AKTH2K2Mi iBOM Q7 "Qm # FB6b 1H2K2Mib (
BM *Q[, S i PM2- h?2Q v Q7 a2ib
CQbl : BKK

hQ +Bi2 i?Bb p2 bBQM,

CQbO :"BKKX AKTH2K2Mi iBQM Q7 "Qm # FB6b 1H2K2Mib Q7 J i?2K iB
a2ibX (_2b2 “+? 2TQ'i) __@eNNN-AL_A X kyRj- TTXKky8X IBM'B @yy¢

> G A/, BM'B @yy9y3R9j
?2iiTbh,ff? HXBM B X7 fBM B @yy9y3R9jpe
am#KBii2/ QM jR P+i kyRj

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

https://hal.inria.fr/inria-00408143v6
https://hal.archives-ouvertes.fr

V4

: informatics , mathematics

RESEARCH
REPORT

N° 6999
July 2009

Project-Team Marelle

V4

: in]ormntics/mathematics

Implementation of Bourbaki's Elements of
Mathematics in Coq:
Part One
Theory of Sets

José Grimm[]
Project-Team Marelle

Research Report n° 6999 — version 6 — initial version July 2009 —
revised version October 2013 — P05|pages

Abstract: We believe that it is possible to put the whole work of Bourbaki into a computer.
One of the objectives of the Gaia project concerns homological algebra (theory as well as al-
gorithms); in a rst step we want to implement all nine chapters of the book Algebra. But this
requires a theory of sets (with axiom of choice, etc.) more powerful than what is provided by
Ensembles; we have chosen the work of Carlos Simpson as basis. This reports lists and com-
ments all de nitions and theorems of the Chapter “Theory of Sets”. The code (including almost

all exercises) is available on the Web, under http://www-sop.inria.fr/marelle/gaia.

Version one was released in July 2009, version 2 in December 2009, version 3 in March 2010.
Version 4 is based on the Coq ssre ect library. In version 5, released in December 2011, the
“iff_eq"” axiom has been withdraw, and the axiom of choice modi ed. Version 6 was relaesed in
October 2013

Key-words: Gaia, Coq, Bourbaki, Formal Mathematics, Proofs, Sets

Work done in collaboration with Alban Quadrat, based on previous work of Carlos Simpson (CNRS, Univer-
sity of Nice-Sophia Antipolis), started when the author was in the Apics Team.

? Email: Jose.Grimm@inria.fr

RESEARCH CENTRE
SOPHIA ANTIPOLIS — MEDITERRANEE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Implémentation des Eléments de mathématiques de Bourbaki en
Coaq,
partie 1
Théorie des ensembles

Résumé : Nous pensons qu'il est possible de mettre dans un ordinateur I'ensemble de
I'ceuvre de Bourbaki. L'un des objectifs du projet Gaia concerne l'algébre homologique (théorie
et algorithmes); dans une premiére étape nous voulons implémenter les neuf chapitres du
livre Algébre. Au préalable, il faut implémenter la théorie des ensembles. Nous utilisons
I'Assistant de Preuve Coq; les choix fondamentaux et axiomes sont ceux proposées par Car-
los Simpson. Ce rapport liste et commente toutes les dé nitions et théorémes du Chapitre
théorie des ensembles. Presque tous les exercises ont été résolus. Le code est disponible sur
le site Web http://www-sop.inria.fr/marelle/gaia.

Mots-clés : Gaia, Coq, Bourbaki, mathématiques formelles, preuves, ensembles

Bourbaki: Theory of sets in Coq | (v6) 3

Chapter 1

Introduction

1.1 Objectives

Our objective (it will be called the Bourbaki Project in what follows) is to show that it
is possible to implement the work of N. Bourbaki, “Eléments de Mathématiques’[3], info a
computer, and we have chosen the C oQ Proof Assistant, see [7,[1]. All references are given
to the English version “Elements of Mathematics”[2]/_Which is a translation of the French
version (the only major difference is that Bourbaki uses an axiom for the ordered pair in
the English version and a theorem in the French one). We start with the rst book: theory
of sets. lItis divided into four chapters, the rst one describes formal mathematics (logical
connectors, quanti ers, axioms, theorems). Chapters Il and Il form the basis of the theory;
they de ne sets, unions, intersections, functions, products, equivalences, orders, integers,
cardinals, limits. The last chapter describes structures.

