' is called a singleton and denoted { x}. By construction z 2 {x} ()
z Æx. From this one can deduce that a singleton is nonempty, and we have an extensionality
property.

Definition singleton x := doubleton x x.

Lemma set1_1 x: inc x (singleton x).
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Lemma set1_eq x y: inc y (singleton x) -> y = x.
Lemma set1_inj: injective singleton.
Lemma set1P x y: inc y (singleton x) <-> (y = x).
Lemma set1_sub x X: inc x X -> sub (singleton x) X.
Lemma set1_ne x: nonempty (singleton x).

In the original version, we introduced a set TPwith two elements TPa, TPb. We use here
the elements ; and {; }, renamed as C0and C1and the set will be called C2.

Definition C0 := emptyset.
Definition C1 := singleton C0.
Definition C2 := doubleton C0 C1.

Lemma C1_p1 x: inc x C1 <-> x = C0.
Lemma TP_ne: C0 <> C1.
Lemma TP_ne: C1 <> C0.
Lemma C2_P x: inc C2 <-> (x = C0 \/ x = C1).
Lemma inc_C0_2: inc C0 C2.
Lemma inc_C1_2: inc C1 C2.

We say that x is a small set if a 2 x and b 2 x imply a Æb. It is either empty or has a single
element.

Definition singletonp x := exists u, x = singleton u.
Definition doubletonp x:= exists a b, a <> b /\ x = doubleton a b.

Definition small_set x := singl_val (inc ^~ x).

Lemma set1_pr x X: inc x X -> (forall z, inc z X -> z = x) ->
X = singleton x.

Lemma set1_pr1 x X: nonempty X -> (forall z, inc z X -> z = x) ->
X = singleton x.

Lemma small0: small_set emptyset.
Lemma small1 x: small_set (singleton x).
Lemma singletonP x: singletonp x <-> (nonempty x /\ small_set x).
Lemma small_set_pr x: small_set x -> x = emptyset \/ singletonp x.
Lemma subset1P A x: sub A (singleton x) <-> (A = emptyset \/ A = singleton x).
Lemma sub1setP A x : sub (singleton x) A <-> inc x A.

2.4 Module Image

If f is a mapping, x a set, we denote the image of x by f as f hxi .

Definition fun_image (x : Set) (f : fterm) := IM (fun a : x => f (Ro a)).

Lemma funI_i x f a: inc a x -> inc (f a) (fun_image x f).
Lemma funI_P f x y:

inc y (fun_image x f) <-> exists2 z, inc z x & y = f z.
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2.5 Module Complement

If A and B are two subsets of E, the complement of A (in E) is the set of all x in E that are
not in A; it is denoted by Ā or ÙA, or ÙEA. The set B\ Ā is the set of all x in B that are not in A;
it is called the set difference. It is independent of E, and denoted by B \ A or sometimes B ¡ A.
We shall not distinguish between these two notions.

By excluded middle, if x 2 B and x 62B¡ A, then x 2 A. It follows that if B ¡ A is empty, then
B ½A.

Definition complement (A B : Set) := Zo A (fun x : Set => ~ inc x B).

Lemma setC_P A B x: inc x (A -s B) <-> (inc x A /\ ~ inc x B).
Lemma setC_i x A B: inc x A -> ~ inc x B -> inc x (A -s B).
Lemma nin_setC x A B: inc x A -> ~ inc x (A -s B) -> inc x B.
Lemma empty_setC A B: A -s B = emptyset -> sub A B.
Lemma setC_T A B: sub A B -> A -s B = emptyset.

These lemmas are obvious. If A ½E then E ¡ (E¡ A) ÆA. We have E¡ E Æ ; and E ¡ ; Æ E.
If A ½X and B ½X, then X \ A ½X \B if and only if B ½A.

Lemma sub_setC A B: sub (A -s B) A.
Lemma setC_ne A B: ssub A B -> nonempty (B -s A).
Lemma setC_K A B: sub A B -> B -s (B -s A) = A.
Lemma setC_v A: A -s A = emptyset.
Lemma setC_0 A: A -s emptyset = A.
Lemma set_SC A B C : sub A B -> sub (A -s C) (B -s C).
Lemma set_CS A B C : sub A B -> sub (C -s B) (C -s A).
Lemma set_CSS A B C D : sub A C -> sub D B -> sub (A -s B)(C -s D).
Lemma set_CSm A B X: sub A X -> sub B X ->

(sub A B <-> sub (X -s B) (X -s A)).
Lemma subsetC_P A B E : sub A E -> sub B E ->
( (sub A (E -s B)) <-> (sub B (E -s A))).

Lemma subCset_P A B E:sub A E -> sub B E ->
( (sub (E -s A) B) <-> (sub (E -s B) A)).

We study some properties of X ¡ {a}.

Notation "a -s1 b" := (a -s (singleton b)) (at level 50).

Lemma setC1_P x A b: inc x (A -s1 b) <-> (inc x A /\ x <> b).
Lemma setC1_1 x A: ~ (inc x (A -s1 x)).
Lemma setC1_proper A x : inc x A -> ssub (A -s1 x) A.
Lemma setC1_eq a X: ~(inc a X) -> X -s1 a = X.

2.6 Module Union

Bourbaki de�nes the union
[

¶2I
X¶ of a family of sets. This means that we have a set I and

a mapping ¶7! X¶ de�ned for i 2 I. The union exists as a direct consequence of S8 (Scheme
of Selection and Union). The assumption is ( 8 i )(9Z)(8 x)(i 2 I and x 2 Xi ) Æ) x 2 Z (take
Z ÆXi ). The conclusion is the existence of a set containing all elements satisfying ( 9i )(i 2
I and x 2 Xi ). We use the same construction as in the case of Selection (compare with Zorec).
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Section UnionDef.
Variable (I:Set)(f : I->Set).

CoInductive Uaux : Set :=
Uaux_c : forall a:I, f a -> Uaux.

Definition uniont :=
IM (fun a : Uaux => (let: Uaux_c u v := a in @Ro (f u) v)).

End UnionDef.

Assume that I is a set, and f a function de�ned on the type I. We use a record, that holds
(a,b) for all a : X, where b is of type f (a). By de�nition of R we have R b 2 f (a). Note that
the implicit argument of R must be given explicitly here. The set of all these R b is a set U
such that x 2 U is equivalent to 9a, x 2 f (a). This set will be called uniont . Let X be a set and
f ÆR X. Since a : X is the same as R a 2 X, then x 2 U if and only if there is b 2 X such that
x 2 b. This set will be called union , and denoted by

S
X.

Definition union X := uniont (@Ro X).
Lemma setUt_P (I:Set) (f:I->Set) x:

inc x (uniont f) <-> exists z, inc x (f z).
Lemma setU_P X x:

inc x (union X) <-> exists2 z, inc x z & inc z X.

Some properties of union.

Lemma setU_i x y a: inc x y -> inc y a -> inc x (union a).
Lemma setU_hi x a: inc x (union a) -> exists2 y, inc x y & inc y a.
Lemma setU_s1 x y: inc x y -> sub x (union y).
Lemma setU_s2 x z: (forall y, inc y z -> sub y x)-> sub (union z) x.
Lemma setU_0: union emptyset = emptyset.

The union a family of two sets X and Y is denoted by X [ Y. An element is in the union if
and only if it is in one of the sets. We have A ½A[ B and B ½A[ B, and other properties.

Definition union2 (x y : Set) := union (doubleton x y).

Notation "a \cup b" := (union2 a b) (at level 50).

Lemma setU2_hi x y a: inc a (x \cup y) -> inc a x \/ inc a y.
Lemma setU2_1 x y a: inc a x -> inc a (x \cup y).
Lemma setU2_2 x y a: inc a y -> inc a (x \cup y).
Lemma setU2_P a b x: inc x (a \cup b) <-> (inc x a \/ inc x b).
Lemma subsetU2l a b: sub a (a \cup b).
Lemma subsetU2r a b: sub b (a \cup b).

Lemma setU2_C: commutative union2.
Lemma setU2_id: idempotent union2.
Lemma setU2_A: associative union2.
Lemma setU2_CA : left_commutative union2.
Lemma setU2_AC : right_commutative union2.
Lemma set2_UUl : left_distributive union2 union2.
Lemma set2_UUr : right_distributive union2 union2.

Lemma setU2_S1 A B C : sub A B -> sub (C \cup A) (C \cup B).
Lemma setU2_S2 A B C : sub A B -> sub (A \cup C) (B \cup C).
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Lemma setU2_SS A B C D : sub A C -> sub B D -> sub (A \cup B) (C \cup D).
Lemma setU2_12S A B C: sub A C -> sub B C -> sub (A \cup B) C.
Lemma subU2_setP A B C : (sub (B\cup C) A) <-> (sub B A /\ sub C A).
Lemma sub_setU2 A B C : (sub A B) \/ (sub A C) -> sub A (B \cup C).
Lemma setU2id_Pl A T: sub A T <-> A \cup T = T.
Lemma setU2id_Pr A T: sub A T <-> T \cup A = T.
Lemma setU2_0 A : A \cup emptyset = A.
Lemma set0_U2 A : emptyset \cup A = A.

Lemma setU_1 x: union (singleton x) = x.
Lemma setU2_11 x y: (singleton x) \cup (singleton y) = doubleton x y.
Lemma setU2_eq0P A B : (A \cup B = emptyset) <-> (A = emptyset /\ B = emptyset).
Lemma subCset_P2 A B C : (sub (A -s B) C) <-> (sub A (B \cup C)).

Lemma setU2Cr1 A B: A \cup (A -s B) = A.
Lemma setU2Cr2 A B: A \cup (B -s A) = A \cup B.
Lemma setU2_Cr A T: sub A T -> A \cup (T -s A) = T.

In some cases (induction on �nite sets), one needs to consider the union of a set and a
singleton.

Notation "a +s1 b" := (a \cup (singleton b)) (at level 50).

Lemma setU1_P x y z: (inc z (x +s1 y) ) <-> (inc z x \/ z = y).
Lemma setU1_1 a b: inc a (b +s1 a).
Lemma sub_setU1 a b: sub b (b +s1 a).
Lemma setU1_r a b y: inc y b -> inc y (b +s1 a).
Lemma setU1_eq x y: inc y x -> x +s1 y = x.
Lemma setU1_sub x y z: sub x z -> inc y z -> sub (x +s1 y) z.
Lemma setCU_K x y: sub y x <-> (x -s y) \cup y = x.
Lemma setC1_K x y: inc y x -> (x -s1 y) +s1 y = x.
Lemma setU1_K a x: ~(inc a x) -> (x +s1 a) -s1 a = x.
Lemma setU1_inj x A B: ~(inc x A) -> ~(inc x B) -> A +s1 x = B +s1 x -> A = B.
Lemma setC1_inj x A B: inc x A -> inc x B -> A -s1 x = B -s1 x -> A = B.

If we add an element to a doubleton we get a tripleton.

Definition tripleton a b c := (doubleton a b) +s1 c.
Lemma set3_P a b c x:

inc x (tripleton a b c) <-> [\/ x = a , x = b | x = c].

The union of x and {x} will be denoted later on by xÅ , and called the successor of x. The
successor of C2will be C3and successor of C3will be C4. The sets C3and C4have exactly
three and four distinct elements.

Definition C3 := C2 +s1 C2.
Definition C4 := C3 +s1 C3.

Lemma C3_P x: inc x C3 <-> [\/ x = C0, x = C1 | x = C2].
Lemma C4_P x: inc x C4 <-> [\/ x = C0, x = C1, x = C2 | x = C3].
Lemma C2_neC01: C2 <> C0 /\ C2 <> C1.
Lemma C3_neC012: [/\ C3 <> C0, C3 <> C1 & C3 <> C2].

The direct image of a set by a function is compatible with union.
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Lemma funI_set0 f: fun_image emptyset f = emptyset.
Lemma funI_setne f x: nonempty x -> nonempty (fun_image x f).
Lemma funI_setne1 f x: fun_image x f = emptyset -> x = emptyset.
Lemma funI_set2 f a b:

fun_image (doubleton a b) f = doubleton (f a) (f b).
Lemma funI_set1 f x: fun_image (singleton x) f = singleton (f x).

Lemma funI_setU f X:
fun_image (union X) f = union (fun_image X (fun z => (fun_image z f))).

Lemma funI_setU2 f: {morph (fun_image ^~ f): x y / x \cup y}.
Lemma funI_setU1 g X a:

fun_image (X +s1 a) g = fun_image X g +s1 (g a).
Lemma funI_S f a b: sub a b -> sub (fun_image a f) (fun_image b f).

Variant of the axiom of choice. Let E be any set, p(x) be a property, F Æ{x 2 E,p(x)} and
z Æ

S
F. If there is a unique x in E that satis�es p, then F Æ{x}, and z Æx so that p(z) holds.

This quantity z is denoted by ` select p E '. Assume that p depends on a parameter y and
p(x) implies x 2 f (y). Then `select (p y) (f y) ' is the same as `choose p y'. Whenever
possible, we use select rather then choose.

Definition select (p: property) (E: Set) := union (Zo E p).

Lemma select_uniq (p: property) E:
(singl_val2 (inc ^~ E) p) ->
forall x, inc x E -> p x -> x = (select p E).

Lemma select_pr (p : property) E:
(exists2 x, inc x E & p x) ->

(singl_val2 (inc ^~ E) p) ->
(p (select p E) /\ inc (select p E) E).

Conditional de�nition. Let x and y be two sets, E Æ{x, y}, P any property and p(z) be

(z Æx and P) or ( z Æy and : P)

If p(z) holds then z is is either x or y, thus is in E. Moreover, there is at most one element in E
satisfying p. More precisely, assume P true. Then p(z) implies z Æx and p(x) holds; assume
P false; then p(z) implies z Æy and p(y) holds.

This allows us to construct a function Y (P,x, y) which is x if P holds and y otherwise (the
Ytac tactic uses the fact that either P or : P hold).

Definition Yo (P : Prop) (x y : Set) :=
select (fun z => (z = x /\ P) \/ (z = y /\ ~P)) (doubleton x y).

Lemma Y_true (P:Prop) (hyp :P) x y: Yo P x y = x.
Lemma Y_false (P:Prop) (hyp : ~P) x y: Yo P x y = y.
Lemma Y_same (P: Prop) x : Yo P x x = x.

2.7 Module Powerset

Bourbaki introduces an axiom that says that for every set x, there is a set y, the powerset
of x, denoted P (x) containing the subsets of x. This set is canonically isomorphic to the set
of functions x ! X, where X is a set with two elements A and B (to each function f , associate
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f ¡ 1hAi ). The set of (graphs of) functions x ! X is a subset of P (x £ X). Thus existence of the
powerset is equivalent to existence of sets of functions. We consider here the type of functions
rather than the set of functions.

We shall denote here by 0, 1 and 2 the sets ; , {; } and {0,1}. Let q be a function x ! 2.
Thus, whenever z 2 x we have q(z) 2 2. We construct a function p of type x ! 2 as follows: if
t : x, then R (t ) 2 x, so that q(R (t )) 2 2, and applying B to this gives an object of type 2. We
de�ne q ¡ 1(0) as the set of all z 2 x such that q(z) Æ0. This set is also denoted by p ¡ 1(0). If H
says z 2 x, then z 2 p ¡ 1(0) is equivalent to R (p(B H)) Æ0. Let X be the set of all p ¡ 1(0). An
element of X is a subset of x.

Let y be a subset of x, and q the function that maps z to 0 if z 2 y and to 1 otherwise (we
use the function Y de�ned above). Then y Æp ¡ 1(0), so that y 2 X. In other words, X is the
power set of x.

Definition powerset (x : Set) :=
IM (fun p : x -> C2 =>

Zo x (fun y : Set => forall hyp : inc y x, Ro (p (Bo hyp)) = C0)).

All properties but the �rst are trivial. Note that the canonical doubleton is just P (P (; )).

Lemma setP_i x y: sub x y -> inc x (powerset y).
Lemma setP_hi x y: inc x (powerset y) -> sub x y.
Lemma setP_P x y: inc x (powerset y) <-> sub x y.
Lemma setP_Ti x: inc x (powerset x).
Lemma setP_0i x: inc emptyset (powerset x).
Lemma setP_S a b: sub a b <-> sub (powerset a) (powerset b).
Lemma setP_0: powerset emptyset = singleton emptyset.
Lemma setP_1 x: powerset (singleton x) = doubleton emptyset (singleton x).
Lemma setP_00 : powerset (powerset emptyset) = C2.

2.8 Module Intersection

Bourbaki de�nes the intersection of a family of sets (X ¶)¶2I as the dual of union. We have
x 2

\

¶2I
X¶ if and only if x is in every element of the family. We consider here the case (denoted

by
T

X) where the mapping ¶7! X¶ is the identity of X, the general case will be studied in a
future Chapter. We have then

\
X Æ{x 2 E,8 a,a 2 X Æ) x 2 a}

where E is any adequate set. If the family is empty, then Bourbaki de�nes the intersection to
be E. We do not like this de�nition, since it depends on the context. Taking for E the union
of the family solves the problem, it de�nes the intersection of an empty family to be empty.

Definition intersection (x : Set) :=
Zo (union x) (fun y : Set => forall z : Set, inc z x -> inc y z).

Lemma setI_0: intersection emptyset = emptyset.
Lemma setI_i x a:

nonempty x -> (forall y, inc y x -> inc a y) -> inc a (intersection x).
Lemma setI_hi x a y: inc a (intersection x) -> inc y x -> inc a y.
Lemma setI_s1 x y: inc y x -> sub (intersection x) y.
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The intersection of two sets is denoted X \ Y, the properties listed here are obvious.

Definition intersection2 (x y : Set) := intersection (doubleton x y).

Notation "a \cap b" := (intersection2 a b) (at level 50).

Lemma setI2_i x y a: inc a x -> inc a y -> inc a (x \cap y).
Lemma setI2_1 x y a: inc a (x \cap y) -> inc a x.
Lemma setI2_2 x y a: inc a (x \cap y) -> inc a y.
Lemma setI2_P x y a: inc a (x \cap y) <-> (inc a x /\ inc a y).
Lemma subsetI2l a b: sub (a \cap b) a.
Lemma subsetI2r a b: sub (a \cap b) b.
Lemma setI2_id: idempotent intersection2.
Lemma setI_1 x: intersection (singleton x) = x.
Lemma setI2_C: commutative intersection2.
Lemma setI2_A: associative intersection2.
Lemma setI2_CA : left_commutative intersection2.
Lemma setI2_AC : right_commutative intersection2.
Lemma set2_IIl : left_distributive intersection2 intersection2.
Lemma set2_IIr : right_distributive intersection2 intersection2.

Lemma setI2_S1 A B C : sub A B -> sub (C \cap A) (C \cap B).
Lemma setI2_S2 A B C : sub A B -> sub (A \cap C) (B \cap C).
Lemma setI2_SS A B C D : sub A C -> sub B D -> sub (A \cap B) (C \cap D).
Lemma setI2_12S A B C: sub C A -> sub C B -> sub C (A \cap B).
Lemma subsetI2_P A B C : sub C (A\cap B) <-> (sub C A /\ sub C B).
Lemma subI2_set A B C : (sub A C) \/ (sub B C) -> sub (A \cap B) C.
Lemma subsetI2_P A B C : sub C (A\cap B) <-> (sub C A /\ sub C B).
Lemma setI2id_Pl A T: sub A T <-> A \cap T = A.
Lemma setI2id_Pr A T: sub A T <-> T \cap A = A.

We state here some distributivity properties.

Lemma set_UI2l: left_distributive union2 intersection2.
Lemma set_UI2r: right_distributive union2 intersection2.
Lemma set_IU2l: left_distributive intersection2 union2.
Lemma set_IU2r: right_distributive intersection2 union2.
Lemma setPI : morphism_2 powerset intersection2 intersection2.

Lemma set_U2K A B: (A \cup B) \cap A = A.
Lemma set_K2U A B: A \cap (B \cup A) = A.
Lemma set_I2K A B: (A \cap B) \cup A = A.
Lemma set_K2I A B: A \cup (B \cap A) = A.
Lemma setU2_ni x A B: ~inc x (A\cup B) -> (~ inc x A /\ ~ inc x B).
Lemma setI2_ni x A B: ~inc x (A\cap B) -> (~ inc x A \/ ~ inc x B).
Lemma setC_ni x A B: ~inc x (A -s B) -> (~ inc x A \/ inc x B).

Lemma set_CU2 A B X: X -s (A\cup B) = (X -s A) \cap (X -s B).
Lemma set_CI2 A B X: X -s (A\cap B) = (X -s A) \cup (X -s B).
Lemma setCI2_pr1 A B E: sub A E -> A -s B = A \cap (E -s B).
Lemma set_CC A B E: sub B E -> (E -s (A -s B)) = (E -s A) \cup B.
Lemma setI2_Cr A B : (A \cap B) \cup (A -s B) = A.

Lemma setCU2_l A B C : (A \cup B) -s C = (A -s C) \cup (B -s C).
Lemma setCU2_r A B C : A -s (B \cup C) = (A -s B) \cap (A -s C).
Lemma setCI2_l A B C : (A \cap B) -s C = (A -s C) \cap (B -s C).
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Lemma setCI2_r A B C : A -s (B \cap C) = (A -s B) \cup (A -s C).
Lemma setCC_l A B C : (A -s B) -s C = A -s (B \cup C).
Lemma setCC_r A B C : A -s (B -s C) = (A -s B) \cup (A \cap C).

We say that two sets are disjoint if the intersection is empty. Here are some properties.

Definition disjoint (x y: Set) := x \cap y = emptyset.
Definition disjointVeq (x y: Set) := x = y \/ disjoint x y.
Lemma disjoint_pr a b:

(forall u, inc u a -> inc u b -> False) -> disjoint a b.
Lemma nondisjoint a b c: inc a b -> inc a c -> ~ disjoint b c.
Lemma disjointVeq_pr x y z: disjointVeq x y -> inc z x -> inc z y -> x = y.

Lemma setI2_0 A : disjoint A emptyset.
Lemma set0_I2 A : disjoint emptyset A.
Lemma set_IC1r A B: A \cap (A -s B) = A -s B.
Lemma set_I2Cr A B: disjoint B (A -s B).
Lemma disjoint_S: symmetric_r disjoint.

Lemmas using disjoint and complement.

Lemma subsets_disjoint_P A B E: sub A E ->
(sub A B <-> disjoint A (E -s B)).

Lemma disjoint_subsets_P A E: sub A E -> forall B,
(disjoint A B <-> sub A (E -s B)).

Lemma setCId_Pl A B: A -s B = A <-> disjoint A B.
Lemma subCset_P3 A B C : sub A (B -s C) <-> ((sub A B) /\ (disjoint A C)).
Lemma subsetC1_P A B x: (sub A (B -s1 x)) <-> (sub A B /\ ~inc x A).
Lemma properI2_r A B : ~(sub B A) -> ssub (A \cap B) B.
Lemma properI2_l A B : ~(sub A B) -> ssub (A \cap B) A.
Lemma properU2_r A B : ~(sub A B) -> ssub B (A \cup B).
Lemma properU2_l A B : ~(sub B A) -> ssub A (A \cup B).
Lemma properI2_set A B C : (ssub B A) \/ (ssub C A) -> (ssub (B \cap C) A).
Lemma properI2 A B C : (ssub A (B \cap C)) -> (ssub A B /\ ssub A C).
Lemma properU2 A B C : (ssub (B \cup C) A) -> (ssub B A /\ ssub C A).

2.9 Module Pair

We de�ne here three functions, kpair , kpr1 , and kpr2 , and a hack that makes them
completely opaque. Some comments can be found in section 8.3.

Definition kpair x y := doubleton (singleton x) (doubleton x y).
Definition kpr1 x := union (intersection x).
Definition kpr2 x :=

union (Zo (union x) (fun z => (doubleton (kpr1 x) z) = (union x))).

This is the hack.

Module Type PairSig.
Parameter first_proj second_proj : Set -> Set.
Parameter pair_ctor : Set -> Set -> Set.
Axiom kpr1E: first_proj = kpr1.
Axiom kpr2E: second_proj = kpr2.
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Axiom kprE: pair_ctor = kpair.
End PairSig.

Module Pair : PairSig.
Definition pair_ctor := kpair.
Definition first_proj := kpr1.
Definition second_proj := kpr2.
Lemma kprE: pair_ctor = kpair. Proof. by []. Qed.
Lemma kpr1E: first_proj = kpr1. Proof. by []. Qed.
Lemma kpr2E: second_proj = kpr2. Proof. by []. Qed.
End Pair.

The three functions de�ned above will be renamed as J, P and Q. The usual notations are
(x, y), pr1z and pr 2z.

Notation J := Pair.pair_ctor.
Notation P := Pair.first_proj.
Notation Q := Pair.second_proj.

The important properties are: if z Æ(x, y), then pr 1z Æx and pr 2z Æy.

Lemma pr1_pair x y: P (J x y) = x.
Lemma pr2_pair x y: Q (J x y) = y.

It follows: if ( x, y) Æ(x0, y0) then x Æx0and y Æy0. We say that z is a pair is z has the form
(x, y), for some x and y, in particular, if z Æ(pr 1z,pr2z).

The properties of projectors say that ( a,b) Æ(c,d ) implies a Æc and b Æd. We say that
x is a pair if (pr 1x,pr2x) Æx. Any (a,b) is a pair. Two pairs x and y are equal if and only if
pr1x Æpr1y and pr 2x Æpr2y.

Definition pairp x := J (P x) (Q x) = x.

Lemma pr1_def a b c d: J a b = J c d -> a = c.
Lemma pr2_def a b c d: J a b = J c d -> b = d.
Lemma pair_is_pair x y : pairp (J x y).
Lemma pair_exten a b:

pairp a -> pairp b -> P a = P b -> Q a = Q b -> a = b.

J, P and Q

In the English Edition, Bourbaki assumes that there is way to create ordered pairs. This
means that, given any two sets x and y, there is a third set z, denoted here `J x y ', and
traditionally ( x, y). Sets of these form are called “ordered pairs”. The “axiom of the ordered
pair” states that if ( x, y) Æ(x0, y0), then x Æx0 and y Æy0. The unique quantity x (de�ned
by the Axiom of Choice) such that z Æ(x, y) is called the “�rst projection”, and denoted here
as P̀ z' and by Bourbaki as pr 1z. The unique quantity y such that z Æ(x, y) is called the
“second projection”, and denoted here as ` Q z' and by Bourbaki as pr 2z. Thus z Æ(pr 1z,pr2z)
is equivalent to “ z is an ordered pair”.

Note that pr 1; and pr 2; , are two well-de�ned sets, but whether ; is an ordered set or
not is undecidable. Thus ; Æ (pr 1; ,pr2; ) could be true or false.

In the French Version, Bourbaki shows that ( x, y) Æ{{x}, {x, y}} satis�es the axiom of the
ordered pair, and uses this to de�ne a pair. It follows that a pair is a set with one or two ele-
ments, so that the empty set is not a pair, and the relation given above is false. The de�nition
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of pr 1 is the same as above, so that pr 1; is some well-de�ned set that satis�es no particular
relation, since the Axiom of Choice does apply here.

In the de�nition that follows, we avoid using the Axiom of Choice. Then pr 1; Æ pr2; Æ
; . We use a hack that forbids C OQ to unfold the de�nitions.The de�nition of a pair was
introduced by Kuratowski in 1923, and used in [3]. Consider two sets x and y, and the pair
z Æ(x, y). If a Æ{x} and b Æ{x, y}, then z Æ{a,b}. If U Æ

S
z and I Æ

T
z, then U Æ{x, y} and

I Æ{x}. It follows x Æ
S

I, and this gives a de�nition for pr 1. Given I and U, one can deduce y.
In effect, either U ÆI, and y is the single element of U, and otherwise y is the single element
of U not in I. Wikipedia de�nes pr 2 as the single element of { t 2 U,U 6ÆI Æ) t 62I} (this
strange de�nition avoids the if-then-else construction). Note that y is the single element t of
U such that { x, t } ÆU, and this is the de�nition we shall use.

2.10 Module Cartesian

The cartesian product A£ B of two sets A and B is the set of all pairs z such that pr 1z 2 A
and pr 2z 2 B. It is the union (for x 2 A) of the sets Bx of all ( x, y) for y 2 B.

Definition product (A B : Set) :=
union (fun_image A (fun x => (fun_image B (J x)))).

Definition coarse A := product A A.

Notation "A \times B" := (product A B) (at level 40).

Lemma setX_P x A B:
inc x (A \times B) <-> [/\ pairp x, inc (P x) A & inc (Q x) B].

Lemma setX_pair x A B: inc x (A \times B) -> pairp x.
Lemma setX_i x A B:

pairp x -> inc (P x) A -> inc (Q x) B -> inc x (A \times B).
Lemma setXp_i x y A B:

inc x A -> inc y B -> inc (J x y) (A \times B).
Lemma setXp_P x y A B:

inc (J x y) (A \times B) <-> (inc x A /\ inc y B).

A product is empty if and only one factor is empty. This is Proposition 2 [2, p. 75].

Lemma setX_0l B: emptyset \times B = emptyset.
Lemma setX_0r A: A \times emptyset = emptyset.
Lemma setX_0 A B:

A \times B = emptyset -> (A = emptyset \/ B = emptyset).

The product A £ B is increasing in A and B, strictly if the other argument is non empty.
This is Proposition 1 [2, p. 74].

Lemma setX_Sl x x' y: sub x x' -> sub (x \times y) (x' \times y).
Lemma setX_Sr x y y': sub y y' -> sub (x \times y) (x \times y').
Lemma setX_Slr x x' y y':

sub x x' -> sub y y' -> sub (x \times y) (x' \times y').
Lemma setX_lS x x' y: nonempty y ->

sub (x \times y) (x' \times y) -> sub x x'.
Lemma setX_rS x y y': nonempty x ->

sub (x \times y) (x \times y') -> sub y y'.
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We sometimes write X i instead of (X,{ i }).

Definition indexed (x i: Set) := x \times singleton i.
Definition indexedr (i x: Set) := singleton i \times x.
Notation "a *s1 b" := (indexed a b) (at level 50).

Lemma indexed_pi x i y: inc y x -> inc (J y i) (x *s1 i).
Lemma indexed_P x i y:

inc y (x *s1 i) <-> [/\ pairp y, inc (P y) x & Q y = i].
Lemma indexedrP a b c:

inc a (indexedr b c) <-> [/\ pairp a , P a = b & inc (Q a) c].

2.11 Module Function

We introduce here some notations. Assume that P means 8 x,p(x). Then {inc X, P}
means 8 x 2 X,p(x). Assume that Q means 8 x8 y,q(x, y). Then {inc X & Y, Q} means
8 x 2 X,8 y 2 Y,q(x, y) and {inc X &, Q} means 8 x 2 X,8 y 2 X,q(x, y). (note that prop_inc1
takes 3 arguments; a set X, a property p and third argument, that is not used, but whose type
is some phantom built from P. Since p can be deduced from P, thus from the type of the third
argument, the second argument is implicit; with this trick the de�nition can use p, although
P is given).

Definition prop_inc1 (X : Set) (P: property)
& (phantom Prop (forall x0 : Set, P x0)) :=
forall x, inc x X -> P x.

Definition prop_inc11 X Y (P: relation)
& (phantom Prop (forall x y: Set, P x y)) :=
forall x y, inc x X -> inc y Y -> P x y.

Definition prop_inc2 X (P: Set -> Set -> Prop)
& (phantom Prop (forall x y: Set, P x y)) :=
forall x y, inc x X -> inc y X -> P x y.

Notation "{ 'inc' d , P }" :=
(prop_inc1 d (inPhantom P))
(at level 0, format "{ 'inc' d , P }") : type_scope.

Notation "{ 'inc' d1 & d2 , P }" :=
(prop_inc11 d1 d2 (inPhantom P))
(at level 0, format "{ 'inc' d1 & d2 , P }") : type_scope.

Notation "{ 'inc' d & , P }" :=
(prop_inc2 d (inPhantom P))
(at level 0, format "{ 'inc' d & , P }") : type_scope.

Assume that P is as above; then {when r, P} means 8 x,r (x) Æ) p(x). We consider also
variants where a property q depends on two variables. In particular {when: r, Q} means
8 x, y,r (x, y) Æ) q(x, y).

Definition prop_when1 (X : property) (P: property)
& (phantom Prop (forall x0 : Set, P x0)) :=
forall x, X x -> P x.
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Definition prop_when11 (X Y: property) (P: Set -> Set -> Prop)
& (phantom Prop (forall x y: Set, P x y)) :=
forall x y, X x -> Y y -> P x y.

Definition prop_when2 (X: property) (P: relation)
& (phantom Prop (forall x y: Set, P x y)) :=
forall x y, X x -> X y -> P x y.

Definition prop_when22 (X: relation) (P: relation)
& (phantom Prop (forall x y: Set, P x y)) :=
forall x y, X x y -> P x y.

Notation "{ 'when' d , P }" :=
(prop_when1 d (inPhantom P))
(at level 0, format "{ 'when' d , P }") : type_scope.

Notation "{ 'when' d1 & d2 , P }" :=
(prop_when11 d1 d2 (inPhantom P))
(at level 0, format "{ 'when' d1 & d2 , P }") : type_scope.

Notation "{ 'when' d & , P }" :=
(prop_when2 d (inPhantom P))
(at level 0, format "{ 'when' d & , P }") : type_scope.

Notation "{ 'when' : d , P }" :=
(prop_when22 d (inPhantom P))
(at level 0, format "{ 'when' : d , P }") : type_scope.

We say that f and g commute at x if f (g(x)) Æg( f (x)). We say that f and g commute if
they commute everywhere.

Definition commutes_at (f g: Set -> Set) x:= f (g x) = g (f x).
Definition commutes f g := forall x, commutes_at f g x.

More notations. We say that an operation f is compatible with p and q if p(x) implies
q( f (x)). If f takes two arguments, this means that p(x, y) implies q( f (x), f (y)).

Definition compatible_1 f (p q: property) :=
forall x, (p x) -> q (f x).

Definition compatible_2 f (p q:relation) :=
forall x y, (p x y) -> q (f x) (f y).

Definition compatible_3 f (p q:property) :=
forall x y, (p x) -> (p y) -> q (f x y).

Notation "{ 'compat' f : x / p >-> q }" :=
(compatible_1 f (fun x => p) (fun x => q))
(at level 0, f at level 99, x ident,

format "{ 'compat' f : x / p >-> q }") : type_scope.

Notation "{ 'compat' f : x / p }" :=
(compatible_1 f (fun x => p) (fun x => p))
(at level 0, f at level 99, x ident,

format "{ 'compat' f : x / p }") : type_scope.

Notation "{ 'compat' f : x y / p >-> q }" :=
(compatible_2 f (fun x y => p) (fun x y => q))
(at level 0, f at level 99, x ident, y ident,
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format "{ 'compat' f : x y / p >-> q }") : type_scope.
Notation "{ 'compat' f : x y / p }" :=

(compatible_2 f (fun x y => p) (fun x y => p))
(at level 0, f at level 99, x ident, y ident,

format "{ 'compat' f : x y / p }") : type_scope.

Notation "{ 'compat' f : x & / p >-> q }" :=
(compatible_3 f (fun x => p) (fun x => q))
(at level 0, f at level 99, x ident,

format "{ 'compat' f : x & / p >-> q }") : type_scope.

Notation "{ 'compat' f : x & / p }" :=
(compatible_3 f (fun x => p) (fun x => p))
(at level 0, f at level 99, x ident,

format "{ 'compat' f : x & / p }") : type_scope.

We give here examples

(*
Lemma setU2_2 a y: {compat (union2 y): x / inc a x >-> inc a x}.
Lemma setU2_2 a y: {compat (union2 y): x / inc a x}.
Lemma funI_setne f: {compat (fun_image ^~ f): x / nonempty x }.
Lemma setI2_S1 C: {compat (intersection2 C) : x y / sub x y }.
Lemma set_SC C: {compat (fun z => z -s C) : x y / sub x y}.
Lemma set_CS C: {compat (fun z => C -s z) : x y / sub x y >-> sub y x}.
Lemma setI2_12S y: {compat intersection2 : x & / sub y x}.
Lemma setU2_12S y: {compat union2 : x & / sub x y}.
*)

A simple graph is a set of pairs. If ( x, y) is in the graph, we say that x and y are related. A
functional graph is one for which the �rst projection is injective. We use sgraph and fgraph
in the de�nitions that follow. The domainand range are the images of the �rst and second
projection.

Definition alls (X: Set)(P: property) := forall a, inc a X -> P a.
Definition sgraph r := alls r pairp.
Definition fgraph f := sgraph f /\ {inc f &, injective P}.
Definition domain f := fun_image f P.
Definition range f := fun_image f Q.
Definition related r x y := inc (J x y) r.

Some properties of a functional graph.

Lemma fgraph_sg f: fgraph f -> sgraph f.
Lemma fgraph_pr f x y y': fgraph f -> inc (J x y) f -> inc (J x y') f -> y = y'.

The domain and range of a graph are characterized by the following two lemmas.

Lemma domainP r: sgraph r -> forall x,
(inc x (domain r) <-> (exists y, inc (J x y) r)).

Lemma rangeP r: sgraph r -> forall y,
(inc y (range r) <-> (exists x, inc (J x y) r)).

These lemmas are obvious from the de�nitions.
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Lemma domain_i1 f x: inc x f -> inc (P x) (domain f).
Lemma range_i2 f x: inc x f -> inc (Q x) (range f).
Lemma domain_i f x y: inc (J x y) f -> inc x (domain f).
Lemma range_i f x y: inc (J x y) f -> inc y (range f).

Some properties of a simple graph.

Lemma sgraph_exten r r':
sgraph r -> sgraph r' ->
(forall u v, related r u v <-> related r' u v) -> r = r'.

Lemma setI2_graph1 x y: sgraph x -> sgraph (x \cap y).
Lemma setI2_graph2 x y: sgraph y -> sgraph (x \cap y).
Lemma setU2_graph x y: {compat union2 : x & / sgraph x}.

We consider the domain and range of various sets. In particular, domain and range are
morphisms for union.

Lemma range_set0: range emptyset = emptyset.
Lemma domain_set0: domain emptyset = emptyset.
Lemma domain_set0P x: nonempty (domain x) <-> nonempty x.
Lemma domain_set0_P r: (domain r = emptyset <-> r = emptyset).
Lemma range_set0_P r: (range r = emptyset <-> r = emptyset).
Lemma domain_set1 x y: domain (singleton (J x y)) = singleton x.
Lemma range_set1 x y: range (singleton (J x y)) = singleton y.
Lemma range_setU2: {morph range: x y / x \cup y}.
Lemma domain_setU2: {morph domain: x y / x \cup y}.
Lemma domain_setU z: domain (union z) = union (fun_image z domain).
Lemma range_setU z: range (union z) = union (fun_image z range).
Lemma domain_setU1 f x y: domain (f +s1 (J x y)) = (domain f) +s1 x.
Lemma range_setU1 f x y: range (f +s1 (J x y)) = (range f) +s1 y.

We consider here some special graphs. The union of functional graphs is a functional
graph, when the domains are mutually disjoint; we consider here the union of two graphs,
the general case will be considered later on.

Lemma sgraph_set0: sgraph emptyset.
Lemma fgraph_set0: fgraph emptyset.
Lemma fgraph_setU1 f x y:

fgraph f -> ~inc x (domain f) ->
fgraph (f +s1 (J x y)).

Lemma fgraph_setU2 a b: fgraph a -> fgraph b ->
disjoint (domain a) (domain b) ->
fgraph (a \cup b).

Assume that g is a functional graph, and x is in the domain. Then there is y such that
(x, y) 2 g (since g is a graph), and this y is unique (since the graph is functional). Moreover, y
is in the range of g. Thus, we can de�ne a function ` Vg g x' or V (x,g), or Vg (x), that maps x
to y under these circumstances.

We say s̀ame_Vg f g' or ` f =1g g ' when Vf (x) ÆVg (x) for every x, so that `{inc a,
f =1g g} ' means Vf (x) ÆVg (x) for every x 2 a. We say àllf g p ' when p(Vg (x)) holds
whenever x is in the domain of g.

Definition action_prop (f g: Set -> Set -> Set) :=
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forall a b x, f (g a b) x = (f a (f b x)).

Definition Vg (f x: Set) := select (fun y : Set => inc (J x y) f) (range f).
Definition allf (g: Set) (p: property) :=

forall x, inc x (domain g) -> (p (Vg g x)).

Definition same_Vg f g: Vg f =1 Vg g.
Notation "f1 =1g f2" := (same_Vg f1 f2)

(at level 70, no associativity) : fun_scope.

Assume that f is a functional graph. If x is in the domain, then ( x,Vf (x)) 2 f . If z 2 f ,
then z is a pair, say z Æ(x, y), and y ÆVf (x). It follows that y is the range of f if and only if
there is x in the domain of f such that y ÆVf (x). Finally, if f and g are two functional graphs
with the same domain, such that Vf (x) ÆVg (x) on the domain, it follows f Æg.

Section Vprops.
Variable f: Set.
Hypothesis fgf: fgraph f.

Lemma fdomain_pr1 x: inc x (domain f) -> inc (J x (Vg f x)) f.
Lemma in_graph_V x: inc x f -> x = J (P x) (Vg f (P x)).
Lemma pr2_V x: inc x f -> Q x = Vg f (P x).
Lemma range_gP y:

(inc y (range f) <-> (exists2 x, inc x (domain f) & y = Vg f x)).
Lemma inc_V_range x: inc x (domain f) -> inc (Vg f x) (range f).

End Vprops.

Lemma fgraph_exten f g:
fgraph f -> fgraph g -> domain f = domain g ->
{inc (domain f), f =1g g} -> f = g.

Consider now a function f and a set x. The set of all pairs ( a, f (a)) for a 2 x will be
denoted by L x f . This is a functional graph; its domain is x, and its evaluation function is f .
If f and g are equal on a, then L a f ÆL ag.

Definition Lg (x : Set) (p : fterm) :=
fun_image x (fun y => J y (p y)).

Lemma Lg_i x y p : inc x y -> inc (J x (p x)) (Lg y p).
Lemma Lg_fgraph p x: fgraph (Lg x p).
Lemma Lg_domain l x p: domain (Lg x p) = x.
Lemma LVg_E x p y: inc y x -> Vg (Lg x p) y = p y.
Lemma Lg_exten a f g: {inc a, f =1 g} -> Lg a f = Lg a g.

The range of L x f is the image f hxi (according to Section 2.4; on page 45 we shall de�ne
ghxi where g is a graph). There are some other useful properties.

If v is a graph with domain x and evaluation function f , then v ÆL x f . We have L x f Æ
L yg if x Æy, and f and g agree on x.

Lemma Lg_range p x: range (Lg x p) = fun_image x p.
Lemma Lg_create a f: Lg a (fun x => Vg (Lg a f) x) = Lg a f.
Lemma Lg_range_P sf f a:

inc a (range (Lg sf f)) <-> exists2 b, inc b sf & a = f b.
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Lemma Lg_recovers f:
fgraph f -> Lg (domain f) (Vg f) = f.

Lemma Lg_exten a f g: {inc a, f =1 g} -> Lg a f = Lg a g.

An interesting function is the identity function: it maps everything on itself. We consider
here the graph of this function. More properties will be given later.

Definition identity_g (x : Set) := Lg x id.

Lemma identity_fgraph x: fgraph (identity_g x).
Lemma identity_sgraph x: sgraph (identity_g x).
Lemma identity_d x: domain (identity_g x) = x.
Lemma identity_r x: range (identity_g x) = x.
Lemma identity_ev x a: inc x a -> Vg (identity_g a) x = x.

Another interesting function is the constant function that maps any element of X onto
y. Its graph is X £ {y}. This set will be denoted X y (for instance when we consider disjoint
unions, and cardinal sums).

Definition cst_graph x y:= Lg x (fun _ => y).

Lemma cst_graph_pr x y: cst_graph x y = x *s1 y
Lemma cst_graph_ev x y t : inc t x -> Vg (cst_graph x y) t = y.
Lemma cst_graph_d x y : domain (cst_graph x y) = x.
Lemma cst_graph_fgraph a b: fgraph (cst_graph a b).

We give here the evaluation function for the graph f , extended by x 7! y.

Lemma setU1_V_out f x y:
fgraph f -> ~ (inc x (domain f)) -> Vg x (f +s1 (J x y)) = y.

Lemma setU1_V_in f x y u:
fgraph f -> ~ (inc x (domain f)) -> inc u (domain f) ->
Vg (f +s1 (J x y)) u = Vg f u.

Assume that g is a functional graph, and f ½g. Then f is a functional graph, its domain
and range are subsets of the domain and range of g; its evaluation function is the same. There
is a converse: if we have two functional graphs, if the domain of f is a part of the domain of
g, and if the evaluation function is the same on the domain of f , then f is a subset of g. From
this we deduce an extensionality property.

Lemma sub_graph_fgraph f g: fgraph g -> sub f g -> fgraph f.
Lemma domain_S f g: sub f g -> sub (domain f) (domain g).
Lemma range_S f g: sub f g -> sub (range f) (range g).
Lemma sub_graph_ev f g:

fgraph g -> sub f g -> {inc (domain f), f =1g g}.

The restriction of a graph f to a set x is the graph of t ! Vf (t ) for t 2 x.

Definition restr f x := Lg x (Vg f).
Lemma restr_d f x: domain (restr f x) = x.
Lemma restr_fgraph f x: fgraph (restr f x).
Lemma restr_ev f x i: inc i x -> Vg (restr f x) i = Vg f i.
Lemma double_restr f a b: sub a b -> (restr (restr f b) a) = (restr f a).
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Lemma restr_Lg a b f: sub b a -> restr (Lg a f) b = Lg b f.
Lemma restr_to_domain f g: fgraph f -> sub g f -> restr f (domain g) = g.
Lemma restr_range1 f x: fgraph f -> sub x (domain f) ->

sub (range (restr f x)) (range f).

¶ We denote by g ± f the composition of the two functions. It maps x to g( f (x)). We shall
give three de�nitions, one adapted for functional graphs, one for simple graphs, and one for
functions. We consider here functional graphs. Assume that the range of f is a subset of the
domain of g. In this case, for any x in the domain of f , f (x) is in the domain of g, so that
g( f (x)) is in the domain of g.

Definition composablef (f g : Set) :=
[/\ fgraph f, fgraph g & sub (range g) (domain f)].

Definition composef f g := Lg (domain g) (fun y => Vg f (Vg g y)).

Notation "x \cf y" := (composef x y) (at level 50).
Notation "x \cfP y" := (composablef x y) (at level 50).

Lemma composef_ev x f g:
inc x (domain g) -> Vg (f \cf g) x = Vg f (Vg g x).

Lemma composef_fgraph f g: fgraph (f \cf g).
Lemma composef_domain f g: domain (f \cf g) = domain g.
Lemma composef_range f g: f \cfP g ->

sub (range (f \cf g)) (range f).
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Chapter 3

Correspondences

From now on, we follow Bourbaki as closely as possible. The series “Elements of mathe-
matics” is divided in 9 books, the �rst one is called “Theory of sets”. This book is divided into
four chapters, the second one is “Theory of sets”. This chapter is divided into 6 sections; we
implement here section 3 “Correspondences”. When we talk about Proposition 1, this is to
be understood as Proposition 1 of [2] of the current section (i.e., the current Chapter of this
report).

3.1 Graphs and correspondences

The next theorem is Proposition 1 in [2, p. 76]; it claims existence and uniqueness of
two sets denoted by pr 1hr i and pr 2hr i . The notation pr 1hr i is de�ned in section 2.4; it is the
domain of r .

Theorem range_domain_exists r: sgraph r ->
((exists! a, forall x, inc x a <-> (exists y, inc (J x y) r)) /\

(exists! b, forall y, inc y b <-> (exists x, inc (J x y) r))).

A product x £ y is a graph. The domain is x, the range is y, whenever the sets are non-
empty. It is a functional graph only if the domain is a singleton.

Lemma setX_graph x y: sgraph (x \times y).
Lemma sub_setX_graph u x y: sub u (x \times y) -> sgraph u.
Lemma sub_graph_setX r: sgraph r -> sub r ((domain r) \times(range r)).
Lemma setX_relP x y a b:

related (x \times y) a b <-> (inc a x /\ inc b y).
Lemma setX_domain x y: nonempty y -> domain (x \times y) = x.
Lemma setX_range x y: nonempty x -> range (x \times y) = y.

The diagonal of x, denoted ¢ x , is the set of all pairs ( a,a), with a 2 x. This is the graph of
the identity function on x.

Definition diagonal x := Zo (coarse x)(fun y=> P y = Q y).

Lemma diagonal_i_P x u:
inc u (diagonal x) <-> [/\ pairp u, inc (P u) x & P u = Q u].

Lemma diagonal_pi_P x u v:
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inc (J u v) (diagonal x) <-> (inc u x /\ u = v).
Lemma diagonal_is_identity x: diagonal x = identity_g x.

For Bourbaki, “a correspondencebetween a set A and a set B is a triple 1 ¡ Æ(G,A,B) where
G is a graph such that pr 1hGi ½ A and pr 2hGi ½ B”. The quantities G, A, and B are respectively
called the graph, source and target of ¡ . We get an equivalent de�nition by using G ½A£ B,
and this is the same as G 2 P (A£ B).

Definition triplep f := pairp f /\ pairp (Q f).
Definition triple s t g := J g (J s t).
Definition source x := P (Q x).
Definition target x := Q (Q x).
Definition graph x := P x.

Definition correspondence f :=
triplep f i /\ sub (graph f) ((source f) \times (target f)).

Denote by s, t and g, the source, target and graph of a correspondence. If ¡ Æ(a,b,c)
then s(¡ ) Æa, t (¡ ) Æb and g(¡ ) Æc. If ¡ is a triple, then ¡ Æ(s(¡ ), t (¡ ), g(¡ )).

Lemma triple_corr s t g: triplep (triple s t g).
Lemma corresp_s s t g: source (triple s t g) = s.
Lemma corresp_t s t g: target (triple s t g) = t.
Lemma corresp_g s t g: graph (triple s t g) = g.
Lemma corresp_recov f: triplep f ->

triple (source f) (target f) (graph f) = f.
Lemma corresp_recov1 f: correspondence f ->

triple (source f) (target f) (graph f) = f.

If ¡ is a correspondence de�ned by s, t , and g, then g ½s£ t . This is equivalent to: g is a
graph whose domain is a subset of s and whose range is a subset of t .

Lemma corr_propcc s t g:
sub g (s \times t) <-> [/\ sgraph g, sub (domain g) s & sub (range g) t].

Lemma corr_propc f (g := graph f):
correspondence f ->
[/\ sgraph g, sub (domain g) (source f) & sub (range g) (target f)].

Lemma corresp_create s t g:
sub g (s \times t) -> correspondence (triple s t g).

Lemma corresp_is_graph g:
correspondence g -> sgraph (graph g).

Lemma corresp_sub_range g:
correspondence g -> sub (range (graph g)) (target g).

Lemma corresp_sub_domain g:
correspondence g -> sub (domain (graph g)) (source g).

A triple (G,A,B) is a correspondence if and only if G 2 P (A£ B), but Bourbaki de�nes the
powerset only later. From this, we deduce that the set of all correspondences between A and
B is P (A£ B)£ {A}£ {B}.

Definition correspondences x y :=

1Bourbaki interprets (G,A,B) as ((G,A),B). We prefer (G,(A,B)).
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(powerset (x \times y)) \times( (singleton x) \times (singleton y)).
Lemma correspondencesP x y z:

inc z (correspondences x y) <->
[/\ correspondence z, source z = x & target z = y].

¶ Direct image of a set X by a functional object f . This will be denoted by f hXi . In the �rst
de�nition f is a graph, and we consider all elements y for which there is a z 2 X such that
(z, y) 2 f . In the other de�nitions, f is a correspondence, and we consider the image by its
graph of either X or the source of f .

Definition direct_image f X:=
Zo (range f) (fun y=>exists2 x, inc x X & inc (J x y) f).

Definition image_by_fun f := direct_image (graph f).
Definition image_of_fun f := image_by_fun f (source f).

We give now some basic properties. The image is a part of the range; it is the full range if
we consider the full domain. The image of a subset X of the domain is empty if and only if X
is empty. Proposition 2 in [2, p. 77] says that the X 7! f hXi is increasing

Lemma dirim_P f X y:
inc y (direct_image f X) <-> exists2 x, inc x X & inc (J x y) f.

Lemma dirimE f X: fgraph f -> sub X (domain f) ->
direct_image f X = fun_image X (Vg f).

Lemma dirim_Sr f X: sub (direct_image f X) (range f).
Lemma dirim_domain f: sgraph f -> direct_image f (domain f) = range f.
Lemma dirim_set0 f: direct_image f emptyset = emptyset.
Lemma dirim_setn0 f u: sgraph f -> nonempty u -> sub u (domain f)

-> nonempty (direct_image f u).
Theorem dir_im_S f: {compat (direct_image f): u v / sub u v}.

A special case is when X is a singleton {x}. If f is a correspondence, the notation G( f )h{x}i
is sometimes simpli�ed to f h{x}i or f (x) (this last notation is ambiguous, since it denotes also
the value of f at x).

Definition im_of_singleton f x := direct_image f (singleton x).

Lemma dirim_set1_P f x y:
inc y (im_of_singleton f x) <-> inc (J x y) f.

Lemma dirim_set1_S f f': sgraph f -> sgraph f' ->
((forall x, sub (im_of_singleton f x) (im_of_singleton f' x)) <-> sub f f').

3.2 Inverse of a correspondence

The inverse graph of G, denoted by
¡ 1
G, or G¡ 1 is the set of all pairs ( x, y) such that ( y,x) 2 G.

This is also the set of all (pr 2z,pr1z) for z 2 G (these two sets may be different if G is not a
graph).

Definition inverse_graph r :=
Zo ((range r) \times (domain r)) (fun y=> inc (J (Q y)(P y)) r).

Lemma igraph_alt r: sgraph r ->
inverse_graph r = fun_image r (fun z => J(Q z) (P z)).
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Some trivialities to start with.

Lemma igraph_graph r: sgraph (inverse_graph r).
Lemma igraphP r y:

inc y (inverse_graph r) <-> (pairp y /\ inc (J (Q y)(P y)) r).
Lemma igraph_pP r x y:

inc (J x y) (inverse_graph r) <-> inc (J y x) r.

Taking the inverse swaps range and domain. Taking twice the inverse gives the same
graph. The inverse of a product is the product in reverse order. The inverse of the empty set
or identity is itself.

Lemma igraph_involutive : {when sgraph, involutive inverse_graph}.
Lemma igraph_range r: sgraph r -> range (inverse_graph r) = domain r.
Lemma igraph_domain r: sgraph r -> domain (inverse_graph r) = range r.
Lemma igraph0: inverse_graph (emptyset) = emptyset.
Lemma igraphX x y: inverse_graph (x \times y) = y \times x.
Lemma igraph_identity_g x: inverse_graph (identity_g x) = identity_g x.

The inverse of the correspondence ¡ Æ(G,A,B) is (
¡ 1
G,B,A). It is denoted by

¡ 1
¡ . It satis�es

some trivial properties.

Definition inverse_fun m :=
corresp(target m) (source m)(inverse_graph (graph m)).

Lemma ifun_s f: source (inverse_fun f) = target f.
Lemma ifun_t f: target (inverse_fun f) = source f.
Lemma ifun_g f: graph (inverse_fun f) = inverse_graph (graph f).
Lemma icor_correspondence m:

correspondence m -> correspondence (inverse_fun m).
Lemma icor_involutive: {when correspondence, involutive inverse_fun}.

The inverse image by a graph (or correspondence or a function) is the direct image of its
inverse. It is denoted by g¡ 1hxi .

Definition inverse_image r := direct_image (inverse_graph r).
Definition inv_image_by_fun r:= inverse_image (graph r).

Lemma iim_fun_pr r :
inv_image_by_fun r = image_by_fun (inverse_fun r) x.

Lemma iim_graph_P x r y:
(inc y (inverse_image r x)) <-> (exists2 u, inc u x & inc (J y u) r)).

Lemma iim_fun_P x r y:
(inc y (inv_image_by_fun r x))

<-> (exists2 u, inc u x & inc (J y u) (graph r)).

3.3 Composition of two correspondences

The composition of two graphs G 2 ±G1 is the set of all ( x,z) for which there is a y such
that ( x, y) is in G1 and and ( y,z) is in G2. It is a subset of the product of the domain of the
�rst graph and the range of the second. If both arguments are functional graphs and are
composable, then the result is a functional graph such that G 2 ±G1(x) ÆG2(G1(x)), for any
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x in the domain of G 1; in other terms, this notion coincides with the previous de�nition of
composition.

Definition composeg r' r :=
Zo((domain r)\times (range r'))

(fun w => exists2 y, inc (J (P w) y) r & inc (J y (Q w)) r').
Notation "x \cg y" := (composeg x y) (at level 50).

Lemma compg_graph r r': sgraph (r \cg r').
Lemma compg_P r r' x:

inc x (r' \cg r) <->
(pairp x /\ ( exists2 y, inc (J (P x) y) r & inc (J y (Q x)) r')).

Lemma compg_pP r r' x y:
inc (J x y) (r' \cg r) <-> (exists2 z, inc (J x z) r & inc (J z y) r').

Lemma compg_domain_S r r': sub (domain (r' \cg r)) (domain r).
Lemma compg_range_S r r': sub (range (r' \cg r)) (range r').
Lemma compg_composef f g: f \cfP g -> f \cf g = f \cg g.

Proposition 3 in [2, p. 79] says (G 0±G)¡ 1 ÆG¡ 1 ±(G0)¡ 1.

Theorem compg_inverse: {morph inverse_graph : a b / a \cg b >-> b \cg a}.

Proposition 4 [2, p. 79] says that graph composition is associative.

Theorem compgA: associative composeg.

Proposition 5 [2, p. 79] says (G 0±G)hAi Æ G0hGhAii . We have a characterization of the
domain and range of the composition as direct or inverse image of the domain or range. We
have an interesting formula A ½G¡ 1hGhAii .

Theorem compg_image: action_prop direct_image composeg.

Lemma compg_domain r r':
sgraph r' -> domain (r' \cg r) = inverse_image r (domain r').

Lemma compg_range r r':
sgraph r -> range (r' \cg r) = direct_image r' (range r).

Lemma inverse_direct_imageg r x:
sgraph r -> sub x (domain r) ->
sub x (inverse_image r (direct_image r x)).

Lemma compg_S r r' s s':
sub r s -> sub r' s' -> sub (r' \cg r) (s' \cg s).

We say that f and f 0are composable if they are correspondences where the target of f is
the source of f 0. We may assume f Æ(G,A,B) and f 0Æ(G0,B,C). Let G0±G be the composition
of the two graphs (both previous de�nitions agree in this case). We de�ne the composition
f 0±f Æ(G0±G,A,C); this is a correspondence, with source A, target C, and graph G 0±G. Propo-
sition 5 implies ( f 0±f )hAi Æ f 0hf hAii , and Proposition 3 gives ( f 0±f )¡ 1 Æf ¡ 1 ±f 0¡1, provided
both correspondences are composable.

Definition composableC r' r :=
[/\ correspondence r, correspondence r' & source r' = target r].

Definition compose r' r :=
triple (source r)(target r') ((graph r') \cg (graph r)).
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Notation "f1 \co f2" := (compose f1 f2) (at level 50).

Lemma compf_correspondence r' r:
correspondence r -> correspondence r' ->
correspondence (r' \co r).

Lemma compf_image: action_prop image_by_fun compose.
Lemma compf_inverse: {morph inverse_fun : a b / a \co b >-> b \co a}.

The identity I A of a set A is the correspondence ( ¢ A,A,A), where ¢ A the diagonal of A.

Definition identity x := triple x x (identity_g x).

Lemma identity_triple x: correspondence (identity_fun x).

If f is a correspondence between A and B then f ±IA and I B±f are equal to f . In particular
IA±IA ÆIA. We can restate this statement as: the identity of B is a left inverse for composition,
whenever f is a correspondence with target B.

Lemma identity_s x: source (identity x) = x.
Lemma identity_t x: target (identity x) = x.
Lemma identity_graph0 x: graph (identity x) = identity_g x.
Lemma compf_id_left m:

correspondence m -> (identity (target m)) \co m = m.
Lemma compf_id_right m:

correspondence m -> m \co (identity (source m)) = m.
Lemma compf_id_id x:

(identity x) \co (identity x) = (identity x).
Lemma identity_self_inverse x:

inverse_fun (identity x) = (identity x).

Corollary compose_identity_left E:
{when (fun x => correspondence x /\ (target x) = E),
left_id (identity E) compose}.

3.4 Functions

We say that a graph r is functional if each x is related to at most one y. We show that this
de�nition is equivalent to the one given in Section 2.11, that says that if z and z0are in r , then
pr1z Æpr1z0 implies z Æz0.

Definition functional_graph r :=
forall x, singl_val (related r x).

Lemma functionalP r:
(sgraph r /\ functional_graph r) <-> (fgraph r).

A function is a correspondence f Æ(G,A,B) with a functional graph G, where A is the
domain of G. This means that every x in A is related to unique y. This is denoted in Bourbaki
by f (x) or G(x). Here we use either VGx or Wf x. Note: Bourbaki says [2, p. 82] “we shall often
use the word `function' in place of `functional graph' ”.
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Definition function f :=
[/\ correspondence f, fgraph (graph f) & source f = domain (graph f)].

Lemma function_pr s t g:
fgraph g -> sub (range g) t -> s = domain g ->
function (triple s t g).

Lemma function_fgraph f: function f -> fgraph (graph f).
Lemma function_sgraph f: function f -> sgraph (graph f).
Lemma f_domain_graph f: function f -> domain (graph f) = source f.
Lemma f_range_graph f: function f -> sub (range (graph f))(target f).
Lemma image_by_fun_source f: function f ->

image_of_fun f = range (graph f).
Lemma function_functional f: correspondence f ->

function f <-> (forall x, inc x (source f) ->
exists! y, related (graph f) x y).

Each property of V gives a corresponding one for W. All lemmas listed here are trivial.
Let f Æ(G,A,B) be a function. If x 2 A then ( x,Wf x) 2 G, Wf x 2 range(G) and Wf x 2 B. If
y 2 range(G), there exists x such that y ÆWf x. If z 2 G then z Æ(pr 1z,Wf pr1z), pr2z ÆWf pr1z,
and pr 1z 2 A. If (x, y) 2 G then y ÆWf x, x 2 A and y 2 B. Finally, if X ½A then y 2 f hXi if and
only if there is x 2 X such that y ÆWf x.

Definition Vf f x := Vg (graph f) x.

Section W_pr.
Variable f: Set.
Hypothesis ff: function f.

Lemma Vf_pr3 x: inc x (source f) -> inc (J x (Vf f x)) (graph f).
Lemma in_graph_Vf x: inc x (graph f) -> x = (J (P x) (Vf f (P x))).
Lemma Vf_pr2 x: inc x (graph f) -> Q x = Vf f (P x).
Lemma Vf_pr x y: inc (J x y) (graph f) -> y = Vf f x.
Lemma range_fP y:

inc y (range (graph f)) <-> exists2 x, inc x (source f) & y = Vf f x.
Lemma Vf_range_g f x:inc x (source f) -> inc (Vf x tf) (range (graph f)).
Lemma Vf_target x: inc x (source f) -> inc (Vf f x) (target f).
Lemma p1graph_source x y: inc (J x y) (graph f) -> inc x (source f).
Lemma p2graph_target x y: inc (J x y) (graph f) -> inc y (target f).
Lemma p1graph_source1 x: inc x (graph f) -> inc (P x) (source f).
Lemma p2graph_target1 x: inc x (graph f) -> inc (Q x) (target f).

Lemma Vf_image_P x: sub x (source f) -> forall y,
(inc y (image_by_fun f x) <-> exists2 u, inc u x & y = Vf f u).

Lemma Vf_imageP1: forall y,
inc y (image_by_fun f (source f))

<-> (exists u, inc u (source f) & y = Vf f u).
Lemma fun_image_Starget: sub (image_of_fun f) (target f).
Lemma fun_image_Starget1 x: sub (image_by_fun f x) (target f).
End W_pr.

Two functions having same source, same target and same evaluation function are the
same. Two functions having same graph and target are the same.

Definition same_Vf f g:= Vf f =1 Vf g.
Definition cstfp f (E: Set) := singl_val_fp (inc ^~E) (Vf f).
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Definition cstgp (f E: Set) := singl_val_fp (inc ^~E) (Vg f).

Notation "f1 =1f f2" := (same_Vf f1 f2)
(at level 70, no associativity) : fun_scope.

Lemma function_exten3 f g:
function f -> function g ->
graph f = graph g -> target f = target g -> source f = source g ->
f = g.

Lemma function_exten1 f g:
function f -> function g ->
graph f = graph g -> target f = target g ->
f = g.

Lemma function_exten f g:
function f -> function g ->
source f = source g -> target f = target g -> {inc (source f), f =1f g}
-> f = g.

The �rst lemma says f h{x}i Æ{f (x)}. Remember that the LHS is the set of all y related to
x by the function; we claim that there is exactly one such element, and is chosen by the W
function. We have f ¡ 1hB\X i ÆA\ f ¡ 1hXi if it is a function from A to B.

Lemma fun_image_set1 f x:
function f -> inc x (source f) ->
image_by_fun f (singleton x) = singleton (Vf f x).

Lemma iim_fun_C g x:
function g ->
inv_image_by_fun g ((target g) -s x) = (source g) -s (inv_image_by_fun g x).

Lemma iim_fun_set1_hi f x y: function f ->
inc x (inv_image_by_fun f (singleton y)) -> y = Vf f x.

Lemma iim_fun_set1_i f x y: function f -> inc x (source f) ->
Vf f x = y -> inc x (inv_image_by_fun f (singleton y)).

Lemma iim_fun_set1_P f y: function f -> forall x,
inc x (inv_image_by_fun f (singleton y)) <->
(inc x (source f) /\ y = x Vf f).

Lemma iim_fun_set1_E f y: function f ->
(inv_image_by_fun f (singleton y)) = Zo (source f) (fun x => y = Vf f x).

¶ Let h be a mapping (for instance x 7! x Å1) and A a set (for instance the set of odd integers).
We can associate a graph, namely L Ah. If B is another set (for instance the set of the even
integers), such that x 2 A implies h(x) 2 B we can consider the function L A;Bh from A to
B whose graph is L Ah (see Section 3.6). Assume now that f maps type A into type B, its
composition h with R is a mapping that satis�es: x 2 A implies h(x) 2 B. The quantity L A;Bh
will be denoted by L f . The graph of L f is the set of all ( R i ,R f (i )), for all i : A. We shall
see in a moment that f can be obtained from g ÆL f by the formula f ÆM A;Bg. Lemma
acreate_V says that the following diagram (left part) commutes.

A

R
��

f ÆM A;Bg //B

R
��

Set
W¢L f //Set

A
M A;Bg //B

R_inc

B

OO

gÆL f //Vf_mapping

B

OO (a/b create)

Inria



Bourbaki: Theory of sets in Coq I (v6) 51

Given a function f : a ! b, where a and b are two sets, we consider the set G of pairs
(x, f (x)). This is a functional graph, a subset of a£ b. The correspondence (G, a,b) is denoted
by L f .

Definition gacreate (a b:Set) (f:a->b) := IM (fun y:a => J (Ro y) (Ro (f y))).
Definition acreate (a b:Set) (f:a->b) := triple a b (gacreate f).

Lemma acreate_triple (a b:Set) (f:a->b): correspondence (acreate f).

Lemma acreateP (A B:Set) (f:A->B) x:
inc x (graph (acreate f)) <-> exists u:A, J(Ro u)(Ro (f u)) = x.

Lemma acreate_function (A B:Set) (f:A->B): function(acreate f).
Lemma acreate_V (A B:Set) (f:A->B) (x:A):

Vf (acreate f) (Ro x) = Ro (f x).

Given a function g, with source A and target B, we can use the inverse function B of R to
get a map f from type A to type B. We shall denote it by M g or M A;Bg. We haveL f Æg. The
notation M g is a shorthand for M source(g);target(g)g. If A Æsource(g) and B Ætarget(g) but if
equality is not identity then M g and M A;Bg are objects of different type, and are not equal
in C OQ. In particular, if h is a mapping of type A ! B, and if g ÆL h, then M g is a function
A0! B0, where A0 is source(g) and not A, so that ML h is not equal to h.

We create here M f . The expression `R_inc x ' is a proof of x 2 source( f ). The expression
(inc_Vf_target _ _) shows w 2 B, where B is the target of f and w the value of f . Eval-
uating B yields an object of type B, whose evaluation by R is w . This is summarized by the
�rst lemma. The second one says L M f Æf . Remember that in order to use M f one needs
a proof H that f is a function, and f is implicit, since it can be deduced from H.

Definition bcreate1 f (H:function f) :=
fun x:source f => Bo (inc_Vf_target H (R_inc x)).

Lemma prop_bcreate1 f (H:function f) (x:source f):
Ro(bcreate1 H x) = Vf f (Ro x).

Lemma bcreate_inv1 f (H:function f):
acreate (bcreate1 H) = f.

We create here M a;bg. It depends on three assumptions, g is a function, a is the source
and b is the target. See diagram (a/b create) above, right part. If x : a, and y ÆR x, the
assertion `R_inc x ' says y 2 a, and applying B to the assertion gives y. Let w ÆWg x. The
Vf_mapping lemma says (because of our three assumptions) that w 2 b. If we apply B , we
get some element of type b, which is M a;bg(x).

We have L M A;Bg Æg and M A;BL f Æf . In fact, if f 0is M A;BL f we have f 0(a) Æf (a) for
all a of type A. This follows from injectivity of R .

Lemma Vf_mapping f A B (Ha:source f = A)(Hb:target f = B) x:
function f -> inc x A -> inc (Vf f x) B.

Lemma acreate_source (A B:Set) (f:A->B): source (acreate f)= A.
Lemma acreate_target (A B:Set) (f:A->B): target (acreate f)= B.

Definition bcreate f A B
(H:function f)(Ha:source f = A)(Hb:target f = B):=
fun x:A => Bo (Vf_mapping Ha Hb H (R_inc x)).
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Lemma prop_bcreate2 f A B
(H:function f) (Ha:source f = A)(Hb:target f= B)(x:A):
Ro(bcreate H Ha Hb x) = Vf f (Ro x).

Lemma bcreate_inv2 f A B
(H:function f) (Ha:source f = A)(Hb:target f = B):
acreate (bcreate H Ha Hb) = f.

Lemma bcreate_inv3 (A B:Set) (f:A->B):
bcreate (acreate_function f) (acreate_source f)(acreate_target f) =1 f.

Lemma bcreate_eq f (H:function f):
bcreate1 H =1 bcreate H (refl_equal (source f)) (refl_equal (target f)).

Let's consider some examples of functions. A function whose graph or target is empty has
empty source. Thus, if the target is empty, it is the identity of the empty set. For any set x,
there is a unique function with empty graph and target x.

Definition function_prop f s t:=
[/\ function f, source f = s & target f = t].

Definition empty_functionCt x := fun t:emptyset => match t return x with end.
Definition empty_functionC := empty_functionCt emptyset.
Definition empty_function_tg (x: Set) := acreate (empty_functionCt x).
Definition empty_function:= empty_function_tg emptyset.

Lemma empty_function_tg_function x:
function_prop (empty_function_tg x) emptyset x.

Lemma empty_function_function: function_prop empty_function emptyset emptyset.

Lemma empty_function_graph x: graph (empty_function_tg x) = emptyset.
Lemma empty_function_p1 f: function f ->

graph f = emptyset -> source f = emptyset.
Lemma empty_function_p2 f: function f ->

target f = emptyset -> source f = emptyset.
Lemma empty_source_graph f:

function f -> source f = emptyset -> graph f = emptyset.
Lemma empty_target_graph f:

function f -> target f = emptyset -> graph f = emptyset.
Lemma empty_function_tg_function x:

function_prop (empty_function_tg x) emptyset x.
Lemma empty_source_graph2 f:

function f -> source f = emptyset ->
f = empty_function_tg (target f).

¶ We have already met the identity function. The properties shown here are trivial.

Lemma identity_prop x: function_prop (identity x) x x.
Lemma identity_f x: function (identity x).
Lemma identity_V x y: inc y x -> Vf (identity x) = y.

We de�ne ` identityC a ' to be the identity on a as a COQ function.

Definition identityC (a:Set): a->a := @id a.
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Lemma identity_prop1 (a: Set): acreate (identityC a) = identity a.
Lemma identity_prop2 a:

bcreate (identity_f a) (identity_s a) (identity_t a) =1 @id a.

¶ We say that a function or graph f is constant if f (a) Æf (b) whenever both terms are
de�ned. It follows that f has a small range.

Definition constantp x y (f:x->y) := forall a b, f a = f b.
Definition constantfp f := function f /\ cstfp f (source f).
Definition constantgp f := fgraph f /\ cstgp f (domain f).

Lemma constant_prop1 f: constantgp f -> small_set (range f).
Lemma constant_prop2 f: constantfp f -> constantgp (graph f).
Lemma constant_prop3 x y: constantgp (cst_graph x y).
Lemma constant_prop4 f: function f ->

(constantfp f <-> small_set (range (graph f))).

Given two sets A and B, and y 2 B, one can consider the constant function with value y.
Its graph is `cst_graph A y ' or A £ {y}.

Section ConstantFunction.
Variables (A B y: Set).
Hypothesis (yB: inc y B).

Definition constant_function := acreate ([fun: A => Bo yB]).

Lemma constant_s: source (constant_function) = A.
Lemma constant_t: target (constant_function) = B.
Lemma constant_g: graph (constant_function) = A *s1 y.
Lemma constant_f: function (constant_function).
Lemma constant_prop: function_prop (constant_function A yB) A B.
Lemma constant_V x: inc x A -> Vf (constant_function) x = y.
Lemma constant_constant_fun: constantfp (constant_function).

End ConstantFunction.

We show here that every constant function is constant or empty.

Lemma constant_fun_constantC x y (a:y)
constantp ([fun:x => a]).

Lemma constant_prop5 x y (f:x->y)(b:x): constantp f ->
exists a:y, f =1 [fun :x => a].

Lemma constant_prop6 f:
constantfp f ->
f = empty_function_tg (target f) \/
exists a: target f, f = constant_function (source f) (R_inc a).

3.5 Restrictions and extensions of functions

The restriction of a function f to a set x can be de�ned in different ways, for instance as
the composition with the inclusion map from x to the source of f . This is the de�nition we
shall use for C OQ functions. In Bourbaki, composition is de�ned for correspondences, and
the case of functions is studied later, in Section 3.7.
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We de�ne here the composition of two C OQ functions; associativity is trivial, it suf�ces to
unfold the de�nitions. Identity is a unit; this relies on the fact that f is equal to the function
that maps u to f (u).

Lemma composeC_ev a b c (g:b->c) (f: a->b) x:
(g \o f) x = g (f x).

Lemma compositionC_A a b c d (f: c->d)(g:b->c)(h:a->b):
(f \o g) \o h = f \o (g \o h).

Lemma compose_id_leftC (a b:Set) (f:a->b):
(@id b) \o f =1 f.

Lemma compose_id_rightC (a b:Set) (f:a->b):
(@id b) \o f =1 f.

x

R
��

Ix;y //y

R_inc
½ //H_sub

B

OO (inclusion)

We now de�ne the inclusion I xy . See diagram (inclusion) which is an instance of (a/b
create). If x and y are two sets, H is the assumption x ½ y, if u is of type x, then `R_inc u'
says that R u 2 x. Applying H gives R u 2 y, denoted by H_subon the diagram, and using B
yields an object of type y. The important property is R a ÆR (Ixy (a)). From the injectivity of
R we deduce I xx ÆIx and I yz±Ixy ÆIxz (where sub_refl saysx ½x and sub_trans expresses
the transitivity of inclusion, in other words, it says that if I yz ±Ixy is de�ned so is I xz).

Definition inclusionC x y (H: sub x y):=
[fun u:x => Bo (H (Ro u) (R_inc u))].

Lemma inclusionC_pr x y (H: sub x y) (a:x):
Ro(inclusionC H a) = Ro a.

Lemma inclusionC_identity x:
inclusionC (sub_refl (x:=x)) =1 @id x.

Lemma inclusionC_compose x y z (Ha:sub x y)(Hb: sub y z):
(inclusionC Hb) \o (inclusionC Ha) =1 inclusionC (sub_trans Ha Hb).

We say that two functions agree on a set x if this set is a subset of the sources, and if the
functions take the same value on x. Consider two functions (G,A,B) and (G 0,A0,B0). If A ÆA0

and G ÆG0, the functions agree on A. Conversely, the property “A ½ A0 and the functions
agree on A” is the same as G ½ G0. Thus if A ÆA0 we have G ÆG0. If moreover B ÆB0, the
functions are the same.

A
f //B

R

!!
X

IXA

??

IXA0 ��

Set

A0 f 0
//B0

R

==

(restriction/agree)

In the case of C OQ functions, f : A ! B and f 0: A0! B0agree on X if the diagram (restric-
tion/agree) commutes.
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Definition agrees_on x f f' :
[/\ sub x (source f), sub x (source f') & {inc x, f =1f f'} ].

Definition restrictionC (x a b:Set) (f:a->b)(H: sub x a) :=
f \o (inclusionC H).

Definition agreeC (x a a' b b':Set) (f:a->b) (f':a'-> b')
(Ha: sub x a)(Hb: sub x a') :=
forall u:x, Ro(restrictionC f Ha u) = Ro(restrictionC f' Hb u).

Lemma same_graph_agrees f f':
function f -> function f' -> graph f = graph f' ->
agrees_on (source f) f f'.

Lemma function_exten2 f f':
function f -> function f' ->
(f = f' <->

[/\ source f = source f', target f = target f' & agrees_on (source f) f f']).

Lemma sub_function f g:
function f -> function g ->
(sub (graph f) (graph g) <-> agrees_on (source f) f g).

¶ We consider here the restriction of a function f : x ! y as a function z ! t . We assume
z ½x, and f hzi ½ t ½y. In the �rst de�nition we consider t Æy, and in the second de�nition
t Æf hzi ; in the last one, t is a parameter.

Definition restriction f x :=
triple x (target f) (restr (graph f) x).

Definition restriction1 f x :=
triple x (image_by_fun f x) (restr (graph f) x).

Definition restriction2 f x y :=
triple x y (graph f) \cap (x \times (target f))).

Definition restriction2_axioms f x y :=
[/\ function f,
sub x (source f), sub y (target f) & sub (image_by_fun f x) y].

Here are some properties.

Lemma restr_range f x:
function f-> sub x (source f) ->
sub (range (restr (graph f) x)) (target f).

Lemma restriction2_props f x y:
restriction2_axioms f x y ->
domain ((graph f) \cap (x \times (target f))) = x.

Lemma restriction1_prop f x:
function f -> sub x (source f) ->
function_prop (restriction1 f x) x (image_by_fun f x).

Lemma restriction_prop f x:
function f -> sub x (source f) ->
function_prop (restriction f x) x (target f).

Lemma restriction2_prop f x y:
restriction2_axioms f x y -> function_prop (restriction2 f x y) x y.

Lemma restriction_function f x:
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function f -> sub x (source f) ->
function (restriction f x).

Lemma restriction1_function f x,:
function f -> sub x (source f) ->
function (restriction1 f x).

Lemma restriction_V f x:
function f -> sub x (source f) ->
{inc x, (restriction f x) =1f f}.

Lemma restriction1_V f x:
function f -> sub x (source f) ->
{inc x, (restriction1 f x) =1f f}.

Lemma restriction2_V f x y:
restriction2_axioms f x y ->
{inc x, (restriction2 f x y) =1f f}.

Lemma restriction1_pr f:
function f -> restriction2 f (source f) (image_by_fun f (source f)) =
restriction1 f (source f).

We say that g Æ(G,C,D) extends f Æ(F,A,B) if F ½G and B ½D. This implies A ½C. Both
functions agree on A. In the case of C OQ functions, there is no notion of graph, hence: for
every f and g such that the source of f is a subset of the source of g, we say that g extends f
if the target of f is a subset of the target of g, and if the functions agree on the source of f .

Definition extends g f :=
[/\ function f, function g, sub (graph f) (graph g)

& sub (target f)(target g) ].
Definition extendsC (a b a' b':Set) (g:a'->b')(f:a->b)(H: sub a a') :=

sub b b' /\ agreeC g f H (sub_refl (x:=a)).

Lemma extends_Ssource f g:
extends g f -> sub (source f) (source g).

Lemma extends_sV f g:
extends g f -> {inc (source f), f =1f g}.

Lemma extendsC_pr (a b a' b':Set) (g:a'->b')(f:a->b)(H: sub a a'):
extendsC g f H -> forall x:a, Ro (f x) = Ro(g (inclusionC H x)).

If f is a function, X a subset of its source, then f extends its restriction to X. If f and
g are two functions with the same target, that agree on X, their restrictions to X are equal.
The same is true for C OQ functions. Bourbaki notes that the graph of the restriction is the
intersection with the product of X and the target (but he cannot prove this statement, since
intersection is not yet de�ned).

Lemma function_extends_restr f x:
function f -> sub x (source f) ->
extends f (restriction f x).

Lemma function_extends_restC (x a b:Set) (f:a->b)(H:sub x a):
extendsC f (restrictionC f H) H.

Lemma agrees_same1 f g x: agrees_on x f g -> sub x (source f).
Lemma agrees_same2 f g x: agrees_on x f g -> sub x (source g).
Lemma agrees_same_restriction f g x:

function f -> function g -> agrees_on x f g ->
target f = target g ->
restriction f x = restriction g x.
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Lemma agrees_same_restrictionC (a a' b x:Set) (f:a->b)(g:a'->b)
(Ha: sub x a)(Hb: sub x a'):
agreeC f g Ha Hb -> restrictionC f Ha =1 restrictionC g Hb.

Lemma restriction_graph1 f x:
function f -> sub x (source f) ->
graph (restriction_function f x) = (graph f) \cap (x \times (target f)).

Lemma restriction_recovers f x:
function f -> sub x (source f) ->
restriction_function f x = triple x (target f)
((graph f) \cap (x \times (target f))).

¶ The restriction agrees with f on X. If f is the extension of some function g, then g is the
restriction of f to its source and target.

Lemma function_rest_of_prolongation f g:
extends g f -> f = restriction2 g (source f) (target f).

a

Iac

��

f //b

Ibd
��

c
Rcd f

//d

(restriction2C)

In the case of C OQ functions, we start with a function f : a ! b, with the assumptions
c ½a and d ½b. The restriction R cd f is the one that makes diagram (restriction2C) commute.
In order for it to exist, each y in the image of the LHS must be convertible to type d , i.e.
R y 2 d .

Definition restriction2C (a a' b b':Set) (f:a->b)(Ha:sub a' a)
(H: forall u:a', inc (Ro (f (inclusionC Ha u))) b') :=
fun u=> Bo (H u).

Lemma restriction2C_pr(a a' b b':Set) (f:a->b)(Ha:sub a' a)
(H: forall u:a', inc (Ro (f (inclusionC Ha u))) b') (x:a'):
Ro (restriction2C f Ha H x) = Vf (acreate f) (Ro x).

Lemma restriction2C_pr1 (a a' b b':Set) (f:a->b)
(Ha:sub a' a)(Hb:sub b' b)
(H: forall u:a', inc (Ro (f (inclusionC Ha u))) b'):
f \o (inclusionC Ha) =1 (inclusionC Hb) \o (restriction2C f Ha H).

3.6 De�nition of a function by means of a term

In Bourbaki [2, p. 83], Criterion C54 says that if A and T are two terms, x and y are two
distinct letters, x is not in A, y is neither in T nor in A, then the relation x 2 A and y ÆT admits
a graph F, which is functional, and F(x) ÆT. If C is a set which contains the set B of objects
of the form T for x 2 A (where y does not appear in C), the function ( F,A,C) is also denoted
by the notation x ! T (x 2 A,T 2 C), where the terms in parentheses may be omitted. It can
also be written as ( T)x2A. In what follows, we shall use x 7! T to denote the function that
associates T to x, and x ! T to mean a function from the set (or type) x to the set (or type) T.

The non-trivial point is the existence of the set B, since F is then a subset of A£ B. The
range of F is B, so that (F,A,C) is a function when B ½ C. In these de�nitions, y is just an
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auxiliary letter (because it neither appears in A, B, T nor F). On the other hand, x may appear
in T, it does not appear in A, B, nor F.

If we have an object f : E ! E, and consider T Æf (x) then F ÆL A f . The second claim
of the criterion, namely F( x) ÆT, is just V(x,L A f ) Æf (x) (see Section 2.11). The function
(F,A,C) will be denoted by BL f A C, or L A;C f . The following lemmas are obvious from the
de�nitions of L A and L A;C.

Definition Lf f a b := triple a b (Lg a f).

Lemma lf_source f a b: source (Lf f a b) = a.
Lemma lf_target f a b: target (Lf f a b) = b.
Lemma lf_graph1 f a b c:

inc c (graph (Lc f a b)) -> c = J (P c) (f (P c)).
Lemma lf_graph2 f a b c:

inc c a -> inc (J c (f c)) (graph (Lf f a b)).
Lemma lf_graph3 f a b c:

inc c (graph (Lf f a b)) -> inc (P c) a.
Lemma lf_graph4 f a b c:

inc c (graph (Lf f a b)) -> f (P c) = (Q c).

The expression L A;B f is a function if f maps A into B. If x 2 A, the value at x is f (x).
By extensionality, if f is a function with source A, target B, and evaluation function Wf , then
L A;BWf Æf .

Definition lf_axiom f a b :=
forall c, inc c a -> inc (f c) b.

Lemma lf_function f a b:
lf_axiom f a b -> function (Lf f a b).

Lemma lf_V f a b c:
lf_axiom f a b -> inc c a -> Vf c (Lf f a b) = f c.

Lemma lf_recovers f:
function f -> Lf (Vf f)(source f)(target f) = f.

Lemma identity_Lf x: identity x = Lf id x x.
Lemma resrtriction_Lf f x: function f -> sub x (source f) ->
restriction f x = Lf (Vf f) x (target f).

We consider here an example of a function de�ned by a term, the �rst and second pro-
jection, denoted pr 1 and pr 2, on the range and target.

Definition first_proj g := Lf P g (domain g).
Definition second_proj g := Lf Q g (range g).

Lemma first_proj_V g: {inc g, Vf (first_proj g) =1 P}.
Lemma second_proj_V g: {inc g, Vf (second_proj g) =1 Q}.
Lemma first_proj_f g: function (first_proj g).
Lemma second_proj_f g: function (second_proj g).
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3.7 Composition of two functions. Inverse function

A

R
��

L (g±f )

**
L f

//B
L g

//

R
��

C

R
��

Set

g±f

44
f //Set

g //Set

(composition)

We say that f Æ(F,A,B) and g Æ(G,B,C) arecomposable if they are functions and if they
are composable as correspondences. Their graphs are composablef . Proposition 6 [2, p. 84]
says that the composition is a function. The evaluation function is the composition of the
evaluation functions. We have L (g ±f ) Æ(L g)±(L f ). In other words, the two de�nitions of
composition (for Bourbaki and C OQ functions) are really the same.

Definition composable g f :=
[/\ function g, function f, source g = target f].

Notation "f1 \coP f2" := (composable f1 f2) (at level 50).

Lemma composable_pr f g: g \coP f -> (graph g) \cfP (graph f).
Lemma compf_graph:

{when: composable, {morph graph: f g / f \co g >-> f \cf g}}.
(* g \coP f -> graph (g \co f) = (graph g) \cf (graph f) *)

Lemma compf_domg g f: g \coP f->
domain (graph (g \co f)) = domain (graph f).

Lemma compf_s f g: source (g \co f) = source f.
Lemma compf_t f g: target (g \co f) = target g.
Theorem compf_f g f: g \coP f -> function (g \co f).

Lemma compf_V g f x: g \coP f ->
inc x (source f) -> inc x (source f) -> Vf (g \co f) x = Vf g (Vf f x).

Lemma composable_acreate (a b c:Set) (f: a-> b)(g: b->c):
(acreate g) \coP (acreate f).

Lemma compose_acreate (a b c:Set) (g: b->c)(f: a-> b):
(acreate g) \co (acreate f) = acreate(g \o f).

Composition is associative, and identity is a unit. One could write the �rst lemma as
{when ??, associative compose} , but this is horrible.

Lemma compfA f g h: f \coP g -> g \coP h ->
f \co (g \co h) = (f \co g) \co h.

Lemma compg_id_l m:
function m -> (identity (target m)) \co m = m.

Lemma compf_id_r m:
function m -> m \co (identity (source m)) = m.

Corollary fcomp_identity_left E:
{when (fun x => function x /\ (target x) = E),
left_id (identity E) compose}.

We say that f is injective if it is a function such that f (x) Æf (y) implies x Æy. We say that
f is surjective if the range of its graph is the target. The phrase “ f is a mapping of A onto B” is
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sometimes used by Bourbaki as a shorthand of “ f is surjective, its source is A, and its target is
B”. We say that f is bijective if it satis�es both properties. We list here some trivial properties.
Note that two surjective functions with the same source and evaluation functions have the
same graph, thus the same target, thus are equal.

Definition injection f:=
function f /\ {inc source f &, injective (Vf f)}.

Definition surjection f :=
function f /\
(forall y, inc y (target f) -> exists2 x, inc x (source f) & Vf f x = y).

Definition bijection f :=
injection f /\ surjection f.

Lemma inj_function f: injection f -> function f.
Lemma surj_function f: surjection f-> function f.
Lemma bij_function f: bijection f-> function f.
Lemma bij_inj f: bijection f -> {inc source f &, injective (Vf f)}.
Lemma bij_surj f: bijection f ->

(forall y, inc y (target f) -> exists2 x, inc x (source f) & Vf f x = y).

Lemma injective_pr f y: injection f ->
singl_val (fun x => related (graph f) x y).

Lemma injective_pr3 f y: injection f ->
singl_val (fun x => inc (J x y) (graph f)).

Lemma injective_pr_bis f:
function f -> (forall y, singl_val (fun x => related (graph f) x y)) ->
injection f.

Lemma surjective_pr0 f: surjection f -> image_of_fun f = target f.
Lemma surjective_pr1 f: function f -> image_of_fun f = target f ->

surjection f.
Lemma surjective_pr f y:

surjection f -> inc y (target f) ->
exists2 x, inc x (source f) & related (graph f) x y .

Lemma surjective_pr5 f:
function f -> (forall y, inc y (target f) ->
exists2 x, inc x (source f) & related (graph f) x y) -> surjection f.

Lemma surjective_pr3 f:
surjection f -> range (graph f) = target f.

Lemma surjective_pr4 f:
function f-> range (graph f) = target f -> surjection f.

Lemma lf_injective f a b: lf_axiom f a b ->
(forall u v, inc u a-> inc v a -> f u = f v -> u = v) ->
injection (Lf f a b).

Lemma lf_surjective f a b: lf_axiom f a b ->
(forall y, inc y b -> exists2 x, inc x a & y = f x) ->
surjection (Lf f a b).

Lemma lf_bijective f a b: lf_axiom f a b ->
(forall u v, inc u a-> inc v a -> f u = f v -> u = v) ->
(forall y, inc y b -> exists2 x, inc x a & y = f x) ->
bijection (Lf f a b).

Lemma bijective_pr f y:
bijection f -> inc y (target f) ->
exists! x, (inc x (source f) /\ Lf f x = y).
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Lemma function_exten4 f g: source f = source g ->
surjection f -> surjection g -> {inc source f, f =1f g} ->
f = g.

Let's consider the case of C OQ functions. Assume f : A ! B surjective. Whenever b : B,
there is a : A such that f (a) Æb. The axiom of choice gives a function g, such that f (g(b)) Æb.
It is called a “right inverse” of f . If f is moreover injective, we get g( f (a)) Æa, and g is the
inverse of f . In particular, our de�nition of bijective agrees with that of C OQ.

Definition injectiveC (a b:Set) (f:a->b) := forall u v, f u = f v -> u =v.
Definition surjectiveC (a b:Set) (f:a->b) := forall u, exists v, f v = u.
Definition bijectiveC (a b:Set) (f:a->b) := injectiveC f /\ surjectiveC f.
Definition right_inverseC (a b:Set) (f: a->b) (H:surjectiveC f) (v:b) :=

(chooseT (fun k:a => f k = v)
match H v with | ex_intro x _ => inhabits x end).

Definition inverseC (a b:Set) (f: a->b) (H:bijectiveC f)
:= right_inverseC (proj2 H).

Lemma bijectiveC_pr (a b:Set) (f:a->b) (y:b):
bijectiveC f -> exists! x:a, f x = y.

Lemma composeC_inj (a b c:Set) (f:a->b)(f':b->c):
injectiveC f-> injectiveC f' -> injectiveC (f' \o f).

Lemma composeC_surj (a b c:Set) (f:a->b)(f':b->c):
surjectiveC f-> surjectiveC f' -> surjectiveC (f' \o f).

Lemma composeC_bij (a b c:Set) (f:a->b)(f':b->c):
bijectiveC f-> bijectiveC f' -> bijectiveC (f' \o f).

Lemma identityC_fb (x: Set): bijectiveC (@id x).

Section InverseProps.
Variables (A B: Set) (f: A -> B).
Hypothesis (H:bijectiveC f).

Lemma inverseC_prb (x: B): f ((inverseC H) x) = x.
Lemma inverseC_pra (x: A): (inverseC H) (f x) = x.
Lemma bij_left_inverseC: (inverseC H) \o f =1 @id A.
Lemma bij_right_inverseC: f \o (inverseC H) =1 @id B.
Lemma bijective_inverseC: bijectiveC (inverseC H).
End InverseProps.

Lemma bijection_coq (a b: Set) (f:a->b):
bijective f <-> bijectiveC f.

Lemma inverse_fun_involutiveC (a b:Set) (f:a->b) (H: bijectiveC f):
f =1 inverseC(bijective_inverseC H).

The acreate/bcreate mappings are morphisms for the notion of injectivity, surjectivity
and bijectivity.

Lemma bcreate_fi f a b
(H:function f)(Ha:source f = a)(Hb:target f = b):
injection f -> injectiveC (bcreate H Ha Hb).

Lemma bcreate_fs f a b
(H:function f)(Ha:source f = a)(Hb:target f = b):
surjection f -> surjectiveC (bcreate H Ha Hb).

Lemma bcreate_fb f a b
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(H:function f)(Ha:source f = a)(Hb:target f = b):
bijection f -> bijectiveC (bcreate H Ha Hb).

Lemma bcreate1_fi f (H:function f),
injection f -> injectiveC (bcreate1 H).

Lemma bcreate1_fs f (H:function f):
surjection f -> surjectiveC (bcreate1 H).

Lemma bcreate1_fb f (H:function f):
bijection f -> bijectiveC (bcreate1 H).

Lemma acreate_fi (a b:Set) (f:a->b):
injectiveC f -> injective (acreate f).

Lemma acreate_fs (a b:Set) (f:a->b):
surjectiveC f -> surjective (acreate f).

Lemma acreate_fb (a b:Set) (f:a->b):
bijectiveC f -> bijective (acreate f).

We say that two sets are equipotent if there is a bijection between them. Which de�nition
of bijection used is irrelevant. Note that Bourbaki uses a pre�x notation Eq(X,Y), while we use
here an in�x notation X \Eq Y. This is an equivalence relation, since identity is a bijection,
composition of two bijections is a bijection and the inverse of a bijection is a bijection.

Definition bijection_prop f s t :=
[/\ bijection f, source f = s & target f = t].

Definition surjection_prop f x y:=
[/\ surjection f, source f = x & target f = y].

Definition injection_prop f x y:=
[/\ injection f, source f = x & target f = y].

Definition equipotent x y :=
Notation "x \Eq y" := (equipotent x y) (at level 50).

Lemma equipotent_aux f a b:
bijection (Lf f a b) -> a \Eq b.

Lemma equipotentC x y: x \Eq y <-> exists f:x->y, bijectiveC f.
Lemma equipotent_aux f a b:

bijection (Lf f a b) -> a \Eq b.
Lemma equipotentR: reflexive_r equipotent.
Lemma equipotentT: transitive_r equipotent.
Lemma equipotentS: symmetric_r equipotent.

The identity function is bijective; the restriction of a function f to X and Y is injective if
f is injective; it is surjective if for instance X is the source and Y the range. It is surjective if
Y Æf (X).

Lemma identity_fb x: bijection (identity x).
Lemma restriction2_fi f x y:

injection f -> restriction2_axioms f x y
-> injection (restriction2 f x y).

Lemma restriction2_fs f x y:
restriction2_axioms f x y ->
source f = x -> image_of_fun f = y ->
surjection (restriction2 f x y).

Lemma restriction1_fs f x:
function f -> sub x (source f) ->
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surjection (restriction1 f x).
Lemma restriction1_fb f x:

injection f -> sub x (source f) ->
bijection (restriction1 f x).

We deduce: if f is injective, its source is equipotent to its range.

Definition restriction_to_image f :=
restriction2 f (source f) (image_of_fun f).

Lemma restriction_to_imageE f: function f ->
restriction_to_image f = restriction1 f (source f).

Lemma restriction_to_image_axioms f: function f ->
restriction2_axioms f (source f) (image_of_fun f).

Lemma restriction_to_image_fs f: function f ->
surjection (restriction_to_image f).

Lemma restriction_to_image_fb f: injection f ->
bijection (restriction_to_image f).

Lemma iim_fun_r f (h:=restriction_to_image f): function f ->
forall a, image_by_fun f a = inv_image_by_fun (inverse_fun h) a.

Lemma equipotent_restriction1 f x:
sub x (source f) -> injection f ->
x \Eq (image_by_fun f x).

Lemma equipotent_range f: injection f ->
(source f) \Eq (range (graph f)).

¶ Given a correspondence f and a pair ( x, y), we can extend f as f 0 by imposing f 0(x) Æy;
this is a correspondence, it is a function if x is not in the source of f . This extension is unique
if we merely add x to the source, y to the target and ( x, y) to the graph. The extension is a
surjective function if f is surjective.

Definition extension f x y:=
triple ((source f) +s1 x) ((target f) +s1 y) ((graph f) +s1 (J x y)).

Lemma extension_injective x f g a b:
domain f = domain g -> ~ (inc x (domain f)) ->
(f +s1 (J x a) = g +s1 (J x b)) -> f = g.

Lemma restr_setU1 f x a:
fgraph f -> ~ (inc x (domain f)) ->
restr (f +s1 (J x a)) (domain f) = f.

Lemma setU1_restr f x E:
fgraph f -> ~ (inc x E) -> domain f = E +s1 x->
(restr f E) +s1 (J x (Vg f x)) = f.

Section Extension.
Variables (f x y: Set).
Hypothesis (ff: function f) (xsf: ~ (inc x (source f))).

Lemma extension_f: function (extension f x y).
Lemma extension_Vf_in: {inc (source f), (extension f x y) =1f f}.
Lemma extension_Vf_out: Vf (extension f x y) x = y.
Lemma extension_fs: surjection f -> surjection (extension f x y).
Lemma extension_restr:

restriction2 (extension f x y) (source f) (target f) = f.
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End Extension.

Lemma extension_f_injective x f g a b:
function f -> function g -> target f = target g ->
source f = source g -> ~ (inc x (source f)) ->
(tack_on_f f x a = tack_on_f g x b) -> f = g.

¶ The canonical injection of A into B is the identity of B restricted to A. In other terms, if A ½B
it is the function with source A, target B, whose evaluation function is x 7! x. It is injective
with range A. Its C OQ equivalent has been introduced page 54.

Definition canonical_injection a b :=
triple a b (identity_g a).

Lemma canonical_injection_p1 a b (H:sub a b):
(canonical_injection a b) = acreate (inclusionC H).

Lemma inclusionC_fi a b (H: sub a b): injectiveC (inclusionC H).
Lemma ci_fi a b: sub a b -> injection (canonical_injection a b).
Lemma ci_f a b: sub a b -> function (canonical_injection a b).
Lemma ci_V a b x:

sub a b -> inc x a -> Vf (canonical_injection a b) x = x.
Lemma ci_range a b: sub a b ->

range (graph (canonical_injection a b)) = a.

A constant function h can be written as h Æg ± f where the image of f is a singleton and
f is surjective surjective (let x be in the source of h, y Æh(x), so that E Æ{y} is the image of
h; let g be the canonical injection of E into the target of h, and f the constant function with
value y).

Lemma constant_function_pr2 x h:
inc x (source h) -> constantfp h ->
exists g f,
[/\ g \coP f, h = g \co f, surjection f & singletonp (target f)].

Lemma constant_function_pr3 (a:Set) (h:a->Set) (x:a):
qconstantp h ->
exists f: a -> singleton (Ro x),
exists g:singleton (Ro x) -> Set,

(forall u:a, h u = g (f u)) /\ (g (Bo (set1_1 (Ro x))) = h x).

¶ The diagonal application is the function from X to X £ X that maps x to (x,x). It is an
injection into the diagonal of X.

Definition diagonal_application a :=
Lf (fun x=> J x x) a (coarse a).

Lemma diag_app_f a: function (diagonal_application a).
Lemma diag_app_fi a: injection (diagonal_application a).
Lemma diag_app_V a x:

inc x a -> Vf (diagonal_application a) x = J x x.
Lemma diag_app_r a:

range (graph (diagonal_application a)) = diagonal a.

¶ Both projections pr 1 and pr 2 are surjective by construction. The �rst projection on G is
injective if only if G is a functional graph.
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Lemma second_proj_fs g: surjection (second_proj g).
Lemma first_proj_fs g: surjection (first_proj g).
Lemma first_proj_fi g:

sgraph g -> (injection (first_proj g) <-> functional_graph g).

¶ If G is a graph, the map ( x, y) 7! (y,x) is a bijection G ! G¡ 1. It follows that A £ B and B £ A
are equipotent. The three sets A, A £ {b} and {b} £ A are equipotent.

Lemma inv_graph_canon_fb g: sgraph g ->
bijection ( Lf (fun x=> J (Q x) (P x)) g (inverse_graph g)).

Lemma equipotent_product_sym a b:
(a \times b) \Eq (b \times a).

Lemma equipotent_indexed a b: a \Eq (a *s1 b).
Lemma equipotent_rindexed a b: a \Eq (indexedr b a).
Lemma equipotent_source_graph f: function f ->

(graph f) \Eq (source f).

Proposition 7 [2, p. 85] states that if f is a bijection, then the inverse correspondence f ¡ 1

is a function. It also says that if f and f ¡ 1 are functions then f is a bijection.

Theorem bijective_inv_f f:
bijection f -> function (inverse_fun f).

Theorem inv_function_fb f:
function f -> function (inverse_fun f) -> bijection f.

The case of COQ functions is a bit more tricky: if f : A ! B is a function, its inverse is
f ¡ 1 ÆM B;A((L f )¡ 1). However M can be used only if some conditions hold (in particular, if
B is non-empty, the set A has to be non-empty too). For this reason, we consider the inverse
of f only when f is bijective.

Lemma inverseC_prc (a b:Set) (f:a-> b) (H:bijectiveC f):
inverse_fun(acreate f) = acreate(inverseC H).

If a function has a left and right inverse, the function is bijective, and its inverse is equal
to these inverses. In fact, if f (g(x)) Æx for all x, then f is surjective, since every x is the image
of g(x). If g0( f (y)) Æy, applying g0to f (y) Æf (y0) gives y Æy0, hence proves injectivity. Now,
g0( f (g(x))) Æg0(x) Æg(x), this shows that g Æg0. We have g0(x) Æf ¡ 1(x), since x Æf (g(x)),
and, by de�nition, the RHS is g(x). We have already seen that the LHS is this quantity.

We deduce from this that the inverse function of a bijection is a bijection.

Lemma bijective_double_inverseC (a b:Set) (f:a->b) g g':
g \o f =1 @id a -> f \o g' =1 @id b ->
bijectiveC f.

Lemma bijective_double_inverseC1 (a b:Set) (f:a->b) g g'
(Ha: g \o f =1 @id a)(Hb: f \o g' =1 @id b):
g =1 inverseC (bijective_double_inverseC Ha Hb)
/\ g' =1 inverseC (bijective_double_inverseC Ha Hb).

If f is a bijective, then f ¡ 1 is also a bijective. The composition in any order is the identity
function. The proofs of these three lemmas are similar: let g ÆM a;b f ; then f ÆL g, f ¡ 1 Æ
L (g¡ 1), f ± f ¡ 1 ÆL (g ±g¡ 1).
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Lemma acreate_exten (a b: Set) (f g: a-> b):
f =1 g -> acreate f = acreate g.

Lemma ifun_involutive: {when function, involutive inverse_fun}.

Lemma inverse_bij_fb f:
bijection f -> bijection (inverse_fun f).

Lemma composable_f_inv f:
bijection f -> f \coP (inverse_fun f).

Lemma composable_inv_f f:
bijection f -> (inverse_fun f) \coP f.

Lemma bij_right_inverse f:
bijection f -> f \co (inverse_fun f) = identity (target f).

Lemma bij_left_inverse f:
bijection f -> (inverse_fun f) \co f = identity (source f).

Lemma compf_lK f g : bijection g -> g \coP f ->
(inverse_fun g) \co (g \co f) = f.

Lemma compf_rK f g : bijection g -> f \coP g ->
(f \co g) \co (inverse_fun g) = f.

Lemma compf_regr f f' g : bijection g ->
g \coP f -> g \coP f' -> g \co f = g \co f' -> f = f'.

Lemma compf_regl f f' g : bijection g ->
f \coP g -> f' \coP g -> f \co g = f' \co g -> f = f'.

Lemma inverse_V f x:
bijection f -> inc x (target f) ->
Vf f (Vf (inverse_fun f) x) = x.

Lemma inverse_V2 f y:
bijection f -> inc y (source f) ->
Vf (inverse_fun f) (Vf f y) = y.

Lemma inverse_Vis f x:
bijection f -> inc x (target f) -> inc (Vf (inverse_fun f) x) (source f).

We apply the results of C OQ functions to Bourbaki functions. Note that Bourbaki shows
that the inverse h Æf ¡ 1 is a bijection by noting that its inverse is f , hence is a function and
Proposition 7 [2, p. 85] applies. The relation x ÆWf y is equivalent to y ÆWf ¡ 1x if either x is
in the target of f or y in the source.

Lemma bijective_inv_aux a b (f:a->b):
bijectiveC f -> function (inverse_fun (acreate f)).

Lemma bijective_source_aux a b (f:a->b):
source (inverse_fun (acreate f)) = b.

Lemma bijective_target_aux a b (f:a->b):
target (inverse_fun (acreate f)) = a.

Let f be a function from A to B. We have shown before that x ½ f ¡ 1hf hxii if x ½A (this is
true for any correspondence). Equality holds if f is injective. We have f hf ¡ 1hyii ½ y if y ½B.
Equality holds if f is surjective.

Lemma sub_inv_im_source f y:
function f -> sub y (target f) ->
sub (inv_image_by_fun f y) (source f).

Lemma nonempty_image f x:
function f -> nonempty x -> sub x (source f) ->
nonempty (image_by_fun f x).

Lemma direct_inv_im f y:
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function f -> sub y (target f) ->
sub (image_by_fun f (image_by_fun (inverse_fun f) y)) y.

Lemma direct_inv_im_surjective f y:
surjection f -> sub y (target f) ->
(image_by_fun f (image_by_fun (inverse_fun f) y)) = y.

Lemma inverse_direct_image f x:
function f -> sub x (source f) ->
sub x (image_by_fun (inverse_fun f) (image_by_fun f x)).

Lemma inverse_direct_image_inj f x:
injection f -> sub x (source f) ->
x = (image_by_fun (inverse_fun f) (image_by_fun f x)).

3.8 Retractions and sections

A

IA

66
f //B

r //A B

IB

66
s //A

f //B (retraction/section)

A retraction r of f is a right inverse; a section s is a left inverse. This means that r ± f and
f ±s are the identity functions. Assume f is a function from A to B. The de�nition of r implies
the existence of r ±f , i.e. the source of r is B. A consequence is that the target is A. In the same
way, the de�nition of s implies the existence of f ±s, i.e. the target of s is A. A consequence
is that the source is B. In the case of C OQ functions, if f has type a ! b, its inverse r or s has
type b ! a (there is a unique type for r compatible with the relation r ± f ÆIA).

Definition is_left_inverse f r :=
r \coP f /\ r \co f = identity (source f).

Definition is_right_inverse f s :=
f \coP s /\ f \co s = identity (target f).

Definition is_left_inverseC (a b:Set) (f:a->b) r:= r \o f =1 @id a.
Definition is_right_inverseC (a b:Set) (f:a->b) s:= f \o s =1 @id b.

Lemma left_i_target f r: is_left_inverse f r -> target r = source f.
Lemma left_i_source f r: is_left_inverse f r -> source r = target f.
Lemma right_i_source f s: is_right_inverse f s -> source s = target f.
Lemma right_i_target f s: is_right_inverse f s -> target s = source f.

Lemma right_i_V f s x:
is_right_inverse f s -> inc x (target f) -> Vf f (Vf s x) = x.

Lemma left_i_V f r x:
is_left_inverse f r -> inc x (source f) -> Vf r (Vf f x) = x.

Lemma right_i_v (a b:Set) (f:a->b) s (x:b):
is_right_inverseC f s -> f (s x) = x.

Lemma left_i_v (a b:Set) (f:a->b) r (x:a):
is_left_inverseC f r -> r (f x) = x.

Proposition 8 [2, p. 86] expresses the next four theorems. Assume that f is a function from
A to B. If for some function s, f ±s ÆIB then f is surjective; if for some function r , r ± f ÆIA
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then f is injective. The converse holds; one has to take care that if A Æ ; , every function is
injective, and there is in general no function from B to A (unless B is empty). Hence for the
retraction r to exist, we assume A 6Æ ;. We start with the easy case.

Lemma inj_if_exists_left_invC (a b:Set) (f:a-> b):
(exists r, is_left_inverseC f r) -> injectiveC f.

Lemma surj_if_exists_right_invC (a b:Set) (f:a->b):
(exists s, is_right_inverseC f s) -> surjectiveC f.

Theorem inj_if_exists_left_inv f:
(exists r, is_left_inverse f r) -> injection f.

Theorem surj_if_exists_right_inv f:
(exists s, is_right_inverse f s) -> surjection f.

¶ Consider a function f : a ! b. For x : b we consider “ f (y) Æx or x is not in the image
of f ”, and apply the axiom of choice to select an element y, call it g(x). If x Æf (z), such a y
exists, hence f (g( f (z))) Æf (z). If f is injective, we have g( f (z)) Æz, and g is a left inverse of
f . In the second case, y exists also as we assumea non-empty.

Definition left_inverseC (a b:Set) (f: a->b)(H:inhabited a)
(v:b) := (chooseT (fun u:a => (~ (exists x:a, f x = v)) \/ (f u = v)) H).

Lemma left_inverseC_pr (a b:Set) (f: a->b) (H:inhabited a) (u:a):
f(left_inverseC f H (f u)) = f u.

Lemma left_inverse_comp_id (a b:Set) (f:a->b) (H:inhabited a):
injectiveC f -> (left_inverseC f H) \o f =1 @id a.

Lemma exists_left_inv_from_injC (a b:Set) (f:a->b): inhabited a ->
injectiveC f -> exists r, is_left_inverseC r f.

Definition right_inverseC (a b:Set) (f: a->b) (H:surjectiveC f) (v:b) :=
(chooseT (fun k:a => f k = v)

match H v with | ex_intro x _ => inhabits x end).
Lemma right_inverse_pr (a b:Set) (f: a->b) (H:surjectiveC f) (x:b):

f(right_inverseC H x) = x.
Lemma right_inverse_pr (a b:Set) (f: a->b) (H:surjectiveC f) (x:b):

f(right_inverseC H x) = x.
Lemma right_inverse_comp_id (a b:Set) (f:a-> b) (H:surjectiveC f):

f \o (right_inverseC H) =1 @id b.
Lemma exists_right_inv_from_surjC (a b:Set) (f:a-> b)(H:surjectiveC f):

exists s, is_right_inverseC f s.

Bourbaki shows existence of a left inverse of the function f : A ! B by considering the
subset of B £ A formed of all pairs ( x, y) such that y 2 A and y Æf (x) or y Æe and x 2 B\ f hAi ,
where e 2 A (such an element exists when A is nonempty). This set is a functional graph, and
the function with this graph is an answer to the question.

Theorem exists_left_inv_from_inj f:
injection f -> nonempty (source f) -> exists r, is_left_inverse f r.

Theorem exists_right_inv_from_surj f:
surjection f -> exists s, is_right_inverse f s.

¶ Some consequences. If r is a left inverse of f , then f is a right inverse of r , and vice versa.
A left inverse is surjective, a right inverse is injective. If g is both a left inverse and a right
inverse of f , then g is bijective as well as f .
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Lemma bijective_from_compose g f:
g \coP f -> f \coP g -> g \co f = identity (source f)

-> f \co g = identity (source g)
-> [/\ bijection f, bijection g & g = inverse_fun f].

Lemma right_inverse_from_leftC (a b:Set) (r:b->a)(f:a->b):
is_left_inverseC f r -> is_right_inverseC r f.

Lemma left_inverse_from_rightC (a b:Set) (s:b->a)(f:a->b):
is_right_inverseC f s -> is_left_inverseC s f.

Lemma left_inverse_surjectiveC (a b:Set) (r:b->a)(f:a->b):
is_left_inverseC f r -> surjectiveC r.

Lemma right_inverse_injectiveC (a b:Set) (s:b->a)(f:a->b):
is_right_inverseC f s -> injectiveC s.

Lemma section_uniqueC (a b:Set) (f:a->b)(s:b->a)(s':b->a):
is_right_inverseC f s -> is_right_inverseC f s' ->
(forall x:a, (exists u:b, x = s u) = (exists u':b, x = s' u')) ->
s =1 s'.

Lemma right_inverse_from_left f r:
is_left_inverse f r -> is_right_inverse r f.

Lemma left_inverse_from_right s f:
is_right_inverse f s -> is_left_inverse s f.