An example of structure is the notion of real vector space: it is de ned on a set E, uses
the set R of real numbers as auxiliary set, has some characterization (there are two laws on
E, a zero, and a action of R over E), and has an axiom (the properties of the the laws, the
action, the zero, etc.). A complete example of a structure is the order; given a set A, we have
as characterization s2 P (A£ A) and the axiom “ s+s £s and s\ si * £¢ " We shall see in
the second part of this report that an ordering satis es this axiom, but it is not clear if this
kind of construction is adapted to more complicated structures (for instance a left module
on a ring). Given two sets A and A © with orderings s and s we can de ne ¥%{A,A°%s,s%, the
set of increasing functions from Ato A % An element of this set is called a ¥morphism. In
our implementation, the “set of functions f such that...” does not exist E]; we may consider
the set of graphs of functions (this is well-de ned), but we can also take another position: we
really need ¥to be a set if we try to do non-trivial set operations on it, for instance if we want
to de ne a bijection between ¥%and ¥ these are non-obvious problems, dealt with by the
theory of categories. There is however another practical problem; Bourbaki very often says:
let E be an ordered set; this is a short-hand for a pair (A, s). Consider now a monoid (A, A).
Constructing an ordered monoid is trivial: the characterization is the product of the charac-
terizations, and the axiom is the conjunction of the axioms. The ordered monoid could be
(A, (s,A)). If f isamorphismfor s, and u 2 A, then the mapping x 7! f (x Au) is a morphism
for s, provided that A is compatible with s. If we want to convert this into a theoremin C 0Q,
the easiest solution is to de ne an object X equivalentto (A,(s,A)), away to extract X °/E(A, s)
and X°%E(A, A) from X, an operation son A obtained from X or X © and change the de nition

1we changed the type of a function in V4, so that this set exists now

RR n°® 6999

4 José Grimm

of % it should depend on X Crather than on A and s. The compatibility condition is then a
property of X, ¥(X,Y) and (X% Y) are essentially the same objects, if f 2 ¥{X,Y) we can con-
sider f0/Ex 7! f (x Au), and show f°2 %(X,Y). From this we can deduce the mapping from
X0 Y)into ¥(X°Y) associated to f 7! f°

1.2 Background

We started with the work of Carlos Simpson H who has implemented the Gabriel-Zisman
localization of categories in a sequence of les: set.v, func.v, ord.v, comb.v, cat.v, and gz.v.
Only the rst three les in this list are useful for our project. The le ord.z contains a lot of
interesting material, but if we want to closely follow Bourbaki, it is better to restart everything
from scratch. The le func.v contains a lot of interesting constructions and theorems, that
can be useful when dealing with categories. For instance, it allows us to de ne morphisms
on the category of left modules over a ring. The previous discussion about structures and
morphism explains why only half of this le is used.

This report is divided in two parts. The rst part deals with implementation of Chapter II,
“Theory of sets”, and the second part with chapter Ill, “Ordered sets, cardinals; integers” of [2]
Each of the six sections of Bourbaki gives a chapter in this report (we use the same titles as in
Bourbaki) but we start with the description of the two les set.vand func.v by Carlos Simpson
(it is a sequence of modules). Their content covers most of Sections 1 and 2 (“Collectivizing
relations” and “Ordered pairs”).

1.3 Introduction to Coq

The proof assistant C 0Q is a system in which you can de ne objects, assume some prop-
erties (axioms), and prove some other properties (theorems); there is an interpreter (that
interprets sentences one after the other), and a compiler that checks a whole le and saves
the de nitions, axioms, theorems and proofs in a fast loadable binary le. Here is an example
of a de nition and a theorem.

Definition union2 (x y : Set) := union (doubleton x vy).
Lemma union2_or : forall x y a, inc a (union2 x y) -> inc a x V inc a vy.
Proof. ... Qed.