Lemma left_inverse_fs f r:
is_left_inverse f r -> surjection r.

Lemma right_inverse_fi f s:
is_right_inverse f s -> injection s.

Lemma section_unique f:
{when (is_right_inverse f) &, injective (fun s => range (graph s)) }.

Theorem 1 in Bourbaki [2, p. 87] comes next. We assume that f and f 0are two compos-
able functions and f 00Æf 0± f . If f and f 0are injective so is f 00, if f and f 0are surjective, so
is f 00. Hence, if f and f 0are bijections, so is f 00. If f and f 0have a left inverse, so has f 00(it is
the composition of the inverses in reverse order). The same holds for right inverses.

If f 00has a left inverse r 00then r 00± f 0 is a right inverse of f , and f ±r 00is a left inverse of
f 0provided that f is surjective (in which case f is invertible). If f 00has a right inverse s00then
f ±s00is a right inverse of f 0 and s00± f 0 is a left inverse of f , provided that f 0 is injective, in
which case f 0 is a bijection.

If f 00is injective then f is injective, and for f 0to be injective it suf�ces that f is surjective;
if f 00is surjective then f 0 is surjective; and for f to be surjective it suf�ces that f 0 is injective.

Lemma left_inverse_composeC (a b c:Set)
(f:a->b) (f':b->c)(r:b->a)(r':c->b):
is_left_inverseC f' r' -> is_left_inverseC f r ->
is_left_inverseC (f' \o f) (r \o r').

Lemma right_inverse_composeC (a b c:Set)
(f:a->b) (f':b->c)(s:b->a)(s':c->b):
is_right_inverseC f' s' -> is_right_inverseC f s ->
is_right_inverseC (f' \o f) (s \o s') .

Lemma inj_right_composeC (a b c:Set) (f:a->b) (f':b->c):
injectiveC (f' \o f) -> injectiveC f.

Lemma surj_left_compose (a b c:Set) (f:a->b) (f':b->c):
surjectiveC (f' \o f) -> surjectiveC f'.

Lemma surj_left_compose2C (a b c:Set) (f:a->b) (f':b->c):
surjectiveC (f' \o f) -> injectiveC f' -> surjectiveC f.
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Lemma inj_left_compose2C (a b c :Set)(f:a->b) (f':b->c):
injectiveC (f' \o f) -> surjectiveC f -> injectiveC f'.

Lemma left_inv_compose_rfC (a b c:Set) (f:a->b) (f':b->c)(r'': c->a):
is_left_inverseC (f' \o f) r'' ->
is_left_inverseC f (r'' \o f').

Lemma right_inv_compose_rfC (a b c:Set) (f:a->b) (f':b->c)(s'': c->a):
is_right_inverseC (f' \o f) s'' ->
is_right_inverseC f' (f \o s'').

Lemma left_inv_compose_rf2C (a b c:Set) (f:a->b) (f':b->c)(r'': c->a):
is_left_inverseC (f' \o f) r'' -> surjectiveC f ->
is_left_inverseC f' (f \o r'').

Lemma right_inv_compose_rf2C (a b c:Set) (f:a->b) (f':b->c)(s'': c->a):
is_right_inverseC (f' \o f) s'' -> injectiveC f'->
is_right_inverseC f (s'' \o f').

Now the same results, in Bourbaki notations.

Theorem compose_fi f f':
injection f -> injection f' -> f' \coP f -> injection (f' \co f).

Lemma inj_compose1 f f':
injection f -> injection f' -> source f' = target f -> injection (f'\co f).

Theorem compose_fs f f':
surjection f -> surjection f' -> f' \coP f -> surjection (f' \co f).

Lemma compose_fb f f':
bijection f -> bijection f' -> f' \coP f -> bijection (f' \co f).

Lemma left_inverse_composable f f' r r': f' \coP f ->
is_left_inverse f' r' -> is_left_inverse f r -> r \coP r'.

Lemma right_inverse_composable f f' s s': f' \coP f ->
is_right_inverse f' s' -> is_right_inverse f s -> s \coP s'.

Theorem left_inverse_compose f f' r r': f' \coP f ->
is_left_inverse f' r' -> is_left_inverse f r ->
is_left_inverse (f' \co f) (r \co r').

Theorem right_inverse_compose f f' s s': f' \coP f ->
is_right_inverse f' s' -> is_right_inverse f s ->
is_right_inverse (f' \co f) (s \co s').

Theorem right_compose_fi f f':
f' \coP f -> injection (f' \co f) -> injection f.

Theorem left_compose_fs f f':
f' \coP f -> surjection (f' \co f) -> surjection f'.

Theorem left_inv_compose_rf f f' r'':
f' \coP f -> is_left_inverse (f' \co f) r'' ->
is_left_inverse f (r'' \co f').

Theorem right_inv_compose_rf f f' s'':
f' \coP f -> is_right_inverse (f' \co f) s'' ->
is_right_inverse f' (f \co s'').

Theorem left_compose_fs2 f f':
f' \coP f-> surjection (f' \co f) -> injection f' -> surjection f.

Theorem left_compose_fi2 f f':
f' \coP f -> injection (f' \co f) -> surjection f -> injection f'.

Theorem left_inv_compose_rf2 f f' r'':
f' \coP f -> is_left_inverse (f' \co f) r'' -> surjection f ->
is_left_inverse f' (f \co r'').

Theorem right_inv_compose_rf2 f f' s'':
f' \coP f -> is_right_inverse (f' \co f) s'' -> injection f'->
is_right_inverse f (s'' \co f').

If f ±g is a bijection, one of f or g is a bijection, so is the other.
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Lemma right_compose_fb f f':
f' \coP f -> bijection (f' \co f) -> bijection f' -> bijection f.

Lemma left_compose_fb f f':
f' \coP f -> bijection (f' \co f) -> bijection f -> bijection f'.

E

g
��

f

��

E

r
��

F
h

//

s

RR

G G

f
??

h
//F

g

RR (decomposition, Prop 9)

Proposition 9 [2, p. 88] is implemented in the next lemmas. If f and g have the same
source and if g is surjective, then the condition g(x) Æg(y) Æ) f (x) Æf (y) is a necessary
and suf�cient condition for the existence of h with f Æh ±g. Such a mapping is then unique
and is f ±s, for any right inverse of g.

Lemma exists_left_composableC (a b c:Set) (f:a->b)(g:a->c):
surjectiveC g ->
((exists h, h \o g =1 f) <->
(forall (x y:a), g x = g y -> f x = f y)).

Theorem exists_left_composable f g:
function f -> surjection g -> source f = source g ->
((exists h:E, h \coP g /\ h \co g = f) <->
(forall (x y:E), inc x (source g) -> inc y (source g) ->

Vf g x = Vf g y -> Vf f x = Vf f y)).

Lemma exists_left_composable_auxC (a b c:Set) (f:a->b) (g:a-> c) s h:
is_right_inverseC g s ->
h \o g =1 f -> h =1 f \o s.

Theorem exists_left_composable_aux f g s h:
function f -> source f = source g ->
is_right_inverse g s -> h \coP g ->
h \co g = f -> h = f \co s.

Lemma exists_unique_left_composableC (a b c:Set) (f:a->b)(g:a->c) h h':
surjectiveC g -> h \o g =1 f -> h' \o g =1 f ->
h =1 h'.

Theorem exists_unique_left_composable f g h h':
function f -> surjection g -> source f = source g ->
h \coP g -> h' \coP g ->
h \co g = f -> h' \co g = f -> h = h'.

Lemma left_composable_valueC (a b c:Set) (f:a->b)(g:a->c) s h:
surjectiveC g -> (forall (x y:a), g x = g y -> f x = f y) ->
is_right_inverseC g s -> h =1 f \o s ->
h \o g =1 f.

Theorem left_composable_value f g s h:
function f -> surjection g -> source f = source g ->
(forall x y, inc x (source g) -> inc y (source g) ->

Vf g x = Vf g y -> Vf f x = Vf f y) ->
is_right_inverse g s -> h = f \co s -> h \co g = f.

Second part of Proposition 9. We assume that f and g have the same target, g is injective;
the condition range( f ) ½range(g) is a necessary and suf�cient condition for the existence of
h with f Æg ±h, such a mapping is then unique and is r ± f , for any left inverse of g.

RR n° 6999



72 José Grimm

Lemma exists_right_composable_auxC (a b c:Set) (f:a->b) (g:c->b) h r:
is_left_inverseC g r -> g \o h =1 f

-> h =1 r \o f.
Theorem exists_right_composable_aux f g h r:

function f -> target f = target g ->
is_left_inverse g r -> g \coP h -> g \co h = f
-> h = r \co f.

Lemma exists_right_composable_uniqueC (a b c:Set) (f:a->b)(g:c->b) h h':
injectiveC g -> g \o h =1 f -> g \o h' =1 f -> h =1 h'.

Theorem exists_right_composable_unique f g h h':
function f -> injection g -> target f = target g ->
g \coP h -> g \coP h' ->
g \co h = f -> g \co h' = f -> h = h'.

Lemma exists_right_composableC (a b c:Set) (f:a->b) (g:c->b):
injectiveC g ->
((exists h, g \o h =1 f) <-> (forall u, exists v, g v = f u)).

Theorem exists_right_composable f g:
function f -> injection g -> target f = target g ->
((exists h, g \coP h /\ g \co h = f) <->
(sub (range (graph f)) (range (graph g)))).

Lemma right_composable_valueC (a b c:Set) (f:a->b) (g:c->b) r h:
injectiveC g -> is_left_inverseC r g -> (forall u, exists v, g v = f u) ->
h =1 r \o f -> g \o h =1 f.

Theorem right_composable_value f g r h:
function f -> injection g -> target g = target f ->
is_left_inverse g r ->
(sub (range (graph f)) (range (graph g))) ->
h = r \co f -> g \co = f.

3.9 Functions of two arguments

For Bourbaki, a function of two arguments is a function f whose domain is a set of pairs.
Let D be its domain, and assume D ½ A£ B. If z 2 D, there exist x 2 A and y 2 B such that
z Æ(x, y). Instead of f ((x, y)), one writes f (x, y). For any y, we may consider the set A y of
all x 2 A, such that ( x, y) 2 D, and the mapping x 7! f ((x, y)) with source A y , that has the
same target as f . This is called the partial mapping de�ned by f , with respect to the value
y of the second argument. It is sometimes denoted f y of f (¢, y). Similarly, fx is de�ned by
fx (y) Æf ((x, y)) (whenever ( x, y) 2 D).

In a future chapter, we shall de�ne the set of functions X ! Y and denote it by F (X;Y).
We shall show that F (A £ B,C) is canonically isomorphic to F (A,F (B;C)); in COQ, the two
types A£ B ! C and A ! (B ! C) are also isomorphic. In this section, we just assume that the
source of f is a subset of a product (so that A y may depend on y).

Definition partial_fun2 f y :=
Lf(fun x=> Vf f (J x y)) (im_of_singleton(inverse_graph (source f)) y)
(target f).

Definition partial_fun1 f x :=
Lf(fun y=> Vf f (J x y))(im_of_singleton (source f) x) (target f).

Section Funtion_two_args.
Variable f:Set.
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Hypothesis ff: function f.
Hypothesis sgf: sgraph (source f).

Lemma partial_fun1_axioms x:
lf_axiom (fun y=> Vf f (J x y))(im_of_singleton (source f) x) (target f).

Lemma partial_fun1_f f x: function (partial_fun1 f x).
Lemma partial_fun1_V x y:

inc (J x y) (source f) -> Vf (partial_fun1 f x) y = Vf f (J x y).
Lemma artial_fun2_axioms y:
lf_axiom (fun x=> Vf f (J x y))(im_of_singleton(inverse_graph (source f)) y)
(target f).

Lemma partial_fun2_f y:
function (partial_fun2 f y).

Lemma partial_fun2_V x y:
inc (J x y) (source f) -> Vf (partial_fun2 f y) x = Vf f (J x y).

End Funtion_two_args.

An example of function of two arguments is the function obtained from two functions u
and v by associating to ( x, y) the pair ( u(x), v(y)).

Definition ext_to_prod u v :=
Lf(fun z=> J (Vf (P z))(Vf v (Q z)))
((source u) \times (source v))
((target u)\times (target v)).

Section Ext_to_prod.
Variables u v: Set.
Hypothesis (fu: function u) (fv: function v).

Lemma ext_to_prod_f: function (ext_to_prod u v).
Lemma ext_to_prod_s: source (ext_to_prod u v) = source u \times source v.
Lemma ext_to_prod_V a b:

inc a (source u) -> inc b (source v)->
Vf (ext_to_prod u v) (J a b) = J (Vf u a) (Vf v b).

Lemma ext_to_prod_V2 u v c:
inc c ((source u) \times (source v)) ->
Vf (ext_to_prod u v) c = J (Vf u (P c)) (Vf v (Q c)).

Lemma ext_to_prod_r u v:
range (graph (ext_to_prod u v)) =

(range (graph u)) \times (range (graph v)).
End Ext_to_prod.

a

u
��

a £ b
pr1Coo pr2C //

u£ v
��

b

v
��

a0
J

//a0£ b0 b0
J

oo

(prod extension)

We can consider the product of two C OQ functions. We �rst de�ne the projections from
a £ b to a and b and the inverse function. In the diagram above, this inverse function corre-
sponds to the two arrows named J. In other words, if z is the pair ( x, y), we have P(z) Æx and
Q(z) Æy. To say that J is the inverse means that J applied to x and y gives z. This function
takes two arguments (its type is Set ! Set ! Set) but is not a function of two arguments (its
type is not Set £ Set ! Set).
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Lemma ext_to_prod_propP: forall a a' (x: a \times a'), inc (P (Ro x)) a.
Lemma ext_to_prod_propQ: forall a a' (x: a \times a'), inc (Q (Ro x)) a'.
Lemma ext_to_prod_propJ: forall (b b':Set) (x:b)(x':b'),

inc (J (Ro x)(Ro x')) (b \times b').

Definition pr1C a b:= fun x:a \times b => Bo(ext_to_prod_propP x).
Definition pr2C a b:= fun x:a \times b => Bo(ext_to_prod_propQ x).
Definition pairC a b:= fun (x:a)(y:b) => Bo(ext_to_prod_propJ x y).

Definition ext_to_prodC (a b a' b':Set) (u:a->a')(v:b->b') :=
fun x => pairC (u (pr1C x)) (v (pr2C x)).

Lemma prC_prop(a b:Set) (x: a \times b):
Ro x = J (Ro (pr1C x)) (Ro (pr2C x)).

Lemma pr1C_prop (a b:Set) (x:a \times b): Ro (pr1C x) = P (Ro x).
Lemma pr2C_prop (a b:Set) (x: a \times b): Ro (pr2C x) = Q (Ro x).
Lemma prJ_prop (a b:Set) (x:a)(y:b): Ro(pairC x y) = J (Ro x) (Ro y).
Lemma prJ_recov (a b:Set) (x:a \times b): pairC (pr1C x) (pr2C x) = x.
Lemma ext_to_prod_prop:

(a b a' b':Set) (u:a->a')(v:b->b') (x:a)(x':b):
J(Ro (u x)) (Ro (v x')) = Ro(ext_to_prodC u v (pairC x x')).

If both functions are injective, surjective or bijective, so is the product. The inverse is the
product of the inverses. It is compatible with composition.

Lemma ext_to_prod_injective u v:
injection u -> injection v -> injection (ext_to_prod u v).

Lemma ext_to_prod_surjective u v:
surjection u -> surjection v-> surjection (ext_to_prod u v).

Lemma ext_to_prod_bijective u v:
bijection u -> bijection v-> bijection (ext_to_prod u v).

Lemma ext_to_prod_inverse u v:
bijection u -> bijection v->
inverse_fun (ext_to_prod u v) =
ext_to_prod (inverse_fun u)(inverse_fun v).

Lemma composable_ext_to_prod2 u v u' v':
u' \coP u -> v' \coP v -> (ext_to_prod u' v') \coP (ext_to_prod u v).

Lemma compose_ext_to_prod2 u v u' v':
u' \coP u -> v' \coP v ->
(ext_to_prod u' v') \co (ext_to_prod u v) =
ext_to_prod (u' \co u)(v' \co v).

Same lemmas for COQ functions.

Lemma injective_ext_to_prod2C (a b a' b':Set) (u:a->a')(v:b->b'):
injectiveC u -> injectiveC v -> injectiveC (ext_to_prodC u v).

Lemma surjective_ext_to_prod2C (a b a' b':Set) (u:a->a')(v:b->b'):
surjectiveC u -> surjectiveC v -> surjectiveC (ext_to_prodC u v).

Lemma bijective_ext_to_prod2C (a b a' b':Set) (u:a->a')(v:b->b'):
bijectiveC u -> bijectiveC v -> bijectiveC (ext_to_prodC u v).

Lemma compose_ext_to_prod2C (a b c a' b' c':Set) (u:b-> c)(v:a->b)
(u':b'-> c')(v':a'->b'):
(ext_to_prodC u u') \o (ext_to_prodC v v') =1
ext_to_prodC (u \o v)(u' \o v').

Lemma inverse_ext_to_prod2C (a b a' b':Set) (u:a->a')(v:b->b')
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(Hu: bijectiveC u)(Hv:bijectiveC v):
inverseC (bijective_ext_to_prod2C Hu Hv) =1
ext_to_prodC (inverseC Hu)(inverseC Hv).

¶ Canonical decomposition of a function, version one. Let f be a function from A to B, and
C its range. Then f is the composition of the restriction of f to its range, and the canonical
injection from the range to the target. The �rst function satis�es g(x) Æf (x); the second
satis�es i (x) Æx.

Lemma image_of_fun_range f: function f ->
image_of_fun f = range (graph f).

Lemma canonical_decomposition1 f
(g:= restriction_to_image f)
(i := canonical_injection (range (graph f)) (target f)):
function f ->
[/\ i \coP g, f = i \co g, injection i, surjection g
(& injection f -> bijection g )].

In the case of C OQ functions, we replace the range of the graph by the image.

Definition imageC (a b:Set) (f:a->b) := IM (fun u:a => Ro (f u)).
Lemma imageC_inc (a b:Set) (f:a->b) (x:a): inc (Ro (f x)) (imageC f).
Lemma imageC_exists (a b:Set) (f:a->b) x:

inc x (imageC f) -> exists y:a, x = Ro (f y).
Lemma sub_image_targetC (a b:Set) (f:a->b): sub (imageC f) b.

Definition restriction_to_imageC a b (f:a->b) :=
fun x:a => Bo (imageC_inc f x).

Lemma restriction_to_imageC_pr (a b:Set) (f:a->b) (x:a):
Ro(restriction_to_imageC f x) = Ro (f x).

Lemma canonical_decomposition1C (a b:Set) (f:a->b)
(g:a-> imageC f)(i:imageC f ->b):
g = restriction_to_imageC f ->
i = inclusionC (sub_image_target (f:=f)) ->
[/\ injectiveC i , surjectiveC g &
(injectiveC f -> bijectiveC g)].
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Chapter 4

Union and intersection of a family of
sets

Bourbaki gives the following de�nitions:

De�nition 1. Let (X¶)¶2I be a family of sets (resp. a family of subsets of a setE). The setD1,
that is to say [...], is called the union of the family and denoted by

[

¶2I
X¶.

De�nition 2. Let (X¶)¶2I be a family of sets whose index setI is not empty. The setD2, that is
to say [...], is called the intersection of the family and denoted by

\

¶2I
X¶.

De�nition 3. Let (X¶)¶2I be a family of subsets of a setE. The setD3, in other words [...], is
called the intersection of the family and denoted by

\

¶2I
X¶.

The de�nitions use the following sets

D1 :Æ{x j (9¶)(¶2 I and x 2 X¶)},

D2 :Æ{x j (8 ¶)((¶2 I) Æ) (x 2 X¶))},

D3 :Æ{x j x 2 E and (8 ¶)((¶2 I) Æ) (x 2 X¶))},

that Bourbaki explicits in plain English as, for instance for D 1: “the set of all x which belong to
at least one set of the family (X ¶)¶2I ”. Let P1(x) and P2(x) be the predicates ( 9¶)(¶2 I and x 2 X¶)
and (8 ¶)((¶2 I) Æ) (x 2 X¶)), so that D 3 is the set of all x 2 E such that P2(x) holds. The two
quantities D 1 and D 2 are sets provided that P 1 and P2 are collectivizing, which is a non-trivial
property.

Let's recall that a “family” is a functional graph. If G is such a graph, and x is in its domain,
there is a unique y such that ( x, y) 2 G. This is called the value of G at x, and generally denoted
by G(x). The domain of the family is also called the “index set”. The notation (X ¶)¶2I has to
be understood as: I is the domain of the family, and ¶is just a dummy variable. Similarly in
S

¶2I X¶, the variable ¶is a dummy one. By abuse of language, the union may also be written as
S

X¶. By another abuse of language,
S

¶2JX¶denote the union of the restriction of X to J.

In order to “help the intuitive interpretation”, Bourbaki uses the phrase “family of sets”
(this is an obvious pleonasm), and he writes G x instead of G( x) (for instance in D 1). A “family
of subsets of a set E”, is a function ¡ Æ(G,A,B) such that any element of B is a subset of E. Thus
G is a functional graph, A its index set, G( x) 2 B whenever x 2 A, so that G(x) ½E whenever
x 2 A. In De�nition 3, (as well as in De�nition 1, “resp.” part), the notation (X ¶)¶2I has to be
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understood as “we have some function with graph X, source I, target G” and ¶is a dummy
variable. In D 1 and D 3, the quantity X ¶ is the value of the function at ¶.

Existence of union follows from Axiom Scheme S8 that reads: “Let R be a relation, let x
and y be distinct letters, and let X and Y be letters distinct from x and y which do not appear
in R. Then the relation

(8 y)(9X)(8 x)(R Æ) (x 2 X)) Æ) (8 Y)Coll x((9y)((y 2 Y) and R))

is an axiom.”

Take R :Æx 2 X¶, x :Æx, y :Æ¶, X :ÆZ, and Y :ÆI. We get

(8 ¶)(9Z)(8 x)((x 2 X¶) Æ) (x 2 Z)) Æ) (8 I)Coll x ((9¶)((¶2 I) and ( x 2 X¶)).

The assumption is true, since it suf�ces to take Z ÆX¶. Thus the conclusion holds, and we get
(8 I)Coll x (P1(x)). This implies Coll x (P1(x)), thus the existence of the set D 1.

Note that Bourbaki proves the following

(8 ¶)(9Z)(8 x)((¶2 I and x 2 X¶) Æ) (x 2 Z)).

and applies S8. There is a subtlety here. If R is relation that appears here, it contains I, so that
we cannot use Y :ÆI anymore. Taking Y instead gives

(8 Y)Collx (9¶)((¶2 Y) and (¶2 I and x 2 X¶))

We can now take Y ÆI and simplify.

Consider now a non-empty family. Fix some ®2 I. Then P2(x) implies x 2 X®, so that D 2

is just the set of all x in X® that satisfy P2, so that De�nition 2 makes sense.

Consider now a family of subsets of E; in the case of intersection, we shall assume the
index set non-empty. Then both the union and intersection are subsets of E. They are inde-
pendent of E and of the target of the function. In particular D 2 ÆD3.

Assume now I empty. In this case P 2(x) holds for every x and D 3 ÆE. However, P2 is
not collectivizing, and D 2 is not a set, so that De�nition 2 cannot be applied. In summary:
in the case of union, there is no difference between the two de�nitions, and in the case of
intersection, there is a difference only if the index set is empty. In this case, we do not follow
Bourbaki. In the case where the index set is empty, we shall de�ne the intersection to be
empty.

4.1 De�nition of the union and intersection of a family of sets

We give four de�nitions of union and intersection. We have already de�ned ` uniont f ',
where f is of type I ! Set, and I is a set; it is the set of all x such that x 2 f (z) for some z
of type I. If g is of type Set ! Set and I a set, composing g with R I yields a function of
type I ! Set. The union (in the previous sense) is ` unionf I g '; this is the set of all x such
that there exists i 2 I such that x 2 g(i ). If G is any functional graph, ` unionb G' is the union
(in the previous sense) of the evaluation function of G on its domain; this is the Bourbaki
de�nition. Finally ` union X' has already been de�ned to be union (in the previous sense) of
the identity graph of X.

We de�ne similarly ` intersectiont f ', `intersectionf I g ', `intersectionb G ' and
ìntersection X ', using D 3, where E is the union. Note that intersection is de�ned for
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empty families, but some lemmas apply only when the family is non-empty. Note also that
few theorems assume that G is functional graph. This is because of the following: let G any
set, I the set of all pr 1x, where x 2 G, and f the function that associates to each y 2 I the quan-
tity VG(x) where pr 1x Æy. Then the union of G is the union of f over I. If G is a functional
graph, then for any y 2 I, there is a unique z such that ( y,z) 2 G and z Æf (y).

Definition intersectiont (I:Set) (f : I->Set):=
Zo (uniont f) (fun y => forall z : I, inc y (f z)).

Definition unionf (x:Set)(f: fterm) := uniont (fun a:x => f (Ro a)).
Definition unionb g := unionf (domain g)(Vg g).
Definition intersectionf (x:Set)(f: fterm):= intersectiont(fun a:x => f (Ro a)).
Definition intersectionb g := intersectionf (domain g) (Vg g).

We have now a bunch of lemmas that show how to use these de�nitions.

Lemma setUf_P x i f:
inc x (unionf i f) <-> exists2 y, inc y i & inc x (f y).

Lemma setUb_P x f:
inc x (unionb f) <-> exists2 y, inc y (domain f) & inc x (V f y).

Lemma setUb_P1 x a f:
inc x (unionb (Lg a f)) <-> exists2 y, inc y a & inc x (f y).

Lemma setUt_i (In:Set) (f : In->Set) y x:
inc x (f y) -> inc x (uniont f).

Lemma setUf_i x y i f:
inc y i -> inc x (f y) -> inc x (unionf i f).

Lemma setUb_i x y f:
inc y (domain f) -> inc x (Vg f y) -> inc x (unionb f).

Lemma setUf_hi x i f:
inc x (unionf i f) -> exists2 y, inc y i & inc x (f y).

Lemma setUb_hi x f:
inc x (unionb f) -> exists2 y, inc y (domain f) & inc x (Vg f y).

Trivial cases where the domain is empty.

Lemma setUt_0 (I:Set) (f:I-> Set): I = emptyset -> uniont f = emptyset.
Lemma setUf_0 f: unionf emptyset f = emptyset.
Lemma setUb_0: unionb emptyset = emptyset.
Lemma setIt_0 (I:Set) (f:I-> Set): I = emptyset -> intersectiont f = emptyset.
Lemma setIf_0 f: intersectionf emptyset f = emptyset.
Lemma setIb_0: intersectionb emptyset = emptyset.

Some lemmas for the intersection. All these lemmas are obvious from the de�nitions and
the link between R and B .

Lemma setIt_P (I:Set) (f:I-> Set): nonempty I -> forall x,
(inc x (intersectiont f) <-> (forall j, inc x (f j))).

Lemma setIf_P I f: nonempty I -> forall x,
(inc x (intersectionf I f) <-> (forall j, inc j I -> inc x (f j))).

Lemma setIb_P g: nonempty g -> forall x,
(inc x (intersectionb g) <-> (forall i, inc i (domain g) -> inc x (Vg g i))).

Lemma setI_P y: nonempty y -> forall x,
(inc x (intersection y) <-> (forall i, inc i y -> inc x i)).
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Lemma setIt_i (I:Set) (f:I-> Set) x: nonempty I ->
(forall j, inc x (f j)) -> inc x (intersectiont f).

Lemma setIt_hi (I:Set) (f:I-> Set) x j:
inc x (intersectiont f) -> inc x (f j).

Lemma setIf_i I f x: nonempty I ->
(forall j, inc j I -> inc x (f j)) -> inc x (intersectionf I f).

Lemma setIf_hi I f x j:
inc x (intersectionf I f) -> inc j I -> inc x (f j).

Lemma setIb_i g x: nonempty g ->
(forall i, inc i (domain g) -> inc x (Vg g i)) -> inc x (intersectionb g).

Lemma setIb_hi g x i:
inc x (intersectionb g) -> inc i (domain g) -> inc x (Vg g i).

These lemmas are trivial consequences of the previous ones. They explain when two
unions or intersections are equal.

Lemma setUt_exten (I:Set) (f: I-> Set) (f':I->Set):
f =1 f' -> uniont f = uniont f'.

Lemma setUf_exten sf f f':
{inc sf, f =1 f'} -> unionf sf f = unionf sf f'.

Lemma setIt_exten (I:Set) (f f':I-> Set):
f =1 f' - -> (intersectiont f) = (intersectiont f').

Lemma setIf_exten I f f': {inc I, f =1 f'} ->
intersectionf I f = intersectionf I f'.

These trivial lemmas say that for all j , X j ½
S

Xi and
T

Xi ½ X j . On the other hand, if
for all i , we have A ½Xi ½B, then A ½

S
Xi ½B and A ½

T
Xi ½B. Note that for two of these

inclusions, the index set must be nonempty.

Lemma setUt_s1 (In:Set) (f: I-> Set) i:
sub (f i) (uniont f).

Lemma setIt_s1 (I:Set) (f: I-> Set) i:
sub (intersectiont f) (f i).

Lemma setUt_s1 (I:set) (f: I-> Set) x:
(forall i, sub (f i) x) -> sub (uniont f) x.

Lemma setI2_s2 (I:Set)(f: I-> Set) x: nonempty I ->
(forall i, sub x (f i)) -> sub x (intersectiont f).

Lemma setI_sub2 (I:Set) (f: In-> Set) x:
(forall i, sub (f i) x) -> sub (intersectiont f) x.

Lemma setUt_sub2 (I:Set) (f: I-> Set) x:
nonempty I -> (forall i, sub x (f i)) -> sub x (uniont f).

Bourbaki says in Proposition 1 [2, p. 92]: Let f be a function from K onto I, X ¶ a family
of sets indexed by I. Then the union and the intersection of the family is the union and the
intersection of X f (· ) over K. Note that I and K are both empty or non-empty.

Theorem setUt_rewrite (I K:Set) (f: K->I) (g:I ->Set):
surjectiveC f ->
uniont g = uniont (g \o f).

Theorem setIt_rewrite (I K:Set) (f: K->I) (g:I ->Set):
surjectiveC f ->
intersectiont g = intersectiont (g \o f).

The Bourbaki statement about union is setUb_rewrite1 . In the second lemma we just
assume that f is a functional graph. In the case of intersection, if g is empty, so is g ± f , and
conversely.
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Lemma setUb_rewrite1 f g:
function f -> fgraph g -> range (graph f) = domain g ->
unionb g = unionb (g \cf (graph f)).

Lemma setUb_rewrite f g:
fgraph f -> range f = domain g ->
unionb g = unionb (g \cf f).

Lemma setIb_rewrite f g:
fgraph f -> range f = domain g ->
intersectionb g = intersectionb (g \cf f).

Let f be a constant function and x 2 I. Then the intersection and union of f on I is f (x).
(Bourbaki uses a strange method: he writes f Æg ±h, where h is a surjective function whose
target is a singleton; by surjectivity, the union of f is that of g. Now the domain of g is a
singleton, and the range of g contains f (x)).

Lemma seUt_constant (I:Set) (f:I ->Set) (x:I):
constantp f -> uniont f = f x.

Lemma setIt_constant (I:Set) (f:I ->Set) (x:In):
constantp f -> intersectiont f = f x.

Lemma setUg_constant f x: constantgp f -> inc x (domain f) ->
unionb f = Vg f x.

Lemma setIg_constant f x: constantgp f -> inc x (domain f) ->
intersectionb f = Vg f x.

Lemma setUt_1 (a:Set) (x:a) (f: singleton (Ro x) -> Set):
uniont f = f (Bo (set1_1 (Ro x))).

Lemma setIt_1: (a:Set)(x:a) (f: singleton (Ro x) -> Set):
intersectiont f = f (Bo (set1_1 (Ro x))).

Lemma setUf_1 f x: unionf (singleton x) f = f x.
Lemma setIf_1 f x: intersectionf (singleton x) f = f x.

¶ Link between these unions and intersections and the old ones: the union of a set of sets
X is the union of the identity function on X. If f is a functional graph, its union is also the
union of the range.

Lemma setU_prop x: union x = unionf x id.
Lemma setUb_alt f: fgraph f -> unionb f = union (range f).
Lemma setUb_identity x: unionb (identity_g x) = union x.
Lemma setI_prop x: intersection x = intersectionf x id.
Lemma setIb_alt f: fgraph f -> intersectionb f = intersection (range f).
Lemma setIb_identity x: intersectionb (identity_g x) = intersection x.

4.2 Properties of union and intersection

We �rst show that the union and intersection of F over I are monotone with respect to the
function and index. In the last theorem, one index set must be non-empty.

Lemma setUt_S (In:Set) (f g:In->Set):
(forall i, sub (f i) (g i)) -> sub (uniont f) (uniont g).

Lemma setIt_S (I:Set)(f g:I->Set):
(forall i, sub (f i) (g i)) -> sub (intersectiont f)(intersectiont g).

Lemma setUf_S2 f: f: {compat (unionf ^~ f) : x y / sub x y }.
Lemma setIf_S f:

{compat (intersectionf ^~ f) : x y / sub x y /\ nonempty x >-> sub y x}.
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Proposition 2 [2, p. 93] states associativity of union and intersection. It says:

[

¶2I
X¶Æ

[

¸ 2L

Ã
[

¶2J̧
X¶

!

,
\

¶2I
X¶Æ

\

¸ 2L

Ã
\

¶2J̧
X¶

!

I Æ
[

J̧ .

In the case of intersection, we require J ¸ to be non-empty, since these sets are not taken into
account in the LHS, while the corresponding intersection is replaced by the empty set in the
RHS.

Theorem setUf_A sg f g:
unionf (unionf sg g) f = unionf sg (fun l => unionf (g l) f).

Theorem setIf_A sg f g:
(alls sg (fun i => (nonempty (g i)))) ->
intersectionf (unionf sg g) f
= intersectionf sg (fun l => intersectionf (g l) f).

Proposition 3 [2, p. 94] says that if ¡ is a correspondence, then ¡ h
S

X¶i Æ
S

¡ hX¶i and
¡ h

T
X¶i ½

T
¡ hX¶i . (note: let G be the graph of ¡ , so that ¡ hXi Æ GhXi ; the two formulas are

true whatever G). Proposition 4 [2, p. 95] says that we have equality if ¡ is the inverse of a
function, and, as a consequence, if ¡ is an injective function. In fact, we use the canonical
decomposition ¡ Æi ±g, where g is the restriction of ¡ on its image (hence is bijective), and i
is the inclusion map from the image of ¡ to its target. Then ¡ hxi Æg¡ 1hxi for every set x.

Theorem dirim_setUt (I:Set) (f:I->Set) g:
direct_image g (uniont f) = uniont (fun i => direct_image g (f i)).

Theorem dirim_setIt (I:Set) (f:I->Set) g:
sub (direct_image g (intersectiont f))
(intersectiont (fun i => direct_image g (f i))).

Theorem iim_fun_setIt (I:Set) (f:I->Set) g:
function g ->
(inv_image_by_fun g (intersectiont f)) =
(intersectiont (fun i => inv_image_by_fun g (f i))).

Lemma inj_image_setIt (I:Set) (f:I->Set) g:
injection g ->
(image_by_fun g (intersectiont f))
= (intersectiont (fun i => image_by_fun g (f i))).

4.3 Complements of unions and intersections

Let X¶be a non-empty family of sets; de�ne Y ¶ÆX\X ¶. Then the intersection (resp. union)
of the X ¶ is the complement in X of the union (resp. intersection) of the Y ¶. This is Proposition
5 [2, p. 96] (Bourbaki assumes, X¶½X, which is not needed).

Theorem setCUt2 (I:Set) (f:I-> Set) x: nonempty I ->
x -s (uniont f) = intersectiont (fun i=> x -s (f i)).

Theorem setCIt2 (I:Set) (f:I-> Set) x: nonempty I ->
x -s (intersectiont f) = uniont (fun i=> x -s (f i)).

Lemma setCUf2 sf f x: nonempty sf ->
x -s (unionf sf f) = intersectionf sf (fun i=> x -s (f i)).

Lemma setCIf2 sf f x: nonempty sf ->
x -s (intersectionf sf f) = unionf sf (fun i=> x -s (f i)).

Inria



Bourbaki: Theory of sets in Coq I (v6) 83

4.4 Union and intersection of two sets

Bourbaki de�nes the union and intersection of two sets A and B as the union and in-
tersection of the identity function on the doubleton {A,B}. This was de�ned as union2 and
intersection2 . All results shown here are easy.

Lemma setUf2f x y f: unionf (doubleton x y) f = (f x)\cup (f y).
Lemma setIf2f x y f: intersectionf (doubleton x y) f = (f x) \cap (f y).
Lemma setUf2 x y: unionf (doubleton x y) id = x \cup y.
Lemma setIf2 x y: intersectionf (doubleton x y) id = x \cap y.

We have (these results have been proved in a previous chapter).

{x} [ {y} Æ{x, y}, x [ x Æx, x \ x Æx, x \ y Æy \ x, x [ y Æy [ x.

We have:
x [ (y [ z) Æ(x [ y) [ z, x \ (y \ z) Æ(x \ y) \ z,

x [ (y \ z) Æ(x [ y) \ (x [ z), x \ (y [ z) Æ(x \ y) [ (x \ z).

We have x ½y if and only if x [ y Æy. We have x ½y if and only if x \ y Æx. We have:

z \ ( x [ y) Æ(z \ x) \ (z \ y), z \ ( x \ y) Æ(z \ x) [ (z \ y).

We have x [ (z \ x) Æz and x \ (z \ x) Æ ; . If g is a correspondence, we have ghx [ yi Æ
ghxi [ ghyi and ghx \ yi ½ ghxi \ ghyi . Equality holds if g is an injective function or g Æf ¡ 1

where f is a function.

Lemma dirim_setU2 g: {morph (direct_image g): x y / x \cup y}.
Lemma dirim_setI2 g x y:

sub (direct_image g (x \cap y))
((direct_image g x) \cap (direct_image g y)).

Lemma iim_fun_setI2 g: function g ->
{morph (inv_image_by_fun g): x y / x \cap y}.

Lemma inj_image_setI2 g : injection g ->
{morph (image_by_fun g): x y / x \cap y}.

If f is a function from A into B, then we have f ¡ 1hB\ xi ÆA\ f ¡ 1hxi and f hA\ xi ÆB\ f hxi
if f is a injective with range B (Proposition 6, [2, p. 98]).

Lemma iim_fun_C1 f: function f ->
{when eq^~ (target f) & sub^~ (target f),

{morph inv_image_by_fun f : a b / a -s b}}.
Lemma inj_image_C f: injection f ->
{when eq^~ (source f) & sub^~ (source f),

{morph image_by_fun f : a b / a -s b}}.

4.5 Coverings

A covering of a set X is a family X ¶ whose union contains X. By extension, a set whose
union contains X is also called a covering.
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Definition covering f x := fgraph f /\ sub x (unionb f).
Definition covering_s f x := sub x (union f).

Lemma covering_P f x: fgraph f ->
(covering f x <-> covering_s (range f) x).

We say that a covering (Y· )· 2K re�nes (X ¶)¶2I if for all · there is ¶such that Y · ½ X¶. We
sometimes say that Y is �ner than X, or that X is coarser than Y. This de�nition will be ex-
tended to set coverings: the de�nition ` coarser_cs y y' ' says that the set of sets y0re�nes
y. In other words, for all a 2 y0there is b 2 y such that a ½b. We will show that this is an order
on the set of all partitions.

Definition coarser_cg f g :=
[/\ fgraph f, fgraph g &
forall j, inc j (domain g)

-> exists2 i, inc i (domain f) & sub (Vg g j) (Vg f i)].
Definition coarser_cs y y' :=

forall a, inc a y' -> exists2 b, inc b y & sub a b.

Lemma coarser_cP f g: fgraph f -> fgraph g ->
(coarser_cg f g <-> coarser_cs (range f) (range g)).

Lemma sub_covering f I x (g := restr f I):
(sub I (domain f)) -> covering f x -> covering g x ->
coarser_cg f g.

Given two families X ¶and Y· , we can consider the family X ¶\ Y· . Given two sets of sets X
and Y, we can consider the set of elements of the form a \ b for a 2 X and b 2 Y. Hence, given
two coverings X ¶and Y· of Z we �nd a covering i (X¶,Y· ) of Z that re�nes X ¶and Y· , this is the
supremum for the coarser ordering (ordering are de�ned in the second part of this report).

Definition intersection_covering f g :=
Lg ((domain f) \times (domain g))

(fun z => (Vg f (P z)) \cap (Vg g (Q z))).
Definition intersection_covering2 x y:=

range (intersection_covering (identity_g x) (identity_g y)).

Lemma setI_covering2_P x y z:
inc z (intersection_covering2 x y) <->
exists a b, [/\ inc a x, inc b y, a \cap b = z ].

Lemma setI_covering E: {compat intersection_covering : x & / covering x E}.
Lemma setI_coarser_cl f g x:

covering f x -> covering g x ->
coarser_cg f (intersection_covering f g).

Lemma setI_coarser_cr f g x:
covering f x -> covering g x ->
coarser_cg g (intersection_covering f g).

Lemma setI_coarser_clr h x:
covering h x -> {when covering ^~ x &,

{compat intersection_covering : f & / coarser_cg f h}}.

We show here the equivalent properties for sets of sets. Essentially, we prove that i (x, y)
is the least upper bound for the order de�ned by coarser_cs (which is de�ned on the set of
partitions, as will be seen later).
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Lemma setI_covering2 E:
{compat intersection_covering2 : x & / covering_s x E}.

Lemma setI_coarser2_cl f g x:
covering_s f x -> covering_s g x ->
coarser_cs f (intersection_covering2 f g).

Lemma setI_coarser2_cr f g x:
covering_s f x -> covering_s g x ->
coarser_cs g (intersection_covering2 f g).

Lemma setI_coarser2_clr h x:
covering_s h x -> {when covering_s ^~ x &,

{compat intersection_covering2 : f & / coarser_cs f h}}.

If X¶ is a covering and g a function, then the family of sets g¡ 1hX¶i is a covering; if g is
surjective, then ghX¶i is a covering.

Lemma image_of_covering f g:
surjection g -> covering f (source g)
-> covering (Lg (domain f) (fun w => image_by_fun g (Vg f w))) (target g).

Lemma inv_image_of_covering f g:
function g -> covering f (target g)
-> covering (Lg (domain f) (fun w => inv_image_by_fun g (Vg f w))) (source g).

Lemma product_of_covering f g x y:
covering f x -> covering g y ->
covering (Lg ((domain f) \times (domain g))

(fun z => (V f (P z)) \times (Vg g (Q z))))
(x \times y).

Proposition 7 [2, p. 99] says that if X ¶ is a covering of E, then two functions that agree
on each X¶ agree on E. Moreover, assume that f¶ is a function de�ned on X ¶ (with target T ¶).
Assume that f¶and f · agree on X¶\ X· . There is a unique function f de�ned on E, that agrees
with f¶on X¶, whose target is the union of the T ¶. We prove uniqueness only in the case where
all the T ¶are equal to a same T.

Definition function_prop_sub f s t:=
[/\ function f, source f = s, sub (target f) t].

Definition common_ext f h t:=
triple (unionb f) t (unionb (L (domain f) (fun i => (graph (h i))))).

Lemma agrees_on_covering f x g g':
covering f x -> function g -> function g' ->
source g = x -> source g' = x ->
(forall i, inc i (domain f) -> agrees_on (x \cap (Vg f i)) g g') ->
agrees_on x g g'.

Lemma extension_covering f t h
(d:= domain f) (g := common_ext f h t) :
(forall i, inc i d -> function_prop (h i) (Vg f i) t) ->
(forall i j, inc i d -> inc j d ->

agrees_on ((Vg f i) \cap (Vg f j)) (h i) (h j)) ->
[/\ function_prop g (unionb f) t /\

graph g = (unionb (Lg d (fun i => (graph (h i))))),
range (graph g) = unionb (Lg d (fun i => (range (graph (h i))))),
(forall i, inc i d -> agrees_on (Vg f i) g (h i))].

Lemma extension_covering_thm f t h (d:= domain f):
(forall i, inc i d -> function_prop (h i) (V f i) t) ->
(forall i j, inc i d -> inc j d ->
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agrees_on ((Vg f i) \cap (Vg f j)) (h i) (h j)) ->
fgraph f ->
exists! g,(function_prop g (unionb f) t /\

(forall i, inc i d -> agrees_on (Vg f i) g (h i))).

4.6 Partitions

De�nition 7 in Bourbaki [2, p. 100] is: a partition of a set E is a family of non-empty mu-
tually disjoints subsets of E which covers E; the phrase non-empty is missing in the French
version. We consider the strong and weak versions, as well as version where a family is re-
placed by a set of sets.

Definition nonempty_fam f := allf f nonempty.

Definition mutually_disjoint f :=
(forall i j, inc i (domain f) -> inc j (domain f) ->

i = j \/ (disjoint (Vg f i) (Vg f j))).
Definition partition_w y x:=

(union y = x) /\
(forall a b, inc a y -> inc b y -> disjointVeq a b).

Definition partition_s y x:=
partition_w y x /\ (alls y nonempty).

Definition partition_w_fam f x:=
[/\ fgraph f, mutually_disjoint f & unionb f = x].

Definition partition_s_fam_s f x:=
partition_w_fam f x /\ nonempty_fam f.

We list below some properties of partitions.

Lemma mutually_disjoint_prop f:
(forall i j y, inc i (domain f) -> inc j (domain f) ->

inc y (Vg f i) -> inc y (Vg f j) -> i = j) ->
mutually_disjoint f.

Lemma mutually_disjoint_prop2 x f:
(forall i j y, inc i x -> inc j x ->

inc y (f i) -> inc y (f j) -> i = j) ->
mutually_disjoint (Lg x f).

Lemma mutually_disjoint_prop1 f: function f ->
(forall i j y, inc i (source f) -> inc j (source f) ->

inc y (Vf f i) -> inc y (Vf f j) -> i = j) ->
mutually_disjoint (graph f).

Lemma partition_same y x:
partition_w y x -> partition_w_fam (identity_g y) x.

Lemma partition_same2 y x:
partition_fam y x -> partition_s (range y) x.

Lemma partitions_is_covering y x:
partition_w y x -> covering_s y x.

Lemma partition_fam_is_covering y x:
partition_w_fam y x -> covering y x.

If (X¶)¶2I is a partition of E, each element of E is in a unique X ¶. Thus, we have a function
f : E ! I, such that x 2 X f (x).
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Definition cover_at f y := select (fun i => inc y (Vg f i)) (domain f).

Lemma cover_at_in f x y (i := cover_at f y):
partition_w_fam f x -> inc y x ->
(inc y (Vg f i) /\ inc i (domain f)).

Lemma cover_at_pr f x y i:
partition_w_fam f x -> inc i (domain f) -> inc y (Vg f i) ->
cover_at f y = i.

Lemma same_cover_at f x y z (i := cover_at f y):
partition_w_fam f x -> inc y x -> inc z (Vg f i) -> cover_at f z = i.

We show here that “coarser” is an ordering on the set of partitions of a set E.

Lemma coarserR: reflexive_r coarser_cs.
Lemma coarserT: transitive_r coarser_cs.
Lemma coarserA x: {when partition_s ^~ x &, antisymmetric_r coarser_cs}.

¶ We construct here a function that maps a to x and and b to y. This function is well-de�ned
if a and b are distinct element, for instance in the case of C0and C1.

Definition variant a x y := (fun z:Set => Yo (z = a) x y).
Definition variantL a b x y := Lg (doubleton a b) (variant a x y).
Definition variantLc f g:= Lvariant C0 C1 f g.
Definition varianti x a b := fun z => Yo (inc z x) a b.

Lemma variant_true a x y z: z = a -> variant a x y z = x.
Lemma variant_false a x y z: z <> a -> variant a x y z = y.
Lemma varianti_in z x a b: inc z x -> (varianti x a b z) = a.
Lemma varianti_out z x a b: ~ inc z x -> (varianti x a b z) = b.
Lemma variant_V_a a b x y: Vg (variantL a b x y) a = x.
Lemma variant_V_b a b x y: b <> a -> Vg (variantL a b x y) b = y.
Lemma variant_fgraph a b x y: fgraph (variantL a b x y).
Lemma variant_d a b x y: domain (variantL a b x y) = doubleton a b.
Lemma variantLc_fgraph x y: fgraph (variantLc x y).
Lemma variantLc_dxs f g: domain (variantLc f g) = C2.
Lemma variantLc_domain_ne: forall f g, nonempty (domain (variantLc f g)).
Lemma variant_V_ca x y: Vg (variantLc x y) C0 = x.
Lemma variant_V_cb x y: Vg (variantLc x y) C1 = y.
Lemma variant_true1 x y: variant C0 x y C0 = x.
Lemma variant_false1 x y: variant C0 x y C1 = y.
Lemma variantLc_comp a b f:

variantLc (f a) (f b) =
Lg (domain (variantLc a b)) (fun z => f (Vg (variantLc a b) z)).

If X is a subset of E then X and E \X form a partition of X (it is a non-empty partition only
if X is neither empty nor E).

Definition partition_with_complement x j :=
variantLc j (x -s j).

Lemma is_partition_with_complement x j:
sub j x -> partition_w_fam (partition_with_complement x j) x.

The set of non-empty partitions on X can be ordered by the �ner ordering on coverings;
we give here the smallest and largest element of the set. If X ¶ is a partition family, then the
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mapping ¶7! X¶ is injective (we use the fact that X ¶ is not empty). Inverse images of disjoint
sets by a function are disjoint.

Definition greatest_partition x := fun_image x singleton.
Definition least_partition x := (singleton x).
Definition injective_graph f:=

fgraph f /\ {inc domain f &, injective (Vg f)}.

Lemma least_is_partition x:
nonempty x -> partition_s (least_partition x) x.

Lemma greatest_partition_P x z:
inc z (greatest_partition x) <-> exists2 w, inc w x & z = singleton w.

Lemma greater_is_partition x: partition_s (greatest_partition x) x.
Lemma injective_partition f x:

partition_s_fam f x -> injective_graph f.
Lemma partition_fam_partition f x:

partition_s_fam f x -> partition_s (range f) x.
Lemma inv_image_disjoint g: function g ->

{compat (inv_image_by_fun g) : x y / disjoint x y}.

Proposition 8 [2, p. 100] is an immediate consequence of Proposition 7. If (X ¶)¶ is a parti-
tion of X and f¶2 F (X¶,T), then there exists a unique f 2 F (X,T) that extends every f¶. The
assumption is that f¶ is a function de�ned on X ¶, with target T. We give a variant (without
uniqueness) where the target of f¶ is a subset of T. The set of functions F will be de�ned
later.

Lemma extension_partition_aux f x t h:
partition_w_fam f x ->
(forall i, inc i (domain f) -> function_prop (h i) (Vg f i) t) ->
(forall i j, inc i (domain f) -> inc j (domain f) ->

agrees_on ( (Vg f i) \cap (Vg f j)) (h i) (h j)).
Lemma extension_partition1 f x t h (g := common_ext f h t):

partition_w_fam f x ->
(forall i, inc i (domain f) -> function_prop (h i) (Vg f i) t) ->
(function_prop g x t /\

(forall i, inc i (domain f) -> agrees_on (Vg f i) g (h i))).
Lemma extension_partition2 f x t h

(g:= common_ext t (fun i => (triple (Vg f i) t (graph (h i)))) t):
partition_w_fam f x ->
(forall i, inc i (domain f) -> function_prop_sub (h i) (Vg f i) t) ->
( function_prop g x t /\

forall i, inc i (domain f) -> agrees_on (Vg f i) g (h i)).

Theorem extension_partition_thm f x t h:
partition_w_fam f x ->
(forall i, inc i (domain f) -> function_prop (h i) (Vg f i) t) ->
exists ! g, (function_prop g x t /\

(forall i, inc i (domain f) -> agrees_on (Vg f i) g (h i))).

4.7 Sum of a family of sets

Proposition 9 [2, p. 100] says that, for any family X ¶, there exists a family X 0
¶of sets equipo-

tent to X ¶, that are mutually disjoint, and a set X that is the union of these sets. After that,
Bourbaki de�nes the sum of a family as the union of the family X ¶£ {¶}. These sets form a
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partition of the sum. Proposition 10 [2, p. 101] says that that if X ¶ is a family with union A
and sum S, there is a bijection between A and S if the family is disjoint. A comment says that
there always exists a surjection. This will be used later on to prove that the cardinal of a union
is not greater that the sum of the cardinals of the members of the family.

Definition disjointU_fam f := Lg (domain f)(fun i => (Vg f i) *s1 i).
Definition disjointU f := unionb (disjointU_fam f).

Lemma disjointU_disjoint f:
mutually_disjoint(disjointU_fam f).

Lemma disjointU_fgraph f: fgraph (disjointU_fam f).
Lemma disjointU_d f: domain (disjointU_fam f) = domain f.

Theorem disjoint_union_lemma f:
exists g x,

[/\ fgraph g, x = unionb g,
(forall i, inc i (domain f) -> (Vg f i) \Eq (Vg g i))
& mutually_disjoint g].

Lemma disjointU_hi f x: inc x (disjointU f) ->
[/\ inc (Q x) (domain f), inc (P x) (Vg f (Q x)) & pairp x].

Lemma disjointU_P f x: inc x (disjointU f) <->
[/\ inc (Q x) (domain f), inc (P x) (Vg f (Q x)) & pairp x].

Lemma disjointU_pi f x y:
inc y (domain f) -> inc x (Vg f y) ->
inc (J x y) (disjointU f).

Lemma disjointU2_rw a b x y: y <> x ->
disjointU (variantL x y a b) = (a *s1 x) \cup (b *s1 y).

Lemma disjoint_union2_rw1 a b:
disjointU (variantLc a b) = (a *s1 C0) \cup (b *s1 C1).

Lemma partition_disjointU f:
partition_w_fam (disjointU_fam f) (disjointU f).

Theorem disjointU_pr f
(h := fun i => Lf P ((Vg f i) *s1 i) (unionb f))
(g := common_ext (disjointU_fam f) h (unionb f)):
[/\ source g = disjointU f,

target g = unionb f,
surjection g,
(mutually_disjoint f -> bijection g)].

We sometimes consider the disjoint union of two sets A and B. This is the set
A£ {0} [ B£ {1}.

Definition canonical_du2 a b := disjointU (variantLc a b).

Lemma candu2_rw a b:
canonical_du2 a b = (a *s1 C0) \cup (b *s1 C1).

Lemma candu2P a b x:
inc x (canonical_du2 a b) <-> (pairp x /\
((inc (P x) a /\ Q x = C0) \/ (inc (P x) b /\ Q x = C1))).

Lemma candu2_pr2 a b x:
inc x (canonical_du2 a b) -> (Q x = C0 \/ Q x = C1).

Lemma candu2_pra a b x:
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inc x a -> inc (J x C0) (canonical_du2 a b).
Lemma candu2_prb a b x:

inc x b -> inc (J x C1) (canonical_du2 a b).
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Chapter 5

Product of a family of sets

5.1 The axiom of the set of subsets

Bourbaki has an axiom (Axiom 4 in the English edition) that asserts the existence, for
every set X, of the set of subsets of X. This is sometimes called the powerset of X, it is denoted
by P (X). C. Simpson has de�ned it in Section 2.7.

If f is a correspondence from A to B, then f hXi ½ B whenever X ½A. This gives a function
from P (A) to P (B), called extension to sets of subsets. If we denote it by f̂ , then the extension
of f ±g is f̂ ±ĝ. The extension of the identity is the identity. The extension of an inverse is an
inverse of the extension; this can be more formally restated in Proposition 1 [2, p. 101] as: if f
is surjective (resp. injective), then its restriction to the set of sets is surjective (resp. injective).

Definition extension_to_parts f :=
Lf (image_by_fun f) (powerset (source f)) (powerset (target f)).

Lemma etp_axiom f: correspondence f ->
lf_axiom (image_by_fun f) (powerset (source f)) (powerset (target f)).

Lemma etp_f f:
correspondence f -> function (extension_to_parts f).

Lemma etp_V f x:
correspondence f -> sub x (source f)
-> Vf (extension_to_parts f) x = image_by_fun f x.

Lemma etp_composable f g:
composableC g f ->
(extension_to_parts g) \coP (extension_to_parts f).

(*
Lemma etp_compose f g:

composableC g f ->
(extension_to_parts g) \co (extension_to_parts f)
= extension_to_parts (g \co f).

*)
Lemma etp_compose:

{when: composableC , {morph extension_to_parts: x y / x \co y }}.

Lemma etp_identity x:
extension_to_parts (identity x) = identity (powerset x).

Lemma composable_for_function f g: g \coP f -> composableC g f.

Theorem etp_fs f: surjection f -> surjection (extension_to_parts f).
Theorem etp_fi f: injection f -> injection (extension_to_parts f).

RR n° 6999



92 José Grimm

5.2 Set of mappings of one set into another

The set of all graphs of functions from E to F is denoted by F E: this is a subset of the
powerset of E £ F. The set of all functions, namely the set of triples (G,E,F) where G 2 FE, is
denoted by F (E;F). A bijection from E to itself is called a permutation of E.