In CoQ, every object has a type; for instance doubleton isoftype Set ! Set ! Set,
which means that it is a function of two arguments of type Set that returns an object of type
Set, and union is a function of one argument of type ~ Set that returns an object of type Set.
Thus, the expression “union (doubleton x y) 'is well-typed if and only if x and y are of
type Set, and this object is of type Set. We de ne “ union2 X Yy 'to be this expression. In the
de nition we may indicate the type of arguments and return value, or omit them if C 0oQ can
deduce it (in most cases, type annotations are omitted).

The theorem says: for all x, y and a (of type Set)if a2 x[ythen a2x or a2y. We give
here different variants of the proof of the theorem:

ir. unfold union2 in H. pose (union_exists H).
nin e. xd. pose (doubleton_or H1).

2http://math.unice.fri~carlos/themes/verif.html

Inria

Bourbaki: Theory of sets in Coq | (v6) 5

nin o. rewrite H2 in HO. intuition.
rewrite H2 in HO; intuition.

The second proof is

ir. ufi union2 H. nin (union_exists H). nin HO.
nin (doubleton_or H1) ; [left | right] ; wrr H2.

The third proof is

rewrite/union2 => x y a ; rewrite union_rw.
by case => t [aat td]; case (doubleton_or td)=> <-; auto.

The current theorem is

Lemma setU2_hi x y a: inc a (X \cup y) -> inc a x V inc a y.
Proof. by case /setU_P => t aat /set2_P [] <-; auto. Qed.

Let's de ne a task as a list of expressions of the form H ...H, ~ C, where H; is called
the i-th assumption and C the conclusion. A task is said trivial if the conclusion is one of
the assumptions. A proof script is a sequence of transformations that convert a task without
assumption like ° Cinto alist of trivial tasks. In this case, one cansay Qedand CoqQ considers
C as atheorem.

The following transformations are legal. One may add an axiom or a theorem to the list

of assumptions. If Aand A ! B are assumptions, then B can be added as an assumption. If

C has the form 8x,C%or the form A | C° one may add the variable x or the proposition A

to the list of hypotheses, and replace the conclusion by C ¢ the converse is possible. There
are rules that govern the logical connectors andand or. For instance, one may replace the
task H> A~ B bythetwotasksH ° Aand H ° B, orreplace H ° A_ B by any of the two
tasks H™ AorH ™ B. If assumption H ; is A® B it can be replaced by the two assumptions

Ha and Hpg asserting A and B; if assumption H ; is A_ B, the task can be replaced by the two
tasks Hn~ Cand Hg ° C, where Hpa means the list of assumptions H where H ; is replaced
by A. The connectors andand or are inductive objects; this means that the rules for # and
_ described above are not built-inin C 0Q, but are deduced from a more general scheme. In

particular, there are in nite objectsin C 0Q, but Bourbaki needs an axiom that says that there

is anin nite set.

The mathematical proof is the following. By de nition of a doubleton, t 2 {x,y}is equiv-
alentto t /x or t /£y. We shall refer to this as theorem (D). On the other hand, a is in the
union of b ifand only ifthereis c¢ suchthat a 2 c and ¢ 2 b. We shall refer to this as theorem
(U).Byde nition x[yis {x,y},sothat a2 x[yimplies by (U) thatthereis t suchthat a2t
and t 2{x,y}. By (D), t Z£x or t Ay, from which we deduce a2x ora?2y. Inall four C 0Q
proofs, you can see how de nitions are unfolded, theorems (U) and (D) are introduced, the
equality t /x or t Ay is rewritten, and the logical or connector is handled (either by auto,
intuition or specifying a branch). The rst proof is that of Carlos Simpson, the second one
is a slight simpli cation of it (it avoids introducing two local variables eand o).

The two other proofs use the SSREFLECTtactics. In particular, after the the tactical™ =>, the
arrow " <-' means ‘rewrite from right to left, the notation © rewrite/union2 ' means ‘unfold
union2'. Both theorems (U) and (D) say that two quantities X and Y are equivalent. We some-
times provide a variant of the form X A) Y andY A X (these variants are used in the rst
two proofs). The theorem was once stated as X /ZEY (the third proof thus uses rewrite). In

RR n°® 6999

6 José Grimm

the last version, we use the construction * case/D' meaning: use one of the two implications
X /A YandY A X, thenperform acase analysis (to introduce t or handle the disjunction).
The bracketsin “case => t [aat td] 'mean: split the conjunction in two assumptions
a2tandt 2{x,y}, named aat and td. In the last proof, there are no brackets, because we
replaced exists by exists2 . Moreover, the is no assumption td ; we apply theorem (D) to
t 2 {x,y}, and follow it by case analysis (the empty brackets) and a rewrite. The nal auto
could be replace by " [by left | by right] !

The last proof uses the SSREFLECTstyle of programming. It is characterized by the fol-
lowing three properties: each line of the proof is formed of a single sentence (a sequence of
semi-colon separated statements that ends with a period); the code is indented according to
the number of tasks. Finally all local names are given explicitly (x, y, t, td) instead of being
computed by C 0Q (like o, e, H2 etc); this makes the proof more robust (note also that the last
script uses much less names than the other ones). The third proof is slightly longer than the
second one (on average, the size of the proofs increased by 7% after conversionto SSREFLECT
style, but the possibility of chaining reduces this again).

1.4 Notations

Choosing tractable notations is a dif cult task. We would like to follow the de nitions of
Bourbaki as closely as possible. For instance he de nes the union of a family (X gpi(Xg2 G).
Classic French typography uses italic lower-case letters, and upright upper-case letters, but
the current math tradition is to use italics for both upper- and lower-case letters for variables;
constants like pr ; and Card use upright font. The set of integers is sometimes noted N; but
Bourbaki uses only N. Some characters may have variants (for instance, the previous formula
contains a Fraktur variant of the letter G). In the XML version of this document we do not use
the Unicode character U+1D50A (because most browsers do not have the glyph), but a char-
acter with variant, so that there is little difference between G, G, G, G, G, G. In this document
we use only one variant of the Greek alphabet (Unicode provides normal, italic, bold, bold-
italic, sans-serif and sans-serif bold italic; as a consequence, the XML version shows generally
a slanted version of Greek characters, where the Pdf document uses an upright font).

We can easily replace lower Greek letters by their Latin equivalents (there is little differ-
ence between (Xgq and (X;)i2;). We can replace these unreadable old German letters by
more signi cant ones. In the original version, C. Simpson reserved the letters A, B and E.
Thus, a phrase like: let A and B be two subsets of a set E, and | /AAE B, all four identi ers are
reserved letters in Simpson's framework.

In the original version of C. Simpson, the following letters were dened: ABEIJLOP
QRS VW XY Z. This means that, if we use such a letter as a local name, we must use a full
quali ed named in order to access the original meaning, for instance Coq.Init.Logic.|
for | (this is a proof of True and is rarely used). C 0Q uses the letter O as the integer zero, but
provides the notations 0 and 0%natfor it (notations can be overloaded). In SSREFLECT the
successor of n is denoted n.+1 instead of °S 1.

Quantities named R, B, X, Y, and Z by Simpson have been renamed to Ro, Bo, Xo, Yo and
Zo (and Xo has been withdrawn). Quantities V and W have been renamed Vg and Vf. Quantity
A has been removed (it was a pre x version of &). Quantity E has beenrenamedas Bset then
as Set: this is the type of a Bourbaki set.

Given two objects x and y, one can construct a third object z, such that x and y can be
obtained from z. If x is of type A, and vy of type B, then z is of type A & B, the product of

Inria

Bourbaki: Theory of sets in Coq | (v6) 7

the types (the name is prod). One can use the notation (x,y) instead of *pair X y '; the two
guantities x and y can be obtained via “fst z 'and “snd z'or “z.1'and “z.2'in SSREFLECT
In what follows, we shall de ne the cartesian product of two sets; here x, y and z will have the
same type (namely Set). Our cartesian product will be called product , the notation for the
pair constructor willbe © J X Y/, while P and Q are notations for the two projectors, denoted
by Bourbaki as pr ; and pr ,.