Definition functions x y :=
Zo (correspondences x y)

(fun z => fgraph (graph z)/\ x = domain (graph z)).
Definition permutations E :=

Zo (functions E E) bijection.
Lemma fun_set_P x y f:

inc f (functions x y) <-> (function_prop f x y).

We introduce now F E. It is canonically isomorphic to F (E;F); this means that using one
set or the other does not change the size of a proof.

Definition gfunctions x y :=
Zo (powerset (x \times y))(fun z => fgraph z /\ x = domain z).

Lemma gfun_set_i f:
function f -> inc(graph f) (gfunctions (source f) (target f)).

Lemma gfun_set_hi x y z:
inc z (gfunctions x y) -> exists f,

[/\ function f, source f = x, target f = y & graph f = z].

The set of partial functions from x to y will be used later on. It is the union of the sets of
functions from x0to y, where x0½x. We give the characteristic property of this set.

Definition sub_functions x y:=
unionf(powerset x)(functions ^~ y).

Lemma sfun_set_P x y f:
inc f (sub_functions x y) <->
[/\ function f, sub (source f) x & target f = y].

The set of functions E ! F is small (has at most one element) if E or F is empty. It is non-
empty if E is empty, or if F is non-empty. We could restate this as: if x and y are two cardinals,
if one of them is zero, then x y is zero or one; if x is non-zero, or y is zero, then x y is non-zero.
We then show that there is an obvious bijection between F (E;F) and FE.

Lemma function_exten5 x y a b:
inc a (functions x y) -> inc b (functions x y) ->
graph a = graph b -> a = b.

Lemma fun_set_small_source y: small_set (functions emptyset y).
Lemma fun_set_small_target x: small_set (functions x emptyset).
Lemma fun_set_ne x y: (x = emptyset \/ nonempty y) -> nonempty (functions x y).
Lemma graph_lf_axiom x y: lf_axiom graph (functions x y) (gfunctions x y).
Lemma graph_fb x y: bijection (Lf graph (functions x y) (gfunctions x y)).
Lemma fun_set_equipotent x y: (functions x y) \Eq (gfunctions x y).

E
f //F

v
��

E0

u

OO

f 0
//F0

(compose3function)
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Given f 2 F (E;F), we construct f 02 F (E0;F0) via f 0Æv±f ±u, provided that u is a function
from E 0 to E and v is a function from F into F 0. Proposition 2 [2, p. 102] says that if u is
surjective and v is injective, then this mapping is injective; if u is injective and v is surjective,
then this mapping is surjective. The situation is a bit more tricky when some sets are empty.

Definition compose3function u v :=
Lf (fun f => (v \co f) \co u)
(functions (target u) (source v))
(functions (source u) (target v)).

Lemma c3f_axiom u v:
function u -> function v ->
lf_axiom (fun f => ((v \co f) \co u))
(functions (target u) (source v))
(functions (source u) (target v)).

Lemma c3f_f u v:
function u -> function v -> function (compose3function u v).

Lemma c3f_V u v f:
function u -> function v ->
function f -> source f = target u -> target f = source v ->
Vf (compose3function u v) f = (v \co f) \co u.

Theorem c3f_fi u v:
surjection u -> injection v -> injection (compose3function u v).

Theorem c3f_fs u v:
(nonempty (source u) \/ (nonempty (source v)) \/ (nonempty (target v))

\/ target u = emptyset) ->
injection u -> surjection v -> surjection (compose3function u v).

Lemma c3f_fb u v:
bijection u -> bijection v -> bijection (compose3function u v).

We now de�ne the canonical bijections from F (B£ C;A) into F (B;F (C;A) or F (C;F (B;A)).
For any function f (x, y) we can �x one of the variables to get a function.

Definition partial_fun_axiom f :=
function f /\ exists a b, source f = a \times b.

Definition first_partial_fun f y:=
Lf(fun x => Vf f (J x y)) (domain (source f)) (target f).

Definition second_partial_fun f x:=
Lf(fun y => Vf f (J x y)) (range (source f)) (target f).

Definition first_partial_function f:=
Lf(fun y => first_partial_fun f y) (range (source f))
(functions (domain (source f)) (target f)).

Definition second_partial_function f:=
Lf(fun x => second_partial_fun f x) (domain (source f))
(functions (range (source f)) (target f)).

Definition first_partial_map b c a:=
Lf (fun f=> first_partial_function f)
(functions (b \times c) a)
(functions c (functions b a)).

Definition second_partial_map b c a:=
Lf (fun f=> second_partial_function f)
(functions (b \times c) a)
(functions b (functions c a)).

The next lemmas show that for �xed x, the partial application fx that maps y to f (x, y) is
a function. Similarly for f y .
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Lemma partial_fun_axiom_pr f:
partial_fun_axiom f ->
source f = (domain (source f)) \times (range (source f)).

Lemma fpf_axiom f y:
partial_fun_axiom f -> inc y (range (source f)) ->
lf_axiom (fun x => Vf f (J x y)) (domain (source f)) (target f).

Lemma spf_axiom f x:
partial_fun_axiom f -> inc x (domain (source f)) ->
lf_axiom (fun y => Vf f (J x y)) (range (source f)) (target f).

Lemma fpf_f f y:
partial_fun_axiom f -> inc y (range (source f)) ->
function (first_partial_fun f y).

Lemma spf_f f x:
partial_fun_axiom f -> inc x (domain (source f)) ->
function (second_partial_fun f x).

Lemma fpf_V x y:
partial_fun_axiom f -> inc x (domain (source f)) ->
inc y (range (source f)) ->
Vf (first_partial_fun f y) x = Vf f (J x y).

Lemma spf_V f x y:
partial_fun_axiom f -> inc x (domain (source f)) ->
inc y (range (source f)) ->
Vf (second_partial_fun f x) y = Vf f (J x y).

The next lemmas show that both x 7! fx and y 7! f y are functions.

Lemma fpfa_axiom f:
partial_fun_axiom f ->
lf_axiom (fun y => first_partial_fun f y)(range (source f))
(functions (domain (source f)) (target f)).

Lemma spfa_axiom f :
partial_fun_axiom f ->
lf_axiom (fun x => second_partial_fun f x)(domain (source f))
(functions (range (source f)) (target f)).

Lemma fpfa_f f:
partial_fun_axiom f -> function (first_partial_function f).

Lemma spfa_f f:
partial_fun_axiom f -> function (second_partial_function f).

Lemma fpfa_V f y:
partial_fun_axiom f -> inc y (range (source f)) ->
Vf (first_partial_function f) y = first_partial_fun f y.

Lemma spfa_V f x:
partial_fun_axiom f -> inc x (domain (source f)) ->
Vf (second_partial_function f) x = second_partial_fun f x.

Denote the mapping x 7! fx by f̃ . We show here that the mapping f 7! f̃ is a function.
We assume that the source is nonempty.

Lemma fpfb_axiom a b c:
nonempty b -> nonempty c ->
lf_axiom (fun f=> first_partial_function f)
(functions (b \times c) a)
(functions c (functions b a)).

Lemma spfb_axiom a b c:
nonempty b -> nonempty c ->
lf_axiomf (fun f=> (fun f=> second_partial_function f)
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(functions (b \times c) a)
(functions b (functions c a)).

Lemma fpfb_f a b c:
nonempty a -> nonempty b -> function (first_partial_map a b c).

Lemma spfb_f a b c:
nonempty a -> nonempty b -> function (second_partial_map a b c).

Lemma fpfb_V a b c f:
nonempty a -> nonempty b -> inc f (functions (a \times b) c) ->
Vf (first_partial_map a b c) f = first_partial_function f.

Lemma spfb_V a b c f:
nonempty a -> nonempty b -> inc f (functions (a \times b) c) ->
Vf (second_partial_map a b c) f = second_partial_function f.

Lemma fpfb_VV a b c f x:
nonempty a -> nonempty b -> inc f (functions (a \times b) c) ->
inc x (a \times b) ->
Vf (Vf (Vf (first_partial_map a b c) f) (Q x)) (P x) = Vf f x.

Lemma spfb_VV a b c f x:
nonempty a -> nonempty b -> inc f (functions (a \times b) c) ->
inc x (a \times b) ->
Vf (Vf (Vf (second_partial_map a b c) f) (P x)) (Q x) = Vf f x.

We now prove the main result, Proposition 3 of [2, p. 103].

Theorem fpfa_fb a b c:
nonempty a -> nonempty b -> bijection (first_partial_map a b c).

Theorem spfa_fb a b c:
nonempty a -> nonempty b -> bijection (second_partial_map a b c).

5.3 De�nition of the product of a family of sets

An element of the product of two sets X 1 and X2 is a pair of elements of X 1 and X2, an
element of the product of n sets X1, . . . ,Xn is a tuple ( x1, . . . ,xn ), and thus an element of the
product of a family (X ¶)¶2I is a family ( x¶)¶2I such that x¶2 X¶. We give two de�nitions of the
product, in the same way as we gave four de�nitions for the union or the intersection (the
variant productt could be de�ned but it not used, the last variant product corresponds to
the notion of an unordered product; for an example, see annex of the second part of this
report).

Given a family (X ¶)¶2I of sets de�ned on I, we may consider functions f such that f (¶) 2 X¶.
The target of f (¶) is in the union A Æ

S
X¶ and the graph is an element of P (I £ A). Thus, we

de�ne the product
Q

X¶as the set of all elements of P (I £ A) that are graphs of functions with
this property. If all X ¶are the same set E, then A ÆE, this justi�es the notation E I for the set of
functional graphs from I to E since it is the product of a constant family.

Definition productb f:=
Zo (powerset ((domain f) \times (unionb f)))
(fun z => [/\ fgraph z, domain z = domain f

& forall i, inc i (domain f) -> inc (Vg z i) (Vg f i)]).

Definition productf sf f := productb (Lg sf f).

We list below some basic properties of products.
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Lemma setXb_P f x,
inc x (productb f) <->
[/\ fgraph x, domain x = domain f /\

forall i, inc i (domain f) -> inc (Vg x i) (Vg f i)].
Lemma setXf_P sf f x:

inc x (productf sf f) <->
[/\ fgraph x, domain x = sf & forall i, inc i sf -> inc (Vg x i) (f i)].

We give here an extensionality properties for elements of a product.

Lemma productb_gr x: productb (Lg (domain x) (Vg x)) = productb x.
Lemma unionb_gr X : unionb (Lg (domain X) (Vg X)) = unionb X.
Lemma setXb_exten f x x':

inc x (productb f) -> inc x' (productb f) -> {inc (domain f), x =1g x'} ->
x = x'.

Lemma setXf_exten sf f x x':
inc x (productf sf f) -> inc x' (productf sf f) -> {inc sf, x =1g x'} ->
x = x'.

We de�ne now pr ¶, the ¶-th projection of a product; it is like pr 1 and pr 2 for the product
of two sets. Let f be an element of the product and ¶an index; we have pr ¶f Æf¶, where f¶

denotes f (¶). Thus this mapping is nothing else than V. Here we de�ne a function, whose
source is the product

Q
X· and whose target is X ¶.

Definition pr_i f i:= Lf (Vg ^~ i) (productb f) (Vg f i).

Lemma pri_axiom f i:
inc i (domain f) ->
lf_axiom (Vg ^~ i)(productb f)(Vg f i).

Lemma pri_f f i: inc i (domain f) -> function (pr_i f i).
Lemma pri_V f i x:

inc i (domain f) -> inc x (productb f) ->
Vf (pr_i f i) x = Vg x i.

If the sets X¶ are non empty, so is the product, and conversely. The idea is that we have
x¶2 X¶ for some x¶, and we can construct a function ¶7! x¶.

Lemma setXb_0 : productb emptyset = singleton emptyset.
Lemma setXb_0' f: productb (Lg emptyset f) = singleton emptyset.
Lemma setXb_ne f: nonempty_fam f -> nonempty (productb f).
Lemma setXb_ne2 f: nonempty (productb f) -> nonempty_fam f.

Assume X¶½E. An element of the product
Q

¶2I X¶ is the graph of a function from I to E.
The converse is true if X ¶ÆE for all ¶. Then

Q
¶2I E ÆEI .

Lemma graphset_P1 a b z:
inc z (gfunctions a b) <->
[/\ fgraph z, domain z = a & sub z (a \times b)].

Lemma graphset_P2 a b z:
inc z (gfunctions a b) <->
[/\ fgraph z, domain z = a & sub (range z) b].

Lemma setXb_sub_graphset f x:
sub (unionb f) x ->
sub (productb f) (gfunctions (domain f) x).
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Lemma setXb_eq_graphset f x:
(forall i, inc i(domain f) -> Vg i f = x) ->
productb f = gfunctions (domain f) x.

¶ Special cases of products. We have already seen that if the index set I is empty, then the
product has a single element: the empty graph. We consider here the case where the index
set has one element ®. The product is then canonically isomorphic to X ®.

Definition product1 x a := productb (cst_graph(singleton a) x).
Definition product1_canon x a :=

Lf (fun i => cst_graph (singleton a) i) x (product1 x a).

Lemma cst_graph_pr x y: productb (cst_graph x y) = gfunctions x y.
Lemma setX1_pr x a: product1 x a = gfunctions (singleton a) x.

Lemma setX1_P x a y:
inc y (product1 x a) <->
[/\ fgraph y, domain y = singleton a & inc (Vg y a) x].

Lemma setX1_pr2 f x: domain f = singleton x ->
product1 (Vg f x) x = productb f.

Lemma setX1_canon_axiom x a:
lf_axiom (fun i => cst_graph (singleton a) i) x (product1 x a).

Lemma setX1_canon_f x a: function (product1_canon x a).
Lemma setX1_canon_V x a i:

inc i x -> Vf (product1_canon x a) i = cst_graph (singleton a) i.
Lemma setX1_canon_fb x a: bijection (product1_canon x a).

We now consider the case of two sets. For each index set I Æ{®,¯ }, if x and y are two
sets, we can consider the family (X ¶)¶2I such that x ÆX®, y ÆX¯ . We can de�ne a bijection
between x £ y and the the product

Q
X¶. For simplicity, we consider only the case where I is

the canonical doubleton.

Definition product2 x y := productf C2 (variant C0 x y).
Definition product2_canon x y :=

Lf (fun z => (variantLc (P z) (Q z))) (x \times y) (product2 x y).

Lemma setX2_P x y z:
inc z (product2 x y) <->
[/\ fgraph z, domain z = C2P , inc (Vg z C0) x & inc (Vg z C1) y].

Lemma setX2_canon_axiom x y:
lf_axiom (fun z => Lvariantc (P z) (Q z))
(x \times y) (product2 x y).

Lemma setX2_canon_f x y:
function (product2_canon x y).

Lemma setX2_canon_V x y z:
inc z (x \times y) -> Vf (product2_canon x y) z = variantLc (P z) (Q z).

Lemma setX2_canon_fb x y:
bijection (product2_canon x y).

If each X¶ is a singleton, so is the product
Q

X¶.

Lemma setX_set1 f: (allf f singletonp) -> singletonp (productb f).
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The set of graphs of constant functions I ! E is called the diagonal of E I . The application
that associates to x the constant function with value x is an injection from E to E I .

Definition diagonal_graphp e i :=
Zo (gfunctions i e) constantgp.

Definition constant_functor i e:=
Lf (fun x => cst_graph i x) e (gfunctions i e).

Lemma diagonal_graph_P e i x:
inc x (diagonal_graphp e i) <->
[/\ constantgp x, domain x = i & sub (range x) e].

Lemma cf_injective i e:
nonempty i -> injection (constant_functor i e).

Proposition 4 [2, p. 104] says: Given a family X ¶ and a bijection f , the product
Q

X¶ is
isomorphic to the product

Q
X f (¶). Note that in the case of union or intersection, we have

equality if f is surjective. The idea is that, if x¶ 2 X¶ and ¶Æ f (· ) then ( x ± f )· 2 (X ± f )· .
Some machinery is needed because x is a graph and f a function. These objects are not
composable (we must compose x and the graph of f ).

Definition product_compose f u :=
Lf (fun x => x \cg (graph u))
(productb f) (productf (source u) (fun k => Vg f (Vf u k))).

Section ProductCompose.
Variables (f u: Set).
Hypotheses (bu: bijection u) (tudf: target u = domain f).

Lemma pc_axiom0 c
(g:= (triple (domain c) (range c) c) \co u):
inc c (productb f) ->
[/\ function g, c \cg (graph u) = graph g &

(forall i, inc i (source u) ->
Vg (graph g) i = Vg c (Vg (graph u) i))].

Lemma pc_axiom:
lf_axiom (fun x => x \cg (graph u))

(productb f) (productf (source u) (fun k => Vg f (Vf u k))).
Lemma pc: function (product_compose f u).
Lemma pc_V x:

inc x (productb f) -> Vf (product_compose f u) x = x \cg (graph u).
Lemma pc_VV f u x i:

inc x (productb f) -> inc i (source u) ->
Vg (Vf (product_compose f u) x) i = Vg x (Vf u i).

Lemma pc_fb: bijection (product_compose f u).
End ProductCompose.

5.4 Partial products

Given a family X i with index I and a subset J ½I, we can restrict the family to J; we have
S

J ½
S

I and
T

J ¾
T

I . The case of a product is more complicated. If x 2
Q

I , the restriction of
x to J is in

Q
J. The converse is not clear: given an element of

Q
J, is there an extension? Is it

unique? We start with some lemmas concerning restrictions.

Lemma restriction_graph2 f j:
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fgraph f -> sub j (domain f) ->
Lg j (Vg f) = f \cg (diagonal j).

We now de�ne the restriction product and the function that associates to each x of the
product its restriction to J. This function will be denoted by pr J.

Definition restriction_product f j := productb (Lg j (Vg f)).

Definition pr_j f j :=
Lf (fun z => restr z j) (productb f)(restriction_product f j).

Section RestrictionProduct.
Variables (f j: Set).
Hypotheses (jdf: sub j (domain f)).

Lemma restriction_productE :
restriction_product f j = productb (restr f j).

Lemma prj_axiom:
lf_axiom (fun z => restr z j)
(productb f)(restriction_product f j).

Lemma prj_f: function (pr_j f j).
Lemma prj_V x: inc x (productb f) -> Vf (pr_j f j) x = (restr x j).
Lemma prj_VV x i:
inc x (productb f) -> inc i j
-> Vg (Vf (pr_j f j) x) i = V x i.

End RestrictionProduct.

Propositions 6 and 5 [2, p. 105] state that if X ¶ is nonempty for ¶62J, then we can extend a
function de�ned on J to the whole of I (using the axiom of choice or the fact that a nonempty
product is nonempty). Then pr J is surjective. A special case is when J has a single element ®.
Then pr J is the composition of pr ® and the canonical function that identi�es a product of a
single set with this set. Thus pr ® is surjective.

Theorem extension_psetX f j g:
nonempty_fam f ->
fgraph g -> domain g = j -> sub j (domain f) ->
(forall i, inc i j -> inc (Vg g i) (Vg f i)) ->
exists h, [/\ domain h = domain f, fgraph h,

(forall i, inc i (domain f) -> inc (Vg h i) (Vg f i)) &
{inc j, h =1g g} ].

Theorem prj_fs f j: nonempty_fam f -> sub j (domain f) ->
surjection (pr_j f j).

Lemma pri_fs f k: nonempty_fam f ->
inc k (domain f) -> surjection (pr_i f k).

A consequence is that if X ¶½Y¶ then
Q

X¶½
Q

Y¶(the converse is true if no X ¶ is empty).

Lemma setXb_monotone1 f g:
domain f = domain g ->
(forall i, inc i (domain f) -> sub (Vg f i) (Vg g i))
-> sub (productb f) (productb g).

Lemma setXb_monotone2 f g:
domain f = domain g ->
nonempty_fam f ->
sub (productb f) (productb g) ->
(forall i, inc i (domain f) -> sub (Vg f i) (Vg g i)).
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5.5 Associativity of products of sets

Consider a family X ¶. Assume that the index set I is the union of sets J ¸ . For each ¸ , we can
consider the function pr J̧ . If f 2

Q
X¶, then pr J̧ f 2

Q
¶2J̧ . We can consider this as a function

of ¸ and write it as (pr J̧ f )¸ . Thus we get a function

f 7! (pr J̧ f )¸ 2L,
Y

¶2I
X¶!

Y

¸ 2L

¡ Y

¶2J̧
X¶

¢
.

It is a bijection if the sets J ¸ are mutually disjoint, in other words if they form a partition of I.
This is Proposition 7 [2, p. 106].

Definition prod_assoc_axioms f g :=
fgraph f /\ partition_w_fam g (domain f).

Definition prod_assoc_map f g :=
Lf (fun z => (Lg domain g) (fun l => Vf (pr_j f (Vg g l)) z)))
(productb f)
(productf (domain g) (fun l => (restriction_product f (Vg g l)))).

Lemma pam_axiom f g:
prod_assoc_axioms f g ->
lf_axioms (fun z => (Lg (domain g) (fun l => Vf (pr_j f (Vg g l)) z)))
(productb f)
(productf (domain g) (fun l => (restriction_product f (Vg g l)))).

Lemma pam_f f g:
prod_assoc_axioms f g ->
function (prod_assoc_map f g).

Lemma pam_V f g x:
prod_assoc_axioms f g -> inc x (productb f) ->
Vf (prod_assoc_map f g) x = (Lg (domain g) (fun l => Vf (pr_j f (Vg g l)) x)).

Lemma pam_fi f g:
prod_assoc_axioms f g ->
injection (prod_assoc_map f g).

Theorem pam_fb f g:
prod_assoc_axioms f g ->
bijection (prod_assoc_map f g).

Assume that the domain I is the disjoint union of two set I 1 and I 2. Let Y, Y1 and Y2 be the
products of the family X i over I, I 1 and I 2. There is a bijection between Y and Y 1 £ Y2, because
this set is equipotent to the product of the family with two elements. Assume now that each
Xi is a singleton when i 2 I2. Then Y2 is a singleton. The �rst projection from Y 1 £ Y2 onto Y1

is then a bijection. This gives a bijection between Y and Y 1. The last lemma here says that
this bijection is pr I1

.

Lemma variantLc_prop x y:
variantLc x y = Lg C2 (variant C0 x y).

Lemma prod_assoc_map2 f g:
prod_assoc_axioms f g -> domain g = C2
-> (productb f) \Eq
((restriction_product f (Vg g C0)) \times (restriction_product f (Vg g C1))).

Lemma first_proj_fb x y:
singletonp y -> bijection (first_proj (x \times y)).

Lemma prj_fb f j:
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sub j (domain f) ->
(forall i, inc i ((domain f) -s j) -> singletonp (Vg f i)) ->
bijection (pr_j f j).

5.6 Distributivity formulae

Let ((X¸ ,¶)¶2J̧ )¸ 2L be a family of families of sets. Let I Æ
Q

J̧ . (For the �rst formula, we
assume J̧ non-empty). We have (Proposition 8 [2, p. 107])

[

¸ 2L

¡ \

¶2J̧
X¸ ,¶

¢
Æ

\

f 2I

¡ [

¸ 2L
X¸ , f (¸ )

¢
,

\

¸ 2L

¡ [

¶2J̧
X¸ ,¶

¢
Æ

[

f 2I

¡ \

¸ 2L
X¸ , f (¸ )

¢
.

The �rst result can be shown as follows. If x is in the LHS, there is a ¸ such x is in the
intersection over J ¸ , hence x 2 X¸ ,¹ , whatever ¹ ; in particular it could be f (¸ ). Conversely,
Bourbaki assumes that x is not in the LHS; he considers the set { ¶2 J̧ j x 62X¸ ,¶}. This set is
not empty so that there is a function f 2 I whose value is in the set, so that x cannot be in the
union of X ¸ , f (¸ ). The second result is shown by taking complements in a big set, namely the
union of all sets involved. This gives a large proof (90 lines). The direct proof is shorter (ten
lines).

Theorem distrib_union_inter f:
(forall l, inc l (domain f) -> nonempty (domain (Vg f l))) ->
unionf (domain f) (fun l => intersectionb (Vg f l)) =
intersectionf (productf (domain f) (fun l => (domain (Vg f l))))
(fun g => (unionf (domain f) (fun l => Vg (Vg f l) (Vg g l)))).

Lemma distrib_inter_union f:
intersectionf (domain f) (fun l => unionb (Vg f l)) =
unionf (productf (domain f) (fun l => (domain (Vg f l))))
(fun g => (intersectionf (domain f)(fun l => Vg (Vg f l) (Vg g l)))).

The result is now the following: the union of
T

¶2I F¶ and
T

· 2K G· is the intersection on L
of all F¶[ G· ; there is a similar formula if we exchange union and intersection. The general
distributivity formula says that L is some complicated product, but it can be replaced by an
equivalent set; we use the fact that the product of the family of two sets is equipotent to a
normal product, so that L ÆI £ K (this gives a proof who size is 50 lines long; direct proof
requires only 14 lines for union, and 5 for intersection).

Lemma distrib_union2_inter:
(intersectionb f)\cup (intersectionb g) =
intersectionf((domain f) \times (domain g))

(fun z => ((Vg f (P z)) \cup (Vg g (Q z)))).
Lemma distrib_inter2_union f g:

(unionb f) \cap (unionb g) =
unionf((domain f) \times (domain g))
(fun z => ((Vg f (P z)) \cap (Vg g (Q z)))).

Let ((X¸ ,¶)¶2J̧ )¸ 2L be a family of families of sets. Let I Æ
Q

J̧ . We assume L and I not empty
in the case of intersection. Proposition 9 [2, p. 109] says

Y

¸ 2L

¡ [

¶2J̧
X¸ ,¶

¢
Æ

[

f 2I

¡ Y

¸ 2L
X¸ , f (¸ )

¢
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Y

¸ 2L

¡ \

¶2J̧
X¸ ,¶

¢
Æ

\

f 2I

¡ Y

¸ 2L
X¸ , f (¸ )

¢
.

In the case of union, we have to consider the special cases where L and I could be empty.
Otherwise the proofs are similar. We must sometimes �nd an element f in the product I
such that f (¸ ) satis�es a given property P( ¸ ). We do this by considering the representative of
the non-empty set { ¸ 2 L,P(̧ )}.

Theorem distrib_prod_union f:
productf (domain f) (fun l => unionb (Vg f l)) =
unionf (productf (domain f) (fun l => (domain (Vg f l))))
(fun g => (productf (domain f) (fun l => Vg (Vg f l) (Vg g l)))).

Theorem distrib_prod_intersection f:
(forall l, inc l (domain f) -> nonempty (domain (V f l))) ->
productf (domain f) (fun l => intersectionb (Vg f l)) =
intersectionf (productf (domain f) (fun l => (domain (V f l))))
(fun g => (productf (domain f) (fun l => Vg (Vg f l) (Vg g l)))).

Let X¸ be the union of X ¸ ,¶. The distributivity formula says that the product
Q

X¸ is a
union; this union is a partition of the product, provided that the sets are mutually disjoint,
i.e., if the X ¸ ,¶ form a partition of X ¸ .

Lemma partition_product f:
(forall l, inc l (domain f) -> (partition_w_fam (Vg f l) (unionb (Vg f l)))) ->
partition_w_fam(Lg(productf (domain f) (fun l => domain (Vg f l)) )

(fun g => (productf (domain f) (fun l => Vg (Vg f l) (Vg g l)))))
( productf (domain f) (fun l => unionb (Vg f l))).

We apply the distributivity formulas to the case of two families of sets. In a �rst variant,
we consider the product of a family of two sets, after that, we convert it to a normal product.

Lemma distrib_prod2_union f g:
product2 (unionb f)(unionb g) =
unionf((domain f) \times (domain g))

(fun z => (product2 (V f (P z)) (V g (Q z)))).
Lemma distrib_prod2_inter f g:

product2 (intersectionb f)(intersectionb g)=
intersectionf((domain f) \times (domain g)) (fun z =>

(product2 (Vg f (P z)) (Vg g (Q z)))).

Lemma distrib_product2_union f g:
(unionb f) \times (unionb g) =
unionf(product (domain f)(domain g)) (fun z =>

((V f (P z)) \times (V g (Q z)))).
Lemma distrib_product2_inter f g:

(intersectionb f) \times (intersectionb g) =
intersectionf(product (domain f)(domain g)) (fun z =>

((Vg f (P z)) \times (Vg g (Q z)))).

Proposition 10 [2, p. 110] says that the intersection of a product is the product of the
intersection. Y

¶2I

¡ \

· 2K
X¶,·

¢
Æ

\

· 2K

¡ Y

¶2I
X¶,·

¢
.

This is a special case of the general distributivity formula where the set J ¸ is independent of
¸ . In the case of two families of two sets, we get ( a £ b) \ (c £ d ) Æ(a £ c) \ (b £ d ). In the case
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of union, the general theorem says ( a £ b) [ (c £ d ) Æ(a £ c) [ (b £ d ) [ (a £ d ) [ (b £ c) and
there is no simpler formula. Note that if I and K are empty, the intersection is empty and the
product is a singleton; this is the only case of failure.

Theorem distrib_inter_prod f sa sb:
(nonempty sa \/ nonempty sb) ->
intersectionf sb (fun k => productf sa (fun i=> Vg f (J i k))) =
productf sa (fun i => intersectionf sb (fun k=> Vg f (J i k))).

If one of the sets I or K is a doubleton then we get

¡ Y

¶2I
X¶

¢
\

¡ Y

¶2I
Y¶

¢
Æ

Y

¶2I
(X¶\ Y¶),

¡ \

¶2I
X¶

¢
£

¡ \

¶2I
Y¶

¢
Æ

\

¶2I
(X¶£ Y¶).

Lemma distrib_prod_inter2_prod f g:
domain f = domain g ->
(productb f) \cap (productb g) =
productf (domain f) (fun i => (Vg f i) \cap (Vg g i)).

Lemma distrib_inter_prod_inter f g:
domain f = domain g ->
product2 (intersectionb f) (intersectionb g) =
intersectionf (domain f) (fun i => product2 (Vg f i) (Vg g i)).

Lemma distrib_prod2_sum A f:
A \times (unionb f) = unionb (Lg (domain f) (fun x => A \times (Vg f x))).

¶ Given two functional graphs f and f 0with the same domain I, we de�ne the product to be
the graph that associates ( f (x), f 0(x)) to x. Let f 00Æ(f , f 0) be a pair of graphs; we can consider
it as a function that associates ( f (x), f 0(x)) to x. Thus we have a mapping from

Q
F¶£

Q
F0

¶into
Q

(F¶£ F0
¶). We need a bunch of lemmas in order to prove that this mapping is a bijection.

Definition prod_of_fgraph x x':=
Lg (domain x)(fun i => J (Vg x i) (Vg x' i)).

Definition prod_of_products_canon f f':=
Lf (fun w => prod_of_fgraph (P w) (Q w))
((productb f)\times (productb f'))
(productf (domain f)(fun i => (Vg f i) \times (Vg f' i))).

Definition prod_of_product_aux f f' :=
fun i => ((Vf f i) \times (Vf f' i)).

Definition prod_of_prod_target f f' :=
fun_image(source f)(prod_of_product_aux f f').

Definition prod_of_products f f' :=
Lf (prod_of_product_aux f f')(source f)(prod_of_prod_target f f').

Lemma prod_of_products_f f f':
function (prod_of_products f f').

Lemma prod_of_products_V f f' i:
inc i (source f) ->
Vf (prod_of_products f f') i = (Vf f i) \times (Vf f' i).

Section ProdProdCanon.
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Variables (f f': Set).
Hypotheses (ff:function f) (ff': function f').
Hypothesis (sfsf:source f = source f').

Lemma prod_of_function_axioms x x':
inc (graph x) (productb (graph f)) -> inc (graph x') (productb (graph f')) ->
lf_axiom (fun i => J (Vf x i) (Vf x' i))

(source f) (union (prod_of_prod_target f f')).
Lemma prod_of_function_V x x' i:

inc x (productb (graph f)) -> inc x' (productb (graph f')) ->
inc i (source f) ->
Vg (prod_of_fgraph x x') i = J (Vg x i) (Vg x' i).

Lemma prod_of_function_f x x':
inc x (productb (graph f)) -> inc x' (productb (graph f')) ->
inc (prod_of_fgraph x x')
(productb (graph (prod_of_products f f'))).

Lemma popc_target_aux:
productb(Lg (domain (graph f))
(fun i => (Vg (graph f) i) \times (Vg (graph f') i))) =

productb(graph (prod_of_products f f')).
Lemma popc_axioms :

lf_axiom(fun w => prod_of_fgraph (P w) (Q w))
((productb (graph f)) \times (productb (graph f')))
(productb (graph (prod_of_products f f'))).

Lemma popc_V w:
inc w ((productb (graph f)) \times (productb (graph f'))) ->
Vf (prod_of_products_canon (graph f) (graph f')) w=
prod_of_fgraph (P w) (Q w).

Lemma popc_fb:
bijection (prod_of_products_canon (graph f) (graph f')).

End ProdProdCanon.

5.7 Extensions of mappings to products

X¶
f¶ //Y¶

Q
X¶

pr¶

OO

( f¶)¶2I

//Q Y¶

pr¶

OO (extension)

Assume that X¶, Y¶and f¶are families with the same index I. We assume that f¶ is a func-
tional graph with source X ¶and target Y¶. If x 2

Q
X¶ then x¶2 X¶, f¶(x¶) 2 Y¶and the mapping

¶7! f¶(x¶) is in
Q

Y¶. This induces a function
Q

X¶!
Q

Y¶called the extension of the functions
f i .

Definition ext_map_prod_aux x f := fun i=> Vg (f i) (Vg x i).
Definition ext_map_prod I src trg f :=

Lf (fun x => Lg I (ext_map_prod_aux x f))
(productf I src ) (productf I trg).

Definition ext_map_prod_axioms I src trg f :=
forall i, inc i I ->

[/\ fgraph (f i), domain (f i) = src i & sub (range (f i)) (trg i)].
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Section ExtMapProd.
Variables (I: Set) (src trg f: Set-> Set).
Hypothesis ax: ext_map_prod_axioms I src trg f.

Lemma ext_map_prod_taxioms:
lf_axiom (fun x => Lg I (ext_map_prod_aux x f))

(productf I src) (productf I trg).
Lemma ext_map_prod_f: function (ext_map_prod In src trg f).
Lemma ext_map_prod_V x: inc x (productf I src) ->

Vf (ext_map_prod I src trg f) x= L In (ext_map_prod_aux x f).
Lemma ext_map_prod_VV x i:

inc x (productf I src) -> inc i I ->
Vg (Vf (ext_map_prod I src trg f) x) i = Vg (f i) (Vg x i).

End ExtMapProd.

Proposition 11 [2, p. 111] says that composition of extensions is extension of composi-
tions. Bourbaki uses this property to show that if all f¶ are injective, so is the extension, by
exhibiting a left inverse. We use a direct proof because it is easier (note that f¶ is not a func-
tion, just the graph of a function).

Lemma ext_map_prod_composable I p1 p2 p3 g f h:
ext_map_prod_axioms I p1 p2 f ->
ext_map_prod_axioms I p2 p3 g ->
(forall i, inc i I -> h i = (g i) \cf (f i)) ->
(forall i, inc i I -> (g i) \cfP (f i)) ->
ext_map_prod_axioms I p1 p3 h.

Lemma ext_map_prod_compose I p1 p2 p3 g f h:
ext_map_prod_axioms I p1 p2 f ->
ext_map_prod_axioms I p2 p3 g ->
(forall i, inc i I -> h i = (g i) \cf (f i)) ->
(forall i, inc i I -> (g i) \cfP (f i)) ->
(ext_map_prod I p2 p3 g) \co (ext_map_prod I p1 p2 f) =
(ext_map_prod I p1 p3 h).

Lemma ext_map_prod_fi I p1 p2 f:
ext_map_prod_axioms I p1 p2 f ->
(forall i, inc i I -> injective_graph (f i)) ->
injection (ext_map_prod I p1 p2 f).

Lemma ext_map_prod_fs I p1 p2 f:
ext_map_prod_axioms I p1 p2 f ->
(forall i, inc i I -> range (f i) = p2 i) ->
surjection (ext_map_prod I p1 p2 f).

Let f be a function from E to A, where A is a product X ¶ over I. Consider the function
pr¶± f from E to X ¶. Its extension to products is some function f from E I to

Q
X¶. Let d be

the diagonal mapping from E to E I . We have f Æf ±d . If f¶ is a family of functions from E to
X¶, and f is its extension to the products, then pr ¶±( f ±d ) Æf¶. The mapping from f to f is a
bijection between (

Q
X¶)E and

Q
XE

¶ .

Definition fun_set_to_prod src F :=
Lf (fun f =>

Lg(domain F)( fun i=> (graph ( (pr_i F i) \co
(triple src (productb F) f)))))
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(gfunctions src (productb F))
(productb (Lg (domain F) (fun i=> gfunctions src (Vg F i)))).

Lemma fun_set_to_prod1 F f i:
fgraph F -> inc i (domain F) ->
function f -> target f = productb F ->
function_prop (pr_i F i \co f) (source f) (Vg F i) /\
(forall x, inc x (source f) -> Vf (pr_i F i \co f) x = Vg (Vf f x) i).

Section FunSetToProd.
Variables (src F: Set).
Hypothesis (fF: fgraph F).

Lemma fun_set_to_prod2 f gf:
inc gf (gfunctions src (productb F)) ->
f = (triple src (productb F) gf) -> function_prop f src (productb F).

Lemma fun_set_to_prod3 :
lf_axiom(fun f =>

Lg(domain F)( fun i=> (graph (compose (pr_i F i)
(triple src (productb F) f)))))

(gfunctions src (productb F))
(productb (Lg (domain F) (fun i=> gfunctions src (Vg F i)))).

Lemma fun_set_to_prod4:
function_prop (fun_set_to_prod src F) (gfunctions src (productb F))
(productb (Lg (domain F) (fun i=> gfunctions src (Vg i F)))).

Definition fun_set_to_prod5 F f :=
ext_map_prod (domain F) (fun i=> source f)(fun i=> Vg F i)
(fun i => (graph (compose (pr_i F i) f))).

Lemma fun_set_to_prod6 f:
function f -> target f = productb F ->
(function (fun_set_to_prod5 F f) /\

(fun_set_to_prod5 F f) \coP (constant_functor (domain F)(source f) )/\
(fun_set_to_prod5 F f) \co (constant_functor (domain F)(source f)) =f).

Lemma fun_set_to_prod7 f g: (* 56 *)
(forall i, inc i (domain F) -> inc (f i) (gfunctions src (Vg F i))) ->
g = ext_map_prod (domain F) (fun i=> src)(Vg F) f ->
(forall i, inc i (domain F) ->

f i = graph ((pr_i F i) \co (g \co (constant_functor (domain F) src) ))).
Lemma fun_set_to_prod8: (* 60 *)

bijection (fun_set_to_prod src F).

End FunSetToProd.
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Chapter 6

Equivalence relations

The code of the �rst two sections of this chapter was originally written by Carlos Simpson.
A relation between two objects x and y, often denoted by x » y, is a function of type Set !
Set ! Prop. An equivalence relation will be a relation with some properties; an equivalence
will be a graph with similar properties; this differs from the Bourbaki's de�nition, where an
equivalence is a correspondence.

6.1 De�nition of an equivalence relation

We say that x is related to y by the graph r and denote it by x r» y whenever the pair ( x, y)
is in the graph. The set of related objects is called the substrate of the graph.

Definition substrate r := (domain r) \cup (range r).

We have some characterizations of the substrate. Only the last one requires that r be a
graph.

Lemma pr1_sr r y: inc y r -> inc (P y) (substrate r).
Lemma pr2_sr r y: inc y r -> inc (Q y) (substrate r).
Lemma arg1_sr r x y: related r x y -> inc x (substrate r).
Lemma arg2_sr: forall r x y, related r x y -> inc y (substrate r).
Lemma substrate_smallest r s:

(forall y, inc y r -> inc (P y) s) ->
(forall y, inc y r -> inc (Q y) s) ->
sub (substrate r) s.

Lemma substrate_P r: sgraph r -> forall x,
inc x (substrate r) <->
((exists y, inc (J x y) r) \/ (exists y, inc (J y x) r)).

Lemma substr_i r x: inc (J x x) r -> inc x (substrate r).

We say that a relation » is symmetric if x » y implies y » x, antisymmetric if x » y and
y » x imply x Æy, transitive if x » y and y » z implies x » z. We say that it is re�exive on E if
x 2 E is equivalent to x » x; we say that it is re�exive if x » y implies x » x and y » y.

We say that » is an equivalence relation if it is symmetric and transitive (it is then re�ex-
ive). We say that it is a preorder relation if it is re�exive and transitive; we say that it is an order
relation if it is re�exive, antisymmetric and transitive. We say that a relation is an equivalence
relation on E or an order on E if it is an equivalence or an order, and moreover is re�exive
on E.
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Section Definitions.
Implicit Type (r: relation).

Definition reflexive_re r E := forall x, inc x E <-> r x x.
Definition reflexive_rr r := forall x y, r x y -> (r x x /\ r y y).

Definition equivalence_r r := symmetric_r r /\ transitive_r r.
Definition equivalence_re r E := equivalence_r r /\ reflexive_re r E.
Definition order_r r := [/\ transitive_r r, antisymmetric_r r & reflexive_rr r].

Definition preorder_r r := transitive_r r /\ reflexive_rr r.
Definition order_re r E := order_r r /\ reflexive_re r E.
End Definitions.

The de�nitions for a graph are similar. We say that a graph is re�exive if its associated
relation is re�exive on the substrate, i.e., if x r» y implies x r» x and y r» y. An equivalence is a
set that is re�exive, symmetric, and transitive.

Definition reflexivep r := forall y, inc y (substrate r) -> related r y y.
Definition symmetricp r := symmetric_r (related r).
Definition antisymmetricp r := antisymmetric_r (related r).
Definition transitivep r := transitive_r (related r).

Definition equivalence r :=
[/\ sgraph r, reflexivep r, transitivep r & symmetricp r].

Definition order r :=
[/\ sgraph r, reflexivep r, transitivep r & antisymmetricp r].

Definition preorder r :=
[/\ sgraph r, reflexivep r & transitivep r].

Definition order_on r E := order r /\ substrate r = E.

Let r be a set, R, D and S be the range, domain and substrate of r ; by de�nition S ÆD [ R.
If ( x,x) 2 r , then x 2 D, thus x 2 S. The relation r is re�exive when x 2 S implies ( x,x) 2 r . If
this is the case, we have S ÆD. In particular S ÆD whenever r is an equivalence or an order.
Note that if r is symmetric, transitive and a graph, it is re�exive, thus an equivalence. Since
both D and R are increasing functions of r (for inclusion), so is S.

Lemma equivalence_sgraph r: equivalence r -> sgraph r.
Lemma order_sgraph r: order r -> sgraph r.
Lemma preorder_sgraph r: preorder r -> sgraph r.

Lemma reflexive_domain g: reflexivep g -> domain g = substrate g.
Lemma domain_sr g: equivalence g -> domain g = substrate g.
Lemma domain_sr1 r: order r -> domain r = substrate r.
Lemma symmetric_transitive_equivalence r:

sgraph r -> symmetricp r -> transitivep r -> equivalence r.
Lemma equivalence_relation_pr1 g:

sgraph g -> equivalence_r (related g) -> equivalence g.
Lemma substrate_sub: {compat substrate : x y / sub x y}.

Some trivial properties of an equivalence.

Lemma reflexivity_e r u:
equivalence r -> inc u (substrate r) -> related r u u.
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Lemma symmetricity_e r u v:
equivalence r -> related r u v -> related r v u.

Lemma transitivity_e r v u w:
equivalence r -> related r u v -> related r v w -> related r u w.

Lemma equivalence_equivalence r:
equivalence r -> equivalence_re (related r)(substrate r).

For every set E and relation » we can de�ne a set r ÆgE(» ), the graph of » on E, which
is the set of all pairs ( x, y) 2 E£ E such that x » y. We deduce a relation r» whose substrate is
a subset of E. By de�nition, x r» y is equivalent to x 2 E, and y 2 E and x » y. Assume that »
is an equivalence or order relation on E. Then x r» y simpli�es to x » y. In fact, in the case of
an ordering, we assume that x » y implies x » x and y » y. In the case of an equivalence this
follows from symmetry and transitivity. Now x » x implies x 2 E by re�exivity.

Definition graph_on (r:relation) x
:= Zo(coarse x)(fun w => r (P w)(Q w)).

Lemma graph_on_graph r x: sgraph(graph_on r x).
Lemma graph_on_P0 r x a b:

inc (J a b) (graph_on r x) <-> [/\ inc a x, inc b x & r a b].
Lemma graph_on_P1 r x a b:

related (graph_on r x) a b <-> [/\ inc a x, inc b x & r a b].
Lemma graph_on_P2 r x : equivalence_re r x -> forall u v,

(related (graph_on r x) u v <-> r u v).
Lemma graph_on_P3 r x: order_re r x -> forall u v,

(related (graph_on r x) u v <-> r u v).
Lemma graph_on_sr1 r x:

sub (substrate (graph_on r x)) x.

If the relation » is a preorder, an order, or an equivalence relation, then its graph gE(» ) is
a preorder, an order, or an equivalence. If x » x holds for any x 2 E, then the substrate of this
graph is E.

Lemma order_preorder r: order r -> preorder r.
Lemma preorder_from_rel r x:

preorder_r r -> preorder (graph_on r x).
Lemma order_from_rel r x:

order_r r -> order (graph_on r x).
Lemma equivalence_from_rel r x:

equivalence_r r -> equivalence (graph_on r x).
Lemma graph_on_sr (r: relation) x:

(forall a, inc a x -> r a a) ->
substrate (graph_on r x) = x.

If E is a set, and x » y is the equality relation restricted to E, namely, “ x 2 E and y 2 E and
x Æy”, its graph is the diagonal of E. This is both an equivalence relation and an order (note
that, if r is an equivalence and an order, it is symmetric and antisymmetric, so that x r» y gives
x Æy).

Definition restricted_eq x := fun u v => inc u x /\ u = v.

Lemma diagonal_graph_on x: graph_on (restricted_eq x) x = diagonal x.
Lemma diagonal_equivalence x: equivalence (diagonal x).
Lemma diagonal_osr x: order_on (diagonal x) x.

RR n° 6999



110 José Grimm

We have already shown that to be equipotent is re�exive, symmetric and transitive. Thus,
it is an equivalence relation.

Lemma equipotent_equivalence: equivalence_r equipotent.

We can consider the relation on E for which all elements are related. Its graph is E £ E.

Lemma coarse_sr u: substrate (coarse u) = u.
Lemma coarse_graph x: sgraph (coarse x).

Lemma coarse_related u x y:
related (coarse u) x y <-> (inc x u /\ inc y u).

Lemma coarse_equivalence u:
equivalence (coarse u).

Lemma sub_graph_coarse_substrate r:
sgraph r -> sub r (coarse (substrate r)).

The set of all elements related to x is its class. We have seen two examples where (a)
classes are singleton, and (b) there is a unique class, the whose set. We give here an example,
with A ½E, where the classes are A, and all singletons {x}, for x 62A.

Lemma equivalence_relation_bourbaki_ex5 A E
(r := (fun x y => (inc x (E -s A) /\ (x = y) \/ (inc x A /\ inc y A)))):
sub A E ->
(equivalence (graph_on r E) /\ substrate (graph_on r E) = E).

Consider a family of relations ( » i )i 2I . This intersection is re�exive, symmetric, transitive,
an equivalence, and order, provided that each member of the family has the property.

Lemma setIrel_graph z:
(all z sgraph) -> sgraph (intersection z).

Lemma setIrel_P z: nonempty z -> forall x y,
(related (intersection z) x y <->
(forall r, inc r z -> related r x y)).

Lemma setIrelR z:
(alls z reflexivep) -> reflexivep (intersection z).

Lemma setIrel_sr z e:
nonempty z -> (alls z reflexivep) ->
(forall r, inc r z -> substrate r = e) ->
substrate (intersection z) = e.

Lemma setIrelT z:
(alls z transitivep) -> transitivep (intersection z).

Lemma setIrelS z:
(all s z -> symmetricp) -> symmetricp (intersection z).

Lemma setIrel_equivalence z:
(alls z equivalence) -> equivalence (intersection z).

Lemma setIrel_or z: (alls z order) -> order (intersection z).

We can consider the set of all equivalences on E. It is not empty.

Definition equivalences x :=
Zo (powerset (coarse x)) (fun r => (equivalence r)

/\ (substrate r = x)).
Lemma equivalencesP r x:
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inc r (equivalences x) <->(equivalence r /\ (substrate r = x)).
Lemma inc_coarse_all_equivalence_relations u:

inc (coarse u) (equivalences u).

Proposition 1 [2, p. 114] says that a correspondence ¡ between X and X is an equivalence
on X if and only if X is the domain of ¡ , ¡ Æ¡ ¡ 1 and ¡ ±¡ Æ¡ . We prove this property for
graphs rather than correspondences.

Lemma selfinverse_graph_symmetric r: sgraph r ->
(symmetricp r <-> (r = inverse_graph r)).

Lemma idempotent_graph_transitive r:
sgraph r -> (transitivep r <-> sub (r \cg r) r).

Theorem equivalence_pr r:
equivalence r <-> ((r \cg r) = r /\ r = inverse_graph r).

6.2 Equivalence classes; quotient set

Let f be a function on E; the relation f (x) Æf (y) is an equivalence relation on E. We shall
denote it by » f . It has a graph, namely F ¡ 1 ±F, where F is the graph of f .

Definition eq_rel_associated f x y :=
[/\ inc x (source f), (inc y (source f)) & (Vf f x = Vf f y)].

Definition equivalence_associated f :=
(inverse_graph (graph f)) \cg (graph f).

Section EquivalenceAssociated.
Variable (f: Set).
Hypothesis (ff : function f).

Lemma ea_graph_on:
graph_on (eq_rel_associated f) (source f) = equivalence_associated f.

Lemma graph_ea_equivalence:
equivalence (equivalence_associated f).

Lemma graph_ea_substrate:
substrate (equivalence_associated f) = source f.

Lemma ea_relatedP x y:
related (equivalence_associated f) x y <->
[/\ inc x (source f), (inc y source f) & (Vf f x = Vf f y)].

End EquivalenceAssociated.

Bourbaki says that for every equivalence relation » on E, there is a function f such that
the equivalence associated with f is » such that » Æ » f . Let G be the graph of the equiva-
lence relation and x 2 E. For x 2 E, the set G(x) of all y such that ( x, y) 2 G will be called the
equivalence classof x, and the set of all equivalence classes will be called the quotient set , and
denoted by E/ » (or E/R if the relation is R). Let's denote by x̄ the class of x modulo R, this is
also pr2Gx , where Gx denotes the set all elements z 2 G with pr 1z Æx. We shall use the four

characteristic properties of classes: (a) y 2 x̄ if and only if x R» y, (b) x̄ ½E, (c) x 2 E if and only

if x̄ 6Æ ;and (d) if x 2 E, then x R» y and x̄ Æȳ are equivalent. This last property says that » is
the equivalence associated to the function x 7! x̄.

Definition class r x := fun_image (Zo r (fun z => P z = x)) Q.
Definition quotient r := fun_image (substrate r) (class r).
Definition classp r x := inc (rep x) (substrate r) /\ x = class r (rep x).
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Section Class.
Variable (r:Set).
Hypothesis (er: equivalence r).

Lemma class_P x y: (inc y (class r x) <-> related r x y).
Lemma class_is_im_of_singleton x:

class r x = im_of_singleton r x.
Lemma sub_class_substrate x: sub (class r x) (substrate r).
Lemma class_eq1 u v: related r u v -> class r u = class r v.
Lemma class_eq2 u v: inc u (class r v) -> class r u = class r v.

We denote by x̂ Æ¿z(z 2 x) some element of x (if x is non-empty of course), so that x 7! x̂
is is a mapping from E/R into E (it is a retraction of the canonical projection, meaning x Æ¯̂x).
We say that x is a class for r if r is an equivalence (with substrate sr ), x̂ 2 sr and x Æ¯̂x. Clearly,

if x 2 E, then x̄ is a class. Thusa R» b if and only if there is a class x such that a 2 x and b 2 x. If

x 2 E/R and y 2 x then x̂ R» y.

Lemma setQ_ne x: inc x (quotient r) -> nonempty x.
Lemma setQ_repi x: inc x (quotient r) -> inc (rep x) x.
Lemma class_class x: inc x (substrate r) -> classp r (class r x).
Lemma inc_class_setQ x:

inc x (substrate r) -> inc (class r x) (quotient r).
Lemma setQ_P x: inc x (quotient r) <-> classp r x.
Lemma class_rep x: inc x (quotient r) -> class r (rep x) = x.
Lemma in_class_relatedP y z:

related r y z <-> (exists x, [/\ classp r x, inc y x & inc z x]).
Lemma related_rep_in_class x y:
inc x (quotient r) -> inc y x -> related r (rep x) y.

A class x is a nonempty subset of E such that for all y 2 x, properties z 2 x and y R» z are
equivalent. Two classes are equal or disjoint. If x 2 E then x̄ 2 E/R. If x 2 y and y 2 E/R then
x 2 E. As a consequence, the union of E/R is E. If x 2 E/R then x̂ 2 E, and ¯̂x Æx. If x 2 E then

x 2 x̄ and x R» ˆ̄x. If u and v are in E/R, then û R» v̂ if and only if u Æv. The relation u R» v is
equivalent to u 2 E and v 2 E and ū Æv̄. If x 2 y and y 2 E/R then y Æx̄.

Lemma rep_in_class x: classp r x -> inc (rep x) x.
Lemma rel_in_class x y: classp r x -> inc y x -> related r (rep x) y.
Lemma sub_class_sr x: classp r x -> sub x (substrate r).
Lemma rel_in_class2 x y: classp r x -> related r (rep x) y -> inc y x.
Lemma class_dichot x y:

classp r x -> classp r y -> disjointVeq x y.

Lemma inc_in_setQ_sr x y:
inc x y -> inc y (quotient r) -> inc x (substrate r).

Lemma setU_setQ: union (quotient r) = substrate r.
Lemma rep_i_sr x: inc x (quotient r) -> inc (rep x) (substrate r).
Lemma inc_itself_class x: inc x (substrate r) -> inc x (class r x).
Lemma related_rep_class r x:

inc x (substrate r) -> related r x (rep (class r x)).
Lemma related_rr_P u v:

inc u (quotient r) -> inc v (quotient r) ->
(related r (rep u) (rep v) <-> (u = v)).

Lemma related_equiv_P r u v:
related r u v <->
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[/\ inc u (substrate r), inc v (substrate r) & class r u = class r v].
Lemma is_class_pr x y:

inc x y -> inc y (quotient r) -> y = class r x.
End Class.

The canonical projection is the mapping x 7! x̄ from E onto E/R. An important property
is that this function is surjective.

Definition canon_proj r := Lf(class r) (substrate r) (quotient r).

Section CanonProj.
Variable (r:Set).
Hypothesis (er: equivalence r).

Lemma canon_proj_s: source (canon_proj r) = substrate r.
Lemma canon_proj_t: target (canon_proj r) = quotient r.
Lemma canon_proj_f: function (canon_proj r).
Lemma canon_proj_V x:

inc x (substrate r) -> Vf (canon_proj r) x = class r x.
Lemma canon_proj_setQ_i x:

inc x (substrate r) -> inc (Vf (canon_proj r) x) (quotient r).
Lemma rel_gcp_P x y:

inc x (substrate r) -> inc y (quotient r) ->
(inc (J x y) (graph (canon_proj r)) <-> inc x y).

Lemma canon_proj_fs: surjection (canon_proj r).

The next lemma says that if A ½ E and x ½ Ā (where Ā is the set of all ā for a 2 A) then

x 2 E/R. We then state Criterion 55 [2, p. 115]: u R» v if and only if ū Æv̄. The exact Bourbaki
statement is “Let R be an equivalence relation on a set E, and let p be the canonical mapping
of E onto E/R. Then R äx, yä () (p(x) Æp(y))”. The correct statement would be: R äx, yä if
and only if x 2 E and y 2 E and p(x) Æp(y). The proof is a bit strange. It starts with: “let x and
y be elements of E such that ( x, y) 2 G. Then x 2 E and y 2 E; let us show...”

Lemma sub_im_canon_proj_quotient a x:
sub a (substrate r) ->
inc x (image_by_fun (canon_proj r) a) ->
inc x (quotient r).

Lemma related_e_P u v:
related r u v <->

[/\ inc u (source (canon_proj r)),
inc v (source (canon_proj r)) &
Vf (canon_proj r) u = Vf (canon_proj r) v].

End CanonProj.

The canonical projection E 7! E/R is a bijection if and only if each class is a singleton. In
other terms, iff R is the equality relation on E.

Lemma diagonal_class x u:
inc u x -> class (diagonal x) u = singleton u.

Lemma canon_proj_diagonal_fb x:
bijection (canon_proj (diagonal x)).