Bourbaki has a section titled “de nition of a function by means of a term”. An example
would be x 7! (x,x) (x 2 N). This corresponds to the C 0Q expression fun x:nat => (x,x)
According to the C 0Q documentation, the expression “de nes the abstraction of the variable
X, of type nat, over the term (X,x) . It denotes a function of the variable X that evaluates to
the expression (x,X) " Bourbaki says “a mapping of A into B is a function f whose source
is equal to A and whose target is equal to B”. The distinction between the terms function
and mapping is subtle: there is a section called “sets of mappings of one set into another”; it
could have been: “sets of functions whose source is equal to some given set and whose target
is equal to some other given set”. It is interesting to note that the term “function' is used
only once in the exercises to Chapter lll, in a case where "'mapping' cannot be used because
Bourbaki does not specify the set B.

In what follows, we shall use the term “function' indifferently for S, or the mapping n7!
nA1, orthe abstraction n => S nGivenasetA, we can consider the graph g of this mapping
when n is restricted to A. This will be denoted by Lg. Given a set B, if our mapping sends
A to B, we can consider the (formal) function f associated to the mapping with source A
and target B. We shall denote this by Lf. These two objects f and g have the important
property that, if n isin A, there is an m denoted by f(n) or g(n) such that m £n A1 (we
have the additional property that f (n) is in B). A short notation is required for the mapping
(g,n) 71 g(n)or (f,n) 7! f(n). We shalluse V or W, in the documentation, Vgand Vf in the
code.

There a possibility to change the C 0Q parser and pretty printer, and give meanings to
(xy) and{ x : A | P} . As mentioned above, notations can be overloaded, so that 0 may
be the integer zero, in some cases, or the unit of a group in some other cases. We have seen
that A & B denotes the type of the pair (x,Yy), but it can denote the product of two integers, or
two elements of a group. We shall not overload existing notations, but add notations similar
tothose existingin SSREFLECT Forinstance "\1c *C X = X 'means thatthe cardinal product
of the cardinal 1 and x is equal to x. The notation * {inc (domain f), f =1g g} 'means
that the graphs f and g are functionally equal on the domain of f; i.e., whenever X is the
domain of f,then V;(x) £Vy(x). The notation * {inc X &, injective P} 'meansthat P is
injective on X, i.e.,forany x andy,if x2 X andy 2 X, then P(x) £P(y) implies x /y.

1.5 Description of formal mathematics

Terms and relations. A mathematical theory T is a collection of words over a nite alpha-
bet formed of letters, logical signs and speci ¢ signs. Logical signsare &, ¢, ,: (the rst
two signs are speci ¢ to Bourbaki, the other ones, disjunction and negation, have their usual
meaning). Speci c signs are /& 2, letters are x, y, A, A% A% A%%0and “at any place in the text it
is possible to introduce letters other than those which have appeared in previous arguments”

[2| p. 15] (any number of prime signs is allowed; this is not in contradiction with the nite-
ness of the alphabet). An assembly is a sequence of signs and links. Some assemblies are
well-formed according to some grammar rules. In Backus-Naur form they are:

Term :=letter | ¢jeter (Relation) j Ssign Term; ... Termy

RR n°® 6999

8 José Grimm

Relation ;= : Relation j _ Relation Relation j Rsign Term; ... Termp
Each sign has to be followed by the appropriate number of terms: & takes none, 2 and Aare
followed by two terms, and one can extend Bourbaki to non-standard analysis [6] ly intro-
ducing a speci ¢ sign St of weight 1 qualifying the relation that follows to be standard. Each
sign is substanti c as & (ityields aterm) or relational as A(it yields a relation).

We shall see below that ¢x(R) has to be interpreted as the expression where all occur-
rences of x in R are replaced by & and linked to the ¢,. Parentheses are removed. This has one
advantage: there is no x in ¢x(R), hence substitution rules become trivial. For instance, the
function x 7! x Ay is constructed by using ¢, it is identical to the function z 7! zAy. If we
want to replace y by z, we getx 7! xAz, butnot z7! zAz. In CoQ, the variable y appears
freein x 7! x Ay, and the variable x appears bound in the same expression. Renaming bound
variables is called ®-conversion. Two ®-convertible terms are considered equal in C 0Q.

The Appendix to Chapter | of [2] Hescribes an algorithm that decides whether an assem-
bly is a term, a relation, or is ill-formed. It works in two stages. In the rst stage, links are
ignored. A classical result in computer science is that there exists a program (calleda parser)
that recognizes all signi cant words (i.e., well-formed assemblies without links). We can as-
sociate a number to each sign (for instance 262 to 'a, 111 to '=") and thus to each assembly
(for instance, 262111262 to 'a=a’). This will be called the Gédel number of the assembly, see
[4] for an example. Two distinct assemblies have distinct Godel numbers. The set of Godel
numbers is a recursively enumerable set. Given assemblies A 1, Az, Az, etc, one can form the
concatenation A 1A2Az.... If each assembly is a signi cant word, there is a unique way to
recover A; from the concatenation, hence from the Gédel number of the concatenation.

A demonstrative text for Bourbaki is a sequence of assemblies A 1A;...A,, that contains
a proof , which is a sub-sequence A(l’Ag ... A?n of relations, where each A io can be shown to be
true by application of a basic derivation rule that uses only A ? for j Ci. Each AQ is atheorem.
We shall use a variant: a proof-pair is a sequence of relations AAS... A%, satisfying the same
conditions as above, and a theorem is the last relation A ?n in a proof-pair. If our basic rules
are simple enough, the property of a number g to be the Gddel number of a proof-pair is
primitive recursive. From this, one can deduce the existence of a true statement that has no
proof (this is Godel's Theorem).

An assembly A containing links is analyzed by using antecedents which are assemblies
of the form ¢4 (R) (where x is some variable) that are identical to A if X is substituted in R
and links are added. The algorithm for deciding that an assembly with links is a term or a
relation is rather complicated. Bourbaki gives three examples of assemblies with links; the
antecedentofthe rstoneis ¢x(x 2 y) (thereisasingle link); the antecedent of the second one
is cx(x 2 A2 x 2 A% (there are two links); the third one is the empty set, see picture below.
One can replace these links by the De Bruijn indices, so that the empty set would become
éi2 ¢ 2 121, This has two drawbacks: the rst one is that 121 could be understood
as one integer or a sequence of three integers, the second is that this notation assumes that
integers are already de ned. The remedy to the rst problem would be to insert a separator
(forinstance a square) and a remedy to the second would be to use a base-one representation
of integers; the empty setwould be ¢:::2 ¢::2&8i4ia; . The scope of the second ¢,
is the scope of its operator, thus ::2&a . This means that the two squares are in the scope
of both ¢, are are linked to the second and rst ¢ respectively. The third square is in the
scope of the rst ¢ only, hence is linked to the rst ¢. Formal mathematics in Bourbaki is so
complicated thatthe & symbolis, in reality, never used.

Inria

Bourbaki: Theory of sets in Coq | (v6) 9

Denote by (Bjx) Athe assembly obtained by replacing x, whereveritoccursin A, by the as-
sembly B. Bourbaki has some criteria of substitutions, CS1, CS2, etc, that are rules about sub-
stitutions. For instance CS3 says that ¢x(A) and ¢xo(AY are identical if Alis (xYx) A provided
that x°does not appear in A (informally: since x does not appear in ¢x(A), the name of the
variable x is irrelevant). Formative criteria CF1, CF2, etc., give rules about well-formedness
of assemblies. For instance CF8 says that (Tjx) A is a term or a relation whenever Ais aterm
or arelation, T isaterm, X is aletter.

Abbreviations are allowed, sothat _: can be replaced by A& , and :2 can be replaced
by 62 Abbreviations may take arguments, for instance " ABisthesameas:_: A: B. Aterm
may appear more than once, forinstance () ABisthesameas”™ /& AB /A BA, and after
expansion:_: : AB:_: BA. Thelogical connectors : , _and” arewritten ~,\/ ,and /A in
Codﬂ Note thatin C 0Q, A! B isthe type of a function from A to B but also means A /) B.
There is no limit on the number of abbreviations (Bourbaki invented ; as a variant of &).
Unicode provides a lot of symbols, but few of them are availablein L ATEX or in Web browsers.