Lemma canon_proj_diagonal_fb_contra r:
equivalence r -> bijection (canon_proj r) ->
r = diagonal (substrate r).
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¶ Equivalence associated with projectors. In the product E £ F, one can consider the equiva-
lence associated to the projectors pr 1 and pr 2. Since E£ F is canonically isomorphic to F £ E,
it suf�ces to consider the �rst projection. The equivalence associated to this function is such
that ( x, y) » (x,z) holds for every x, y and z. Classes are objects of the form { x} £ F. The
function x 7! {x}£ F is a bijection of E onto (E £ F)/R.

Definition first_proj_eq x y :=
equivalence_associated (first_proj (x \times y)).

Lemma first_proj_equivalence x y:
equivalence (first_proj_eq x y).

Lemma first_proj_eq_related_P x y a b:
related (first_proj_eq x y) a b <->
[/\ inc a (x \times y), inc b (x \times y) & P a = P b].

Lemma first_proj_sr x y:
substrate(first_proj_eq x y) = x \times y.

Lemma first_proj_classP x y : nonempty y -> forall z,
(classp (first_proj_eq x y) z <->
exists2 u, inc u x & z = (singleton u) \times y).

Lemma first_proj_equiv_proj x y:
nonempty y ->
bijection (Lf (fun u => (singleton u) \times y)

x (quotient (first_proj_eq x y))).

For any equivalence, the quotient is a partition of the substrate.

Lemma sub_quotient_powerset r:
equivalence r -> sub (quotient r) (powerset (substrate r)).

Lemma partition_from_equivalence r:
equivalence r ->
partition(quotient r)(substrate r).

We consider now the converse. Let f be a function de�ned on E and F its graph. Assume
that F is a partition of X. We shall write X i instead of f (i ). There is a function g de�ned on
X with values in E such that x 2 Xg(x). We can consider the relation x » y de�ned by: there
is an i such that x 2 Xi and y 2 Xi . This relation is also g(x) Æg(y). This relation has a graph
on X, say r . Then r is an equivalence on X. Each class of r is some Xi . Conversely, if X i is
non-empty, it is a class. If no X i is empty, then i 7! f (i ) is a bijection from E ! X/ r .

Definition in_same_coset f x y:=
exists i, [/\ inc i (source f) , inc x (Vf f i) & inc y (Vf f i)].

Definition partition_relation f x :=
graph_on (in_same_coset f) x.

Section InSameCoset.
Variables (f x: Set).
Hypothesis (ff: function f).
Hypothesis fpa: partition_w_fam (graph f) x.

Lemma partition_inc_unique1 i j y:
inc i (source f) -> inc y (Vf f i) ->
inc j (source f) -> inc y (Vf f j) -> i = j.

Lemma isc_hi a b: (in_same_coset f a b) -> (inc a x /\ inc b x).
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Lemma isc_rel_P a b:
(related (partition_relation f x) a b <-> in_same_coset f a b).

Lemma isc_rel1P a b: inc a x -> inc b x ->
((in_same_coset f a b) <-> (cover_at (graph f) a = cover_at (graph f) b)).

Lemma isc_rel_sr: substrate (partition_relation f x)= x.
Lemma isc_rel_equivalence :

equivalence (partition_relation f x).

Lemma isc_rel_class a:
classp (partition_relation f x) a
-> exists2 u, inc u (source f) & a = Vf f u.

Lemma isc_rel_class2 u:
inc u (source f) -> nonempty (Vf f u)
-> classp (partition_relation f x) (Vf f u).

Lemma partition_fun_fb:
(allf (graph f) nonempty)
-> bijection (Lf (Vf f)

(source f) (quotient (partition_relation f x))).
End InSameCoset.

With the same notations, a system of representatives is a set S such that X i \ S is a sin-
gleton. The same name is given to an injective function g whose image is a system of repre-
sentatives. In this case, for every i there is a unique j such that g( j ) 2 Xi . Conversely if this
condition holds and g is injective, it is a system of representatives. As a consequence, every
right inverse of the canonical projection of X on the quotient set de�ned by the partition X i

of X is a system of representatives.

Definition representative_system s f x :=
[/\ function f, partition_w_fam (graph f) x, sub s x
& forall i, inc i (source f) -> singletonp ((Vf f i) \cap s)].

Definition representative_system_function g f x :=
injection g /\ (representative_system (range (graph g)) f x).

Lemma rep_sys_function_pr g f x i:
representative_system_function g f x -> inc i (source f)
-> exists! a, (inc a (source g) /\ inc (Vf g a) (Vf f i)).

Lemma rep_sys_function_pr2 g f x:
injection g -> function f -> partition_w_fam (graph f) x
-> sub (target g) x
-> (forall i, inc i (source f)

-> exists! a, (inc a (source g) /\ inc (Vf g a) (Vf f i)))
-> representative_system_function g f x.

Lemma section_canon_proj_pr g f x y r:
r = partition_relation f x -> function f -> partition_w_fam (graph f) x
-> is_right_inverse (canon_proj r) g ->
inc y x ->
related r y (Vf g (class r y)).

Lemma section_is_representative_system_function g f x:
function f -> partition_w_fam (graph f) x
-> is_right_inverse (canon_proj (partition_relation f x)) g ->
(forall u, inc u (source f) -> nonempty (Vf f u)) ->
representative_system_function g f x.
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6.3 Relations compatible with an equivalence relation

We say that P(x) is compatible with » if P(x) and x » y imply P( y). Every property is
compatible with the equality.

Definition compatible_with_equiv_p (p: property)(r:Set) :=
forall x x', p x -> related r x x' -> p x'.

Lemma trivial_equiv p x: compatible_with_equiv_p p (diagonal x).

If p is compatible with » , we can de�ne P( t ) on the quotient E/R of » by:

t 2 E/R and (9x)(x 2 t and päxä).

Criterion C56 says that this is equivalent to

t 2 E/R and (8 x)(x 2 t Æ) päxä).

It is said to be induced by päxäon passing to the quotient (with respect to x) with respect to
R. If there is x 2 t with p(x), then for all x 2 t we have p(x). If x is in the substrate, then p(x)
is equivalent to P( x̄) where x̄ is the class of x.

Definition relation_on_quotient p r :=
fun t => inc t (quotient r) /\ exists2 x, inc x t & p x.

Lemma rel_on_quoP p r:
equivalence r -> compatible_with_equiv_p p r -> forall t,
(relation_on_quotient p r t

<-> (inc t (quotient r) /\ forall x, inc x t -> p x)).
Lemma rel_on_quoP2 p r:

equivalence r -> compatible_with_equiv_p p r -> forall y,
( (inc y (substrate r) /\ relation_on_quotient p r (Vf (canon_proj r) y))
<-> (inc y (substrate r) /\ p y)).

6.4 Saturated subsets

A subset A of the substrate of a relation r is said saturated if x 2 A is compatible with r .
This is the same as saying that for every y 2 A the class of y is a subset of A, or that there exists
a set B formed by classes modulo r whose union is A.

Definition saturated r x := compatible_with_equiv_p (fun y=> inc y x) r.

Lemma saturatedP r x:
equivalence r -> sub x (substrate r) ->
((saturated r x) <-> (forall y, inc y x -> sub (class r y) x)).

Lemma saturated2P r x:
equivalence r -> sub x (substrate r) ->
((saturated r x) <->

exists2 y, (forall z, inc z y -> classp r z) & x = union y).

Given a function f and a set X, we consider X f to be f ¡ 1hf hXii . We have y 2 X f if and
only if there is a z 2 X such that f (y) Æf (z). If we have an equivalence relation r and f is the
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canonical projection onto the quotient set, then f (y) Æf (z) is the same as y r» z. If X is the
singleton { x}, then X f is the class of x modulo r . As a consequence X is saturated if and only
if X ÆX f . If X is part of the substrate, it is saturated if and only if it is the inverse image (of
some set) by the canonical projection on the quotient set.

Definition inverse_direct_value f x :=
image_by_fun (inverse_fun f) (image_by_fun f x).

Lemma idvalue_P f x: function f -> sub x (source f) ->forall y,
inc y (inverse_direct_value f x) <->

(inc y (source f) /\ (exists2 z, inc z x & Vf f y = Vf f z)).
Lemma idvalue_cprojP r x:

equivalence r -> sub x (substrate r) ->forall y,
inc y (inverse_direct_value (canon_proj r) x) <->
(inc y (substrate r) /\ (exists2 z, inc z x & class r y = class r z)).

Lemma class_is_inv_direct_value r x:
equivalence r -> inc x (substrate r) ->
class r x = inverse_direct_value (canon_proj r) (singleton x).

Lemma saturated_P3 r x:
equivalence r -> sub x (substrate r) ->
(saturated r x <-> (x= inverse_direct_value (canon_proj r) x)).

Lemma saturated_P4 r x:
equivalence r -> sub x (substrate r) ->
(saturated r x <-> (exists2 b, sub b (quotient r)

& x = image_by_fun (inverse_fun (canon_proj r)) b)).

The following lemmas show that saturated behaves friendly with union, intersection
and complement.

Lemma saturated_setU r x:
equivalence r ->
(alls x (sub^~ (substrate r))) -> (alls x (saturated r)) ->
(sub (union x) (substrate r) /\ saturated r (union x)).

Lemma saturated_setI r x:
equivalence r -> nonempty x ->
(alls x (sub^~ (substrate r))) -> (alls x (saturated r)) ->
(sub (intersection x) (substrate r) /\ saturated r (intersection x)).

Lemma saturated_setC r a:
equivalence r -> sub a (substrate r) -> saturated r a ->
saturated r ((substrate r) -s a).

The set Xf is called the saturation of X by r if f is the canonical projection associated to
r . It is the union of classes of elements of X. It is the smallest saturated set that contains X. If
Xi is a family of sets, A i their saturations, then the saturation of

S
Xi is

S
Ai .

Definition saturation_of r x :=
inverse_direct_value (canon_proj r) x.

Lemma saturation_of_pr r x:
equivalence r -> sub x (substrate r) ->
saturation_of r x =
union (Zo (quotient r)(fun z=> exists2 i, inc i x & z = class r i)).

Lemma saturation_of_smallest r x:
equivalence r -> sub x (substrate r) ->
[/\ saturated r (saturation_of r x),

sub x (saturation_of r x)
& (forall y, sub y (substrate r) -> saturated r y -> sub x y
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-> sub (saturation_of r x) y)].

Definition union_image x f:=
union (Zo x (fun z=> exists2 i, inc i (source f) & z = Vf f i)).

Lemma saturation_of_union r f g:
equivalence r -> function f -> function g ->
(forall i, inc i (source f) -> sub (Vf f i) (substrate r)) ->
source f = source g ->
(forall i, inc i (source f) -> saturation_of r (Vf f i) = Vf g i)
-> saturation_of r (union_image (powerset(substrate r)) f) =
union_image (powerset(substrate r)) g.

6.5 Mappings compatible with equivalence relations

We start with some properties of the function s that maps a non-empty set x to a repre-
sentative: If R is an equivalence relation, this is a function from E/R to E; it is a section (r ight
inverse) of the canonical projection.

Definition section_canon_proj r :=
Lf rep (quotient r) (substrate r).

Lemma section_canon_proj_axioms r:
equivalence r ->
lf_axiom rep (quotient r) (substrate r).

Lemma section_canon_proj_V r x:
equivalence r ->
inc x (quotient r) -> Vf (section_canon_proj r)x = (rep x).

Lemma section_canon_proj_f r:
equivalence r -> function (section_canon_proj r).

Lemma right_inv_canon_proj r:
equivalence r ->
is_right_inverse (canon_proj r) (section_canon_proj r).

We say that a function f is compatible with R if the relation f (x) Æy is compatible; by

de�nition this is: if x R» x0 then f (x) Æy implies f (x0) Æy. By symmetry, these two relations
are equivalent, and we can eliminate y. We �rst prove that our de�nition is the same as the
original one, then show that this means that the function is constant on equivalence classes.
This means that f can be factored through the canonical projection g (see below; we show
here g(x) Æg(y) implies f (x) Æf (y)). (see diagram (retraction/section) on page 67).

Definition compatible_with_equiv f r :=
[/\ function f, source f = substrate r &
forall x x', related r x x' -> Vf f x = Vf f x'].

Lemma compatible_with_equiv_pr f r:
function f -> source f = substrate r ->
compatible_with_equiv f r <->
(forall y, compatible_with_equiv_p (fun x => y = Vf f x) r)).

Lemma compatible_constant_on_classes f r x y:
equivalence r ->
compatible_with_equiv f r -> inc y (class r x) -> Vf f x = Vf f y.

Lemma compatible_constant_on_classes2 f r x:
equivalence r -> compatible_with_equiv f r ->
constantfp (restriction f (class r x)).
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Lemma compatible_with_proj f r x y:
equivalence r -> compatible_with_equiv f r ->
inc x (substrate r) -> inc y (substrate r) ->
Vf (canon_proj r) x = Vf (canon_proj r) y -> Vf f x = Vf f y.

Given two relations r and s, we say that the function f is compatible with r and s if g ± f
is compatible with r , when g is the canonical projection of F/ s. We can restate this as: x r» y
implies f (x) s» f (y). If h is the canonical projection of E/ r , then h(x) Æh(y) implies that f (x)
and f (y) have the same class modulo s.

Definition compatible_with_equivs f r r' :=
[/\ function f, target f = substrate r' &
compatible_with_equiv ((canon_proj r') \co f) r].

Lemma compatible_with_pr r r' f x y:
equivalence r -> equivalence r' ->
compatible_with_equivs f r r' ->
related r x y -> related r' (Vf f x) (Vf f y).

Lemma compatible_with_pr2 r r' f:
equivalence r -> equivalence r' ->
function f ->
target f = substrate r'-> source f = substrate r->
(forall x y, related r x y -> related r' (Vf f x) (Vf f y)) ->
compatible_with_equivs f r r'.

Lemma compatible_with_proj3 r r' f x y:
equivalence r -> equivalence r' ->
compatible_with_equivs f r r'->
inc x (substrate r) -> inc y (substrate r) ->
Vf (canon_proj r) x = Vf (canon_proj r) y ->
class r' (Vf f x) = class r' (Vf f y).

Assume that f is compatible with an equivalence r on E, let g be the canonical projection
onto E/ r and s a section of g. If f is compatible with r , there exists a unique function h such
that h ±g Æf and h Æf ±s. This mapping is said to be induced by f on passing to the quotient .
This is criterion C57 (for details, see page 191).

Definition fun_on_quotient r f :=
f \co (section_canon_proj r).

Lemma exists_fun_on_quotient f r:
equivalence r -> function f -> source f = substrate r ->
(compatible_with_equiv f r <->
(exists h, h \coP (canon_proj r) /\ h \co (canon_proj r) = f)).

Lemma exists_unique_fun_on_quotient f r h:
equivalence r -> compatible_with_equiv f r ->
h \coP (canon_proj r) -> h \co (canon_proj r) = f ->
h = fun_on_quotient r f.

Lemma compose_foq_proj f r:
equivalence r -> compatible_with_equiv f r ->
(fun_on_quotient r f) \co (canon_proj r) = f.

E
f //

¼
��

E0 E
f //

¼
��

E0

¼0

��
E/ r

f 0

==

E/ r
f 00

//E0/ r 0

(fun on quotient)
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Assume that f is a function from E into E 0 on which we have equivalence relations r
and r 0. Let ¼ and ¼0 be the canonical projections onto E/ r and E0/ r 0, s and s0 associated
sections. We can consider f Æf ±s', the mapping induced by f on passing on the quotient, or
f 00Æ¼± f ±s, the mapping induced by f on passing to the quotients with respect to r and s.
We consider two cases: f is a mapping, and f is a graph. In order to simplify the statements,
we write X and X 0 instead of is_equivalence r or is_equivalence r' .

Definition fun_on_rep f: Set -> Set := fun x=> f(rep x).
Definition fun_on_reps r' f := fun x=> Vf (canon_proj r')(f(rep x)).
Definition function_on_quotient r f b :=

Lf (fun_on_rep f)(quotient r)(b).
Definition function_on_quotients r r' f :=

Lf (fun_on_reps r' f)(quotient r)(quotient r').
Definition fun_on_quotients r r' f :=

((canon_proj r') \co f) \co (section_canon_proj r).
Lemma foq_axioms r f b: X->

lf_axiom f (substrate r) b ->
lf_axiom (fun_on_rep f) (quotient r) b.

Lemma foqs_axioms r r' f: X -> X' ->
lf_axiom f (substrate r)(substrate r') ->
lf_axiom (fun_on_reps r' f) (quotient r) (quotient r').

Lemma foqc_axioms r f: X->
function f -> source f = substrate r ->
f \coP (section_canon_proj r).

Lemma foqcs_axioms r r' f:
function f -> source f = substrate r -> target f = substrate r' ->
(canon_proj r' \co f) \coP (section_canon_proj r).

Lemma foq_f r f b: X->
lf_axiom f (substrate r) b ->
function (function_on_quotient r f b).

Lemma foqs_f r r' f: X-> X' ->
lf_axiom f (substrate r)(substrate r') ->
function (function_on_quotients r r' f).

Lemma foqc_f r f: X-> X' ->
source f = substrate r ->
function (fun_on_quotient r f).

Lemma foqcs_f r r' f: X-> X' ->
function f -> source f = substrate r -> target f = substrate r' ->
function (fun_on_quotients r r' f).

Lemma foq_V r f b x: X->
lf_axiom f (substrate r) b ->
inc x (quotient r) ->
Vf (function_on_quotient r f b) x = f (rep x).

Lemma foqc_V r f x: X ->
function f ->

source f = substrate r -> inc x (quotient r) ->
Vf (fun_on_quotient r f) c = Vf f (rep x).

Lemma foqs_V r r' f x: X -> X' ->
lf_axiom f (substrate r)(substrate r') -> inc x (quotient r) ->
Vf (function_on_quotients r r' f) x = class r' (f (rep x)).

Lemma foqcs_V r r' f x: X-> X' ->
function f -> source f = substrate r -> target f = substrate r' ->
inc x (quotient r) ->
Vf (fun_on_quotients r r' f) x = class r' (Vf f (rep x)).
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More lemmas; statement fun_on_quotient_pr4 is the diagram on the right part of (fun
on quotient) on page 119.

Lemma fun_on_quotient_pr r f x:
Vf f x = fun_on_rep (fun _ => Vf f x) (Vf (canon_proj r)x).

Lemma fun_on_quotient_pr2 r r' f x:
Vf (canon_proj r') (Vf f x) =
fun_on_reps r' (fun _ => Vf f x) (Vf (canon_proj r) x).

Lemma composable_fun_proj r f b:
lf_axiomf f (substrate r) b ->
(function_on_quotient r f b) \coP (canon_proj r).

Lemma composable_fun_projs r r' f:
fl_axiomf f (substrate r) (substrate r') ->
(function_on_quotients r r' f) \coP (canon_proj r).

Lemma composable_fun_projc r f:
compatible_with_equiv f r ->
(fun_on_quotient r f) \coP (canon_proj r).

Lemma composable_fun_projcs r r' f:
compatible_with_equivs f r r'->
(fun_on_quotients r r' f) \coP (canon_proj r).

Lemma fun_on_quotient_pr3 r f x:
inc x (substrate r) -> compatible_with_equiv f r ->
Vf f x = Vf (fun_on_quotient r f) (Vf (canon_proj r) x).

Lemma fun_on_quotient_pr4 r r' f:
compatible_with_equivs f r r'->
(canon_proj r') \co f = (fun_on_quotients r r' f) \co (canon_proj r).

Lemma fun_on_quotient_pr5 r r' f x:
compatible_with_equivs f r r'->
inc x (substrate r) ->
Vf (canon_proj r') (Vf f x) =
Vf (fun_on_quotients r r' f) (Vf (canon_proj r) x).

Lemma compose_fun_proj_ev r f b x:
compatible_with_equiv (Lf f (substrate r) b) r ->
inc x (substrate r) ->
lf_axiom f (substrate r) b ->
Vf (function_on_quotient r f b \co canon_proj r) x = f x.

Lemma compose_fun_proj_ev2 r r' f x:
compatible_with_equivs (BL f (substrate r) (substrate r')) r r' ->
lf_axiom f (substrate r) (substrate r') ->
inc x (substrate r) ->
inc (f x) (substrate r') ->
Vf (canon_proj r') (f x) =
Vf (function_on_quotients r r' f \co canon_proj r) x.

Lemma compose_fun_proj_eq r f b:
compatible_with_equiv (Lf f (substrate r) b) r ->
lf_axiom f (substrate r) b ->
(function_on_quotient r f b) \co (canon_proj r) =

Lf f (substrate r) b.
Lemma compose_fun_proj_eq2 r r' f:

lf_axiom f (substrate r) (substrate r') ->
compatible_with_equivs (Lf f (substrate r) (substrate r')) r r'->
(function_on_quotients r r' f) \co (canon_proj r) =
(canon_proj r') \co (Lf f (substrate r) (substrate r')).
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E
f //

¼
��

F E
f //

¼
��

F

E/ »
f 0

´ //F0

½

OO

E/ »
f̄

== (canonical decomposition)

Assume now that f is a function from E to F, and » the associated equivalence, for which
x and y are equivalent if f (x) Æf (y). Then f is compatible and we can de�ne f on the quo-
tient. If we denote it by f̄ , and if x̄ is the class of x then f̄ (x̄) Æf (x). From f̄ (x̄) Æf̄ (ȳ) we
get f (x) Æf (y), so that x and y are in the same class: hence f̄ is injective. If we restrict this
function to the image F 0of f we get a bijection, say f 0. The diagram (canonical decomposi-
tion) says that if we compose the projection ¼from E to E/ » , the bijection f 0 into F 0and the
inclusion map from F 0 to F, then we get f . If f is surjective then F ÆF0and we can simplify a
bit: only three arrows are needed. Moreover, there is no need to restrict f̄ (this is shown on
the right part of the diagram).

Lemma compatible_ea f:
function f ->
compatible_with_equiv f (equivalence_associated f).

Lemma ea_foq_fi f:
function f ->
injection (fun_on_quotient (equivalence_associated f) f).

Lemma ea_foq_on_im_fb f:
function f ->
bijection (restriction2 (fun_on_quotient (equivalence_associated f) f)

(quotient (equivalence_associated f)) (range (graph f))).
Lemma canonical_decompositiona f (r:= equivalence_associated f):

function f ->
function ((restriction2 (fun_on_quotient r f)

(quotient r) (range (graph f)))
\co (canon_proj r)).

Lemma canonical_decomposition f (r:= equivalence_associated f):
function f ->
f = (canonical_injection (range (graph f))(target f))

\co (restriction2 (fun_on_quotient r f) (quotient r) (range (graph f))
\co (canon_proj r)).

Lemma surjective_pr7 f:
surjection f ->
canonical_injection (range (graph f))(target f) = identity (target f).

Lemma canonical_decompositiona f (r:= equivalence_associated f):
function f ->

function (compose (restriction2 (fun_on_quotient r f)
(quotient r) (range (graph f)))

(canon_proj r)).
Lemma canonical_decomposition_surj f (r:= equivalence_associated f):

surjection f ->
f = (restriction2 (fun_on_quotient r f) (quotient r) (target f))

\co (canon_proj r).
Lemma canonical_decompositionb f (r:= equivalence_associated f):

function f ->
restriction2 (fun_on_quotient r f) (quotient r) (target f) =
(fun_on_quotient r f).

Lemma canonical_decomposition_surj2 f (r:= equivalence_associated f):
surjection f ->
f = (fun_on_quotient r f) \co (canon_proj r).

Inria



Bourbaki: Theory of sets in Coq I (v6) 123

6.6 Inverse image of an equivalence relation; induced equivalence
relation

If Á is a function from E to F, S an equivalence on F, and u the canonical projection from
F to F/S, the inverse image of S by Á is the equivalence R associated to u ±Á, characterized

by x R» y if and only if Á(x) S» Á(y). If X is a class modulo S then Á¡ 1hXi is a class modulo R (if
nonempty) and conversely.

Definition inv_image_relation f r :=
equivalence_associated (canon_proj r \co f).

Definition iirel_axioms f r :=
[/\ function f, equivalence r & substrate r = target f].

Lemma iirel_f f r:
iirel_axioms f r -> function (canon_proj r \co f).

Lemma iirel_relation f r:
iirel_axioms f r -> equivalence (inv_image_relation f r).

Lemma iirel_substrate f r:
iirel_axioms f r -> substrate (inv_image_relation f r) = source f.

Lemma iirel_relatedP f r; iirel_axioms f r -> forall x y,
(related (inv_image_relation f r) x y <->
[/\ inc x (source f), inc y (source f) & related r (Vf f x) (Vf f y)]).

Lemma iirel_classP f r: iirel_axioms f r -> forall x,
(classp (inv_image_relation f r) x <->

exists y, [/\ classp r y,
nonempty (y \cap (range (graph f)))
& x = inv_image_by_fun f y]).

A
j //

g
��

E

f
��

A/RA

h

66
k //Im f

½ //E/R

(induced equivalence)

Let R be an equivalence on E, A a subset on E, and j the inclusion map A ! E. The inverse
image of R by j is called the relation induced on A and is denoted by R A. If x and y are in A,
then they are related by R A if and only if they are related by R. Classes for R A are nonempty
sets of the form A \ X where X is a class for R. The inclusion map is compatible with the
relations. Let f and g be the canonical projections and h the function on the quotient. This
function is injective, its range is the range of f . Hence h is the composition of a bijection k
with the inclusion map.

Definition induced_relation r a :=
inv_image_relation (canonical_injection a (substrate r)) r.

Definition induced_rel_axioms r a :=
equivalence r /\ sub a (substrate r).

Definition canonical_foq_induced_rel r a :=
restriction2 (fun_on_quotients (induced_relation r a) r

(canonical_injection a (substrate r)))
(quotient (induced_relation r a))
(image_by_fun (canon_proj r) a).
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Section InducedRelation.
Variables (r a: Set).
Hypothesis ira: induced_rel_axioms r a.

Lemma induced_rel_iirel_axioms:
iirel_axioms (canonical_injection a (substrate r)) r.

Lemma induced_rel_equivalence:
equivalence (induced_relation r a).

Lemma induced_rel_substrate:
substrate (induced_relation r a) = a.

Lemma induced_rel_relatedP u v:
related (induced_relation r a) u v <->

[/\ inc u a, inc v a & related r u v].
Lemma induced_rel_classP x:

(classp (induced_relation r a) x <->
exists y, [/\ classp r y, nonempty (y \cap a) & x = (y \cap a)]).

Lemma compatible_injection_induced_rel:
compatible_with_equivs (canonical_injection a (substrate r))
(induced_relation r a) r.

Lemma foq_induced_rel_fi:
injection (fun_on_quotients (induced_relation r a) r

(canonical_injection a (substrate r))).
Lemma foq_induced_rel_image:

image_by_fun (fun_on_quotients (induced_relation r a) r
(canonical_injection a (substrate r))) (quotient (induced_relation r a))

= image_by_fun (canon_proj r) a.
Definition canonical_foq_induced_rel r a :=

restriction2 (fun_on_quotients (induced_relation r a) r
(canonical_injection a (substrate r)))

(quotient (induced_relation r a))
(image_by_fun (canon_proj r) a).

Lemma canonical_foq_induced_rel_fb:
bijection (canonical_foq_induced_rel r a).

End InducedRelation.

6.7 Quotients of equivalence relations

We say that a relation S is �ner than R if S implies R. We say that an equivalence r is �ner
than s if s» implies r» , i.e., if for all x and y, x s» y implies x r» y. If r and s are equivalences on a
same set, this is equivalent to s½r . If we denote by C sx the class of x for s, it is also: for each
x, there is an y such that C sx ½Cr y. Equivalently: each C r y is saturated by s. We give two
examples.

Definition finer_equivalence s r:=
forall x y, related s x y -> related r x y.

Definition finer_axioms s r :=
[/\ equivalence s, equivalence r & substrate r = substrate s].

Lemma coarsest_equivalence r:
equivalence r -> finer_equivalence r (coarse (substrate r)).

Lemma finest_equivalence r:
equivalence r -> finer_equivalence (diagonal (substrate r)) r.

Section FinerEquivalence.
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Variable (r s: Set).
Hypothesis fa: finer_axioms s r.

Lemma finer_sub_equivP:
(finer_equivalence s r <-> sub s r).

Lemma finer_sub_equivP2:
(finer_equivalence s r <->

(forall x, exists y, sub(class s x)(class r y))).
Lemma finer_sub_equivP3:

(finer_equivalence s r <->
forall y, saturated s (class r y)).

E
ÆÆ //

g
��

E

f
��

E/S
h //

h1

��

E/R

(E/S)/(R/S)
h2

//E/R

Æ

OO

(quotient of equivalences)

Assume that R and S are two equivalences on E, S �ner than R, and let f and g be the
canonical projections. Then f is compatible with S. This gives a surjective function h that
satis�es h(CSx) ÆCRx.

Lemma compatible_with_finer:
finer_equivalence s r ->
compatible_with_equiv (canon_proj r) s.

Lemma foq_finer_f:
finer_equivalence s r -> function(fun_on_quotient s (canon_proj r)).

Lemma foq_finer_V x:
finer_equivalence s r -> inc x (quotient s) ->
Vf (fun_on_quotient s (canon_proj r)) x = class r (rep x).

Lemma foq_finer_fs:
finer_equivalence s r -> surjection (fun_on_quotient s (canon_proj r)).

End FinerEquivalence.

On the quotient we can consider the equivalence induced by h. This will be denoted

R/S. We have CSx R/S» CSy if and only if x R» y; this is the same as g(x) R/S» g(y). We have
x 2 (E/S)/(R/S) if and only if there exists y 2 E/R such that y Æg(y). We can consider the
canonical decomposition of h Æ j ±h2 ±h1. Since h is surjective, we can simplify this as
h Æh2 ±h1; here h1 is the canonical projection of E/S onto (E/S)/(R/S).

Definition quotient_of_relations r s :=
equivalence_associated (fun_on_quotient s (canon_proj r)).

Lemma cqr_aux s x y u:
equivalence s -> sub y (substrate s) ->
x = image_by_fun (canon_proj s) y ->
(inc u x <-> (exists2 v, inc v y & u = class s v)).

Section QuotientRelations.
Variables (r s: Set).
Hypotheses (fa:finer_axioms s r) (fe: finer_equivalence s r).
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Lemma quo_rel_equivalence:
equivalence (quotient_of_relations r s).

Lemma quo_rel_substrate:
substrate (quotient_of_relations r s) = (quotient s).

Lemma quo_rel_relatedP x y:
related (quotient_of_relations r s) x y <->

[/\ inc x (quotient s), inc y (quotient s) & related r (rep x) (rep y)].
Lemma quo_rel_related_bisP x y:

inc x (substrate s) -> inc y (substrate s) ->
( related (quotient_of_relations r s) (class s x) (class s y)

<-> related r x y).

Lemma quo_rel_class_bisP x:
( inc x (quotient (quotient_of_relations r s)) <->
exists2 y, inc y (quotient r) & x = image_by_fun (canon_proj s) y).

Let S be an equivalence on E and g the canonical projection. Let T be an equivalence on
the quotient, and R the inverse image of T by g. This is a relation on E, S is �ner than R and
R/S is nothing else than T.

Lemma quotient_canonical_decomposition
(f := fun_on_quotient s (canon_proj r))
(qr := quotient_of_relations r s):

f = (fun_on_quotient qr f) \co (canon_proj qr).
End QuotientRelations.

Lemma quotient_of_relations_pr s t
(r := inv_image_relation (canon_proj s) t):
equivalence s -> equivalence t -> substrate t = quotient s ->
t = quotient_of_relations r s.

6.8 Product of two equivalence relations

Given two relations R and R 0, we can de�ne R £ R0by (x,x0)R£ R0

» (y, y0) if and only if x R» y and

x0R0

» y0. This relation is re�exive, symmetric, antisymmetric, transitive of both relations are.
Thus, we get a preorder, an order, or an equivalence from two such relations. If the substrates
are E and E0, then the substrate of the product if E £ E0 in the these cases.

Definition prod_of_relation r r':=
graph_on

(fun x y=> inc (J(P x)(P y)) r /\ inc (J(Q x)(Q y)) r')
((substrate r) \times (substrate r')).

Lemma order_product2_sr1 f g:
preorder f -> preorder g ->
substrate (prod_of_relation f g) = (substrate f) \times (substrate g).

Lemma order_product2_sr f g:
order f -> order g ->
substrate (prod_of_relation f g) = (substrate f) \times (substrate g).

Lemma substrate_prod_of_rel r r':
equivalence r -> equivalence r' ->
substrate (prod_of_relation r r') = (substrate r)\times (substrate r')
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Lemma equivalence_prod_of_rel r r':
equivalence r -> equivalence r' ->
equivalence (prod_of_relation r r').

Lemma order_product2_preorder f g:
preorder f -> preorder g -> preorder (prod_of_relation f g).

Lemma order_product2_or f g:
order f -> order g -> order (prod_of_relation f g).

A class in the product is a product of classes.

Lemma prod_of_rel_P r r' a b:
related (prod_of_relation r r') a b <->
[/\ pairp a, pairp b, related r (P a) (P b) & related r' (Q a) (Q b)].

Lemma related_prod_of_relP1 r r' x x' v :
related (prod_of_relation r r') (J x x') v <->
(exists y y', [/\ v = J y y', related r x y & related r' x' y']).

Lemma related_prod_of_relP2 r r' x x' v:
related (prod_of_relation r r') (J x x') v <->

inc v ((im_of_singleton r x) \times (im_of_singleton r' x')).
Lemma class_prod_of_relP2 r r':

equivalence r -> equivalence r' -> forall x,
(classp (prod_of_relation r r') x <->

exists u v, [/\ classp r u, classp r' v & x = u \times v]).

With the same notations, let ¼and ¼0be the canonical projections. We can consider the
function ¼£ ¼0, it maps ( x, y) to (¼(x),¼0(x)): its target is (E/R) £ (E/R0). This function is not
the canonical projection ¼00associated to R£ R0, whose target is (E £ E)/(R £ R0). However
there is a bijection h such that ¼£ ¼0Æh ±¼00.

Lemma ext_to_prod_rel_f r r':
equivalence r -> equivalence r' ->
function (ext_to_prod(canon_proj r)(canon_proj r')).

Lemma ext_to_prod_rel_V r r' x x':
equivalence r -> equivalence r' ->
inc x (substrate r) -> inc x' (substrate r') ->
Vf (ext_to_prod(canon_proj r)(canon_proj r')) (J x x') =
J (class r x) (class r' x').

Lemma compatible_ext_to_prod r r':
equivalence r -> equivalence r' ->
compatible_with_equiv (ext_to_prod (canon_proj r) (canon_proj r'))

(prod_of_relation r r').
Lemma compatible_ext_to_prod_inv r r' x x':

equivalence r -> equivalence r' ->
pairp x -> inc (P x) (substrate r) -> inc (Q x) (substrate r') ->
pairp x' -> inc (P x') (substrate r) -> inc (Q x') (substrate r') ->
Vf (ext_to_prod (canon_proj r) (canon_proj r')) x =
Vf (ext_to_prod (canon_proj r) (canon_proj r')) x'
-> related (prod_of_relation r r') x x'.

Lemma related_ext_to_prod_rel r r':
equivalence r -> equivalence r' ->
equivalence_associated (ext_to_prod(canon_proj r)(canon_proj r')) =
prod_of_relation r r'.

Lemma decomposable_ext_to_prod_rel r r': (* 51 *)
equivalence r -> equivalence r' ->
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exists h, [/\ bijection h,
source h = quotient (prod_of_relation r r'),
target h = (quotient r) \times (quotient r') &
h \co (canon_proj (prod_of_relation r r')) =
ext_to_prod(canon_proj r)(canon_proj r')].

6.9 Classes of equivalent objects

Let » be an equivalence relation; we do not assume that it has a graph. Let µx be the
generic object associated to x. In Bourbaki's notation, this is ¿y(x » y). We could implement
this via chooseT. Assume x » x0. Then x » y and x0» y are equivalent, and the properties of
¿ say µx Æµx0. The quantity µx is the class of objects equivalent to x. Bourbaki notes that
“ x » x and x0» x0and µx Æµx0” is equivalent to x » x0.

Assume now that there is a set T such that y » y implies that there exists x 2 T such that
x » y. Let £ be the set of all µx for x 2 T. If y » y, there exists x 2 T such that x » y, hence
µx Æµy and thus µy 2 £ . If x » x, then µx is the unique z 2 £ such that x » z.

Assume that x » y implies A x ÆAy. We can consider the set of all A x such that x » x. If f
maps t to At , then we have Ax Æf (µx). Bourbaki says that if we have an equivalence relation
on a set E, then we can choose for A x the class of x, and f becomes a bijection from £ into
the quotient set.

We write µx and Ax instead of µ(x) and A(x) in order to emphasize the fact that these
objects are not functions. However, µx is a set. No code is associated to this section. It seems
that this section is not used in the remaining of the work of Bourbaki; for instance, if we
consider the relation X is equipotent to Y, then µX is the cardinal of X. Bourbaki proves the
existence of the cardinal by repeating the arguments previously exposed in this section.
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Chapter 7

Exercises

We start with some properties of the Theory of Sets, not used elsewhere. We show that
Coll y(y 62y) is false. This implies that there is no set x such that for all y we have y 2 x, but on
the contrary, there is a set x such that for no y we have y 2 x (this being the empty set). Then
we show that for every property p, we have p(x), provided that x 2 ; .

Assume that there is a set x such that y 2 x is equivalent to y 62y. Let q be the property
x 2 x. By de�nition, q is equivalent to its negation. Thus we have p that says q Æ) : q and
p0that says : q Æ) q. If h is a proof of q then p(h) is a proof of : q and p(h,h) is false. Thus
H : h 7! p(h,h) is a proof that q is false, and p0(H) is a proof that q is true. Thus H( p0(H)) is a
proof of false.

Lemma not_collectivizing_notin:
~ (exists z, forall y, inc y z <-> not (inc y y)).

Proof.
case=> x hx; move: (hx x) => [p p'].
pose H:= (fun h : inc x x => (p h h));exact (H (p' H)).
Qed.

Lemma collectivizing_special :
(exists x, forall y, ~ (inc y x)) /\ ~ (exists x, forall y, inc y x).

Proof.
split; first by exists emptyset; apply: in_set0.
move=> [x Px]; apply: not_collectivizing_notin.
exists (Zo x (fun z => ~ (inc z z))) => z.
by split;[ case /Zo_P | move => zz; apply:Zo_i].
Qed.

Lemma emptyset_pra x (p: property):
inc x emptyset -> (p x).

Proof. case;case. Qed.

The two objects False and True have type Prop, but can be considered as sets. They
have exactly zero and one element; in particular, False is equal to the emptyset.

Lemma rel_False: emptyset = False.
Proof.
apply: extensionality.

by move => t /in_set0.
move => t; case; case.
Qed.
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Lemma rel_True: singleton (Ro I) = True.
apply: extensionality.

move => t /set1_P ->; apply: R_inc.
move => t [a <-]; apply /set1_P.
have -> //: a = I by case:a.
Qed.

7.1 Section 1

1. Show that the relation (x Æy) () (8 X)((x 2 X) Æ) (y 2 X)) is a theorem.

Comment . In Bourbaki, you can prove x Æx (this is the �rst theorem) or ( 8 x)(x Æx) (this
is different theorem). In Coq, we can prove only the second property. We try to be as close
as possible to the Bourbaki statement by using a section. The quanti�ers are still present,
but invisible. This looks like the axiom of extent for the relation 3; implication ) is trivial;
implication ( is a consequence of a weaker property, where we restrict X to be a singleton,
which reads then: ( 8 z)((x Æz) Æ) (y Æz)).

Section exercise1_1.
Variable x y:Set.

Lemma exercise1_1: (x=y) <-> (forall X, inc x X -> inc y X).
Proof.
split; first by move=> ->.
by move=> spec_sub; symmetry; apply: set1_eq; apply: spec_sub; fprops.
Qed.
End exercise1_1.

2. Show that ; 6Æ{x} is a theorem. Deduce that (9x)(9y)(x 6Æy) is a theorem.

Comment . The �rst claim is really ( 8 x)(; 6Æ{x}). Note that the “axiom of the singleton”
(for each x there is a set that has a unique element, namely x) asserts that the number of sets
is not �nite.

Lemma exercise1_2: exists x y:Set, x <> y.
Proof.
have theorem:forall x:Set, emptyset <> singleton x.

by move=> x esx; empty_tac1 x.
by exists emptyset; exists (singleton emptyset); apply: theorem.
Qed.

3. Let A and B be two subsets of a set X. Show that the relation B ½ ÙA is equivalent to A ½ ÙB
and that the relation ÙB ½A is equivalent to ÙA ½B.

Comment . The notation ÙA is an abuse of language for X ¡ A. It suf�ces to prove one
implication, all other follow. We give here a different proof: we show that B ½ ÙA is equivalent
to A \ B Æ ; and ÙA ½ B is equivalent to A [ B ÆX. The result follows by commutativity of
union and intersection.

Lemma exercise1_3 X A B: sub A X -> sub B X ->
((sub (X -s B) A <-> sub (X -s A) B) /\
(sub B (X -s A) <-> sub A (X -s B))).
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Proof.
have aux1: forall a b, sub a X -> sub b X ->

(sub (compl a) b <-> a \cup b = X).
move => a b aX bX; split.

move => s1; set_extens t; first by case /setU2_P => ts; fprops.
rewrite - (setU2_Cr aX); case /setU2_P => ts; fprops.

by rewrite /compl => <- t /setC_P [/setU2_P] [].
have aux2: forall a b, sub a X -> sub b X ->

(sub b (compl a) <-> a \cap b = emptyset).
move => a b aX bX; split.

move => s1; apply /set0_P =>t /setI2_P [ta tb].
by move /setC_P: (s1 _ tb) => [].

move => abe t tb; apply /setC_P; split; fprops.
move => ta; empty_tac1 t.

move => ax bx; split.
apply: (iff_trans (aux1 _ _ bx ax)); rewrite setU2_C.
by apply: iff_sym; apply/aux1.

apply: (iff_trans (aux2 _ _ ax bx)); rewrite setI2_C.
by apply: iff_sym; apply/aux2.

4. Prove that the relation X ½{x} is equivalent to “ X Æ{x} or X Æ ; ”.

Comment . This has been proved in the main text. If X is a non-empty subset of { x}, and
z is in X, then z Æx.

Lemma exercise1_4 X x:
sub X (singleton x) <-> (X = singleton x \/ X = emptyset).

Proof.
split; last by case => ->; fprops.
move => asx; case (emptyset_dichot X); first by right.
by move => nea; left; apply: set1_pr1 => // z /asx /set1_P.
Qed.

5. Prove that ; Æ ¿X(¿x (x 2 X) 62X).

Comment . We shall give a proof that uses choose, which not exactly the same as Bour-
baki's ¿ function. Hence we start, informally, with a Bourbaki proof. We have to show

¿X(: (9x)(: (x 62X))) Æ¿X(: (9x)(x 2 X)),

(by de�nition of ; , 8 and 9). Write this as ¿X(: (9x)P) Æ¿X(: (9x)Q). According to Scheme
S7, it suf�ces to prove ( 8 X)(: (9x)P () : (9x)Q). Fix X. Criterion C24 says that : x 62X is
equivalent to x 2 X, i.e., P () Q. From Criterion C31 it follows that ( 9x)P () (9x)Q.
Criterion C23 implies : (9x)P () : (9x)Q. Qed.

The expression ¿x (x 2 X) is denoted by rep in Coq. Write this as r (X). From y 2 Y, it
follows r (Y) 2 Y. Let p(X) stand for r (X) 62X. By double negation, if r (Y) is true, then Y must
be empty. We must show that Y Æ¿Xp is empty; it suf�ces to prove p(¿Xp), which follows
from p(; ).

Lemma exercise1_5:
emptyset = choose (fun X => ~ (inc (rep X) X)).

Proof.
have rep_pr: forall Y y, inc y Y -> inc (rep Y) Y.

by move=> Y y yY; apply: (choose_pr (p:=inc^~ Y)); exists y.
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have Ye: forall Y, ~ (inc (rep Y) Y) -> emptyset = Y.
move => y ye; symmetry.
by apply /set0_P; move=> t; dneg aux; apply (rep_pr _ _ aux).

apply: Ye; apply: (choose_pr (p:= fun z => ~ inc (rep z) z)).
exists emptyset; case; case.
Qed.

We give here a shorter proof. Note that in_set0 say that no element is in the empty set,
and rep_i saysrep x is in x if x is non-empty.

Lemma exercise1_5:
emptyset = choose (fun X => ~ (inc (rep X) X)).

Proof.
pose p := fun z => ~ inc (rep z) z.
have pe: p emptyset by exact: in_set0.
move:(choose_pr (ex_intro p emptyset pe)) => pcp.
case (emptyset_dichot (choose p)) => // ney; by move: (rep_i ney).
Qed.

6. Consider (8 y)(y Æ¿x ((8 z)(z 2 x () z 2 y))). Show that this axiom A10implies the axiom
of extent A1.

Comment . We introduce an axiom, equivalent to Axiom Scheme S7, that says that if P
and Q are equivalent propositions, then ¿xP Æ¿xQ. Write R(x, y) for ( 8 z)(z 2 x () z 2 y).
Let A and B be two sets such that A ½ B and B ½ A, so that R(A,B) holds. It follows, by
transitivity of equivalence, that for all x, R(x,A) is equivalent to R( x,B) so that (S7) gives
¿xR(x,A) Æ¿xR(x,B). Axiom A10says AÆ¿xR(x,A) and B Æ¿xR(x,B). If follows A ÆB.

Section Ex1_6.
Hypothesis choose_equiv: forall (p q: property),

(forall x, p x <-> q x) -> choose p = choose q.

Lemma exercise1_6:
(forall y, y = choose (fun x => (forall z, (inc z x)<->(inc z y))))
-> (forall a b : Set, sub a b -> sub b a -> a = b).

Proof.
move=> hyp a b; rewrite /sub => sab sba.
rewrite (hyp a) (hyp b).
apply: choose_equiv; move=> x.
split; move=> aux z; rewrite aux; split; auto.
Qed.

End Ex1_6.

7.2 Section 2

1. Let Räx,yäbe a relation, the letters x and y being distinct; let z be a letter distinct from x
and y which does not appear in Räx,yä. Show that the relation (9x)(9y)Räx,yäis equivalent to

(9z)(z is an ordered pair and Räpr1z,pr2zä)

and the relation (8 x)(8 y)Räx,yäis equivalent to

(8 z)(z is an ordered pair Æ) (Räpr1z,pr2zä)).
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Comment . Compare this with the section “Function of two variables”.

Lemma exercise2_1 (R: relation):
((exists x, exists y, R x y) <-> (exists z, pairp z /\ R(P z) (Q z))) /\
((forall x, forall y, R x y) <-> (forall z, pairp z -> R(P z) (Q z))).

Proof.
split;split.
- move=> [x] [y] Rxy; exists (J x y); aw;fprops.
- by move => [z [zp Rz]]; exists (P z); exists (Q z).
- move=> hyp z _; apply: hyp.
- move => hyp x y; move: (hyp _ (pair_is_pair x y)); aw.
Qed.

2. (a) Show that the relation {{x}, {x, y}} Æ{{x0}, {x0, y0}} is equivalent to x Æx0and y Æy0.
(b) Let T 0 be the theory of sets, and let T 1 be the theory which has the same schemes and
explicit axioms as T 0, except for the axiom A3. Show that if T 1 is not contradictory, then T 0

is not contradictory.

Comment . In the French version, Bourbaki de�nes the pair ( x, y) as {{x}, {x, y}} and proves
(a) as Proposition 1 (thus Propositions in this section are numbered differently in the two edi-
tions). In the English version, there is a speci�c sign (that looks a bit like ¾) that de�nes a pair,
and an axiom A3. Part (b) of the exercise is then: if the French version is not contradictory,
then the English version is neither.

Definition xpair (x y : Set) :=
doubleton (singleton x) (doubleton x (singleton y)).

Lemma exercise2_2 x y z w:
(xpair x y = xpair z w) <-> (x = z /\ y = w).

Proof.
split; last by move=> [] -> ->.
move => eq.
have fp2: inc (singleton x) (xpair z w) by rewrite -eq /xpair; fprops.
have sp2: inc (doubleton x (singleton y)) (xpair z w).

by rewrite -eq /xpair; fprops.
have xz: x=z.

case /set2_P: fp2; first by apply: set1_inj.
by move=> sd; symmetry; apply: set1_eq; ue.

split=>//.
rewrite xz in sp2.
case /set2P:sp2 => hyp.

symmetry.
have syz: (singleton y = z) by apply: set1_eq; ue.
have: (inc (doubleton z (singleton w)) (xpair x y)).

by rewrite eq /xpair; fprops.
rewrite xz /xpair hyp; move/set1_P => zwz.
have: (singleton w = z) by apply: set1_eq; ue.
by rewrite - syz; apply: set1_inj.

apply: set1_inj.
have sp3: (inc (singleton w) (doubleton z (singleton y))) by ue.
case /set2_P: sp3 => sp4; last by symmetry.
have sp5: (inc (singleton y) (doubleton z (singleton w))) by ue.
by case /set2_P: sp5; try ue.
Qed.
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7.3 Section 3

1. Show that the relations x 2 y, x ½y, x Æ{y} have no graph with respect to x and y.

Assume that r is a relation, and G is a set containing all related pairs. Then r has a graph,
namely the subset of all elements ( x, y) of G that are related. We replace “has no graph” by
“there is no such G”. We say that r is “universal” if any x is related to some y.

(* Definition has_no_graph (r:relation):=
~(exists G, is_graph G /\ forall x y, r x y <-> inc (J x y) G). *)

Definition has_no_graph (r:relation):=
~(exists G, forall x y, r x y -> inc (J x y) G).

Definition is_universal (r:relation):=
forall x, exists y, r x y \/ r y x.

Assume that r is a universal relation, and r (x, y) implies J( x, y) 2 X. Let D be the union of
the domain of range of X. The relation r (x, y) implies that both x and y are in D. Since r is
universal, every set is in D, absurd.

Lemma is_universal_pr r: is_universal r -> has_no_graph r.
Proof.
move=> u [X h].
case: (proj2 collectivizing_special).
exists ((domain X) \cup (range X)).
move: (u y) => [x [] /h jg]; apply /setU2_P; [left | right];ex_tac.
Qed.

The result is now trivial.

emma exercise3_1:
[/\ has_no_graph (fun x y => inc x y),

has_no_graph (fun x y => sub x y) &
has_no_graph (fun x y => x = singleton y) ].

Proof.
split; apply: is_universal_pr; move=> x;

[ exists (singleton x) | exists x | exists (singleton x) ] ; fprops.
Qed.

2. Let G be a graph. Show that the relation X ½pr1G is equivalent to X ½G¡ 1hGhXii .

Lemma exercise3_2 G X: sgraph G ->
( sub X (domain G) <->

sub X (direct_image (inverse_graph G) (direct_image G X))).
Proof.
move=>G X gG.
split; move=> hyp t ts; move: (hyp _ ts).

move/(domainP gG)=> [y Jg]; apply/dirim_P;exists y.
apply/dirim_P; ex_tac.

by apply/igraph_pP.
move/dirim_P => [x _] /igraph_pP h; ex_tac.
Qed.

3. Let G, H be two graphs. Show that the relation pr1H ½pr1G is equivalent to
H ½H ±G¡ 1 ±G. Deduce that G ½G±G¡ 1 ±G.
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Lemma exercise3_3a G H: sgraph G -> sgraph H ->
( sub (domain H) (domain G) <->

sub H (H \cg ((inverse_graph G) \cg G))).
Proof.
move=> gG gH.
split => h t ts.

move: (gH _ ts) => Jt; rewrite - Jt in ts.
have: (inc (P t) (domain G)) by apply: h; ex_tac.
move /(domainP gG)=> [y JG]; apply /compg_P; split => //; ex_tac.
by apply /compg_pP; ex_tac; apply/igraph_pP.

move /(domainP gH): ts => [y JH].
move: (h _ JH) => /compg_pP [z /compg_pP [u q _] _]; ex_tac.
Qed.

Lemma exercise3_3b G: sgraph G ->
sub G (G \cg ((inverse_graph G) \cg G)).

Proof. move=> gG; apply/(exercise3_3a gG gG); fprops. Qed.

4. If G is a graph show that ;± G ÆG±; Æ ; and that G¡ 1 ±G Æ ; if and only if G Æ ; .

For the �rst two relations, we need not G be a graph.

Lemma exercise3_4a G:
(G \cg emptyset = emptyset /\
emptyset \cg G = emptyset).

Proof.
split; apply /set0_P => x /compg_P [_].

by move => [y /in_set0].
by move => [y _ /in_set0].
Qed.

Lemma exercise3_4b G: sgraph G ->
((inverse_graph G) \cg G = emptyset <-> G = emptyset).

Proof.
move=> gG; split => h; last by rewrite h; apply: (proj1 (exercise3_4a _)).
apply /set0_P => x xG; empty_tac1 (J (P x) (P x)).
move:(eq_ind_r (inc^~ G) xG (gG x xG)) => px.
by apply/compg_pP; exists (Q x) => //; apply /igraph_pP.
Qed.

5. Let A, B be two sets, G a graph.
Show that (A£ B)±G ÆG¡ 1hAi£ B and G±(A£ B) ÆA£ GhBi .

Comment . Note that G need not be a graph here.

Lemma exercise3_5 G A B:
((A \times B) \cg G = (inverse_image G A) \times B /\
G \cg (A \times B) = A \times (direct_image G B)).

Proof.
split; set_extens x.
- move /compg_P => [px [y yG /setXp_P [pa pb]]].

apply/setX_P;split => //; apply/iim_graph_P; ex_tac.
- move /setX_P => [px /iim_graph_P [y uA JG] QB].

apply /compg_P; split => //; ex_tac; fprops.
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- move /compg_P => [px [y /setXp_P [pa pb pc]]].
apply /setX_P;split => //; apply/dirim_P; ex_tac.

- move /setX_P => [px pxa /dirim_P [y ya yb]].
apply/compg_P; split => //; ex_tac; fprops.

Qed.

6. For each graph G let G0be the graph (pr 1G£ pr2G)¡ G. Show that (G¡ 1)0Æ(G0)¡ 1, and that
G±(G¡ 1)0½¢ 0

B, (G¡ 1)0±G ½¢ 0
A, if A ¾pr1G and B ¾pr2G. Show that G Æ(pr 1G)£ (pr 2G) if and

only if G±(G¡ 1)0±G Æ ; .

Definition complement_graph G :=
((domain G) \times (range G)) -s G.

Definition commutes_at (f g: Set -> Set) x:= f (g x) = g (f x).

Lemma complement_graph_g G: sgraph (complement_graph G).
Proof. by move => t /setC_P [] /setX_P [ok _] _. Qed.

Lemma exercise3_6a G: sgraph G -> commutes_at complement_graph inverse_graph G.
Proof.
move => gG.
have gc: sgraph (complement_graph G) by apply: complement_graph_g.
rewrite /commutes_at/complement_graph (igraph_range gG)(igraph_domain gG).
set_extens t.

move /setC_P => [/setX_P [pt pa pb] pc].
apply /igraphP; split => //; apply/ setC_P;split; first by fprops.
by move /igraph_pP; rewrite pt.

move /igraphP => [px /setC_P [/setXp_P [pa pb] pc]].
apply/setC_P; rewrite - px; split; [ fprops | by move /igraph_pP].
Qed.

Lemma exercise3_6b G B: sgraph G -> sub (range G) B ->
sub (G \cg (complement_graph (inverse_graph G)))

(complement_graph (diagonal B)).
Proof.
move=> gG srB; rewrite exercise3_6a // => t.
move /compg_P => [pt [y /igraph_pP /setC_P [/setXp_P [pa pb] pc] pd]].
apply/setC_P; split; last by move /diagonal_i_P => [_ _ eq]; case pc; ue.
move:(@identity_sgraph B); rewrite - diagonal_is_identity => aux.
apply /setX_i => //.

apply/(domainP aux); exists(P t); apply /diagonal_pi_P; fprops.
apply/(rangeP aux); exists(Q t);apply /diagonal_pi_P.
split => //; apply: srB; ex_tac.
Qed.

Lemma exercise3_6c A G: sgraph G -> sub (domain G) A ->
sub ((complement_graph (inverse_graph G)) \cg G)

(complement_graph (diagonal A)).
Proof.
move=> gG sd.
rewrite (exercise3_6a gG) => t.
move /compg_P => [pt [y pa /igraph_pP /setC_P [/setXp_P [pb pc] pd]]].
apply/setC_P; split; last by move /diagonal_i_P => [_ _ eq];case pd; ue.
move:(@identity_sgraph A); rewrite - diagonal_is_identity => aux.
apply /setX_i => //.
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apply/(domainP aux); exists(P t); apply /diagonal_pi_P.
split => //; apply: sd; ex_tac.

apply/(rangeP aux); exists(Q t); apply /diagonal_pi_P; fprops.
Qed.

Lemma exercise3_6d G: sgraph G ->
( G = (domain G) \times (range G) <->

G \cg ((complement_graph (inverse_graph G)) \cg G)
= emptyset ).

Proof.
move=> gG; rewrite (exercise3_6a gG).
set (K:= complement_graph G).
transitivity (K = emptyset).

rewrite /K /complement_graph; split.
move => <-; apply setC_v.
move => h; move:(empty_setC h) => aux; apply: extensionality => //.
apply: (sub_graph_setX gG).

split.
move=> ->; rewrite igraph0.
by move: (exercise3_4a G) => [p1 p2]; rewrite p2 p1.

move=> ce; apply /set0_P => x xK.
move: (xK); move /setC_P => [] /setX_P [pa]

/(domainP gG) [u J1G] /(rangeP gG) [v J2G] _.
empty_tac1 (J v u); apply /compg_pP; ex_tac; apply /compg_pP; ex_tac.
by apply/igraph_pP; rewrite pa.
Qed.

7. A graph G is functional if and only if for each set X we have GhG¡ 1hXii ½ X.

Lemma exercise3_7 G: sgraph G ->
(fgraph G <-> forall X, sub (direct_image G (inverse_image G X)) X)).

Proof.
move=>gG; split.

move=> fgG X x /dirim_P [y /iim_graph_P [u ux pug] pxg].
by rewrite (fgraph_pr fgG pxg pug).

move=> hyp; split =>// x y xG yG sP.
move:(gG _ xG) (gG _ yG)=> px py.
apply: pair_exten=>//; apply: set1_eq.
apply: (hyp (singleton (Q y))).
apply/dirim_P; exists (P x); last by rewrite px.
by apply /iim_graph_P; exists (Q y); fprops; rewrite sP py.
Qed.

8. Let A, B be two sets, let ¡ be a correspondence between A and B, and let ¡ 0 be a corre-
spondence between B and A. Show that if ¡ 0(¡ (x)) Æ{x} for all x 2 A and ¡ (¡ 0(y)) Æ{y} for all
y 2 B, then ¡ is a bijection of A onto B and ¡ 0 is the inverse mapping.

Comment . There is an abuse of notation here (see exercise 11). In some cases ¡ (x) de-
notes ¡ h{x}i and sometimes ¡ (X) denotes ¡ hXi . The proof is a bit longish. In the comments,
G and G0are the graphs.

Lemma exercise3_8 G G': correspondence G -> correspondence G' ->
source G = target G' -> source G' = target G ->
(forall x, inc x (source G) -> image_by_fun G' (image_by_fun G (singleton x))

= singleton x) ->
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(forall x, inc x (source G') -> image_by_fun G (image_by_fun G'(singleton x))
= singleton x) ->

[/\ bijection G, bijection G' & G = inverse_fun G'].
Proof.
rewrite /image_by_fun=> cG cG' sG sG' G'Gx GG'x.
have gG: sgraph (graph G) by fprops.
have gG': sgraph (graph G') by fprops.

If x 2 A then x is in the domain of G (since ¡ 0(¡ (x)) is not empty). Same with G and G 0 ex-
changed.

have sGdgG: source G = domain (graph G).
apply: extensionality; last by fprops.
move=> x xs; move: (set1_1 x); rewrite - (G'Gx _ xs).
move /dirim_P => [y] /dirim_P [t /set1_P -> aa _]; ex_tac.

have sGdgG': source G' = domain (graph G').
apply: extensionality; last by fprops.
move=> x xs; move: (set1_1 x); rewrite - (GG'x _ xs).
move /dirim_P => [y] /dirim_P [t /set1_P -> aa _]; ex_tac.

We show (x, y) 2 G and (y,z) 2 G0 implies x Æz; same with G and G 0exchanged.

have JGG':forall x y z, inc (J x y)(graph G) -> inc (J y z)(graph G') -> x = z.
move=> x y z Jxy Jyz.
have xG: inc x (source G) by rewrite sGdgG; ex_tac.
symmetry; apply: set1_eq.
rewrite - (G'Gx _ xG); apply /dirim_P; ex_tac; apply /dirim_P; ex_tac.
fprops.

have JG'G:forall x y z, inc (J x y)(graph G') -> inc (J y z)(graph G) -> x = z.
move=> x y z Jxy Jyz.
have xG: inc x (source G') by rewrite sGdgG'; ex_tac.
symmetry; apply: set1_eq.
rewrite - (GG'x _ xG); apply /dirim_P; ex_tac; apply /dirim_P; ex_tac.
fprops.

We show: if x 2 A there is a y such that ( x, y) 2 G and (y,x) 2 G0.

have xGy: (forall x, inc x (source G) -> exists2 y,
inc (J x y) (graph G) & inc (J y x) (graph G')).

move=> x xsG; move: (set1_1 x).
rewrite - (G'Gx _ xsG); move /dirim_P => [y /dirim_P [z /set1_P -> pb pc]].
ex_tac.

have xG'y: (forall x, inc x (source G') -> exists2 y,
inc (J x y) (graph G') & inc (J y x) (graph G)).

move=> x xsG; move: (set1_1 x).
rewrite - (GG'x _ xsG); move /dirim_P => [y /dirim_P [z /set1_P -> pb pc]].
ex_tac.

We show (x, y) 2 G and (x,z) 2 G implies y Æz.

have fgG: fgraph (graph G).
split=>//; move=> x y xG yG Pxy.
have px: pairp x by apply: gG.
have py: pairp y by apply: gG.
apply: pair_extensionality =>//.
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rewrite - px in xG.
rewrite - py -Pxy in yG.
have Pxs: inc (P x) (source G) by rewrite sGdgG; ex_tac.
move: (xGy _ Pxs) => [z _ J2g].
rewrite - (JG'G _ _ _ J2g xG).
by rewrite - (JG'G _ _ _ J2g yG).

have fgG': fgraph (graph G').
split=>//; move=> x y xG yG Pxy.
have px: pairp x by apply: gG'.
have py: pairp y by apply: gG'.
apply: pair_extensionality =>//.
rewrite - px in xG.
rewrite - py -Pxy in yG.
have Pxs: inc (P x) (source G') by rewrite sGdgG'; ex_tac.
move: (xG'y _ Pxs) => [z _ J2g].
rewrite - (JGG' _ _ _ J2g xG).
by rewrite - (JGG' _ _ _ J2g yG).

We show (x, y) 2 G and (y,x) 2 G0are equivalent.

have fg: function G by [].
have fg': function G' by [].
have GiG: (graph G = inverse_graph(graph G')).

set_extens x xs.
have px: pairp x by apply: gG.
rewrite - px in xs |- *; apply/igraph_pP.
have Ps: inc (P x) (source G) by rewrite sGdgG; ex_tac.
move: (xGy _ Ps)=> [y J1 J2].
by rewrite -(JG'G _ _ _ J2 xs).

have gi: (sgraph (inverse_graph (graph G'))) by fprops.
have px: pairp x by apply: gi.
move: xs; rewrite - px; ;move/igraph_pP => xs; rewrite -px.
have Ps: inc (P x) (source G) .

by rewrite sG; apply: corresp_sub_range=>//; ex_tac.
move: (xGy _ Ps)=> [y J1 J2].
by aw;rewrite (JG'G _ _ _ xs J1).

have GiG2: (G = inverse_fun G').
rewrite /inverse_fun - sG sG' -GiG.
by symmetry; apply: corresp_recov1.

Bijectivity of ¡ is easy.

have bG: bijection G.
split.

split=>//; move=> x y xs ys sW.
move: (Vf_pr3 fg xs) => HGx.
move: (Vf_pr3 fg ys) => HGy; rewrite - sW in HGy.
have Ws: inc (Vf G x) (source G') by rewrite sG'; fprops.
move: (xG'y _ Ws) => [z J1 J2].
by rewrite (JGG' _ _ _ HGx J1) (JGG' _ _ _ HGy J1).

apply: surjective_pr5 =>// x.
rewrite - sG' => xs.
move: (xG'y _ xs) => [z J1 J2].
rewrite /related; ex_tac; apply: (p1graph_source fg J2).

have GiG3: G' = inverse_fun G by rewrite GiG2 ifun_involutive.
by split => //; rewrite GiG3; apply: inverse_bij_fb.
Qed.
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9. Let A, B, C, D be sets, f a mapping of A into B, g a mapping of B into C, h a mapping of
C into D. If g ± f and h ±g are bijections, show that all of f , g, h are bijections.

Lemma exercise3_9 f g h:
function f -> function g -> function h->
source g = target f -> source h = target g ->
bijection (g \co f) -> bijection (h \co g) ->
[/\ bijection f, bijection g & bijection h].

Proof.
move=> ff fg fh sgtf shtg bgf bhg.
have cgf : g \coP f by [].
have chg : h \coP g by [].
have ig: injection g.

by move: bhg=>[ia sa]; apply: (right_compose_fi chg ia).
have sg: surjection g.

by move: bgf=>[ia sa]; apply: (left_compose_fs cgf sa).
have bg: bijection g by split.
split => //.

apply: (right_compose_fb cgf bgf bg).
apply: (left_compose_fb chg bhg bg).
Qed.

10. Let A, B, C be sets, f a mapping of A into B, g a mapping of B into C, h a mapping of C
into A. Show that if two of the three mappings h ±g ± f , g ± f ±h, f ±h ±g are surjections and
the third is an injection, then f , g, h are all bijections.

The French version claims that the same conclusion holds if two of the three mappings
are injections and the third is a surjection. We assume here h±g±f injective, g±f ±h surjective
and f ±h ±g injective or surjective. Other cases are equivalent, by renaming variables.

Lemma exercise3_10 f g h:
function f -> function g -> function h->
source g = target f -> source h = target g -> source f = target h ->
injection (h \co (g \co f)) ->
surjection (g \co (f \co h)) ->
(injection (f \co (h \co g))
\/ surjection (f \co (h \co g))) ->

[/\ bijection f, bijection g & bijection h].
Proof.
move=> ff fg fh sgtf shtg sfth ihgf sgfh is_fgh.
have cfh: f \coP h by [].
have chg: h \coP g by [].
have cgf: g \coP f by [].
rewrite compfA // in ihgf.
have fhg: function (h \co g) by fct_tac.
have chgf: (h \co g) \coP f by hnf; aw.
move: (right_compose_fi chgf ihgf) => inf.
have ffh: function (f \co h) by fct_tac.
have cgfh: g \coP (f \co h) by hnf; aw.
move: (left_compose_fs cgfh sgfh) => sg.

In both cases we know that f is injective and g surjective. If f ±h±g is injective, we deduce
g injective; but surjectivity of g says f ±h injective; hence f is surjective. Injectivity of g in
the second relation says f ±h surjective. Thus f , g and f ±h are injective and surjective; the
result follows.
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case is_fgh.
rewrite compfA// => ifhg.
have cfhg: (f \co h) \coP g by hnf; aw.
move: (right_compose_fi cfhg ifhg) => ig.
move: (left_compose_fs2 cgfh sgfh ig)=> sfh.
move: (left_compose_fs cfh sfh) =>sf.
move: (left_compose_fi2 cfhg ifhg sg) => ifh.
have bfh: (bijection (f \co h)) by [].
have bf: (bijection f) by [].
have bg: (bijection g) by [].
move: (right_compose_fb cfh bfh bf).
done.

The second case is similar.

move=> sfhg.
have cfhg: (f \coP (h \co g)) by hnf; aw.
move: (left_compose_fs cfhg sfhg) => sf.
have bf: (bijection f) by [].
move: (left_compose_fs2 cfhg sfhg inf) => shg.
move:(left_compose_fi2 chgf ihgf sf) => ihg.
move: (right_compose_fi chg ihg) => ig.
have bg: (bijection g) by [].
have bhg: (bijection (h \co g)) by [].
move: (left_compose_fb chg bhg bg).
done.
Qed.

11. *Find the error in the following argument: let N denote the set of all natural numbers
and let A denote the set of all integers n È 2 for which there exists three strictly positive inte-
gers x, y, z such that xn Å yn Æzn . Then the set A is not empty (in other words, “Fermat's last
theorem” is false). For let B Æ{A} and C Æ{N}; B and C are sets consisting of a single element,
hence there is a bijection f of B onto C. We have f (A) ÆN; if A were empty we would have
N Æf (; ) Æ ; which is absurd.*

We have f h;i Æ ; and f (; ) ÆN. Writing the �rst relation as f (; ) Æ ; creates an ambigu-
ity, but has not as consequence that ; is equal to N.

7.4 Section 4

1. Let G be a graph. Show that the following three propositions are equivalent: (a) G is
a functional graph, (b) if X, Y are any two sets, then G¡ 1(X \ Y) ÆG¡ 1(X) \ G¡ 1(Y). (c) The
relation X\ Y Æ ; implies G¡ 1(X) \ G¡ 1(Y) Æ ; .

Lemma exercise4_1a g: sgraph g ->
(functional_graph g <-> {morph inverse_image g : x y / x \cap y}).

Proof.
move=> gg.
have gig: sgraph (inverse_graph g) by fprops.
split.

move=> fgg x y; set_extens t.
move /iim_graph_P => [u []] /setI2_P [ux uy] jg.
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apply /setI2_P;split;apply /iim_graph_P; ex_tac.
move /setI2_P => [/iim_graph_P [u ux ua]/iim_graph_P [v vx va]].
rewrite -(fgg _ _ _ ua va) in vx.
apply /iim_graph_P; exists u; fprops.

move=> hyp x y y' gxy gxy'.
move: (hyp (singleton y)(singleton y')).
set u:= _ \cap _ => hyp1.
have:inc x (inverse_image g u).

rewrite /u hyp1;apply: setI2_i; apply /iim_graph_P.
exists y; fprops.
exists y'; fprops.

by move /iim_graph_P => [t /setI2_P [/set1_P <- /set1_P <-]].
Qed.

Lemma exercise4_1b g: sgraph g ->
(functional_graph g <-> (forall x y, disjoint x y ->

disjoint (inverse_image g x) (inverse_image g y))).
Proof.
rewrite /disjoint;move=> gg; split.

move /(exercise4_1a gg) => h x y ie; rewrite /disjoint -h ie.
by rewrite /inverse_image dirim_set0.

move=> hyp x y y' gxy gxy'.
have gig: sgraph (inverse_graph g) by fprops.
case (emptyset_dichot ((singleton y) \cap (singleton y'))).

move=>aux; move:(hyp _ _ aux).
set v:= _ \cap _.
have xv: (inc x v).

rewrite /v; apply: setI2_i; apply /iim_graph_P; ex_tac.
by move => ve; move: xv; rewrite ve => /in_set0.

by move=> [z /setI2_P [/set1_P -> /set1_P ->]].
Qed.

2. Let G be a graph. Show that for each set X we have G(X)Æpr2(G\ (X £ pr2G)) and
G(X)ÆG(X\ pr1G).

Comment . There is no need to assume that G is a graph.

Lemma exercise4_2a g x:
direct_image g x = range (g \cap (x \times (range g))).

Proof.
set_extens y.

move /dirim_P => [a ax pg]; apply/funI_P; exists (J a y); aw.
apply /setI2_P; split => //; apply:setXp_i => //; ex_tac.

move /funI_P => [a /setI2_P [pg /setX_P [pa pb pc]] ->].
by apply/dirim_P; ex_tac; rewrite pa.
Qed.

Lemma exercise4_2b g x:
direct_image g x = direct_image g (x \cap (domain g)).

Proof.
set_extens t; move /dirim_P => [y ys Jg]; apply/dirim_P.

ex_tac; apply /setI2_P; split=> //; ex_tac.
move /setI2_P: ys => [pa pb]; ex_tac.
Qed.
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3. Let X, Y, Y0, Z be four sets. Show that (Y0£ Z) ±(X £ Y)Æ ; if Y\ Y0Æ ; and that
(Y0£ Z) ±(X £ Y)ÆX£ Z if Y\ Y06Æ ;.

Lemma exercise4_3a x y y' z: disjoint y y' ->
(y' \times z) \cg (x \times y) = emptyset.

Proof.
rewrite /disjoint; move=> ie; apply /set0_P.
move=> t => /compg_P [_ [u /setXp_P [_ uy] /setXp_P [uy' _]]].
by empty_tac1 u.
Qed.

Lemma exercise4_3b x y y' z: nonempty(y \cap y') ->
(y' \times z) \cg (x \times y) = x \times z.

Proof.
move=> [t] /setI2_P [ty ty'].
set_extens u.

move /compg_P => [pu [v /setXp_P [pa _] /setXp_P [_ pb]]].
by apply:setX_i.

move => /setX_P [pu Px Qy]; apply/compg_P; split => //; exists t; fprops.
Qed.

4. Let (G¶)¶2I be a family of graphs. Show that for every set X we have (
S

¶2I G¶)hXi Æ
S

¶2I G¶hXi ,
and that for every object x, (

T
¶2I G¶)h{x}i Æ

T
¶2I G¶h{x}i . Give an example of two graphs G, H

and a set X such that (G\ H)hXi 6ÆGhXi \ HhXi .

We have already shown that G 7! Ghxi is a morphism for the union of two sets. We show
there that it is a morphism in the general case. We introduce a de�nition.

We have to show that ( 9y 2 X)(9i )(x, y) 2 Gi is the same as (9i )(9y 2 X)(x, y) 2 Gi .

Definition graph_morph op ui g :=
op (ui g) = ui (Lg (domain g) (fun i => op (Vg g i))).

Lemma exercise4_4a g x: graph_morph (direct_image^~x) unionb g.
Proof.
set_extens y.

move => /dirim_P [a ax /setUb_P [u ud Jv]].
apply: (@setUb_i _ u); bw; apply /dirim_P; ex_tac.

move /setUb_P => [z]; rewrite Lg_domain => zd; bw.
move /dirim_P => [u ux Jv]; apply /dirim_P; ex_tac; union_tac.
Qed.

We have to show that ( 9y 2 X)(8 i )(x, y) 2 Gi is the same as (8 i )(9y 2 X)(x, y) 2 Gi . We
cannot exchange quanti�ers. However, if X is a singleton { u}, y 2 X is equivalent to y Æu, and
this commutes.

Lemma exercise4_4b g x: singletonp x ->
graph_morph (direct_image^~x) intersectionb g.

Proof.
move=> [y ->]; set_extens t.

move => /dirim_P [a /set1_P ->].
case (emptyset_dichot g) => gne.

by rewrite gne setIb_0 => /in_set0.
move => pi; apply: setIb_i.

move /domain_set0P: gne => [u udg].
pose ff i := direct_image (Vg g i) (singleton y).
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exists (J u (ff u)); apply /funI_P; ex_tac.
bw; move => i idg; bw; apply/dirim_P; exists y; fprops.
exact (setIb_hi pi idg).

set f := Lg _ _.
have dfdf: domain f = domain g by rewrite /f; bw.
case (emptyset_dichot g) => gne.

by rewrite /f gne domain_set0 /Lg funI_set0 setIb_0 => /in_set0.
move => ti; apply /dirim_P; exists y; first by fprops.
apply/(setIb_P gne) => i idg; move: (idg); rewrite -dfdf=> idf.
by move: (setIb_hi ti idf); rewrite /f; bw; move /dirim_P => [u /set1_P ->].
Qed.

Let us turn now to the example. We want to �nd X, G and H such that p(X) 6Æq(X). We
have p(X) Æp(X0) and q(X) Æq(X0) where X0is the intersection of X and the domain of G or H.
We know p(X) Æq(X) if X is a singleton. Thus X, G and H must have at least two elements. We
give here the minimal solution: X has two elements, G is the identity in X, and H permutes
the elements.

Lemma exercise4_4c: exists z, not {morph (direct_image ^~z): x y / x \cap y}.
Proof.
set (x:=TPa); set (y:= TPb); set z := (doubleton x y).
exists z.
set (G:= doubleton(J x x)(J y y)); set (H:= doubleton(J x y)(J y x)).
move => h; move: {h} (h G H).
have ->: direct_image G z = z.

set_extens u.
move=> /dirim_P [v vz /set2_P] [] h; rewrite (pr2_def h) /z; fprops.

case /set2_P => h; apply /dirim_P; exists u; rewrite h /z /G; fprops.
have -> :direct_image H z = z.

set_extens u.
move=> /dirim_P [v vz /set2_P] [] h; rewrite (pr2_def h) /z; fprops.

case /set2_P => ->; apply /dirim_P; [ exists y | exists x];
rewrite /H;fprops.

rewrite setI2_id => bad.
move: (set2_1 x y); rewrite -/z -bad; move/dirim_P => [t _ /setI2_P[pa]].
have : P (J t x) = Q (J t x) by case/set2_P: pa => ->; aw.
aw => ->; case/set2_P => h; [move: (pr2_def h) | move: (pr1_def h)]; fprops.
Qed.

5. Let (G¶)¶2I be a family of graphs and let H be a graph. Show that

(
[

¶2I
G¶) ±H Æ

[

¶2I
(G¶±H) and H ±(

[

¶2I
G¶) Æ

[

¶2I
(H ±G¶).

Lemma exercise4_5 G H:
graph_morph (composeg ^~H) unionb G
/\ graph_morph (composeg H) unionb G.

Proof.
split.

set_extens x.
move /compg_P => [px [y ph/setUb_P [z zd JV]]].
apply/setUb_P; bw; ex_tac; bw; apply /compg_P;split => //; ex_tac.

move /setUb_P; bw; move => [y ydg]; bw; move /compg_P => [px [t pa pb]].
apply /compg_P;split=> //;ex_tac; union_tac.
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set_extens x.
move /compg_P => [px [y /setUb_P [z zd JV] ph]].
apply/setUb_P; bw; ex_tac; bw; apply /compg_P;split => //; ex_tac.

move /setUb_P; bw; move => [y ydg]; bw; move /compg_P => [px [t pa pb]].
apply /compg_P;split => //;ex_tac; union_tac.
Qed.

6. A graph G is functional if and only if for each pair of graphs H, H0we have

(H \ H0) ±G Æ(H ±G)\ (H0±G).

Note that (H \ H0) ±G ½(H ±G)\ (H0±G) is true for any graphs.

Lemma exercise4_6 G: sgraph G ->
(fgraph G <->
{when sgraph &, {morph (composeg ^~G) : H H' / H \cap H'}}).

Proof.
move => gG; split.

move=> fG H H' _ _; set_extens x.
move /compg_P => [px [y J1 /setI2_P [J2 J3]]].
apply: setI2_i; apply /compg_P; split => //;ex_tac.

move /setI2_P => [] /compg_P [px [y J1 J2 /compg_P [_ [y' J1' J2']]]].
rewrite (fgraph_pr fG J1 J1') in J2.
apply/compg_P; split => //; ex_tac; fprops.

Converse. If (x, y) 2 G and (x, y0) 2 G we consider the mappings y 7! x and y07! x. Then (x,x)
is in H ±G and H0±G. Thus H \ H0 is nonempty.

move=> hyp; split=>// x y xG yG Pxy.
set (H:= singleton(J (Q x) (P x))).
set (H':= singleton(J (Q y) (P y))).
have gh: sgraph H by move=> t /set1_P ->; fprops.
have gh': sgraph H' by move=> t /set1_P->; fprops.
move: (gG _ xG)(gG _ yG)=> xp yp.
rewrite - xp in xG.
rewrite - yp in yG.
apply: pair_exten=>//.
have p1: inc (J (P x)(P x)) (H \cg G).

apply /compg_P; split;fprops; aw;ex_tac; rewrite /H; fprops.
have p2: inc (J (P y)(P y)) (H' \cg G).

apply /compg_P; split;fprops; aw;ex_tac; rewrite /H'; fprops.
have p3: (inc (J (P x)(P x)) ((H \cap H') \cg G)).

by rewrite hyp//; apply: setI2_i => //;rewrite Pxy //.
move: p3; move/compg_P => [_ [z _]]; aw.
move /setI2_P => [] /set1_P r1 /set1_P r2.
by rewrite -(pr1_def r1) -(pr1_def r2).
Qed.

Notre that this is also true:

Lemma exercise4_6bis G: sgraph G ->
(fgraph G <-> {morph (composeg^~G) : H H' / H \cap H'}).
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7. Let G, H, K be three graphs. Prove the relation (H ±G)\ K ½(H \ (K±G¡ 1))±(G\ (H ¡ 1 ±K)).

Lemma exercise4_7 G H K:
sub ((H \cg G) \cap K)

((H \cap (K \cg (inverse_graph G)))
\cg (G \cap ((inverse_graph H) \cg K))).

Proof.
move=> t /setI2_P [] /compg_P [tp [y JG JH]] tK.
apply /compg_P;split => //;rewrite - tp in tK.
by exists y; apply : setI2_i => //; apply/compg_P;

split;fprops; aw; ex_tac; apply /igraph_pP.
Qed.

8. Let R Æ(X¶)¶2I and S Æ(Y· )· 2K be two coverings of a set E. (a) Show that if R and S are
partitions of E and if R is �ner than S , then for every · 2 K there exists ¶2 I such that X¶½Y· .
(b) Give an example of two coverings R and S such that R is �ner than S but such that the
property stated in (a) is not satis�ed. (c) Give an example of two partitions R and S such that
for every · 2 K there exists ¶2 I such that X¶½Y· , but such that R is not a re�nement of S .

The French version does not assume that R is a partition. We must however assume
Y· 6Æ ;.

Lemma exercise4_8a r s x:
covering r x -> covering s x ->
partition_w_fam s x -> coarser_cg s r ->
nonempty_fam s ->
forall k, inc k (domain s) ->

exists2 i, inc i (domain r) & sub (Vg r i) (Vg s k).
Proof.
move=> [fgr co1] [fgs co2] [fgL md usx] [_ _ co] alne k kds.
move: (alne _ kds)=> [y ysk].
have yx: inc y x by rewrite -usx;apply: (@setUb_i _ k);bw.
have yu: (inc y (unionb r)) by apply: co1.
move: (setUf_hi yu)=> [z zdr yrz].
move: (co _ zdr)=> [i ids rsi].
have yri: inc y (Vg s i) by apply: rsi.
move: md; rewrite /mutually_disjoint; bw=> aux; case (aux _ _ kds ids).

by move=> ->; ex_tac.
move=> h; red in h.
by empty_tac1 y; bw; aw; split.
Qed.

We consider a covering R, and take for S the union of R and another set. Then R is �ner
than S.

Hint Rewrite variant_d variant_V_a variant_V_b: bw.

Lemma exercise4_8b (a:= C0) (b:= C1)
(x:= doubleton a b)
(r:= Lg (singleton a) (fun _ => x))
(s:= variantL a b x (singleton a)) :

[/\ covering r x, covering s x,
coarser_cg s r,
nonempty_fam s &
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~ (forall k, inc k (domain s) ->
exists i, inc i (domain r) /\ sub (Vg r i) (Vg s k))].

Proof.
have ba: b<> a by rewrite /a/b; apply: TP_ne1.
rewrite /r/s/x;split.
- split; fprops; move=> t tx; apply: (@setUb_i _ a); fprops; bw; fprops.
- split; fprops; move=> y yx;apply: (@setUb_i _ a); fprops; bw; fprops.
- split; [ fprops | fprops | bw].

move=> t /set1_P ->; exists a; bw;fprops.
- move=> k; bw; case /set2_P=> ->; bw; [apply: set2_ne | apply: set1_ne].
- have bd: (inc b (doubleton a b)) by fprops.

bw; move=> h; move: (h _ bd)=> [i [/set1_P ->]]; bw; fprops => xa.
by move: (xa _ bd) => /set1_P.

Qed.

Second counter example. The mapping · 7! ¶is injective. If I and K have the same num-
ber of elements, both partitions are equivalent. If K has a single element, then R is �ner than
S. Thus we need S1 and S2, R1 ½S1, R2 ½S2 and R3 that is neither in S 1 nor in S 2, thus has an
element in S 1 and another one in S 2. Thus E has at least four elements; in the initial version
we used the following de�nitions:

Inductive four_points : Set := | fpa | fpb | fpc | fpd.
Inductive three_points : Set := | tpa | tpb | tpc.

We use here the ordinals zero, one, two and three.

Lemma exercise4_8c
(x:= C4)
(r:= (Lg C3

(fun i=> Yo (i = C0) (singleton C0)
(Yo (i = C2) (singleton C1) (doubleton C2 C3)))))

(s:= variantL C0 C1 (doubleton C0 C2) (doubleton C1 C3)):
[/\ partition_w_fam s x,

partition_w_fam r x,
(forall k, inc k (domain s) ->

exists2 i, inc i (domain r) & sub (Vg r i) (Vg s k)) &
~(coarser_cg s r)].

We prove some obvious properties like S a \ Sb Æ ; .

Proof.
move:C2_neC01 => [n1 n2].
move:C3_neC012 => [n3 n4 n5].
have nba: C1 <> C0 by fprops.
have sab: (disjoint (Vg s C0) (Vg s C1)).

rewrite /s; bw; apply: disjoint_pr=>u ud1 ud2.
case /set2_P: ud1=> h; case /set2_P: ud2; rewrite h; auto.

have ra: inc C0 C3 by apply /C3_P; in_TP4.
have rb: inc C1 C3 by apply /C3_P; in_TP4.
have rc: inc C2 C3 by apply /C3_P; in_TP4.
have dab: disjoint (Vg r C0) (Vg r C1).

rewrite /r; bw; Ytac0; Ytac0; Ytac0; Ytac0.
apply: disjoint_pr=> u /set1_P -> /set2_P; case; auto.

have dac: disjoint (Vg r C0) (Vg r C2).
rewrite /r; bw; Ytac0; Ytac0; Ytac0; Ytac0.
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apply: disjoint_pr=> u /set1_P -> /set1_P; auto.
have dcb: disjoint (Vg r C2) (Vg r C1).

rewrite /r; bw; Ytac0; Ytac0; Ytac0; Ytac0.
apply: disjoint_pr=> u /set1_P -> /set2_P; case; auto.

split.

The �rst step is to prove that S is a partition. It has two elements S a Æ{a,c} and Sb Æ{b,d }.
For each x, there is a v such that x 2 Sv . It is respectively a, b, a and b.

(* S partition *)
rewrite /s;split; fprops.

rewrite /variantL;red; bw; move=> i j ids jds.
case /set2_P: ids => ->; case /set2_P: jds =>->; auto.
by right; apply:disjoint_S.

set_extens y => ys.
case (setUb_hi ys); bw; move=> z zd.
case /set2_P: zd => ->; bw=> yd; case /set2_P: yd => ->; apply/C4_P;in_TP4.

case /C4_P: ys; move => ->.
by apply :(@setUb_i _ C0);bw; fprops.
by apply :(@setUb_i _ C1);bw; fprops.
by apply :(@setUb_i _ C0);bw; fprops.
by apply :(@setUb_i _ C1);bw; fprops.

We prove now that R is a partition. Since R has three elements it is a bit longer (we must show
that 6 pairs of sets are disjoint). We have R a Æ{a} and Rb Æ{c,d }, Rc Æ{b}. For each x, there
is a v such that x 2 Rv . It is respectively a, c, b and b.

(* R partition *)
split; first by rewrite /r; fprops.
red; rewrite {1 2} /r; bw; move=> i j idr jdr.
case /C3_P:idr => ->;case /C3_P:jdr;try move => ->; auto;

try case => ->; auto;
by right; apply:disjoint_S.

set_extens t => ts.
move: (setUb_hi ts); rewrite /r;bw; move => [y ydr]; bw.
case /C3_P:ydr => ->; Ytac0; Ytac0;

try move /set1_P ->; try case/set2_P => ->; apply /C4_P;in_TP4.
rewrite /r; case /C4_P: ts;

[set v := C0 | set v := C2 | set v := C1 | set v := C1 ];
move => ->; apply: (@setUb_i _ v); bw; Ytac0; Ytac0; fprops.

We show that for all · 2 K there exists ¶2 I such that X ¶½Y· . This is Ra ½Sa and Rc ½Sb . After
that, we show that R b is not a subset of any S ¶.

(* property *)
rewrite /s/r; bw;move => k kds; case /set2_P: kds =>->.

exists C0 => //; bw; Ytac0; Ytac0 => t /set1_P ->; fprops.
exists C2 => //; bw; Ytac0; Ytac0 => t /set1_P ->; fprops.

(* not refinement *)
move=> [_ _ ]; rewrite {1}/r;bw => cc.
move: (cc _ rb) => [i]; rewrite /s; bw=> ids.
rewrite /r; bw; Ytac0; Ytac0.
case /set2_P: ids=> ->; bw => h.

move: (h _ (set2_2 C2 C3)) => /set2_P; case; auto.
move: (h _ (set2_1 C2 C3)) => /set2_P; case; auto.
Qed.
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7.5 Section 5

* Montrer que si X, Y sont deux ensembles tels que P (X) ½P (Y), on a X ½Y.

This exercise appears only in the French version. The converse is true, so that we show
P (X) ½P (Y) () X ½Y.

Proof.
move=> sxy z zx.
have p2: sub (singleton z) y.
by apply /setP_P; apply: sxy; apply /setP_P => t /set1_P ->.

apply: (p2 z); fprops.
Qed.
Lemma powerset_mono A B: sub A B -> sub (powerset A)(powerset B).
Proof.
move=> sAB t /setP_P ta; apply/setP_P; apply:(sub_trans ta sAB).
Qed.

* Soient E un ensemble f une application de P (E) dans lui-même telle que la relation X ½Y
entraîne f (X) ½ f (Y). Soit V l'intersection des ensembles Z ½E tels que f (Z) ½Z et soit W la
réunion des ensembles Z ½ E tels que Z ½ f (Z). Montrer que f (V) ÆV et W Æf (W) et que
pour tout ensemble Z ½E tel que f (Z) ÆZ on a V ½Z ½W.

This exercise appears only in the French version. We prove (in the second part of this
report) the following theorem of Tarski: let F be a complete lattice, and f : F ! F an increasing
function. Then the set of �xpoints of f is a complete lattice. This exercise considers the case
where F is the powerset of E (ordered by inclusion), and shows that f has a least and a greatest
�xpoint, namely V, the intersection of the sets Z ½E for which f (Z) ½Z and W, the union of
the sets Z ½E such that Z ½ f (Z).

Lemma exercise5_f2 f x v w:
function f -> source f = (powerset x) -> target f = powerset x ->
(forall a b, inc a (powerset x) -> inc b (powerset x) -> sub a b

-> sub (Vf f a) (Vf f b)) ->
v = intersection(Zo (powerset x) (fun z=> sub (Vf f z) z)) ->
w = union(Zo (powerset x) (fun z=> sub z (Vf f z))) ->
[/\ Vf f v = v, Vf f w = w & (forall z, sub z x -> Vf f z = z ->

(sub v z /\ sub z w))].
Proof.
move=> ff sf tf fprop vd wd.
set (q:= (Zo (powerset x) (fun z => sub (Vf f z) z))).
have xpx: inc x (powerset x) by apply:setP_Ti.
have xiq: inc x q.

rewrite /q; apply: Zo_i=>//.
by apply: /setP_P; rewrite -tf; apply: Vf_target =>//; rewrite sf.

have neq:nonempty q by exists x.
set (p:= (Zo (powerset x) (fun z => sub z (Vf f z)))).
have fzv:forall z, sub z x -> Vf f z = z -> sub v z.

move => z zx Wz.
have zq:inc z q by apply: Zo_i; [by apply /setP_P | rewrite Wz; fprops].
by rewrite vd; apply: setI_s1.

have fzw:forall z, sub z x -> Vf f z = z -> sub z w.
move => z zx Wz.
have zp: inc z p by apply: Zo_i; [by apply /setP_P | rewrite Wz; fprops].
by rewrite wd; apply: setU_s1.
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have qW: forall z, inc z q -> inc (Vf f z) q.
move=> z /Zo_P [] /setP_P zx Wzz.
have aux: sub (Vf f z) x by apply: (@sub_trans z).
by apply: Zo_i; [ apply/setP_P | apply: fprop => //; apply/setP_P].

have pW: forall z, inc z p -> inc (Vf f z) p.
move=> z /Zo_P [] /setP_P zx Wzz.
have aux: inc (Vf f z) (powerset x).

by rewrite -tf; apply: Vf_target=>//;rewrite sf; apply /setP_P.
by apply: Zo_i => //; apply: fprop => //; apply/setP_P.

have vp: inc v (powerset x) by apply /setP_P; rewrite vd; apply: setI_s1.
have wp: inc w (powerset x).

by apply /setP_P; rewrite wd; apply: setU_s2 => y /Zo_P []/setP_P.
have pv:sub (Vf f v) v.

move=> t tW; rewrite vd; apply: setI_i=>// y /Zo_P [yp sW].
have vy: sub v y by rewrite vd; apply: setI_s1; apply: Zo_i=>//.
by apply: sW;apply: (fprop _ _ vp yp vy).

have pw:sub w (Vf f w).
move=> t; rewrite {1} wd=> /setU_P [y ty] /Zo_P [yp yW].
have tw: (sub y w) by rewrite wd;apply: setU_s1; apply: Zo_i=>//.
by move: (fprop _ _ yp wp tw); apply; apply: yW.

split.
apply: extensionality=>//.
have vq: (inc v q) by rewrite /q;apply: Zo_i.
by move: (qW _ vq)=> aux; rewrite {1} vd;apply: setI_s1.

apply: extensionality=>//.
have iwp: inc w p by rewrite /p; apply: Zo_i.
by move: (pW _ iwp) => aux; rewrite {2} wd;apply: setU_s1.

move=> z zw wz; split; fprops.
Qed.

1. Let (X¶)¶2I be a family of sets. Show that if (Y¶)¶2I is a family of sets such that Y¶½ X¶ for
each ¶2 I then

Q
¶2I Yi Æ

T
¶2I pr ¡ 1

¶ (Y¶).

Lemma exercise5_1 I x y:
(forall i, inc i I -> sub (y i) (x i)) -> nonempty I ->
productf I y =
intersectionf I (fun i=> inv_image_by_fun (pr_i (Lg I x) i) (y i)).

Proof.
move=> syxi neI.
have fgL: fgraph (Lg I x) by fprops.
have fpj: forall j, inc j I->function (pr_i (Lg I x) j).

move=> j jI; apply: pri_f=>//;bw.
set_extens t.

move /setXf_P=> [fgt dt iVy]; apply: setIf_i=>//.
move=> j jI; apply /iim_graph_P.
exists (Vg t j); first by apply: iVy.
have jd: inc j (domain (Lg I x)) by bw.
have tp:(inc t (productb (Lg I x))).

by apply/setXb_P; split; bw => i iI; bw; apply: syxi=>//; apply: iVy.
by rewrite -(pri_V fgL jd tp); Wtac; rewrite /pr_i lf_source.

have rI: inc (rep I) I by apply: rep_i.
move => h; move:(setIf_hi h rI) => /iim_graph_P [u uy Jg].
move: (p1graph_source (fpj _ rI) Jg).
rewrite /pr_i;aw; move /setXf_P=>[fgt dt iVV].
apply/setXf_P;split => // i idt.
move: (setIf_hi h idt) => /iim_graph_P [v vi Jgv].
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move: (Vf_pr (fpj _ idt) Jgv); rewrite pri_V =>//; bw.
by move=> <-.

by apply/setXb_P; split; bw => k ki; bw; apply: iVV.

2. Let A, B be two sets. For each subset G of A£ B let G̃ be the mapping x 7! Gh{x}i of A into
P (B). Show that the mapping G 7! G̃ is a bijection from P (A£ B) onto (P (B))A.

Note that G̃ is in F (A;P (B)). The French edition says: let G̃ be the graph of the mapping
etc, so that G̃ is in (P (B))A.

Lemma exercise5_2 a b:
bijection (Lf(fun g => Lg a (fun x => direct_image g (singleton x)))

(powerset (a \times b)) (gfunctions a (powerset b))).
Proof.
set tilde := L _ _.
apply: lf_bijective.

We �rst prove that the mapping G 7! G̃ is a function.

move=> c /setP_P cp.
set faux:=(Lf (fun x=> direct_image c (singleton x)) a (powerset b)).
suff: (inc (graph faux) (gfunctions (source faux) (target faux))).

by rewrite /faux /Lf; aw.
apply: gfun_set_i ;apply: lf_function => t ta; apply/setP_P => u.
by move /dirim_P => [x _ pb]; move/setXp_P: (cp _ pb) => [].

We prove that the mapping is injective.

move /setP_P => up /setP_P => vp fxy.
set_extens x => xs.
move /setX_P: (up _ xs) => [px Px Qx].
have: inc (Q x) (Vg fy (P x)).

by rewrite -fxy /fx; bw; apply/dirim_P; ex_tac; rewrite px.
by rewrite /fy; bw; move/dirim_P=> [w /set1_P ->]; rewrite px.

move /setX_P: (vp _ xs) => [px Px Qx].
have: inc (Q x) (Vg fx (P x)).

by rewrite fxy /fy; bw; apply/dirim_P; ex_tac; rewrite px.
by rewrite /fx; bw; move/dirim_P=> [w /set1_P ->]; rewrite px.

We prove that the mapping is surjective.

move=> y ys; move: (gfun_set_hi ys)=> [f [fs sf tg gf]].
set (g:=Zo (a \times b) (fun z => inc (Q z) (Vg y (P z)))).
have gp: inc g (powerset (a \times b)) by apply/setP_P;apply: Zo_S.
rewrite -gf; ex_tac; apply: fgraph_exten; fprops.

bw; aw.
red; rewrite - (proj33 fs) sf => x xa; bw;rewrite gf;set_extens u.

move=> h; apply/dirim_P; exists x; first by fprops.
apply: Zo_i; aw; apply: setXp_i => //.
rewrite - sf in xa; move: (Vf_target fs xa).
by rewrite tg /Vf gf; move/setP_P; apply.

move /dirim_P => [v /set1_P ->] /Zo_P []; aw.
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3. * Let (Xi )1· i · n be a �nite family of sets. For each subset H of the index set [1,n ] let PH Æ
S

i 2H Xi and QH Æ
T

i 2H Xi . Let Fk be the set of subsets of [1,n ] which have k elements. Show
that [

H2Fk

QH ¾
\

H2Fk

PH if k · (n Å 1)/2

and that [

H2Fk

QH ½
\

H2Fk

PH if k ¸ (n Å 1)/2. ¤

See part two of this report of an answer.

7.6 Section 6

1. For a graph G to be the graph of an equivalence relation on a set E, it is necessary and
suf�cient that pr1G ÆE, pr2G ÆE, G±G¡ 1 ±G ÆG and ¢ E ½G (¢ E being the diagonal of E).

Comment. The condition pr 2G ÆE was missing in the English version [2]. It is necessary:
consider the graph with two elements ( a,a) and (b,a).

Lemma exercise6_1 x g: sgraph g ->
((equivalence g /\ substrate g = x) <->
[/\ domain g = x, range g = x,

g \cg ((inverse_graph g) \cg g) = g &
sub (diagonal x) g]).

Proof.
move=> gg; split.

move=> [eg sg]; split => //.
- by rewrite (domain_sr eg).
- rewrite - sg /substrate; set_extens t => ts; first by fprops.

case /setU2_P:ts => // /(domainP gg) [y Jh]; apply/(rangeP gg).
exists y; equiv_tac.

- set_extens y.
move /compg_P => [py [z /compg_pP [u pa /igraph_pP pb pc]]].
have J4: inc (J u z) g by equiv_tac.
have J5: inc (J (P y) z) g by equiv_tac.
have: inc (J (P y) (Q y)) g by equiv_tac.
by rewrite py.

move=> yg.
have py: pairp y by apply: gg.
have yv:J (P y) (Q y) = y by aw.
rewrite - py; apply /compg_pP; exists (P y); last by ue.
apply /compg_pP; exists (Q y); [| apply/igraph_pP]; ue.

- move => t /diagonal_i_P [pt Pt PQt].
by rewrite -pt -PQt; rewrite - sg in Pt; equiv_tac.

Now the converse

move=> [dg [rg [cg si]]].
have sg: (substrate g = x) by rewrite /substrate dg rg; apply: setU2_id.
split=>//.
have p1: forall u, inc u x -> inc (J u u) g.

by move=> u ux; apply: si; apply /diagonal_pi_P.
have p2: symmetricp g.
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move=> a b ab; red in ab.
have Jag: (inc (J a a) g) by apply: p1; rewrite -dg; aw; ex_tac.
have Jbg: (inc (J b b) g) by apply: p1; rewrite -rg; aw; ex_tac.
red; rewrite -cg; apply /compg_pP; ex_tac; apply /compg_pP; ex_tac.
by apply /igraph_pP.

have p3: transitivep g.
move=> a b c ab bc; rewrite -cg; apply /compg_pP.
exists a => //; apply /compg_pP; exists b => //.

by apply: p1; rewrite - sg; substr_tac.
by apply/igraph_pP; apply (proj2 p2).

by apply:symmetric_transitive_equivalence.
Qed.

2. If G is a graph such that G ±G¡ 1 ±G ÆG show that G¡ 1 ±G and G ±G¡ 1 are graphs of
equivalences on pr1G and pr2G respectively.

We �rst compute the substrate of the relations.

Lemma exercise6_2 g: sgraph g ->
compose_graph g (compose_graph (inverse_graph g) g) = g ->
[/\ equivalence ((inverse_graph g) \cg g),

substrate ((inverse_graph g) \cg g) = domain g ,
equivalence (g \cg (inverse_graph g)) &
substrate (g \cg (inverse_graph g)) = range g].

Proof.
move=> gg cg.
have gig:sgraph (inverse_graph g) by apply: igraph_graph.
have gcigg:sgraph ((inverse_graph g) \cg g) by apply: compg_graph.
have gcgig: sgraph (g \cg (inverse_graph g)) by apply: compg_graph.
have t3:forall x y z t, related g x y -> related g z y -> related g z t ->

related g x t.
move=> x y z t xy zy zt; red; rewrite -cg; apply/compg_pP.

by exists z=>//;apply/compg_pP;exists y => //;apply /igraph_pP.
have s1: substrate ((inverse_graph g) \cg g) = domain g.

set_extens x.
case /(substrate_P gcigg) => [] [y /compg_pP [z J1] /igraph_pP J2];

/igraph_pP J2; ex_tac.
move/(domainP gg) => [y Jg].
have Jxx: (inc (J x x) ((inverse_graph g) \cg g)).

by apply/compg_pP; ex_tac; apply /igraph_pP.
apply: (arg1_sr Jxx).

have s2:substrate (g \cg (inverse_graph g)) = range g.
set_extens x.

case/(substrate_P gcgig)=> [][y /compg_pP [z /igraph_pP J1 J2]];
ex_tac.

move/(rangeP gg) => [y Jg].
have Jxx: (inc (J x x) (g \cg (inverse_graph g))).

by apply/compg_pP; ex_tac; apply /igraph_pP.
apply: (arg1_sr Jxx).

We apply proposition 1. ¡ is an equivalence if ¡ Æ¡ ¡ 1 and ¡ ±¡ Æ¡ . If ¡ is the composition
of G and G¡ 1 in any order, the relation is true. The second is a consequence of the assumption
and associativity of composition.

split => //; rewrite equivalence_pr; split;
try rewrite compg_inverse igraph_involutive //.
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by rewrite - compgA cg.
by rewrite compgA in cg; by rewrite compgA cg.
Qed.

3. Let Ebe a set,A a subset of E, and Rthe equivalence relation associated with the mapping
X 7! X \ A of P (E) into P (E). Show that there exists a bijection from P (A) onto the quotient
set P (E)/R.

If » is the equivalence associated, then B and B 0 are related if they have the same inter-
section with A. If u 2 A, we can consider the set of all B whose intersection with A is u as a
class. This is our bijection (called canonical in the French edition). Note: Since intersection
is commutative, we use here X 7! A\ X.

Definition intersection_with x a :=
Lf(intersection2 a) (powerset x)(powerset x).

Definition intersection_with_canon x a :=
Lf (fun b => Zo(powerset x)(fun c=> c = a \cap c))
(powerset a)(quotient (equivalence_associated (intersection_with x a))).

We start with some preliminaries.

Lemma exercise6_3 a x:
sub a x -> bijection (intersection_with_canon x a).

Proof.
move=> ax.
have ta: lf_axiom (intersection2 a) (powerset x) (powerset x).

move=> y /setP_P ay; apply /setP_i; apply: sub_trans ay ;apply: subsetI2r.
have fai: function (intersection_with x a) by apply: lf_function.
set r:= equivalence_associated (intersection_with x a).
have er: equivalence r by apply: graph_ea_equivalence.
have aux: forall y, sub y a -> y = a \cap y by move => y; move/setI2id_Pr.
have rr: forall u v, related r u v <->

[/\ inc u (powerset x), inc v (powerset x) & a \cap u = a \cap v].
move => u v; split.

move/(ea_relatedP fai); rewrite lf_source; move => [pa pb].
by rewrite /intersection_with; aw.

move => [pa pb pc]; apply/(ea_relatedP fai).
by rewrite /intersection_with; aw.

We show that we have a function.

apply: bl_bijective.
move=> y /setP_P=> ya;set w:= Zo _ _ .
have new: nonempty w.

exists y;apply: Zo_i; [apply/setP_P; apply: (sub_trans ya ax) | auto].
have swp: sub w (powerset x) by apply: Zo_S.
have rp: inc (rep w) (powerset x) by apply: swp;apply: rep_i.
apply /(setQ_P er); split => //.

move: rp;rewrite graph_ea_substrate /intersection_with; aw.
have ira: (a \cap (rep w) = y).

have: (inc (rep w) w) by apply: rep_i.
by move /Zo_hi => ->.

set_extens z.
move => zw; apply /(class_P er); apply /rr;split => //; first by apply: swp.
by rewrite ira; move /Zo_P: zw => [].

by move/(class_P er)/rr => [pa pb pc]; apply: Zo_i => //; rewrite -pc ira.
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We prove injectivity.

move=> u v /setP_P ua /setP_P va; set fs:= Zo _ _ => eql.
have iua: u = a \cap u by apply: aux.
have: inc u fs by apply: Zo_i => //; apply/setP_P; apply:(sub_trans ua ax).
by rewrite eql; move/ Zo_hi => ->.

We prove now the surjectivity.

move=> y /(setQ_P er) cy.
have ip: inc (a \cap (rep y)) (powerset a) by apply/setP_P; apply subsetI2l.
move: (graph_ea_substrate fai); rewrite -/r lf_source => sr2.
ex_tac; symmetry;set_extens t.

move /Zo_P => []; move /setP_P => pd pe.
apply: (rel_in_class2 er cy); apply/rr;split => //; last by apply /setP_P.
rewrite - sr2; exact (proj1 cy).

move => ty; apply /Zo_i; first by rewrite - sr2; apply: (sub_class_sr er cy ty).
by move: (rel_in_class er cy ty) => /rr [_ _].
Qed.

4. Let G be the graph of an equivalence on a set E. Show that if A is a graph such that A ½G
and pr1A ÆE (resp. pr2A ÆE) then G±A ÆG (resp. A±G ÆG); furthermore, if B is any graph,
we have (G\ B)±A ÆG\ (B±A) (resp A±(G\ B) ÆG\ (A±B)).

Lemma exercise6_4 g a b x:
let comm F G b := F (G b) = G ( F b) in
equivalence g -> sgraph a -> sgraph b -> substrate g = x -> sub a g ->
[/\ (domain a = x -> g \cg a = g),
(range a = x -> a \cg g = g),

(domain a = x -> comm (composeg^~a) (intersection2 g) b) &
(range a = x -> comm (composeg a) (intersection2 g) b)].

Proof.
move=> comp inter eg ga gb sg ag.
have gg: sgraph g by fprops.
split
move=> ax; set_extens y.

move /compg_P=> [py [z J1a J2g]].
move: (ag _ J1a) => J1g.
rewrite - py; equiv_tac.

move=> yg; move: (gg _ yg)=> py; apply/compg_P.
split =>//.
have : (inc (P y) (domain a)) by rewrite ax - sg; substr_tac.
move/(domainP ga)=> [z Ja]; exists z =>//.
move: (ag _ Ja)=> Jg.
have J2g:inc (J z (P y)) g by equiv_tac.
rewrite - py in yg; equiv_tac.

Second claim.

move=> ax; rewrite /comp; set_extens y.
move /compg_P => [py [z J1g J2a]].
move: (ag _ J2a) => J2g.
rewrite - py; equiv_tac.

move=> yg; move: (gg _ yg)=> py; apply/compg_P =>//.
have : (inc (Q y) (range a)) by rewrite ax - sg; substr_tac.
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move/(rangeP ga); move=> [z Ja]; split => //;exists z =>//.
move: (ag _ Ja)=> Jg.
have J2g:inc (J (Q y) z) g by equiv_tac.
rewrite - py in yg; equiv_tac.

Third claim.

move=> ax; set_extens y.
move /compg_P => [py [z J1a/setI2_P [J2g J3b]]]; apply/setI2_i.
move: (ag _ J1a) => J1g; rewrite - py; equiv_tac.
apply/compg_P;split=>//;exists z=>//.

move=> /setI2_P [yg] /compg_P [py [z J1a J2b]].
apply/compg_P; split => //; exists z => //; apply:setI2_i => //.
move: (ag _ J1a)=> Jg.
have J2g:inc (J z (P y)) g by equiv_tac.
rewrite - py in yg; equiv_tac.

Last claim.

move=> ax; set_extens y.
move /compg_P => [py [z /setI2_P [J2g J3b] J1a]]; apply/setI2_i.
move: (ag _ J1a) => J1g; rewrite - py; equiv_tac.
apply/compg_P;split=>//;exists z =>//.

move=> /setI2_P [yg] /compg_P [py [z J1a J2b]].
apply/compg_P; split => //; exists z => //; apply:setI2_i => //.
move: (ag _ J2b)=> Jg.
have J2g:inc (J (Q y) z) g by equiv_tac.
rewrite - py in yg; equiv_tac.
Qed.

5. Show that every intersection of graphs of equivalences on a set E is the graph of an equiv-
alence on E. Give an example of two equivalences on a set E such that the union of their
graphs is not the graph of an equivalence on E.

We have already shown the �rst property. Let's show that the union of two symmetric
relations is symmetric.

Lemma symmetric_union a b: symmetricp a -> symmetricp b ->
symmetricp (a \cup b).

Proof.
by move=> sa sb x y; case /setU2_P=> h; apply/setU2_P;

[left; apply: sa | right; apply: sb ].
Qed.

We show here that if G ½E£ E, then the substrate of G [ ¢ E is E.

Lemma substrate_union_diag: x g:
sub g (coarse x) -> substrate (g \cup (identity_g x)) = x.

Proof.
move=> gc.
have gg: sgraph g by move=> t tg; move: (gc _ tg) => /setX_P [].
have gu: sgraph (g \cup (diagonal x)).

by move=> t; case /setU2_P; [ auto | move/diagonal_i_P => []].
set_extens y.

case /(substrate_P gu) => [] [z] /setU2_P [].
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- by move => h; move: (gc _ h); move /setXp_P=> [].
- by move/diagonal_pi_P => [].
- by move => h; move: (gc _ h); move /setXp_P=> [].
- by move/diagonal_pi_P => [ h <-].

move=> yx.
have aux: inc (J y y) (g \cup (diagonal x)).

by apply: setU2_2; apply /diagonal_pi_P; split.
substr_tac.
Qed.

If a and b are in E, we can consider ¢ E [ {(a,b), (b,a)}. Its substrate is E.

Definition special_equivalence a b x :=
(doubleton (J a b) (J b a)) \cup (diagonal x).

Lemma substrate_special_equivalence a b x:
inc a x -> inc b x -> substrate(special_equivalence a b x) = x.

Proof.
move=> ax bx; rewrite/ special_equivalence.
apply: substrate_union_diag.
by move=> t /set2_P => [][] ->; apply/setXp_i.
Qed.

We show that this is an equivalence.

Lemma special_equivalence_ea a b x:
inc a x -> inc b x -> equivalence(special_equivalence a b x).

Proof.
move=> ax bx.
have gs: sgraph (special_equivalence a b x).

move=> t; move/setU2_P; case; first by case/set2_P => ->; fprops.
by move /diagonal_i_P => [].

have pair_symm: forall a b c d, J a b = J c d -> J b a = J d c.
move=> u v u' v' eql.
apply: pair_exten; fprops; aw.

apply: (pr2_def eql).
apply: (pr1_def eql).

apply: symmetric_transitive_equivalence => //.
move=> u v h; case/setU2_P: (h).

case /set2_P => ww; apply/setU2_P; left;
rewrite (pr1_def ww)(pr2_def ww); fprops.

by move => /diagonal_pi_P [_ uv]; move: h;rewrite uv.
move=> u v w ra rb.
case /setU2_P: (ra); last by move => /diagonal_pi_P [_ ->].
case /setU2_P: (rb); last by move => /diagonal_pi_P [_ <-].
move => h1 h2; apply/setU2_P.
case /set2_P: h1 => h11; rewrite (pr2_def h11);

case /set2_P: h2 => h22; rewrite (pr1_def h22).
- left; fprops.
- by right; apply /diagonal_pi_P.
- by right; apply /diagonal_pi_P.
- left; fprops.
Qed.

If we have two such equivalences with ( a,b) and (a,c), transitivity of the union would
imply that b and c are related in one of the two graphs. If all three elements are distinct this
is not possible.
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Lemma exercise6_5
(x := C3)
(g1:= special_equivalence C0 C1 x)
(g2:= special_equivalence C0 C2 x):

[/\ equivalence g1, equivalence g2, substrate g1 = x,
substrate g2 = x & ~ (equivalence (g1 \cup g2))].

Proof.
split.

apply: special_equivalence_ea; apply /C3_P; in_TP4.
apply: special_equivalence_ea; apply /C3_P; in_TP4.

rewrite substrate_special_equivalence //; apply /C3_P; in_TP4.
rewrite substrate_special_equivalence //; apply /C3_P; in_TP4.

move=> bad.
have p1: (related (g1 \cup g2) C1 C0).
apply /setU2_P; left;apply/setU2_P; left; fprops.

have p2: (related (g1 \cup g2) C0 C2).
apply /setU2_P; right;apply/setU2_P; left; fprops.

have :(related (g1 \cup g2) C1 C2) by equiv_tac.
move: C2_neC01 => [n1 n2].
case /setU2_P; case/setU2_P.
by case/set2_P=> eq2; move: (pr2_def eq2); auto.
by move /diagonal_pi_P => [_]; auto.
by case/set2_P=> eq2; move: (pr1_def eq2); fprops.
by move /diagonal_pi_P => [_]; auto.
Qed.

6. Let G, H be the graphs of two equivalences on E. Then G±H is the graph of an equivalence
on E if and only if G±H ÆH ±G. The graph G±H is then the intersection of all the graphs of
equivalences on E wich contain both G and H.

We show that if G ±H is an equivalence then G ±H ÆH ±G. This uses symmetry.

Lemma exercise6_6a G H:
equivalence G -> equivalence H ->
(equivalence (G \cg H) <-> (G \cg H = H \cg G)).

Proof.
move=> eG eH.
set (K:= G \cg H).
split.

move => eK.
have aux: forall a b, inc (J a b) K -> inc (J b a) K

by move => a b h;equiv_tac.
set_extens x => xK.
have px: (pairp x) by apply: (@compg_graph G H).
move: xK ; rewrite - px => h; move : (aux _ _ h).
move /compg_pP=> [y JH JG]; apply/compg_pP; exists y => //; equiv_tac.

move: xK =>/compg_P [px [y JG JH]].
rewrite - px; apply: aux; apply/compg_pP;exists y => //; equiv_tac.

Converse. We use Proposition 1 that says that an equivalence satis�es ¡ Æ¡ ¡ 1 and ¡ ±¡ Æ¡ .

move=> eq.
move: eG eH; rewrite ! equivalence_pr.

move=> [GG iG] [HH iH]; split.
rewrite {2} /K compgA eq.
rewrite - (compgA H G G) GG - compgA.
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by rewrite -/K eq compgA HH.
by rewrite {2}/K compg_inverse -iH -iG.
Qed.

We show here that if G and H are equivalences on E, then the substrate of G ±H is E.

Lemma exercise6_6b G H:
equivalence G -> equivalence H -> substrate G = substrate H ->
substrate (G \cg H) = substrate G.

Proof.
move=> eG eH sG.
set_extens x.

have xx:sgraph (G \cg H) by fprops.
case /setU2_P; [move /(domainP xx) | move /(rangeP xx)];

move => [z] /compg_pP [t ta tb]; [rewrite sG | ] ; substr_tac.
move=> xsG.
have p3: related (G \cg H) x x.
apply/compg_pP; exists x;equiv_tac => //; ue.

substr_tac.
Qed.

We prove that the composition is the smallest equivalence that contains G and H.

Lemma exercise6_6c G H:
equivalence G -> equivalence H -> substrate G = substrate H ->
[/\ sub G (G \cg H), sub H (G \cg H)

& forall W, equivalence W -> sub G W -> sub H W ->
sub (G \cg H) W].

Proof.
move=> eG eH sG.
have gg: sgraph G by fprops.
have gh: sgraph H by fprops.
have gc: sgraph (G \cg H) by apply: compg_graph.
ee.
- move=> y yG.

move: (gg _ yG) => py.
rewrite - py in yG.
apply/ compg_P;split=>//;exists (P y)=>//; equiv_tac=>//.

rewrite - sG; substr_tac.
- move=> y yH.

move: (gh _ yH) => py.
rewrite - py in yH.
apply/compg_P; split=>//;exists (Q y)=>//; equiv_tac=>//.

rewrite sG; substr_tac.
- move=> w ew gW hW t.

move /compg_P=> [tp [y JH JG]].
move: (gW _ JG) (hW _ JH)=> J1G J2G.
have: inc (J (P t) (Q t)) w by equiv_tac.
by rewrite tp.

Qed.

We know that the domain of an equivalence is the substrate. We show here that the same
is true for the domain.

Lemma range_is_substrate g:
equivalence g -> range g = substrate g.
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Proof.
move=> eg; rewrite /substrate; set_extens x.

move => pa; fprops.
move:(eg) => [fgg _ _ _].
case /setU2_P => //. move /(domainP fgg)=> [y Jg].
apply/(rangeP fgg); exists y; equiv_tac.
Qed.

If G is an equivalence on E then G ½E£ E.

Lemma sub_coarse g:
equivalence g -> sub g (coarse (substrate g)).

Proof.
move=> eg;move:(eg) => [fgg _ _ _].
move: (sub_graph_setX fgg).
by rewrite range_is_substrate // domain_sr.
Qed.

The set of all graphs of equivalences on E is a subset of P (E £ E), according to the two
previous lemmas. We can consider the intersection of all these equivalences that contain G
or H (there is at least one, the coarsest equivalence). The intersection is the smallest.

Lemma exercise6_6d G H:
equivalence G -> equivalence H -> substrate G = substrate H ->
G \cg H = H \ch G ->
(G \cg H) = intersection(Zo (powerset (coarse (substrate G)))

(fun W => [/\ equivalence W, sub G W & sub H W])).
Proof.
move=> eG eH sG cGH.
set (E:= substrate G).
have sGE: sub G (coarse E) by rewrite /E; apply: sub_coarse.
have sHE: sub H (coarse E) by rewrite /E sG; apply: sub_coarse.
move: (exercise6_6c eG eH sG)=> [sGc sHc lew].
set_extens t => ts.

apply: setI_i.
exists (coarse E); apply: Zo_i; first by apply: setP_Ti.
split=> //;apply: coarse_equivalence.

by move=> y /Zo_P [_ [ey gy hy]]; apply: (lew _ ey gy hy).
move: cGH;rewrite - exercise6_6a // => cGH.
apply: (setI_hi (y:=(G \cg H)) ts); apply: Zo_i; last by done.
apply /setP_P;rewrite /E - (exercise6_6b eG eH sG); apply: sub_coarse=>//.
Qed.

7. Let G0, G1, H0, H1 be the graphs of four equivalences on a set E such that G1\ H0 ÆG0\ H1

and G1 ±H0 ÆG0 ±H1. For each x 2 E, let R0 (resp. S0) be the relation induced on G1(x) (resp.
H1(x)) by the equivalence relation (x, y) 2 G0 (resp. (x, y) 2 H0). Show that there exists a
bijection of the quotient set G1(x)/R 0 onto the quotient set H1(x)/S 0. (if A ÆG1(x) \ H1(x),
show that both quotient sets are in one-to-one correspondence with the quotient set of A by
the equivalence relation induced by R0 on A; this relation is equivalent to that induced by S0

on A).

This exercice is missing in the French edition. We think that the exercise is wrong, but do
not have a counterexample.

Remark exercise6_7 G0 G1 H0 H1 E x:
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equivalence G0 -> substrate G0 = E ->
equivalence H0 -> substrate H0 = E ->
equivalence G1 -> substrate G1 = E ->
equivalence H1 -> substrate H1 = E ->
G1 \cap H0 = G0 \cap H1 ->
G1 \cg H0 = G0 \cg H1 ->
inc x E -> (

let G1x := direct_image G1 (singleton x) in
let H1x := direct_image H1 (singleton x) in

let R0 := induced_relation G0 G1x in
let S0 := induced_relation H0 H1x in

equipotent (quotient R0) (quotient S0)).
Proof.
Abort.

8. Let E, F be two sets, let Rbe an equivalence relation on F, and let f be a mapping of E into
F. If S is the equivalence relation which is the inverse image of R under f , and if A Æf hEi ,
de�ne a canonical bijection of E/S onto A/RA.

The �rst thing to do is to show that S and R A are equivalence relations.

Lemma exercise6_8 f r:
equivalence r -> function f -> target f = substrate r ->

(exists g, bijection_prop g (quotient (inv_image_relation f r))
(quotient (induced_relation r (image_of_fun f)))).

Proof.
move => er ff tf.
set (s := inv_image_relation f r).
set (A:= (image_of_fun f)).
set (Ra := induced_relation r A).
have ia: (iirel_axioms f r) by red; intuition.
have rf: A = range (graph f). Check f_range_graph.

rewrite /A/image_of_fun -image_by_fun_source // image_by_fun.
have es:equivalence s by rewrite /s; apply: iirel_relation.
have iA: induced_rel_axioms r A.

by split => //; rewrite -tf rf; apply: corresp_sub_range; move: ff=> [h _].
have eR: equivalence Ra by rewrite /Ra;apply: induced_rel_equivalence.

Let's quote the properties of iirel_classP and induced_rel_classP : If X is a class
modulo R then f ¡ 1hXi is a class modulo S (if nonempty) and conversely. Classes for R A are
nonempty sets of the form A \ X where X is a class for R. If a is a class for S we take X such that
a Æf ¡ 1hXi , and consider b ÆA\ X. This gives our function. We can do the reverse operation.

We denote by f1(a,X) the property a Æf ¡ 1hXi , a \ A 6Æ ;and X 2 F/R. We denote by f2(a)
a class that satis�es this property, from which we deduce f3(a) a class for RA.

set (f1:= fun x y => [/\ classp r y,
nonempty (y \cap A) & x = inv_image_by_fun f y]).

have qsp:forall x, inc x (quotient s) -> exists y, f1 x y.
by move=> x /(setQ_P es); move /(iirel_classP ia); rewrite -rf.

set (f2:= fun x => choose (fun y => f1 x y)).
have f2p: (forall x, inc x (quotient s) -> f1 x (f2 x)).

move=> x xq; rewrite /f2;apply: choose_pr; apply: (qsp _ xq).
set (f3:= fun x => (f2 x) \cap A).
have f3p: (forall x, inc x (quotient s) -> inc (f3 x) (quotient Ra)).

move=> x xs; rewrite /Ra; move: (f2p _ xs) => [pa pb pc].
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apply/(setQ_P eR); apply/(induced_rel_classP iA).
by exists (f2 x).

It is now obvious to �nd a function from E/S to A/R A.

set (g:= Lf f3 (quotient s) (quotient Ra)).
have sgf: sgraph (graph f) by fprops.
exists g; rewrite /g;split; aw; apply: lf_bijective =>//.

Our function is injective. Let X Æf2(a) and X0Æf2(a0). From g(a) Æg(a0) we get f3(a) Æ
f3(a0), namely X \ A ÆX0\ A. This is a nonempty set, it constains an element of the form f (z).
We have a Æf ¡ 1hXi and a0Æf ¡ 1hXi 0. These two classes have a common element z, hence
are equal.

move => u v uq vq; rewrite /f3 => ii.
move: (f2p _ uq)(f2p _ vq); rewrite /f1; move=> [cfu niu uv][cfv niv vv].
move: niv=> [y] /setI2_P [y2v yiA].
have y2u: inc y (f2 u).

apply: (@setI2_1 (f2 u) A);rewrite ii; fprops.
have : inc y (range (graph f)) by rewrite -rf.
move /(rangeP sgf)=> [x Jg].
have xb: (inc x v) by rewrite vv; apply/iim_graph_P;ex_tac.
have xu:(inc x u) by rewrite uv; apply/iim_graph_P; ex_tac.
move : uq vq; move/(setQ_P es) => c1 /(setQ_P es) => c2.
case (class_dichot es c1 c2) => // dj; red in dj.
by empty_tac1 x; apply: intersection2_inc.

Surjectivity is easy. Take y 2 A/RA. There is some x 2 F/R such that y Æx \ A and we want
to �nd u 2 E/S such that g(u) Æx \ A, u Æf ¡ 1hxi . De�ne u Æf ¡ 1hxi . The construction of
g uses the axiom of choice, so that we must show uniqueness, namely x Æf2(u ). This is a
consequence of the fact these two classes have a common element.

move=> y; move /(setQ_P eR) /(induced_rel_classP iA)=> [x [cx nex yi]].
set (u:= inv_image_by_fun f x).
have uq: inc u (quotient s).

by apply/ (setQ_P es) /(iirel_classP ia); exists x; rewrite -rf.
ex_tac.
rewrite /f3 yi.
move:(f2p _ uq); rewrite /f1; move=> [cf2 ni ui].
move: nex=> [t] /setI2_P [tx].
rewrite {1} rf ; move/ (rangeP sgf)=> [z Jg].
have: inc z u by apply/iim_graph_P; ex_tac.
rewrite {1} ui; move/iim_graph_P => [t' t'2u Jg'].
have tt': t = t' by move: (Vf_pr ff Jg) (Vf_pr ff Jg') => <-.
suff: f2 u = x by move=>->.
case(class_dichot er cf2 cx)=> // di; red in di.
empty_tac1 t; apply setI2_i =>//; ue.
Qed.

9. Let F, G be two sets, let R be an equivalence relation of F, let p be the canonical map-
ping of F onto F/R and let f be a surjection of G onto F/R. Show that there exists a set E, a
surjection g of E onto F and a surjection h of E onto G such that p ±g Æf ±h.

The set E is the disjoint union of F and G, we write it as E a [ Eb .
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Lemma exercise6_9 F G p f r:
equivalence r -> F = substrate r -> p = canon_proj r ->
surjection f -> source f = G -> target f = quotient r ->
exists E g h,
[/\ surjection_prop g E F, surjection_prop h E G & p \co g = f \co h].

Proof.
move=> er sr xr sjf sf tf.
have ff: function f by fct_tac.
set (a:= C0); set (b:= C1).
have ba: b <> a by rewrite /a /b; apply: two_points_distinctb.
set Ea:= F \times (singleton a).
set Eb:= G \times (singleton b).
set E:= Ea \cup Eb.
have gE: sgraph E by move => T /setU2_P; case; move /setX_P => [ok _].
have xep: forall x, inc x E -> (Q x =a \/ Q x = b).

by move=> x /setU2_P; case; move /setX_P => [_ _ ] /set1_P; auto.
have xgp:forall x, inc x G -> inc (Vf f x) (quotient r).

move=> x xg; rewrite - tf;apply: Vf_target => //; ue.
have xgp1:forall x, inc x G -> inc (rep (Vf f x)) F.
move=> x xG; rewrite sr;fprops.

We consider the function g; it is the identity on E a if we identify E a with F, so that the
image is F. Let x 2 Eb ; we can identify E b with G, hence assume x 2 G so that f (x) 2 F/R.
We de�ne g(x) to be a representative of the class of f (x). This is an element of F. We have
p(g(x)) Æf (x).

set (gz :=fun z=> Yo (Q z = a) (P z) (rep (Vf f (P z)))).
have gzP:forall z, inc z Ea -> gz z = P z.

move=> z /setX_P [_ _] /set1_P h; rewrite /gz Y_true //.
have gzp': forall z, inc z Ea -> inc (gz z) F.

by move=> z zEa; rewrite gzP//; move /setX_P : zEa => [_ ok _].
have gzQ:forall z, inc z Eb -> gz z = rep (Vf f (P z)).

move=> z/setX_P [_ _] /set1_P => h; rewrite /gz Y_false //; ue.
have gzq':forall z, inc z Eb -> inc (gz z) F.

by move=> z zE; rewrite gzQ //; apply: xgp1; move /setX_P : zE => [_ ok _].
have tag:lf_axiom gz E F.

move=> t; case /setU2_P; [apply: gzp'| apply: gzq'].
set (g:= Lf gz E F).
have sj: surjection g.

rewrite /g;apply: lf_surjective =>//; move=> y yF.
have p1: inc (J y a) Ea by rewrite /Ea; fprops.
have p2: inc (J y a) E by rewrite /E; aw; intuition.
by ex_tac; rewrite gzP; aw.

have gp: forall x, inc x Eb -> Vf (canon_proj r) (gz x) = Vf f (P x).
move=> x xEb.
have gzs: inc (gz x) (substrate r) by rewrite - sr; apply: gzq'.
have xE: inc x E by move: xEb; rewrite /E;aw; intuition.
aw;rewrite gzQ //; apply: class_rep=>//; apply: xgp.
by move /setX_P : xEb => [_ ok _].

We de�ne now h similarly.

set (ha:= fun x => rep (inv_image_by_fun f(singleton(Vf (canon_proj r)x)))).
have haF:forall x, inc x F ->

ha x = rep (inv_image_by_fun f (singleton (class r x))).
move=> x xF; rewrite /ha; aw; ue.
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have haF':forall x, inc x F ->
sub (inv_image_by_fun f (singleton(class r x))) G.

move=> x xF t /iim_graph_P [u _ jg]; rewrite - sf; Wtac.
have haF'': forall x, inc x F ->

inc (ha x) (inv_image_by_fun f (singleton (class r x))).
move => x xF; rewrite haF //; apply: rep_i.
have ct: inc (class r x) (target f) by rewrite tf; rewrite sr in xF; fprops.
move:((proj2 sjf) _ ct)=> [u us]; move => <-.
exists u; apply /iim_graph_P; ex_tac; apply: Vf_pr3=>//.

have haG: forall x, inc x F -> inc (ha x) G.
by move=> x xF; apply: (haF' _ xF); apply: haF'' =>//.

set(hz:= fun z=> Yo (Q z = a) (ha (P z)) (P z)).
have hzG: forall z, inc z E -> inc (hz z) G.

rewrite /hz;move=> z /setU2_P [] /setX_P [_ pa] /set1_P ->; Ytac0 => //.
by apply: haG.

set(h:=Lf hz E G).
have sh: surjection h.

rewrite /h;apply: lf_surjective=>//.
move=> y yG.
have JEb:inc (J y b) Eb by rewrite /Eb;aw; fprops.
have JE: (inc (J y b) E) by rewrite /E; aw; intuition.
by ex_tac; rewrite /hz; aw; rewrite Y_false //.

have WWh: forall x, inc x Ea -> Vf f (hz x) = Vf (canon_proj r) (P x).
move=> x xEa.
have xE: inc x E by rewrite /E; aw; intuition.
have Ps: inc (P x) (substrate r) by rewrite - sr -gzP//; apply: gzp'.
rewrite/h /hz; aw.
move /setX_P: xEa=> [px PF] /set1_P ->; Ytac0.
move /iim_graph_P: (haF'' _ PF) => [u ] /set1_P <- Jg; Wtac.

We are now ready to prove the main result.

exists E; exists g; exists h; rewrite /surjection_prop/g/h;aw;split => //.
have cpg: p \coP g.

split; first by rewrite xr;apply: canon_proj_f.
by fct_tac.

rewrite xr /g; aw; ue.
have cfh: composable f h by split => //; try fct_tac; rewrite /h; aw.
have sg: source g = source h by rewrite /g/h; aw.
have tp: target p = target f by rewrite xr; aw.
move: sj => [fg _].
apply: function_exten; try fct_tac; aw.

The non-obvious point is to show p(g(x)) Æf (h(x)).

move=> x xE /=; aw.
move /setU2_P: (xE) => [] xE'.

have Ps: inc (P x) (substrate r) by rewrite - sr -gzP //; apply: gzp'.
rewrite WWh // /g; aw; rewrite gzP // xr; aw.

rewrite xr gp /h /hz; aw =>//; rewrite Y_false //.
by move /setX_P: xE'=> [_ _ ] /set1_P ->.
Qed.

10. (a) if Räx, yä is any relation, then “ Räx, yäand Räy,xä” is a symmetric relation. Under
what condition is it re�exive on a set E?
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*(b) Let Räx, yäbe a re�exive and symmetric relation on a set E. Let Säx, yäbe the relation
“There exists an integer n È 0 and a sequence (xi )0· i · n of elements of E such that x0 Æx,
xn Æy and for each index i such that 0 · i Ç n, Räxi ,xi Å1ä”. Show that Säx, yä is an equiva-
lence relation on E and that its graph is the smallest of all graphs of equivalences on E which
contain the graph of R. The equivalence classes with respect to S are called the connected
components of E with respect to the relation R.

(c) Let F be the set of subsets A of E such that for each pair of elements (y,z) such that
y 2 A and z 2 E¡ A, we have “ not Räy,zä”. For each x 2 E show that the intersection of the
sets A 2 F such that x 2 A is the connected component of x with respect to the relation R.*

Part a is trivial.

Lemma set1_pr2: forall a X, inc a X -> small_set X -> X = singleton a.
Proof.

by move => w W tX sX; apply (set1_pr tX) => u zX; exact: (sX _ _ zX tX).
Qed.

Section Exercice6_10.
Lemma Exercise6_10_a (r:relation):

symmetric_r (fun x y => r x y /\ r y x).
Proof. by move=> x y; case. Qed.

Lemma exercise6_10_b r E:
reflexive_re r E -> reflexive_re (fun x y => r x y /\ r y x) E.

Proof. move => rr y; split; [by move/rr | by case; move /rr]. Qed.

We consider now a context in which R is re�exive and symmetric on E.

Variables (R:relation) (E:Set).
Hypotheses (A1: reflexive_re R E)(A2: symmetric_r R)

(A3: forall x y, R x y -> inc x E).

De�ning the relation S is easy.

Inductive chain:Type :=
chain_pair: Set -> Set -> chain

| chain_next: Set> -> chain -> chain.
Fixpoint chain_head x :=

match x with chain_pair u _ => u | chain_next u _ => u end.
Fixpoint chain_tail x :=

match x with chain_pair _ u => u | chain_next _ u => chain_tail u end.
Fixpoint chained_r x :=

match x with chain_pair u v => R u v
| chain_next u v => R u (chain_head v) /\ chained_r v

end.
Definition relS x y := exists c:chain,

[/\ chained_r c, chain_head c = x & chain_tail c = y].

For the transitivity, we need to concatenate lists.

Fixpoint concat_chain x y : chain :=
match x with chain_pair u _ => chain_next u y

| chain_next u v => chain_next u (concat_chain (x:=v) y) end.
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Lemma head_concat x y:
chain_head (concat_chain x y) = chain_head x.

Proof. by case x. Qed.

Lemma tail_concat x y:
chain_tail (concat_chain x y) = chain_tail y.

Proof. by elim x. Qed.

Lemma chained_concat x y:
chained_r x -> chained_r y -> chain_tail x = chain_head y ->
chained_r (concat_chain x y).

Proof.
move=> cx cy txhy;elim: x cx txhy => [a b cp ct| a c r cp ct].

split=>//; by rewrite -ct //.
by move: cp => [pa pb];split; [rewrite head_concat | apply: r].
Qed.

Lemma transitiveS y x z: relS x y -> relS y z -> relS x z.
Proof.
move=> [c [cc hcx tcy]][c' [cc' hcy tcz]].
exists (concat_chain c c'); split => //.

apply: chained_concat=>//; ue.
by rewrite head_concat.

by rewrite tail_concat.
Qed.

For the symmetry, we need to reverse the list. One way to reverse the list L is to start with
an empty list L 0, and recursively add the head of L to the head of L 0, as long as L is not empty.
In this case, L and L 0have at least two elements, this gives some special cases to deal with.

Fixpoint reconc_chain (x y:chain) :chain:=
match x with chain_pair u v => chain_next v (chain_next u y)
| chain_next u v => reconc_chain v (chain_next u y) end.

Lemma tail_reconc x y: chain_tail (reconc_chain x y) = chain_tail y.
Proof. by move: x y; elim=> [a b y | a c r] // y; by rewrite r. Qed.
Lemma head_reconc x y: chain_head (reconc_chain x y) = chain_tail x.
Proof. by move: x y; elim => [a b y | a c r] // y; by rewrite r. Qed.
Lemma chained_reconc x y: chained_r x -> chained_r y ->

R (chain_head y) (chain_head x) -> chained_r (reconc_chain x y).
Proof.
move: x y; elim => [a b y c cy | P c r]=>//=; auto.
move=> y [rPh cc] cy RhyP; apply: r=>//; split => //; apply: A2.
Qed.

We de�ne now the reverse.

Fixpoint chain_reverse x:=
match x with chain_pair u v => chain_pair v u

| chain_next u v =>
match v with chain_pair u' v' => chain_next v' (chain_pair u' u)

| chain_next u' v' => reconc_chain v' (chain_pair u' u)
end end.

Lemma head_reverse x: chain_head (chain_reverse x) = chain_tail x.
Proof. elim x =>// y;elim =>// P c h h1 /=; apply: head_reconc. Qed.
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Lemma tail_reverse x: chain_tail (chain_reverse x) = chain_head x.
Proof. elim x =>// y;elim =>// P c h h1 /=; apply: tail_reconc. Qed.

Lemma chained_reverse x: chained_r x -> chained_r (chain_reverse x).
Proof.
elim x; first by move=> a b; simpl; auto.
move=> a; elim; first by move => b c; simpl; intuition.
move=> b c hr hr1 /= [Rab [Rbc cc]].
apply: chained_reconc=>//; simpl; auto.
Qed.

Lemma symmetricS x y: relS x y -> relS y x.
Proof.
move=> [c [cc hcx tcy]].
exists (chain_reverse c); split.

apply: chained_reverse =>//.
rewrite head_reverse //.

rewrite tail_reverse //.
Qed.

We make use of A3 for the �rst time here. It says that if x is related by S, it is in E. As a
consequence our relation is an equivalence relation and its graph is an equivalence on E.

Lemma equivalenceS: equivalence_re relS E.
Proof.

split; first by split; red; [ apply: symmetricS | apply: transitiveS].
move=> x; split.

by move=> xE; exists (chain_pair x x);split => //; apply /A1.
move=> [c [cc hcx _]].
elim: c cc hcx => [a b | a c _] /= h <-; [|move: h=> [h _]]; apply: (A3 h).
Qed.

Definition Sgraph := graph_on relS E.
Lemma equivalence_Sgraph: equivalence Sgraph.
Proof.
apply equivalence_from_rel; split; [apply: symmetricS | apply: transitiveS ].
Qed.

Lemma substrate_Sgraph: substrate Sgraph = E.
Proof.
apply: graph_on_sr => x xE.
by exists (chain_pair x x); split => //; apply/ A1.
Qed.

We can now show that this is the smallest relation. If r is an equivalence implied by R,
the transitivity says that two elements (in particular head and tail) of a chained_r chain are
related by r .

Lemma S_is_smallest r: equivalence r ->
(forall x y, R x y -> inc (J x y) r) -> sub Sgraph r.

Proof.
move => r er pr p.
have aux:(forall w, chained_r w -> inc (J (chain_head w) (chain_tail w)) r).

elim => [a b | a c h [aux cc]] //=; first by apply: pr.
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move: (h cc)(pr _ _ aux) => r1 r2; equiv_tac.
move /Zo_P => [pp [c [cc [hcx htx]]]].
have <-: (J (P p)(Q p) = p) by move/setX_P: pp => [pp _].
by rewrite -hcx -htx ; apply: aux.
Qed.

We de�ne here the set F and some set C(x). We have to show that this is the class of x
for S.

Definition setF:= Zo (powerset E)(fun A => forall y z, inc y A ->
inc z (E -s A) -> not (R y z)).

Definition connected_comp x := intersection(Zo setF (fun A => inc x A)).

We �rst rewrite the condition on F, then prove that every element of F is stable by S,
hence contains equivalence classes. Each equivalence class is in F. The result is then obvious.

Lemma setF_pr A a b:
inc A setF -> inc a A -> R a b -> inc b A.

Proof.
move /Zo_P => [] /setP_P AE Ap aA Rab.
case (inc_or_not b A)=> // nba.
have bc: inc b (E -s A) by apply:setC_i =>//; apply: (A3 (A2 Rab)).
by case (Ap _ _ aA bc).
Qed.

Lemma setF_pr2 A a b:
inc A setF -> inc a A -> relS a b -> inc b A.

Proof.
move=> As aA [c [cc hcx <-]].
rewrite - hcx in aA; clear hcx.
elim: c cc aA.

move=> u v /= Ruv uA; apply: (setF_pr As uA Ruv).
move=> u c h /= [uh cc] uA.
apply: h=>//;apply: (setF_pr As uA uh).
Qed.

Lemma setF_pr3 A a: inc A setF -> inc a A -> sub (class Sgraph a) A.
Proof.
move=> As aA t /(class_P equivalence_Sgraph) /(graph_on_P2 equivalenceS).
apply: (setF_pr2 As aA).
Qed.

Lemma setF_pr4 a: inc a E -> inc (class Sgraph a) setF.
Proof.
move=> aE; rewrite /setF.
move: equivalence_Sgraph => e1.
move: equivalenceS => e2.
apply: Zo_i.

apply/setP_P; rewrite - substrate_Sgraph; apply: (sub_class_substrate e1).
move=> y z ya /setC_P [zE nzc]; dneg yz; apply/(class_P e1).
suff: related Sgraph z a by move=> aux; equiv_tac.
have : related Sgraph y a by move/(class_P e1):ya=> h; equiv_tac.
move /(graph_on_P2 e2) => ra; apply/(graph_on_P2 e2); apply: transitiveS ra.
by exists (chain_pair z y); split => //; apply A2.
Qed.
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Lemma connected_comp_class x: inc x E ->
class Sgraph x = connected_comp x.

Proof.
move=> xE;set_extens t; rewrite /connected_comp.

move=> tc;apply: setI_i.
exists E; apply: Zo_i =>//; rewrite /setF; apply: Zo_i.

aw; applt: setP_Ti.
by move=> y z yE /setC_P [];

move=> y /Zo_P [yS xy];apply: ((setF_pr3 yS xy) _ tc).
move: equivalence_Sgraph => eq.
have cx:(inc (class Sgraph x) (Zo setF (fun A => inc x A))).

apply: Zo_i; first by apply: setF_pr4.
apply/(class_P eq); rewrite - substrate_Sgraph in xE; equiv_tac.

move=> h;apply: (setI_hi h cx).
Qed.

11. (a) Let Räx, yäbe a re�exive and symmetric relation on a set E. Ris said to be intransitive
of order 1 if for any four distinct elements x, y, z, t of E, the relations Räx, yä, Räx,zä, Räx, t ä,
Räy,zäand Räy, t äimply Räz, t ä. A subset A of E is said to be stable with respect to the relation
Rif Räx, yäfor all x and y in A. If a and b are two distinct elements of E such that Räa,bäshow
that the set C(a,b) of elements x 2 E such that Räa,xäand Räb,xäis stable and that C(x, y) Æ
C(a,b) for each pair of distinct elements x, y of C(a,b). The sets C(a,b) (for each ordered
pair (a,b) such that Räa,bä) and the connected components (Exercise 10) with respect to R
which consist of a single element are called the constituents of E with respect to the relation
R. Show that the intersection of two distinct constituents of E contains at most one element
and that if A, B, C are three mutually distinct constituents at least one of the sets A\ B, B\ C,
C\ A is empty.

(b) Conversely, let (X¸ )¸ 2L be a covering of a set E consisting of non-empty subsets of E
having the following properties: (1) if ¸ and ¹ are two distinct indices, X¸ \ X¹ contains at
most one element; (2) if ¸ , ¹ , º are three distinct letters, then at least one of the three sets
X¸ \ X¹ , X¹ \ Xº , Xº \ X¸ is empty. Let Räx, yäbe the relation “There exists ¸ 2 L such that
x 2 X¸ and y 2 X¸ ”; show that R is re�exive on E, symmetric and intransitive of order 1, and
that the X¸ are the constituents of E with respect to R.

(c) * Similarly, a relation Räx, yäwhich is re�exive and symmetric on E is said to be in-
transitive of order n ¡ 3 if, for every family (xi )1· i · n of distinct elements of E, the relations
Räxi ,x j äfor each pair (i , j ) 6Æ(n ¡ 1,n) imply Räxn¡ 1,xn ä. Generalize the results of (a) and (b)
to intransitive relations of any order. Show that a relation which is intransitive of order p is
also intransitive of order q for all q È p.*

This is a follow-up to the previous exercise. We still assume that R is re�exive and sym-
metric on E (i.e., A1, A2 and A3 are assumed). We give a short de�nition and show that it is
equivalent to the long one.

Definition intransitive1 := forall x y z t,
x <> y -> R x y -> R x z -> R x t -> R y z -> R y t -> R z t.

Lemma intransitive1pr :
let intransitive_alt:= forall x y z t,

x <> y -> x <> z -> x <> t -> y <> z -> y <> t -> z <> t ->
inc x E -> inc y E -> inc z E -> inc t E ->
R x y -> R x z -> R x t -> R y z -> R y t -> R z t in
intransitive1 <-> intransitive_alt.
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Proof.
rewrite /intransitive1; split.
move=> h x y z t H0 _ _ _ _ _ _ _ _ _ H10 H11 H12 H13 H14.
apply: (h x y z t H0 H10 H11 H12 H13 H14).
move=> h x y z t nxy xy xz xt yz yt.
move: (A3 xy) (A3 yz)(A3 (A2 xz))(A3 (A2 yt)) => xE yE sE tE.
case (equal_or_not x z) => nxz; first by ue.
case (equal_or_not x t) => nxt; first by apply: A2; ue.
case (equal_or_not y z) => nyz; first by ue.
case (equal_or_not y t) => nyt; first by apply: A2; ue.
case (equal_or_not z t)=> nzt; first by rewrite nzt -A1.
apply: (h x y z t) =>//.
Qed.

We now de�ne and study C( a,b).

Definition stableR A:= forall a b, inc a A -> inc b A -> R a b.
Definition Cab a b:= Zo E (fun x => R a x /\ R b x).

Lemma Cab_stable a b: a<> b -> R a b -> intransitive1 ->
stableR (Cab a b).

Proof.
move=> nab Rab i1; rewrite /Cab=> u v.
move /Zo_P=> [_ [r1 r2]] /Zo_P [_ [r3 r4]]; apply: (i1 a b u v) =>//.
Qed.

Lemma Cab_trans a b x y: a<> b -> R a b -> intransitive1 ->
x<> y -> inc x (Cab a b) -> inc y (Cab a b) -> (Cab a b)= (Cab x y).

Proof.
move=> nab rab i1 nxy /Zo_P [xE [r1 r2]] /Zo_P [yE [r3 r4]].
set_extens t; move /Zo_P=> [tE [r5 r6]]; apply/Zo_i => //; split.
- apply: (i1 a b x t) =>//.
- apply: (i1 a b y t) =>//; apply: A2.
- apply: (i1 x y a t) =>//; first apply: (i1 a b x y)=>//; apply: A2=> //.
- apply: (i1 x y b t) =>//; first apply: (i1 a b x y)=>//; apply: A2=> //.
Qed.

A constituent is either a C or a connected component that has a single element. Let's
characterize these. The non-trivial point here is to show that, if x is related to no other ele-
ment than itself by R, the same is true for S. Hence, consider a chain from x to y. By sym-
metry, we have a chain from y to x for which we can use induction (if y » x, then x Æy by
symmetry of R and equality; if y » z and z is chained to x, we get z Æx by induction, hence
y » x and we proceed as above).

Lemma singleton_component A: sub A E ->
((inc A (quotient Sgraph) /\ singletonp A) <->
(exists2 a, A = singleton a & forall b, R a b -> a = b)).

Proof.
move=> AE.
move: equivalence_Sgraph => e1.
move: equivalenceS => e2.
split.

move=> [Asq [x Asx]]; exists x => //.
move=> b Rb.
have : related Sgraph x b.
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by apply/(graph_on_P2 e2); exists (chain_pair x b).
move /(in_class_relatedP e1) => [y [cy xy]].
have <- : A = y.

move: Asq => /(setQ_P e1) => cA; case (class_dichot e1 cy cA)=> //.
move=> dy; red in dy; empty_tac1 x; apply:setI2_i => //.
rewrite Asx; fprops.

by rewrite Asx; move /set1_P.
move=> [x As Ap]; rewrite As; split; last by exists x.
have xse: inc x (substrate Sgraph).

rewrite substrate_Sgraph; apply: AE; rewrite As; fprops.
have Aq: forall b, R b x -> b = x.

by move => b ba; rewrite (Ap b) //; apply: A2.
suff: (class Sgraph x = singleton x).

move => <-; apply /(setQ_P e1); apply: (class_class e1 xse).
apply: set1_pr; first by apply /(class_P e1); equiv_tac.
move => w; move /(class_P e1) => aux.
have : (related Sgraph w x) by equiv_tac.
move /(graph_on_P2 e2) => [c [cc <-]].
elim: c cc.

by move=> u v /= uv vx; rewrite vx in uv; apply: Aq.
by move=> p c h1 /= [Rp cc] tc; apply: Aq; rewrite - (h1 cc tc).
Qed.

The intersection of two distinct constituents has at least one element. This is obvious if
the constituents are singletons. Consider C( a,b) and C(a0,b0). Assume that they contain u
and v. If these elements are distinct then C( a,b) ÆC(u,v) ÆC(a0,b0).

Definition is_constituant A :=
(exists a, [/\ A = singleton a, inc a E & forall b, R a b -> a = b]) \/
(exists a b, [/\ A = Cab a b, a<> b & R a b]).

Lemma constituant_inter2 A B:
is_constituant A -> is_constituant B -> intransitive1 ->
A = B \/ small_set (A \cap B).

Proof.
move=> cA cB i1.
case (equal_or_not A B); first (by auto); move => AB;right; move=> u v.
case cA.

move=>[a [Aa aE ap]]; rewrite Aa.
by move/setI2_P => [/set1_P -> _] /setI2_P [/set1_P -> _].

case cB.
move=>[c [Ac cE cp]] _; rewrite Ac.
by move/setI2_P => [_ /set1_P ->] /setI2_P [_ /set1_P ->].

move=> [a [b [Aab nab Rab]]] [a' [b' [Aab' nab' Rab']]].
case (equal_or_not u v)=>// nuv.
rewrite Aab Aab';move => /setI2_P [uA uB] /setI2_P [vA vB].
case AB; rewrite Aab' Aab.
rewrite (Cab_trans nab Rab i1 nuv uB vB).
by rewrite (Cab_trans nab' Rab' i1 nuv uA vA).
Qed.

Consider now the intersection of three constituents A, B and C. In the proof, we �rst
eliminate the case where some of these sets are identical. Then the intersections are small
sets (a singleton or empty). Bourbaki asks to show that at least one intersection is empty.
The French edition of Bourbaki adds a last case: ou les trois ensembles sont identiques, which
reads: the three intersections are identical, since this case can happen.
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Lemma constitutant_inter3 A B C:
is_constituant A -> is_constituant B -> is_constituant C -> intransitive1 ->
A = B \/ A = C \/ B = C \/ A \cap B = emptyset
\/ A \cap C = emptyset \/ B \cap C = emptyset
\/ (A \cap B = A \cap C /\ B \cap C = A \cap C).

Proof.
move=> cA cB cC i1.
case (equal_or_not A B); [by left| move=> nAB; right].
case (equal_or_not A C); [by left| move=> nAC; right].
case (equal_or_not B C); [by left| move=> nBC; right].
have ssAB: small_set (A \cap B).

case (constituant_inter2 cA cB i1) =>//.
have ssAC: small_set (A \cap C).

case (constituant_inter2 cA cC i1) =>//.
have ssBC: small_set (B \cap C).

case (constituant_inter2 cB cC i1) =>//.

If A is a component { x} and if x 2 C(a,b) then x is related to at least two distinct elements,
absurd. Thus, the case wheer one set is a singleton is easy.

case: cA.
move=> [a [Aa aE ap]]; case cB.

move=> [b [Bb bE bp]].
left; apply: disjoint_pr=> u ua ub; case nAB.
by move: ua ub;rewrite Aa Bb; move /set1_P => -> /set1_P ->.

move => [b1 [b2 [Bbb [nbb Rbb]]]].
left; apply: disjoint_pr => u; rewrite Aa Bbb; move /set1_P => ->.
move/Zo_hi=> [R1 R2]; case nbb.
by rewrite -(ap _ (A2 R1)) (ap _ (A2 R2)).

move => [a1 [a2 [Aaa naa Raa]]].
case: cB.

move=> [b [Bb bE bp]]; case cC.
move=> [c [Cc [cE cp]]].
right;right;left; apply: disjoint_pr=> u; rewrite Bb Cc; move /set1_P=> ->.
by move/set1_P=> bc; case nBC;rewrite Bb Cc bc.

move => [c1 [c2 [Ccc ncc Rcc]].
right; right;left; apply: disjoint_pr => u; rewrite Bb Ccc; move/set1_P=> ->.
by move /Zo_hi=> [R1 R2]; case ncc; rewrite -(bp _ (A2 R1))(bp _ (A2 R2)).

move => [b1 [b2 [Bbb nbb Rbb]]].
case: cC.

move=> [c [Cc [cE cp]]].
right;left;apply: disjoint_pr => u uA uC; move: uC uA; rewrite Aaa Cc.
move /set1_P=> -> /Zo_hi [R1 R2]; case naa.
by rewrite -(cp _ (A2 R1)) (cp _ (A2 R2)).

move => [c1 [c2 [Ccc ncc Rcc]]].

We assume AÆC(a1,a2), B ÆC(b1,b2) and C ÆC(c1,c2). Then either all intersections are
empty, or there is c 2 A\ B, b 2 A\ C and a 2 B\ C. We get A\ B Æ{c} since the intersection is
a small set. We have three such relations. We have to show a Æb Æc. Note that one equality
implies the other. Our result is true if c 2 C (since the c 2 A\ C Æ{b}. It is also true if a Æb
(since then a 2 A\ B Æ{c}).

case (emptyset_dichot (A \cap B));[ by left | move=> [c ci]; right].
case (emptyset_dichot (A \cap C));[ by left | move=> [b bi]; right].
case (emptyset_dichot (B \cap C));[ by left | move=> [a ai]; right].
have iAB: A \cap B = singleton c by apply: set1_pr2.
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have iAC: A \cap C = singleton b by apply: set1_pr2.
have iBC: B \cap C = singleton a by apply: set1_pr2.
rewrite iAB iAC iBC.
suff: (inc c C).

move=> cC.
have cAC: inc c (A \cap C) by move/setI2_P: ci => []; fprops.
have cBC: inc c (B \cap C) by move/setI2_P: ci => []; fprops.
by rewrite (ssAC _ _ bi cAC) (ssBC _ _ ai cBC).

case (equal_or_not a b).
move=> ab.
have: inc a (A \cap B).

apply setI2_i; [by rewrite ab;apply: (setI2_1 bi) | apply: (setI2_1 ai)].
rewrite iAB; move /set1_P => <-; apply: (setI2_2 ai).

move=> nab.

The element c is related to a1 and a2. This makes 12 relations. We obtain three more
relations by intransitivity: elements a, b and c are related. If a 6Æb we also deduce that c is
related to c1 and c2. This saysc 2 C

move: ai bi ci => /setI2_P [aB aC] /setI2_P [bA bC] /setI2_P [cA cB].
move: cA cB bA bC aB aC; rewrite Aaa Bbb Ccc.
move => /Zo_P [cE [Ra1c Ra2c]] /Zo_hi [Rb1c Rb2c].
move => /Zo_hi [Ra1b Ra2b] /Zo_hi [Rc1b Rc2b].
move => /Zo_hi [Rb1a Rb2a] /Zo_hi [Rc1a Rc2a].
move: (i1 _ _ _ _ ncc Rcc Rc1a Rc1b Rc2a Rc2b) => Rab.
move: (i1 _ _ _ _ nbb Rbb Rb1a Rb1c Rb2a Rb2c) => Rac.
move: (i1 _ _ _ _ naa Raa Ra1b Ra1c Ra2b Ra2c) => Rbc.
move: (i1 _ _ _ _ nab Rab (A2 Rc1a) Rac (A2 Rc1b) Rbc) => Rc1c.
move: (i1 _ _ _ _ nab Rab (A2 Rc2a) Rac (A2 Rc2b) Rbc) => Rc2c.
by apply: Zo_i.
Qed.

End Exercice6_10.

We consider now part b. Given an assumption on X and E we de�ne a relation R.

Definition exercise6_11b_assumption X E:=
[/\ union X = E,
(forall A, inc A X -> nonempty A),
(forall A B, inc A X -> inc B X -> A = B \/ small_set (A \cap B)) &

(forall A B C, inc A X -> inc B X -> inc C X ->
( A=B \/ A = C \/ B = C \/ A \cap B = emptyset

\/ A \cap C = emptyset
\/ B \cap C = emptyset
\/ (A \cap B = A \cap C /\ A \cap B = B \cap C)))].

Definition exercise6_11b_rel X x y := exists A, [/\ inc A X, inc x A & inc y A].

We start with trivial facts.

Lemma exercise6_11b1 E X:
exercise6_11b_assumption X E -> reflexive_re (exercise6_11b_rel X) E.

Proof.
move=> [h _] x; rewrite /exercise6_11b_rel -h;split.

move => xE; move: (setU_hi xE)=> [y ye xy];ex_tac.
move=> [y [yX xy _ ]]; apply: (setU_i xy yX).
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Qed.

Lemma exercise6_11b2 X:
symmetric_r (exercise6_11b_rel X).

Proof.
move=> E y; rewrite /exercise6_11b_rel.
by move=>[A [Ax xA yA]]; exists A.
Qed.

Let's show intransitivity. We assume the four points distinct. We have 5 relations, thus 5
sets. Denote by Axy the set containing x and y. The element z is in A xz and in A yz. while the
element t is in A xt and in A yt . If one set of the �rst list is the same as one set of the second
list, the result is true. Otherwise, this gives four inequalities. Each one says that a set is a
singleton. Obviously A xz \ Axt Æ{x} and Ayz \ Ayt Æ{y}.

We have x 2 x0 \ x1 \ x2, y 2 x0 \ x3 \ x4, z 2 x1 \ x3 and t 2 x2 \ x4. We must show that z
and t are in a common set. If one of x1,x3 is one of x2,x4, the result is obvious. We hence get
four inequalities between sets. We know that A 6ÆB implies that the intersection is empty or
a singleton. Hence we get x1 \ x2 Æ{x} and x3 \ x4 Æ{y}.

Lemma exercise6_11b3 E X: exercise6_11b_assumption X E ->
let R := exercise6_11b_rel X in

forall x y z t,
x <> y -> x<>z -> x <> t -> y <> z -> y <> t -> z <> t ->
R x y -> R x z -> R x t -> R y z -> R y t -> R z t.

Proof.
move=> [uX alne i2 i3] R x y z t nxy nxz nxt nyz nyt nzt
[XY [XYX xXY yXY]] [XZ [XZX xXZ zXZ]] [XT [XTX xXT tXT]]
[YZ [YZX yYZ zYZ]] [YT [YTX yYT tYT]].

case (equal_or_not XZ XT) => XZXT; first by exists XT; split => //; ue.
case (equal_or_not XZ YT) => XZYT; first by exists XZ; split => //; ue.
case (equal_or_not YZ XT) => YZXT; first by exists XT; split => //; ue.
case (equal_or_not YZ YT) => YZYT; first by exists YT; split => //; ue.
have iXZXT: (XZ \cap XT = singleton x).

apply: set1_pr2;first by fprops.
case (i2 _ _ XZX XTX) =>h; [ contradiction | done].

have iYZYT: (YZ \cap YT = singleton y).
apply: set1_pr2;first by fprops.
case (i2 _ _ YZX YTX) =>h; [ contradiction | done].

We assume Axy ÆAxz , and study the consequences. We get A xy ÆAyz since y and z are
two distinct elements in both sets. The case A xy ÆAyt is trivial. Consider A xt ÆAyt ; if this is
true, we have Axy ÆAyt since x and y are in both sets; the result is trivial. In the other case,
we have three distinct sets A xy ÆAxz ÆAyz, Axt and Ayt . The intersections of two of them are
nonempty. Since these intersections contain distinct elements x, y, t , the sets must be the
same and the result is trivial.

case (equal_or_not XY XZ)=> XYXZ.
have XYYZ: XY= YZ.

have yp1:inc y (XY \cap YZ) by fprops.
have zp1:inc z (XY \cap YZ) by rewrite XYXZ; fprops.
case (i2 _ _ XYX YZX) =>// h; case nyz;apply: (h _ _ yp1 zp1).

case (equal_or_not XY YT)=> XYYT; first by exists XY; aw; split => //; ue.
case (equal_or_not XT YT) => XTYT.

have xp: inc x (XY \cap YT) by aw; ue.
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have yp: inc y (XY \cap YT) by aw; ue.
case (i2 _ _ XYX YTX) =>h; first by contradiction.
elim nxy;apply: (h _ _ xp yp).

case (i3 _ _ _ XYX XTX YTX); first by move=> h;exists XY; split => //; ue.
case; first by move=> h.
case; first by move=> h.
case; first by move=> h;empty_tac1 x; aw; intuition.
case; first by rewrite XYYZ; move=> h; empty_tac1 y; aw; intuition.
case; first by move=> h; empty_tac1 t; aw; intuition.
move=> [r1 r2].
have : inc t (XT \cap YT) by aw; intuition.
by rewrite -r2 XYYZ;move /setI2_P=> [tp _]; exists YZ.

We consider now the case A xy 6ÆAxz . The intersection of these sets is then { x}. It implies
Axz 6ÆAyz for otherwise y would be in A xy \ Axz . Thus Axz \ Ayz Æ{z}.

have iXYXZ: (XY \cap XZ = singleton x).
apply: set1_pr2; fprops; case (i2 _ _ XYX XZX) => //.

case (equal_or_not XZ YZ)=> XZYZ.
have : inc y (singleton x) by rewrite - iXYXZ; aw;intuition; ue.
move/set1_P => h; elim nxy =>//.

have iXZYZ: (XZ \cap YZ = singleton z).
apply: set1_pr2; fprops; case (i2 _ _ XZX YZX) => //.

Now we compare A xy and Ayt . Assume �rst equality. We proceed as above.

case (equal_or_not XY YT)=> XYYT.
have XYXY: (XY = XT).

have xp: inc x (XY \cap XT) by fprops.
have tp: inc t (XY \cap XT) by rewrite XYYT; fprops.
case (i2 _ _ XYX XTX) =>// h; elim nxt;apply: (h _ _ xp tp).

case (equal_or_not XY YZ)=> XYYZ; first by exists XY; aw;split => //; ue.
case (i3 _ _ _ XYX XZX YZX); first by move=> h;exists XY; intuition; ue.
case; first by move=> h.
case; first by move=> h.
case; first by move=> h;empty_tac1 x; aw.
case; first by move=> h; empty_tac1 y; aw.
case; first by move=> h; empty_tac1 z; aw.
move=> [r1 r2].
have : inc z (XZ \cap YZ) by aw; intuition.
rewrite -r2 XYYT;move /setI2_P=> [tp _]; exists YT; by aw.

Here Axy 6ÆAyt . The intersection is { y}. From this we get A xt \ Ayt Æ{t }. (same as proof
as above).

have iXYYT: (XY \cap YT = singleton y).
apply: set1_pr2; fprops; case (i2 _ _ XYX YTX) => //.

case (equal_or_not XT YT)=> XTYT.
have : inc x (singleton y) by rewrite -iXYYT; aw;intuition; ue.
move/set1_P => h; elim nxy =>//.

have iXTYT: (XT \cap YT = singleton t).
apply:set1_pr2;fprops:case (i2 _ _ XTX YTX) => //.

One can prove A xz \ Ayt ÆAxt \ Ayz Æ ; but this relation is helpless. The only remaining
pairs of sets are (Axy ,Axt ) and (Axy ,Axt ). The case Axy ÆAxt ÆAyz is trivially excluded. The
cases Axy 6ÆAxt and Axy 6ÆAyz are easy.
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case (equal_or_not XY XT)=> XYXT.
case (equal_or_not XY YZ)=> XYYZ; first by elim YZXT; ue.
case (i3 _ _ _ XYX XZX YZX); first by move=> h.
case; first by move=> h.
case; first by move=> h.
case; first by move=> h;empty_tac1 x; aw.
case; first by move=> h;empty_tac1 y; aw.
case; first by move=> h;empty_tac1 z; aw.
rewrite iXYXZ iXZYZ; move=> [_ sxz].
by elim nxz; apply: set1_inj.

case (i3 _ _ _ XYX XTX YTX); first by move=> h.
case; first by move=> h.
case; first by move=> h.
case; first by move=> h;empty_tac1 x; aw.
case; first by move=> h;empty_tac1 y; aw.
case; first by move=> h;empty_tac1 t; aw.
rewrite iXYYT iXTYT; move=> [sy st].
rewrite sy in st; by elim nyt; apply: set1_inj.
Qed.

We show now that the elements of X are the constituents. Let p1(u ) the property that u
has the form C( a,b), p2(u ) the property that u is a connected component formed of a single
element. If u satis�es these conditions, then u 2 X. We are asked to show the converse.
Assume that u 2 X; if it has at least two elements, it satis�es p1. Assume that it has a single
element x. Assume that there is no other set v containing x; then p2 is true. Assume now that
there is another set v containing x; then p1 and p2 are false. (Example: E has two elements a
and b, X has two elements { a,b} and {a}). The assumptions on X say: if v and v0are two sets
containing x, then the intersection is a singleton. Denote by p3(u ) this condition. It does not
imply u 2 X.

Thus we prove the following.

Lemma exercise6_11b4 E X
(R := exercise6_11b_rel X)
(p1 := fun u => (exists a b, [/\ a<> b, R a b & u =

Zo E (fun x => R a x /\ R b x)]))
(p2:= fun u => (exists x, [/\ u = singleton x, inc x E &

forall y, inc y E -> R x y -> x = y]))
(p3:= fun u => (exists v, [/\ inc v X, u <> v, sub u v & singletonp u])):
exercise6_11b_assumption X E ->

[/\ (forall u, inc u X -> p1 u \/ p2 u \/ p3 u ),
(forall u, p1 u -> inc u X) & (forall u, p2 u -> inc u X)].

We show here that singletons satisfy p2 or p3.

Proof.
move => E X [uXE alne i2 i3] R p1 p2 p3; split.

move=> u uX.
case (p_or_not_p (singletonp u)) => su.

right; case (p_or_not_p (p3 u)) => p3u; first by intuition.
left; move: (su) => [x sx].
rewrite sx; exists x; split => //.

rewrite -uXE; apply: (@setU_i _ u) =>//; rewrite sx; fprops.
move=> y yE Rxy; case (equal_or_not x y) =>//.
move=> xy; move: Rxy=> [A [AX xA yA]].
case p3u; exists A; split =>//.
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by dneg uA; move: yA; rewrite -uA sx;move /set1_P.
by move=> t; rewrite sx; move/set1_P => ->.

Our set u is not empty, hence has an element y. We show here that if it has another
element x, then p1(u ) is satis�ed. If x0 is related to x and y, there exists two sets x1 that
contains y and x0, and x2 that contains x and x0. We want to show x0 2 u. This is clear if
x1 Æu or x2 Æu. Assume these two pairs distinct. If x1 Æx2, the intersection x1 \ u is a
singleton, containing x and y, absurd. We can then use property (2).

constructor 1; red.
move: (alne _ uX) => [y yu]; exists y.
case (p_or_not_p (exists2 v, inc v u & v <> y)).

move=> [x xu xy]; exists x; split; [auto | by exists u |].
set_extens1 w.

move=> wu; apply: Zo_i.
rewrite - uXE; apply: (@setU_i _ u) =>//.

split;exists u; split => //.
move /Zo_P=> [wE [ [A [AX xA yA]] [A' [AX' xA' yA']]]].
case (equal_or_not A u)=> Au; first by rewrite -Au.
case (equal_or_not A' u)=> Au'; first by rewrite -Au'.
have xi: (inc x (u \cap A')) by aw.
have yi: (inc y (u \cap A)) by aw.
case (equal_or_not A A') => AA'.

case (i2 _ _ uX AX)=> aux.
by elim Au'; rewrite -AA' aux.

rewrite -AA' in xi.
by elim xy; apply:(aux _ _ xi yi).

move: (i3 _ _ _ AX AX' uX).
case =>//; case =>//; case =>//.
case; first by move=> h; empty_tac1 w; aw.
case; first by move=> h; empty_tac1 y; aw.
case; first by move=> h; empty_tac1 x; aw.
move=> [h1 h2].
rewrite setI2_C -h2 in xi.
rewrite setI2_C -h1 in yi.
case (i2 _ _ AX AX')=>// aux.
elim xy; by apply: (aux _ _ xi yi).

To �nish, we must show that a nonempty set that is not a singleton has at least two ele-
ments.

move=> h;elim su; exists y; apply: set1_pr1; first by ex_tac.
move => w wu;case (equal_or_not w y) =>// wy; by elim h; ex_tac.

We show here that p1(u ) implies u 2 X. Consider x and x0 two distinct elements, and
u ÆC(x,x0). The two elements x and x0 are related, this means that they are in a set x1. We
have u Æx1. The proof is the same as above.

(* last case *)
move=> u [a [b [nab [A [AX [aA bA]]] uZ]]].
suff: (u = A) by move=> ->.
rewrite uZ; set_extens t.

move /Zo_P=> [tE [[A' [AX' [aA' bA']]] [A'' [AX'' [aA'' bA'']]].
case (equal_or_not A A'')=> AA''; first by ue.
case (equal_or_not A A')=> AA'; first by ue.
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have aAA: inc a (A \cap A') by fprops.
have bAA: inc b (A \cap A'') by fprops.
case (equal_or_not A' A'') => aux.
case (i2 _ _ AX AX')=> // ss.

rewrite -aux in bAA; elim nab; apply: (ss _ _ aAA bAA).
case (i3 _ _ _ AX AX' AX'') =>//; case =>//; case =>//.
case; first by move=> h; empty_tac1 a; aw.
case; first by move=> h; empty_tac1 b; aw.
case; first by move=> h; empty_tac1 t; aw.
move=> [h1 h2]. rewrite - h1 in bAA.
case (i2 _ _ AX AX')=>// ss.
elim nab; by apply: (ss _ _ aAA bAA).

move=> tA; apply: Zo_i.
rewrite -uXE;apply: (@setU_i _ A)=>//.

by split;exists A.

We show that p2(u ) implies u 2 X.

move=> u [v [uv vE su]].
move: vE;rewrite -uXE; move/setU_P=> [y vy yX].
suff: u = y by move=> ->.
rewrite uv; symmetry; apply:set1_pr => // t tv.
symmetry;apply: su.

rewrite -uXE;apply: (@setU_i _ y) =>//.
by exists y.

Part c. We do not know how to generalize. The last claim is obvious. Assume R intran-
sitive of order p ¡ 3, let q È p and consider q distinct elements, which are related (with the
exception of xq¡ 1 and xq ; discard the q ¡ p �rst elements. The missing relation is true by
intransitivity.
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Chapter 8

Summary

8.1 The axioms

We give here the list of all axiom schemes.
S1: If A is a relation in T , the relation ( A or A) Æ) A is an axiom of T .
S2: If A and B are relations in T , the relation A Æ) (A or B) is an axiom of T .
S3: If A and B are relations in T , the relation ( A or B) Æ) (B or A) is an axiom of T .
S4: If A, B, and C are relations in T , the relation ( A Æ) B) Æ) ((C or A) Æ) (C or B)) is an
axiom of T .
S5: If R is a relation in T , if T is a term in T , and if x a letter, then the relation ( T jx)R Æ)
(9x)R is an axiom.
S6: Letx be a letter, let T and U be terms in T , and let Räxäa relation in T ; then the relation
(T ÆU ) Æ) (RäTä () RäU ä) is an axiom.
S7: If R and S are relations in T , and if x is a letter, then the relation (( 8 x)(R () S)) Æ)
(¿x(R) Æ¿x(S)) is an axiom.
S8: LetR be a relation, let x and y be distinct letters, and let X and Y be letters distinct from
x and y which do not appear in R. Then the relation

(8 y)(9X)(8 x)(R Æ) (x 2 X)) Æ) (8 Y)Coll x((9y)((y 2 Y) and R))

is an axiom.

The French edition has only four axioms since A3 is a theorem.
A1. (8 x)(8 y)((x ½y and y ½x) Æ) (x Æy)).
A2. (8 x)(8 y)Coll z(z Æx or z Æy).
A3. (8 x)(8 x0)(8 y)(8 y0)(((x, y) Æ(x0, y0)) Æ) (x Æx0and y Æy0))
A4. (8 X)CollY(Y ½X).
A5. There exists an in�nite set.

8.2 The Zermelo Fraenkel Theory

An alternative to the Bourbaki theory is the Zermelo Fraenkel theory. It has the usual
interpretation of the quanti�ers 8 and 9, but not the symbol ¿, thus is missing a choice func-
tion. With the notations of [5] the axioms are

B1. 8 x8 y[8 z(z 2 x () z 2 y) Æ) x Æy] (Axiom of extent, A1).

B0. 8 x8 y9z8 t [t 2 z () (t Æx or t Æy)] (Axiom of the pair, A2).
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B2. 8 x9y8 z[z 2 y () 9 t (t 2 x and z 2 t )] (Axiom of the union).

B3. 8 x9y8 z[z 2 y () z ½x] (Axiom of the set of subsets, A4).

B4. 9x9y[8 z(z 62y) and y 2 x and 8 u[bu 2 x Æ) 9 v[v 2 x and 8 t (t 2 v () t Æu or t 2 u)]]]
(Axiom of in�nity).

SS.8 x1 . . .8 xk {8 x8 y8 y0[E(x, y,x1, . . . ,xk ) and E(x, y0,x1, . . . ,xk ) Æ) y Æy0] Æ) 8 t 9w 8 v[v 2
w () 9 u[u 2 t and E(u,v,x1, . . . ,xk )]]} (Scheme of Replacement).

SC.8 x1 . . .8 xk 8 x9y8 z[z 2 y () (z 2 x and A(z,x1, . . . ,x))] (Scheme of comprehension).

AC. 8 a{[8 x(x 2 a Æ) x 6Æ ;) and 8 x8 y(x 2 a and y 2 a Æ) x Æy or x \ y Æ ; )] Æ)
9b8 x9u(x 2 a Æ) b \ x Æ{u})} (Axiom of choice).

AF. 8 x[x 6Æ ; Æ) 9y(y 2 x and y \ x Æ ; )] (Axiom of foundation).

Comments. The Zermelo-Fraenkel theory consists in axioms B1, B2, B3, B4, and scheme
SS. From SS, one can deduce SC and B0. The Zermelo theory consists in B1, B0, B2, B3, B4
and SC. It is a weaker theory. Axiom AF is independent of all other axioms, it excludes some
weird sets; it is useful in modeling.

Scheme SS depends on a relation E that takes at least two arguments. Fix all parameters
but the �rst two ones. Assume that E( x, y) is functional in y (i.e., if E(x, y) ÆE(x, y0) implies
y Æy0). Rewrite E(x, y) as y Æf (x). The scheme says that for all t , there is a w containing
those v of the form v Æf (u) for some u 2 t . Scheme SC says that for every relation A(z) (that
may depend on other parameters), and for every set x there is a set w containing those v 2 x
that satisfy A.

Consider now axiom B4. The parameter y has to be zero (a.k.a the empty set), and v has
to be u [ {u}. Denote this by S( u). Now B4 says: there exists a setx, containing zero, and such
that u 2 x Æ) S(u) 2 x. In part two of this report, we shall de�ne pseudo-ordinals. Then the
set of �nite pseudo-ordinals (which is also the set of �nite cardinals with the de�nition of [5])
is the smallest set satisfying B4. Thus B4 is equivalent to the existence of this set. This axiom
is equivalent to A5 (remember that it asserts existence of an in�nite set, where “in�nite” is a
very complicated expression, since it depends on the addition of cardinals, see part two of
this report).

Consider now axiom AC. It says that for every set a, if a is formed of non-empty, mutually
disjoint sets, there exists a set b that meets each element of a exactly once. Denote by f (x)
the unique element of the intersection of x and b. Then (informally) f is a function such that
f (x) 2 x. More formally, the axiom is equivalent to: for every set A, there exists a function
f : P (A) ¡ ; ! A such that f (x) 2 x. It is also equivalent to say that a product of non-empty
sets is non-empty; it is also equivalent to Zermelo's Theorem (every set can be well-ordered,
see part 2). We shall use Zermelo's Theorem in order to show that cardinals are well-ordered.
A consequence of this fact is the Cantor-Bernstein theorem: if there is an injection from A
into B and an injection of B into A, then there is a bijection of A onto B. But this result is
independent of AC.

8.3 Changes from previous versions

We show some de�nitions and theorems, there were either removed or changed, with
some explanations. For more details, see the previous version of this document.
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The choice function. Let x be a set, p(x) a property. Let Q( p,x) be the property that, if there
is a set y such that p(y), then p(x) is true, and if there is no such y, then x is the emptyset.
We have two lemmas that say that, if we know that there exists y such p(y) (resp., if we know
the converse), then Q( p,x) is equivalent to p(x) (resp. x Æ ; ). In both cases, there exists x
such that Q( p,x) is true. By the excluded middle law, one of these two cases must be true.
This allows us to de�ne the choice function, using an inhabitant of the type of sets (in the
de�nitions of Carlos Simpson below, E is Type, the type of sets, EP is E! Prop, and Prop is
an inhabitant of E).

Definition refined_pr (p:EP) (x:E) :=
(ex p -> p x) & ~(ex p) -> x = emptyset.

Lemma refined_pr_if : forall p x, ex p -> refined_pr p x = p x.
Lemma refined_pr_not : forall p x, ~(ex p) -> refined_pr p x = (x = emptyset).
Lemma exists_refined_pr : forall p, ex (refined_pr p).
Definition choose' := fun X : EP => chooseT X (nonemptyT_intro Prop).
Definition choose (p:EP) := choose' (refined_pr p).

Reasoning by cases. Let P be a proposition. The expression “(P ^ A) _ (: P ^ B)” can be
written in Coq as ` IF P then A else B '. Consider now two sets a and b, and the relation
ÌF P then x=a else x=b ' as a property f (x) (for �xed P, a and b). If f (x) holds, then

either x Æa, or x Æb. Assume a 6Æb. Then f (a) is equivalent to P and f (b) is equivalent
to : P. By the excluded middle law, one of P or : P holds, so that exactly one of f (a) or f (b)
holds. This means that we can apply the axiom of choice, and we get a function Y, that maps
the predicate P to one of a or b. In the code that follows, a depend on a proof p of P and b on
a proof q of : P. The proof irrelevance axiom then shows that the result depends only on the
truth value of P.

Axiom proof_irrelevance : forall (P : Prop) (q p : P), p = q.
Definition by_cases (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T) :=

chooseT (fun x : T => (forall p : P, a p = x)
& (forall q : ~ P, b q = x))

(by_cases_nonempty a b).
Lemma by_cases_if :

forall (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T) (p : P),
by_cases a b = a p.

Lemma by_cases_if_not :
forall (T : Type) (P : Prop) (a : P -> T) (b : ~ P -> T) (q : ~ P),

by_cases a b = b q.

A variant of Y where the arguments are of type A instead of being a set.

Definition Yt (A:Type): Prop -> (A->A->A):=
fun P x y => by_cases (fun _ : P => x) (fun _ : ~ P => y).

Lemma Yt_if_rw : forall (A:Type)(P : Prop) (hyp : P) (x:A) y,
Yt P x y = x.

Lemma Yt_if_not_rw : forall (A:Type) (P : Prop) (hyp : ~ P) x (y:A),
Yt P x y = y.

The intersection of a family of sets f (z) over I is the set of all x 2 E, such that, for all z 2 I,
x 2 f (z). If I is non-empty, we choose for E some f (z0), in the other case, the intersection is
the empty set. In the current implementation E is the union of the family, and the de�nition
is much simpler.
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Definition intersectiont (In:Set)(f : In->Set):=
by_cases(fun H:nonemptyT In =>

Zo (f (chooseT_any H)) (fun y => forall z : In, inc y (f z)))
(fun _:~ nonemptyT In => emptyset).

Pairs. The de�nition of an orderded pair in the English Edition of Bourbaki, [2], is essen-
tially that of the 1956 French Edition. Here the existence of an “ordered pair” is postulated.
It is denoted as ¾ xy, and later on as ( x, y). The “axiom of the ordered pair” states that if
(x, y) Æ(x0, y0), then x Æx0and y Æy0. The unique quantity x (de�ned by the Axiom of Choice)
such that z Æ(x, y) is called the “�rst projection”, and denoted pr 1z. The unique quantity y
such that z Æ(x, y) is called the “second projection” and denoted pr 2z. Thus z Æ(pr 1z,pr2z)
is equivalent to “ z is an ordered pair”.

Note that pr 1; and pr 2; , are two well-de�ned sets, but whether ; is an ordered set or
not is undecidable. Thus ; Æ (pr 1; ,pr2; ) could be true or false.

Parameter J : Set -> Set -> Set.
Axiom axiom_of_pair : forall x y x' y' : Set,

(J x y = J x' y') -> (x = x' & y = y').
Definition P (u : Set) :=

choose (fun x : Set => ex (fun y : Set => u = J x y)).
Definition Q (u : Set) :=

choose (fun y : Set => ex (fun x : Set => u = J x y)).

It is possible to de�ne pairs without using an axiom. Essentially ( x, y) is a doubleton
{a,b}. If we take a Æ{{x}} and b Æ{; , {y}}, we get the de�nition proposed by Wiener in 1914.
The implementation of C. Simpson used a Æ{x}. Note that a has one element while b has
two elements, so that ( x, y) is a set with two distinct elements.

Definition pair_first (x y:Set):= singleton x.
Definition pair_second (x y:Set):= doubleton emptyset (singleton y).

Definition pair (x y : Set) :=
doubleton (pair_first x y) (pair_second x y).

Lemma pair_distinct x y:
pair_second x y <> pair_first x y.

The Kuratowski de�nition of a pair ( x, y) is z Æ{a,b}, where a Æ{x} and b Æ{x, y}. This
one is used in the French version of Bourbaki [3]. We have

T
z Æa \ b Æ{x} so that

ST
z Æx.

We have
S

z Æa [ b Æ{x, y}. The complement of
T

z in
S

z is either empty (in case x Æy) or
{y} (otherwise). This allows us to compute y from z.

In the current version, a different method is used. Consider the set of all t in
S

z such that
(pr 1z, t ) Æ

S
z. Recall that

S
z Æ{x, y}, and pr 1z Æx. So we consider the set E of all t , equal to

x or y, such that { x, t } Æ{x, y}. Obviously y 2 E. If t 2 E, we have either t Æx or t Æy, but in
the �rst case x Æy. Thus E Æ{y} and

S
E Æy.

Definition kpair x y := doubleton (singleton x) (doubleton x y).
Definition kpr1 x := union (intersection x).
Definition kpr2 x := let a := complement (union x) (intersection x) in
Yo (a = emptyset) (kpr1 x) (union a).
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Cartesian Product. Assume that a is a set, and f of type Set! Set is a function. One can
consider the property: the pair ( x, y) satis�es x 2 a and y 2 f (x).

Definition in_record a f (x : Set) :=
is_pair x & inc (P x) a & inc (Q x) (f (P x)).

Record Cartesian_record a f : Set :=
{Cartesian_first : a; Cartesian_second : f (Ro Cartesian_first)}.

Definition recordMap a f (i : Cartesian_record a f) :=
J (Ro (Cartesian_first i)) (Ro (Cartesian_second i)).

Lemma in_record_ex : forall a f (x : Set),
in_record a f x -> exists i : Cartesian_record a f, recordMap i = x.

Lemma in_record_bounded : forall a f, Bounded.axioms (in_record a f).

There is a set containing all pairs ( x, y) that satisfy x 2 a and y 2 f (x).

Definition record a f := Bounded.create (in_record a f).

Lemma record_in : forall a f x, inc x (record a f) -> in_record a f x.
Lemma record_pr : forall a f x,

inc x (record a f) -> (is_pair x & inc (P x) a & inc (Q x) (f (P x))).
Lemma record_inc : forall a f x, in_record a f x -> inc x (record a f).
Lemma record_pair_pr : forall a f x y,

inc (J x y) (record a f) -> (inc x a & inc y (f x)).
Lemma record_pair_inc : forall a f x y,

inc x a -> inc y (f x) -> inc (J x y) (record a f).

A product is just a record where the function f is constant.

Definition product (a b : Set) := record a (fun x : Set => b).

Module Basic Realization. The following two axioms imply that R n is the n-th ordinal (in
the von Neumann sense) for each natural number n. Thus R 0 Æ ; , R 1 Æ{; }, R 2 Æ{; , {; }}
and so on.

Axiom nat_realization_O : forall x : Set, ~ inc x (Ro 0).
Axiom nat_realization_S :

forall (n : nat) (x : Set),
inc x (Ro (S n)) = (inc x (Ro n) \/ x = Ro n).

Lemma nat_zero_emptyset : Ro 0 = emptyset.
Lemma R_one_singleton_emptyset : Ro 1 = singleton emptyset.

In the framework of Simpson, any type was a set. So, he postulated that R x Æx, whenever
x is a proposition, and that R p Æ ; for any proof p of true (note that this proof is unique).

Axiom prop_realization : forall x : Prop, Ro x = x.
Axiom true_proof_realization_empty : forall t : True, Ro t = Ro 0.

By extensionality, False is ; and True is {R I}, where I is a proof of True. The previous
axiom then says that True is {; }. By the excluded middle law, any proposition is true or false,
so that Prop has exactly two elements, and is R 2.
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Lemma false_emptyset : emptyset = False.
Lemma R_false_emptyset : Ro False = emptyset.
Lemma true_proof_emptyset : forall t : True, Ro t = emptyset.
Lemma true_singleton_emptyset : singleton emptyset = True.
Lemma R_true_singleton_emptyset : Ro True = singleton emptyset.

Lemma R_two_prop : Ro 2 = Prop.

Correspondences. In a �rst implementation, a correspondence was a set, more precisely, a
functional graph on a set with three elements, Source, Target and Graph.

Definition create x y g:=
denote Source x (denote Target y (denote Graph g stop)).

Definition like (a:E) := a = create(sourceC a) (targetC a)(graphC a).
Definition correspondence m:=

like m & is_graph (graph m) & sub (domain (graph m)) (source m)
& sub (range (graph m)) (target m).

Later on, a correspondence was a record; we had conversion functions between corre-
spondences and triples, and an axiom of choice for correspondences.

Record correspondenceC:Type :=
corresp{ source:Set; target:Set; graph :Set }.

Definition corr_value (x:correspondenceC):=
J(graph x) (J (source x) (target x)).

Definition inv_corr_value z := corresp(P (Q z)) (Q (Q z)) (P z).

Definition choosef (p:correspondenceC -> Prop) :=
chooseT (fun u=> (ex p -> p u) & ~(ex p) -> u = identity_fun emptyset)
(nonemptyT_intro (corresp emptyset emptyset emptyset)).

Lemma choosef_pr : forall p, (ex p) -> p (choosef p).

For Bourbaki, an equivalence on a set E is a correspondence whose source and target
are both equal to E, and whose graph F is such that the relation ( x, y) 2 F is an equivalence
relation on E. Note: the correspondence is uniquely de�ned by F, since E is the substrate of
F; conversely, given an equivalence F on E, the domain and range of F is E, thus F ½E£ E, and
(E,E,F) is a correspondence.

Definition equivalence_cor r:=
source r = target r &
equivalence (graph r) & source r = (substrate (graph r)).

Definition graph_to_eq_cor g := corresp (domain g)(domain g) g.

8.4 Tactics

We have two data bases for autorewrite and one for auto .

Ltac aw := autorewrite with aw; trivial.
Ltac bw := autorewrite with bw; trivial.
Ltac fprops := auto with fprops.
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This tactic ex_middle u solves the current goal by assuming in u that it is false. The
tactic dneg usolves a goal of the form : B, assuming that there is an assumption : A; it puts
u : B as assumption, and ask to prove A.

Ltac ex_middle u := match goal with
|- ?p => case (p_or_not_p p) ; [ done | move => u ]

end.
Ltac dneg u := match goal with

H : ~ _ |- ~ _ => move => u; apply:H
end.

The tactic set_extens v solves a goal of the form a Æb by application of the axiom of
extent for sets. It generates two subgoals: v 2 a Æ) v 2 b and v 2 b Æ) v 2 a.

Ltac set_extens v:= apply: extensionality=> v.

This tactic tries to �nd an equality that solves the goal via fprops .

Ltac ue :=
match goal with

| H:?a = ?b |- _ => solve [ rewrite H ; fprops | rewrite - H ; fprops]
end.

The tactic empty_tac1 x assumes that there an assumption a Æ ; , or ; Æ a, and consid-
ers the goal x 2 a. The tactic empty_tac2 x assumes that there an assumption that says a
and b are disjoint; and considers x 2 a and x 2 b. The tactic eq_dichot v assumes that the
goal is a Æb _ C. It asks to prove C assuming that v is a 6Æb. The tactic mdi_tac assumes
moreover that C says that two sets are disjoint; it replaces C by the property that no element
is in both sets.

Ltac empty_tac v := apply /set0_P => v.
Ltac empty_tac0 :=

match goal with
| H:inc _ emptyset |- _ => case (in_set_0 H)
end.

Ltac empty_tac1 u :=
case (in_set_0 (x:= u));
match goal with

H: ?x = emptyset |- _ => rewrite - H
| H: emptyset = ?x |- _ => rewrite H end ;

fprops.
Ltac empty_tac2 u :=

match goal with H: disjoint ?x ?y |- _ =>
case: (in_set_0 (x:= u)); rewrite - H; apply: setI2_i =>//

end.
Ltac eq_dichot v:= match goal with |- ?a = ?b \/ _

=> case (equal_or_not a b); first (by left); move=> v; right end.
Ltac mdi_tac v:= eq_dichot v; apply: disjoint_pr.

The following tactics can be used in case where the goal contains Yo P a b. The �rst
one generates two subgogals, where P is respectively true or false. The second tries to guess
a proof of P or not P.

Ltac Ytac eq:=
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match goal with
| |- context [Yo ?p _ _ ] =>

case: (p_or_not_p p) => eq;
[rewrite (Y_true eq) | rewrite (Y_false eq) ]

end.

Ltac Ytac0 := match goal with
| h: ?p |- context [Yo ?p _ _ ] => rewrite (Y_true h)
| h: (~ ?p) |- context [Yo ?p _ _ ] => rewrite (Y_false h)
| h: ?j <> ?i |- context [Yo (?i = ?j) _ _ ]

=> rewrite (Y_false (sym_not_equal h))
| |- context [Yo (?i = ?i) _ _ ] => rewrite (Y_true (refl_equal i))
| |- context [Yo (C0 = C1) _ _ ] => rewrite (Y_false TP_ne)
| |- context [Yo (C1 = C0) _ _ ] => rewrite (Y_false TP_ne1)
| |- context [Yo ?p ?x ?x ] => rewrite (Y_same p x)

end.

This tactic solves a goal of the form A _ B_ C or A _ B_ C_ D, when one of A, B, C or D
holds.

Ltac in_TP4:= solve [by constructor 1 | by constructor 2 |
by constructor 3 | by constructor 4].

This solves goals of the form 9x,P, or 9x,P^ Q. One of P or Q could be x 2 Y, or (x,a) 2 Y.

Ltac ex_tac:=
match goal with
| H:inc (J ?x ?y) ?z |- exists x, inc (J x ?y) ?z

=> exists x ; assumption
| H:inc (J ?x ?y) ?z |- exists y, inc (J ?x y) ?z

=> exists y ; assumption
| H:inc (J ?x ?y) ?z |- ex2 _ (fun t => inc (J t ?y) ?z)

=> exists x ; trivial
| H:inc (J ?x ?y) ?z |- ex2 _ (fun t => inc (J ?x t) ?z)

=> exists y ; trivial
| H:inc (J ?x ?y) ?z |- ex2 (fun t => inc (J t ?y) ?z) _

=> exists x ; trivial
| H:inc (J ?x ?y) ?z |- ex2 (fun t => inc (J ?x t) ?z) _

=> exists y ; trivial
| H:inc ?x ?y |- ex2 (fun t=> inc t ?y) _

=> exists x ; fprops
| H:inc ?x ?y |- ex2 _ (fun t => inc t ?y)

=> exists x ; fprops
| H:inc ?x ?y |- exists x, [/\ inc x ?y, _ & _ ]

=> exists x; split => //
| |- ex2 (fun t => inc t (singleton ?y)) _

=> exists y ; fprops
| H : inc (J ?x ?y) ?g |- inc ?x (domain ?g)

=> exact: (domain_i H)
| H : inc (J ?x ?y) ?g |- inc ?y (range ?g)

=> exact: (range_i H)
| H : inc ?x ?y |- nonempty ?y

=> exists x;assumption
| |- exists y, inc (J (P ?x) y) _

=> exists (Q x) ; aw
| |- exists y, inc (J y (Q ?x)) _
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=> exists (P x) ; aw
end.

This solves a goal related to a graph of a function.

Ltac Wtac :=
match goal with

| |- inc (J ?x (Vf ?f ?x)) (graph ?f) => apply: Vf_pr3 ; fprops
| h:inc (J ?x ?y) (graph ?f) |- Vf ?f ?x = ?y

=> symmetry; apply: Vf_pr ; fprops
| h:inc (J ?x ?y) (graph ?f) |- ?y = Vf ?f ?x => apply: Vf_pr ; fprops
| |- inc (Vf ?f _) (range (graph ?f)) => apply: inc_Vf_range_g ; fprops
| h1: function ?f, h2: inc ?x (source ?f) |- inc (Vf ?f ?x) (target ?f)

=> apply: (inc_Vf_target h1 h2)
| h2:target ?f = ?y |- inc (Vf ?f ?x) ?y

=> rewrite - h2; Wtac
| h2: ?y = target ?f |- inc (Vf ?f ?x) ?y

=> rewrite h2; Wtac
| h1: inc ?x ?y, h2: ?y = source ?f |- inc (Vf ?f ?x) (target ?f)

=> rewrite h2 in h1; Wtac
| h1: inc ?x ?y, h2: source ?f = ?y |- inc (Vf ?f ?x) (target ?f)

=> rewrite - h2 in h1; Wtac
| |- inc (Vf ?f _) (target ?f)

=> apply: (inc_Vf_target); fprops
| Ha:function ?X1, Hb: inc (J _ ?X2) (graph ?X1)

|- inc ?X2 (target ?X1)
=> apply: (inc_pr2graph_target Ha Hb)

| Ha:function ?X1, Hb: inc (J ?X2 _) (graph ?X1)
|- inc ?X2 (source ?X1)

=> apply: (inc_pr1graph_source Ha Hb)
| Ha:function ?X1, Hb: inc ?X2 (graph ?X1)

|- inc (P ?X2) (source ?X1)
=> apply: (inc_pr1graph_source1 Ha Hb)

| Ha:function ?X1, Hb: inc ?X2 (graph ?X1)
|- inc (Q ?X2) (target ?X1)

=> apply: (inc_pr2graph_target1 Ha Hb)
end.

The next tactic solves a goal of the form: f is a function.

Ltac fct_tac :=
match goal with

| H:bijection ?X1 |- function ?X1 => exact (bij_function H)
| H:injection ?X1 |- function ?X1 => exact (inj_function H)
| H:surjection ?X1 |- function ?X1 => exact (surj_function H)
| H:function ?X1 |- correspondence ?X1 =>

by case H
| H:function ?g |- sub (range (graph ?g)) (target ?g)

=> apply: (f_range_graph H)
| H:composable ?X1 _ |- function ?X1 => destruct H as [H _ ]; exact H
| H:composable _ ?X1 |- function ?X1 => destruct H as [_ [H _ ]]; exact H
| H:composable ?f ?g |- function (compose ?f ?g ) =>
apply: (fcomp_f H)

| H:function ?f |- function (compose ?f ?g ) =>
apply: fcomp_f; apply: conj=>//; apply: conj

| H:function ?g |- function (compose ?f ?g ) =>
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apply: fcomp_f; apply: conj; last apply: conj=>//
| Ha:function ?f, Hb:function ?g |- ?f = ?g =>

apply: function_exten
end.

This tactic solves goals of the form x 2
S

i 2I Xi , by guessing the value of i .

Ltac union_tac:=
match goal with

| H:inc ?x (?f ?y) |- inc ?x (uniont ?f)
=> apply: (setUt_i H)

| Ha : inc ?i (domain ?g), Hb : inc ?x (Vg ?i ?g) |- inc ?x (unionb ?g)
=> apply: (setUb_i Ha Hb)

| Ha : inc ?x ?y, Hb : inc ?y ?a |- inc ?x (union ?a)
=> apply: (setU_i Ha Hb)

| Ha : inc ?y ?i, Hb : inc ?x (?f ?y) |- inc ?x (unionf ?i ?f)
=> apply: (setUf_i _ Ha Hb)

| Ha : inc ?y ?i |- inc ?x (unionf ?i ?f)
=> apply: (setUf_i Ha); fprops

| Hb : inc ?x (?f ?y) |- inc ?x (unionf ?i ?f)
=> apply: (setUf_i _ Hb); fprops

| Ha : inc ?i (domain ?g) |- inc ?x (unionb ?g)
=> apply: (setUb_i Ha); fprops

| Hb : inc ?x (Vg ?i ?g) |- inc ?x (unionb ?g)
=> apply: (setUb_i _ Hb); fprops

| Hb : inc ?z ?X |- inc ?x (union ?X)
=> apply: (setU_i _ Hb); fprops

| Ha : inc ?x ?z |- inc ?x (union ?X)
=> apply: (setU_i Ha); fprops

end.

This helps solving goals that depends on the substrate of a relation.

Ltac substr_tac :=
match goal with

| H:inc ?x ?r |- inc (P ?x) (substrate ?r)
=> apply: (inc_pr1_sr H)

| H:inc ?x ?r |- inc (Q ?x) (substrate ?r)
=> apply: (inc_pr2_sr H)

| H:related ?r ?x _ |- inc ?x (substrate ?r)
=> apply: (inc_arg1_sr H)

| H:related ?r _ ?y |- inc ?y (substrate ?r)
=> apply: (inc_arg2_sr H)

| H:inc(J ?x _ ) ?r|- inc ?x (substrate ?r)
=> apply: (inc_arg1_sr H)

| H: inc (J _ ?y) ?r |- inc ?y (substrate ?r)
=> apply: (inc_arg2_sr H)

end.

This tatics exploits the properties of an equivalence relation.

Ltac equiv_tac:=
match goal with

| H: equivalence ?r, H1: inc ?u (substrate ?r) |- related ?r ?u ?u
=> apply: (reflexivity_e H H1)

| H: equivalence ?r |- inc (J ?u ?u) ?r
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=> apply: reflexivity_e
| H:equivalence ?r, H1:related ?r ?u ?v |- related ?r ?v ?u

=> apply: (symmetricity_e H H1)
| H:equivalence ?r, H1: inc (J ?u ?v) ?r |- inc (J ?v ?u) ?r

=> apply: (symmetricity_e H H1)
| H:equivalence ?r, H1:related ?r ?u ?v, H2: related ?r ?v ?w

|- related ?r ?u ?w
=> apply: (transitivity_e H H1 H2)

| H:equivalence ?r, H1:related ?r ?v ?u, H2: related ?r ?v ?w
|- related ?r ?u ?w
=> apply: (transitivity_e H (symmetricity_e H H1) H2)

| H: equivalence ?r, H1: inc (J ?u ?v) ?r, H2: inc (J ?v ?w) ?r |-
inc (J ?u ?w) ?r
=> apply: (transitivity_e H H1 H2)

end.

Other tactics.

Ltac try_lvariant u:=
move:u;move/ two_pointsP; case => ->; bw.

Ltac eqtrans u:= apply equipotentT with u; fprops.
Ltac eqsym:= apply: equipotentS.

8.5 List of Theorems

We give here the list of all theorems, propositions, lemmas, corollaries, together
with the Coq names, a page reference, and the statement (we use French quotes
for exact citations).

Section one

Proposition 1 ( sub_refl ) « x ½x », [23].

Proposition 2 ( sub_trans ) « (x ½y and y ½z) Æ) (x ½z) », [23].

Theorem 1 « The relation ( 8 x)(x 62X) is functional in X. » This theorem asserts exis-
tence and uniqueness of the empty set, [23].

Section 2

Theorem 1 asserts existence of the product X £ Y of two sets, [35].

Proposition 1 ( setX_Sl and variants) « If A 0, B0are non-empty sets, the relation A 0£
B0½A£ B is equivalent to “A 0½A and B0½B” », [35].

Proposition 2 ( setX_0 and variants) « Let A and B be two sets. The relation A £ B Æ ;
is equivalent to “A Æ ; or B Æ ; ” », [35]

Section 3

Proposition 1 ( range_domain_exists ) asserts existence and uniqueness of the range
and domain of a graph, [43].

Proposition 2 ( dir_im_S ) « Let G be a graph and let X, Y be two sets; then the relation
X ½Y implies GhXi ½ GhYi », [45].
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Corollary ( dir_im_domain ).

Proposition 3 ( compg_inverse) « Let G, G0be two graphs. The inverse of G 0±G is then
¡ 1
G ±

¡ 1
G0», [47].

Proposition 4 ( compgA) is associativity of composition of graphs, [47].

Proposition 5 ( compg_image) says (G0±G)hAi ÆG0hGhAii , [47].

Proposition 6 ( compf_f ) says « If f is a mapping of A into B and g is a mapping of B
into C, then g ± f is a mapping of A into C », [59].

Proposition 7 ( bijective_inv_function and inv_function_bijective ) says

« Let f be a mapping of A into B. Then
¡ 1
f is a function if and only if f is bi-

jective », [65].

Proposition 8 ( inj_if_exists_left_inv , and variants) says under which condi-
tions a function has a left or right inverse, [68].

Corollary ( bijective_from_compose ).

Theorem 1 ( inj_compose ) and variants) studies the relationship between injectivity,
surjectivity and composition, [69].

Proposition 9 ( exists_left_composable and variants) explains when a function
can be factored through another one, [71].

Section 4

Proposition 1 ( setUt_rewrite , setIt_rewrite and variants) says that if f : K ! I
is a function, (X ¶)¶2I a family of sets, then the union and the intersection of the
family is the union and the intersection of X f (· ) over K, [80].

Proposition 2 ( setUf_A and setIf_A ) states associativity of union and intersection,
[82].

Proposition 3 ( dirim_setUt and dirim_setIt ) says that if ¡ is a correspondence,
¡ h

S
X¶i Æ

S
¡ hX¶i and ¡ h

T
X¶i ½

T
¡ hX¶i , [82].

Proposition 4 ( iim_fun_setIt ) says that equality holds for the inverse image of in-
tersection by a function [82].

Corollary ( inj_image_setIt ).

Proposition 5 ( setCUf2 and setCIf2 ) studies the complementary of unions and in-
tersections, [82].

Proposition 6 ( iim_fun_C ) studies the inverse image of the complementary, [83].

Corollary ( inj_image_C ).

Proposition 7 ( agrees_on_covering and extension_covering ) says that if X¶ is a
covering of E, then two functions that agree on each X ¶agree on E, and a function
de�ned on each X ¶can be extended to E if the obvious compatibility conditions
hold, [85].

Proposition 8 ( extension_partition ) says that if (X ¶)¶ is a partition of X and f¶ 2
F (X¶,T), then there exists a unique f 2 F (X,T) that extends every f¶, [88].

Proposition 9 ( disjoint_union_lemma ) asserts existence of the disjoint union, [88].

Proposition 10 ( disjoint_union_pr ) relates sum and union, [89].
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Section 5

Proposition 1 ( etp_fs and etp_fi ) says: if f is surjective (resp. injective), then its
extension to the set of sets is surjective (resp. injective), [91].

Proposition 2 ( c3f_fi and c3f_fs ) states under which conditions f 7! v ± f ±u is
injective or surjective, [93].

Corollary ( c3f_fb ).

Proposition 3 ( fpfa_fb and spfa_fb ) says that F (B£ C;A),F (B;F (C;A) and F (C;F (B;A))
are canonically isomorphic, [93].

Proposition 4 ( pc_fb ) says: Given a family X¶ and a bijection f , the product
Q

X¶ is
isomorphic to the product

Q
X f (¶), [98].

Propositions 6 and 5 ( extension_psetX and prj_fs ) if X¶ is nonempty for ¶62J, then
prJ is surjective from the product

Q
¶2I X¶ into the partial product

Q
¶2JX¶ [99].

Corollary 1 ( pri_fs ).

Corollary 2 ( nonempty_product and variants).

Corollary 3 ( setXb_monotone1, setXb_monotone2).

Proposition 7 ( pam_fb) states associativity of the product, [100].

Proposition 8 ( distrib_union_inter and distrib_inter_union ) states distribu-
tivity of union over intersection and intersection over union, [101].

Corollary ( distrib_union2_inter and distrib_inter2_union ).

Proposition 9 ( distrib_prod_union and distrib_prod_intersection ) states dis-
tributivity of product over union and intersection, [101].

Corollary 1 ( partition_product ).

Corollary 2 ( distrib_prod2_union and distrib_prod2_intersection ).

Proposition 10 ( distrib_inter_prod and distrib_prod_intersection ) says that
the intersection of a product is the product of the intersection, [102].

Corollary ( distrib_prod_inter2_prod and distrib_inter_prod_inter ).

Proposition 11 says that composition of extensions is extension of compositions.

Corollary ( injective_ext_map_prod and injective_ext_map_prod ).

Section 6

Proposition 1 ( equivalence_cor_pr ) says: « A correspendence¡ between X and X
is an equivalence on X if and only if it satis�es the following conditions: (a) X is
the domain of ¡ ; (b) ¡ Æ¡ ¡ 1; (c) ¡ ±¡ Æ¡ », [111].

Criterion C55 ( related_e_rw ) characterizes the canonical projection, [113].

Criterion C56 ( rel_on_quo_pr ) « Let Räx,x0äbe an equivalence relation on a set E
and let Päxäbe a relation that does not contain the letter x0 and is compatible
(with respect to x) with the equivalence relation R äx,x0ä. Then, if t does not
appear in P äxä, the relation “ t 2 E/R and (9x)(x 2 t and Päxä)” is equivalent to
the relation “ t 2 E/R and (8 x)(x 2 t and Päxä)” ». [116].

Criterion C57 ( exists_unique_fun_on_quotient ) « Let R be an equivalence rela-
tion on a set E, and let g be the canonical mapping of E onto E/R. Then a map-
ping f of E into F is compatible with R is and only if f can be put in the form
h ±g, where h is a mapping of E/R into F. The mapping h is uniquely de�ned by
f ; if f is any section of g, we have h Æf ±s. »[119]

RR n° 6999



192 José Grimm

8.6 Notations and De�nitions

In many cases we indicate the page on which an object is de�ned.

Symbols

x ^ y is often replaced by “and”. The C OQ equivalent is /\ .

x _ y is often replaced by “or”. The C OQ equivalent is \/ .

: x is often replaced by “not”. The C OQ equivalent is ~.

ä is a dummy variable for Bourbaki, [8].

Räxäis a Bourbaki notation, meaning that R is a relation that may depend on x. If R is
a relation that depends on y, it is also ( xjy)R.

¿x (R) is a Bourbaki notation, it is the generic element satisfying R äxä, [13].

x Æ) y is represented in C OQ by x -> y .

x 7! y is represented in C OQ by fun x => y .

x ! y is a COQ notation meaning the type of functions from type x to type y.

x Æy is equality. Was used as synonym to () .

(ajb)c is a Bourbaki notation, meaning the relation obtained by replacing b by a in c,
[9].

x : y is a COQ notation meaning that x is of type y.

f (x) is the value of the function f at point x, parentheses are sometimes omitted.

f hxi is the value of f on the set x, see fun_image, image_by_graph, image_by_fun.
¡ 1
f hxi , see inverse_image.

(8 x)P and forall x, p are similar constructions, [14].

(9x)P and exists x, p are similar constructions, [14].

(9!x)P means exists_unique .

x 2 y (is element of): see inc.

x ½y (is subset of): see sub.

; (empty set): see emptyset.

{x,R} (set of x such that R): see Zo.

{x}, {x, y}: see singleton or doubleton.

a ¡ b, a \ b, Ùa: see complement.

a -s1 b : is the set formed of a by removing element b.

a +s1 b: is the set formed of a by adding element b.

(x, y) (ordered pair): see J.
S

X,
[

¶2I
X¶, see union.

a [ b, a \ b, \cup , \cap , see union2, intersection2.

a =1g b, a =1f b , see same_Vg and same_Vf.

x \cf y , x \cg y , x \co y , composition of x and y, see composef, composeg, com-
pose.

x \cfP y , x \coP y , says that x and y can be composed. See composablef, compos-
able.

f ±g, f \co g, f \cf g, f \cg g, see compose, composef, composeg.
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A£ B, a \times b , u £ v, R£ R0, see product, ext_to_prod, prod_of_relation.

x \Eq y, see equipotent.

¢ A, see diagonal.
¡ 1
G see inverse_graph, inverse_fun or inverseC.

x 7! y or x ! y is the function that maps x to y, for instance x 7! sin(x) (source and
target are implicit).

x ! T (x 2 A,T 2 C), is the function with source A, target C that maps x to T, [57].

( fx )x2A is a shorthand for x ! f (x) (x 2 A); see above, the pieceT 2 C is implicit.

f̂ , see extension_to_parts.

FE, see gfunctions.

F (E;F) see functions.

©(E,F) see sub_functions.

fx , f y sometimes denotes the mappings y 7! f ((x, y)) or x 7! f ((x, y)), implemented as
first_partial_fun , second_partial_fun , [93].

f̃ , sometimes denotes the mappings x 7! fx or y 7! f y . Implemented as first_partial_function ,
second_partial_function , [93].

f 7! f̃ , implemented as first_partial_map , second_partial_map , is a bijection
from F (B£ C;A) into F (B;F (C;A) or F (C;F (B;A)), [93].

Y

¶2I
X¶see productt.

(x¶)¶2I denotes an element of a product indexed by I.

x r» y is sometimes used instead of r (x, y) or ( x, y) 2 r , especially when r is the graph of
an equivalence relation.

gE(» ), the graph of » on E, see graph_on.

» f may denote eq_rel_associated f .

x̄ , may denote the equivalence class of x, see class.

x̂ may denote a representative of the equivalence class x.

E/ » , E/R, see quotient.

R/S see quotient_of_relations.

X f sometimes means f ¡ 1hf hXii , see inverse_direct_value.

RA see induced_relation.

¶ is not de�ned. We use it as a paragraph separator.

Letters

B : see Bo.

CC(a,b), CT(p,q), C (p): see by_cases, chooseT and choose.

Cxy a stands for constant_function x y a , it is the constant function from x to y
with value a, [53].

CRx may denote the equivalence class of x for R, see class.

CollxR says that R is collectivizing in x, [17].

E, see Set.

Ex (R) appears in the English version where { x,R} is used in the French version; see Zo.

IA, see identity.

Ixy see inclusionC, canonical_injection.

L X f , L f , L A;B f (creating functions): see Lf, Lg, acreate.
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M f , M A;B f (inverse of L ), see bcreate1 and bcreate.

P (x), see powerset.

pr1z, pr2z, pr¶f , prJf (projections), see P, Q, pr_i, pr_j.

R x see Ro.

Rab f , see restriction, [57].

V (x, f ), Vf x (value of a function), see Vg.

Wf x (value of a function): see Vf.

Y (P,x, y) see Yo.

Z (x,P) see Zo.

Words

acreate f , L f , is the correspondence associated to the C OQ function f , [51].

agrees_on x f f' , agreeC x f f' is the property that for all a 2 x, f (a) and f 0(a)
are de�ned and equal, [54].

alls X p means that p(x) holds if x 2 X, [21].

allf G p means that p(x) holds if x is in the range of the functional graph G, [39].

antisymmetricp r says that the graph r is antisymmetric, [108].

bcreate f A B , M A;B f , is a kind of inverse of L , [51].

bcreate1 f , M f , is a kind of inverse of L , [51].

bijection f , bijectiveC f , means that f is a bijection, [60].

Bo, B , is an inverse of R , [24].

by_cases a b, CC(a,b), de�nes an object by applying a if P is true, and b if P is false
(not used anymore).

canonical_injection x y , Ixy , is the inclusion map on x ½y, [64].

canon_proj r , is the mapping x 7! x̄ from E onto E/R, the quotient set of r , [113].

class r x is the class of x for the equivalence relation r , [111].

classp r x says that x is an equivalence class for r , [112]

choose p, C (p), is some x such that p(x) is true, the empty set if no x satis�es p, [24].

chooseT p q, CT(p,q), is our basic axiom of choice, [22].

coarse x is x £ x, [110].

coarser_cs I J , coarser_cg f g , two de�nitions that say for all j 2 J there is i 2 I
such that j ½i or for all j there is i such that g j ½ f i , [84].

compatible_with_equiv_p p r means that p(x) and x r» y implies p(y), [116].

compatible_with_equiv f r means that x r» y is equivalent to f (x) Æf (y), [118].

compatible_with_equivs f r r' means that x r» y is equivalent to f (x)r 0

» f (y), [119].

complement a b, a ¡ b, a \ b, Ùb, is the set of element of a not in b, [27].

composable f g, f \cfP g , is the condition on functions f and g for f ±g to be a
function, [59].

composableC f g, is composable for correspondences, [47],

composablef f g , f \cfP g , is composable for functional graphs, [42].

compose f g, f \co g , f ±g, is the composition of two functions or correspondences,
[47],

composef f g , f \cf g , f ±g, composition of two graphs, [42].

composeg f g, f \cg g , f ±g, variant of composition of two graphs, [47].
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constant_graph s x is the graph of the constant function with domain s and value
x, [98].

correspondence f says that f is a triple (G,A,B), with G ½A£ B, [44].

correspondences A Bmeans the set of correspondences from A to B, it is P (A£ B)£
{A}£ {B},[44].

covering f x , covering_f I f x , covering_s f x , three variants of a family of
sets (de�ned by f and I) whose union contains x, [83].

cstgp f E , cstfp f E , says that f is a constant graph (resp. function) on the set E.

cut r x is r h{x}i , replaced by im_singleton [45].

diagonal A , ¢ A, is the set of all ( x,x) such that x 2 A, [43].

diagonal_application A is the diagonal mapping x 7! (x,x) of A into ¢ A, [64].

diagonal_graphp I E is the set of graphs of constant functions from I to E, [98].

disjoint x y means x \ y Æ ; , [86].

disjointVeq x y means disjoint or equal, [86].

disjoint_union f , disjoint_union_fam f are two variants of the disjoint union
of the family of sets f , [89].

domain f is the set of x for which there is an y with ( x, y) 2 f , it is pr 1hf i , [36].

doubleton x y , {x, y}, is a set with elements x and y, [25].

empty_function , empty_functionC is the identity on ; , [52].

emptyset , ; , is a set without elements, [23].

eq_rel_associated f is the graph of the equivalence relation f (x) Æf (y), [111].

equipotent x y means that there is a bijection from x to y.

equivalence r says that the graph r is an equivalence, [108].

equivalence_associated f is the equivalence relation f (x) Æf (y), [111].

equivalence_r r , equivalence_re r x , says that the relation r is an equivalence
relation (in x), [107].

exists_unique p ,(9!x)p, (this notation is not in Bourbaki) means that there exists a
unique x such that p(x), [22].

extends g f , extendsC g f saysg(x) Æf (x) whenever f (x) is de�ned, [56].

ext_map_prod I X Y gis the function ( x¶)¶2I 7! (g¶(x¶))¶2I from
Q

I X¶ into
Q

I Y¶, [104].

ext_to_prod u v is the function ( x, y) 7! (u(x), v(y)), sometimes denoted u £ v, [73]

extension_to_parts f , denotes the function x 7! f hxi , from P (A) to P (B), [91]

finer_equivalence s r , comparison of equivalences, x s» y implies x r» y, [124].

first_proj g is the function x 7! pr1x (x 2 g).

first_proj_equiv x y , first_proj_equivalence x y , is the equivalence associ-
ated to first_proj on the set x £ y, [114].

fgraph f says that f is a functional graph, [36].

fterm , fterm2 are the types Set ! Set and Set ! Set ! Set, [21].

function f says that f is a function in the sense of Bourbaki, [48].

functional_graph f says that f is a functional graph, [48].

functions E F , denoted F (E;F), is the set of functions E ! F, [92].

fun_image x f , f hxi , is the value of f on the set x, [26].

fun_on_quotient r f , function_on_quotient r f b , function_on_quotients ,
fun_on_quotients r r' f , the function obtained from f on passing to the quo-
tient of r (or r and r 0), [119], [120].
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fun_set_to_prod E X is the canonical bijection between (
Q

X¶)E and
Q

XE
¶ , [105].

function_prop f s t , function_prop_sub f s t . This is the property that f is a
function from s into t , or into a subset of t , [52].

gfunctions E F , denoted FE, is the set of graphs of functions from E to F, [92].

graph f is a part of a correspondence or function, [44].

graph_on r X is the graph of the relation r restricted to X, [109].

identity_g A , IA, is is the graph of the identity function on the set A, [41].

identity A , IA, is the identity function on the set A, [48].

IM stands for the image of a function. Its axioms implement the Axiom Scheme of
Replacement, [23].

image_by_fun f A , f hAi , is {t ,9x 2 A,t Æf (x)}, [45].

image_by_graph f A, f hAi is {t ,9x 2 A,(x, t ) 2 f }, [45].

image_of_fun f , is the image of f , [45].

inc x y or x 2 y means that x is an element of y, [19].

inclusionC x y , Ixy , is the inclusion map on x ½y as a COQ function, [54].

induced_relation R A , RA, is the equivalence induced by R on A, [123].

injection f , injectiveC f , means that f is an injection, [60].

in_same_coset f is the relation “there exists i such that x 2 f (i ) and y 2 f (i )” be-
tween x and y, [114].

intersection X ,
T

X, is the intersection of a set of sets, [31].

intersectiont I f , intersectionf x f , intersectiont g ,
\

¶2I
X¶ is the set of el-

ements a such that forall ¶2 I we have a 2 X¶, [79].

intersection2 X Y , X\ Y, is the intersection of two sets [31].

intersection_covering , intersection of coverings, [84].

inverse_direct_value f X , Xf , is f ¡ 1hf hXii , [117].

inverse_graph G ,
¡ 1
G, inverse graph of the graph G, [45].

inverse_fun f or inverseC a b f H ,
¡ 1
f , inverse of the function f , [46], [61].

inverse_image x f ,
¡ 1
f hxi , is the inverse value of f on the set x.

inv_image_relation f r , is the inverse image of the relation r under the function
f , [123].

inv_image_by_graph f x , inv_image_by_fun r x ,
¡ 1
f hxi , direct image of a set by

the inverse function, [46]

inv_graph_canon G is the bijection ( x, y) 7! (y,x) from G to G ¡ 1, [65].

is_left_inverse r f means that r is a retraction or left-inverse of f , and r ±f is the
identity, [67].

is_right_inverse s f means that s is a section or right-inverse of f , and f ±s is the
identity, [67].

J x y, or (x, y), is an ordered pair, formed of two items x and y, [34].

largest_partition x is the set of all singletons of x.

left_inverseC , left inverse of a C OQ function, [68].

Lf f A B , L A;B f , is function from A to B whose graph is L A f , [57].

Lg X f, L X f is the graph formed of all ( x, f (x)) with x 2 X, [40].
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lf_axiom f A B says that for all x 2 A we have f (x) 2 B, case where L A;B f is a func-
tion, [57].

LHS is the left hand side of an equality.

Lvariant a b x y , variant a x y , Lvariantc x y , these are functions whose range
is the doubleton { x, y}, [87].

mutually_disjoint f says that for all distinct i and j , f (i ) and f ( j ) are disjoint, [86]

x 6Æy, x <> y is inequality, [22].

P z, pr1z denotes x if z is the pair ( x, y), [34].

pairp x , says that x is an ordered pair.

partial_fun1 f y , partial_fun1 f x , partial functions, [72].

partition y x , partition_s y x ,partition_fam f x , thee variants that say that
y or f is a partition of x, [86].

partition_relation f x is the equivalence relation associated to the partition graph( f )
of x, [114].

partition_with_complement X A , is the partition of X formed of A and its comple-
mentary set, [87].

permutations E , is the set of bijections E ! E, [92].

powerset x , P (x), is the set of subsets of x, [31].

pr1z, pr2z stand for pr1 z and pr2 z . These are also denoted by P and Q. If z is the
pair ( x, y), these functions return x and y respectively, [34].

pr_i f i , pr i f , denotes a component of an element of a product., [96].

pr_j f J , prJf , is the function ( x¶)¶2I 7! (x¶)¶2J, [99].

prod_assoc_mapis the function whose bijectivity is the “theorem of associativity of
products”, [100].

prod_of_function u v , is the function x 7! (u(x), v(x)), [103].

prod_of_products_canon F F' , is the bijection between
Q

F¶£
Q

F0
¶ and

Q
(F¶£ F0

¶),
[103].

prod_of_relation R R' , R£ R0, is the product of two equivalences, [126].

product A B, A£ B, is the set of all pairs ( a,b) with a 2 A and b 2 B, [35]. See also
ext_to_prod u v .

productb g or productf I f ,
Y

¶2I
X¶ is the product of a family of sets, [95].

product1 x a is the product of the family de�ned on the singleton { a} with value x,
[97].

product1_canon x a is the canonical application from x into product1 x a , [97].

product2 x y is the product of the family de�ned on the doubleton { a,b} with values
x and y, [97].

product2_canon x y is the canonical application from x £ y into product2 x y ,
[97].

product_compose, auxiliary function used for change of variables in a product, [98].

property is the type Set! Prop, [21].

Q z, pr2z denotes y if z is the pair ( x, y), [34].

quotient R , E/R, is the set of equivalence classes of R, [112].

quotient_of_relations r s , R/S, is the quotient of two equivalences, [125].

range f is the set of y for which there is an x with ( x, y) 2 f , it is pr 2hf i , [36].

reflexive_r r x says that the relation r is re�exive in x, [107].
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reflexivep r says that the graph r is re�exive, [108].

related r x y is a shot-hand for ( x, y) 2 r , [38].

relation is the type Set ! Set ! Prop, [21].

relation_on_quotient p r is the relation induced by p(x) on passing to the quo-
tient (with respect to x) with respect to R, [116].

rep x is an element y such that y 2 x, whenever x is not empty, [24].

representative_system s f x means that, for all i , s\ Xi is a singleton, where X i

is a partition of x associated to the function f , [115].

representative_system_function g f x , means that g is an injection whose im-
age is a system of representatives (see de�nition above), [115].

restr x G is the restriction to x of the graph G, [41].

restricted_eq E is the relation “ x 2 E and y 2 E and x Æy”, [109].

restriction_function f x is like restr , but f and the restrictions are functions,
[55].

restriction2_axioms f x y is the condition: f is a function whose source contains
x, whose target contains y, moreover a 2 x implies f (a) 2 y, [57].

restriction2 f x y , restriction2C f x y , restriction of f as a function x ! y,
[57].

restrictionC f H is the restriction to x of the function f : a ! b, where H proves
x ½a implicitly, [54].

restriction_product f j is the product of the restrictions of
Q

f to J, [99].

restriction_to_image f is the restriction of the Coq function f to its range, [75].

retraction: see is_left_inverse .

RHS is the right hand side of an equality.

right_inverseC , right inverse of a Coq function, [68].

Ro xor R x converts its argument x of type u to a set, which is an element of u , [22].

same_Vg f g, same_Vf f g means: f (x) Æg(x) whenever x, [39], [49].

saturated r x means: for every y 2 x, the class of x for the relation r is a subset of x,
[116].

saturation_of r x is the saturation of x for r , [117].

second_proj g is the function x 7! pr2x (x 2 g).

section: see is_right_inverse .

section_canon_proj R is the function from E/R into E induced by rep , [118].

Set is the type of sets, [19].

sgraph f says that f is a set of pairs, [36].

singleton x , {x}, is a set with one element, [25].

singletonp x means that x is a singleton.

singl_val p , means that p(x) and p(y) imply x Æy, [21].

singl_val_fp p f , means that p(x) and p(y) imply f (x) Æf (y), [21].

small_set x means that x has at most one element, [53].

smallest_partition x is the singleton { x}.

source f contains (resp. is equal to) the domain of the graph of a correspondence f
(resp. function f ) [44], [48].

ssub x y, x ( y, means x ½y and x 6Æy, [22].

sub x y, x ½y, means that x is a subset of y, [19].

Inria



Bourbaki: Theory of sets in Coq I (v6) 199

surjection f , surjectiveC f , means that f is a surjection, [60].

sub_functions E F , denoted ©(E;F) is the set of triples (G,A,F) associated to func-
tions from A ½E into F, [92].

substrate r is the union of the domain and range [107].

symmetric_r r says that the relation r is symmetric, [107].

symmetricp r says that the graph r is symmetric, [108].

target f contains the range of the graph of a correspondence or function f , [44].

TPa, TPb, TP, are respectively 0, 1, 2, sets with zero, one and two elements, [26].

transitive_r r says that the relation r is transitive, [107].

transitivep r says that the graph r is transitive, [108].

triple a b c is the ordered pair ( a, (b,c)).

tripleton a b c is the set a,b,c.

union X,
S

X, is the union of a set of sets, [27],

uniont I f , unionf x f , uniont g ,
[

¶2I
X¶ is the set of elements a such that a 2 X¶for

some ¶2 I, [79].

union2 a b , a [ b, is the union of two sets, [28].

Vf x f , Wf x, is the value at the point x of the function f , [49].

Vg x f , V (x, f ) or Vf x, is the value at the point x of the functional graph f , [39].

variant , seeLvariant .

Yo P x y, Y (P,x, y), is a function that associates to z the value x is P is true, and y if P
is false, [30].

Zo x R, Z (x,R),Ex (R) or {x,R}: it is the set of all x that satisfy R, [17], [24].
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diagonal, 43
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�ner, 124
function, 7, 48

graph, 38

identity, 41, 48
induced, 116, 119, 123
injective, 59
intersection, 31, 78
inverse, 65
involutive, 27, 46, 65

mapping, 7

partition, 86
powerset, 30
product, 35, 95

proof, 8

quotient, 111

range, 38
re�exive, 107
restriction, 41, 53
retraction, 67

saturated, 116
scheme, 9
section, 67
singleton, 25, 65
substrate, 107
sum, 88
surjective, 59
syllogism, 10
symmetric, 107

theorem, 8, 9
theory, 7
transitive, 107

union, 27, 78
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