Starting with Section 2, Bourbaki switches to in x notation. For instance, whenever A
and B are relations sois _::_: A: BA, by virtue of CF5 and CF9. Using abbreviations, this
relation can be writtenas /Z) ~ ABA. Thein xversionis(Aand B) /£) A. Inorderto remove
ambiguities, parentheses are required, but Bourbaki says: “Sometimes we shall leave out the
brackets” [2] p. 24], in the example above three pairs of brackets are left out. In some cases
Bourbaki writes A [B[C. This can be interpreted as (A [B)[C or A[(B[C). These are
two distinct objects that happen to be equal: formally, the relation (A [B)[CZ£A[(B[C)
is true. Similarly A _ B_ C is ambiguous, but it happens, according to C24,that (A _B)_C
and A_ (B_ C) are equivalent (formally: related by (). In CoQ, we use union2 as pre x
notation for [, so we must chose between [([AB)C or [A([BC). Function calls are left-
associative, and brackets are required where indicated. We use \ or \cup as in x notation
for _ or [, parentheses may be omitted, the operator is right associative.

Theorems and proofs. Each relation can be true or false. To say that P is false is the same
as to say that : P is true. To say that P is either true or false is to say that P _: P is true.
A relation is true by assumption or deduction. A relation can be both true and false, case
where the current theory is called contradictory (and useless, since every property is then
true). There may be relations P for which it is impossible to deduce that P is true and it is also
impossible to deduce that P is false (Gddel's theorem). A property can be independent of the
assumptions. This means that it is impossible to deduce P or : P; in other words, adding P
or : P does not make the theory contradictory. An example is the axiom of foundation (see
below), or the continuum hypothesis (every uncountable set contains a subset which has the
power of the continuum).

Some relations are true by assumption; these are called axioms. An axiom scheme is a
rule that produces axioms. The list of axioms and schemes used by Bourbaki are given at the
end of the document. A true relation is called a Theorem (or Proposition, Lemma, Remark,
etc). A conjecture is a relation believed to be true, for which no proof is currently found. As
said above, in Bourbaki, a theorem is a relation with a proof, which consists of a sequence of
true statements, the theorem is one of them, and each statement R in the sequence is either

3We originally used & instead of *, since it is easier to type; but this forbids using some other notations

RR n°® 6999

10 José Grimm

an axiom, follows by applications of rules (the axiom schemes) to previous statements, or
there are two previous statements S and T before R, where T hasthe formS /&) R.

Itis very easy for a computer to check that an annotated proof is correct (provided that we
use a parsable syntax); but a formal proof is in general huge. Examples of formal proofs can
be found in [4]] the theory used there is simpler than Bourbaki's, but contains arithmetics on
integers. We give here a proof of 1 A1 A2:

(1) 8as8b:(a+Sb)=S(a+b) axiom3
(2) 8b:(S0+Sbh)=S(S0+b) speci cation (SOfor a)

(3) (S0+S0)=S(S0+0) speci cation (Ofor b)
(4) 8a:(at+0)=a axiom 2

(5) (S0+0)=s0 speci cation (SOfor a)
(6) S(S0+0)=SS0 add S

(7) (S0+S0)=SS0 transitivity (lines 3,6)

The proof is formed of the statements in the second column; the annotations of the third
column are not part of the formal proof. The line numbers can be used in the annotations.
In CoQ, the annotations are part of the proof. The principle is: a theorem is a function and
applying the theorem means applying the function. For instance, transitivity of equality is a
function eq_trans ; in line (7) we apply it to two arguments, the statements of lines 3 and 6.
The statement of line 6 is obtained by applying f_equal with argument S to the statement
that precedes (the f_equal theorem states that for every function f and equality a &b we
have f (a) Z£f (b)). In C0Q, a proof is a tree, the advantage is that we do not need to worry
about line numbers.

Bourbaki has over 60 criteria that help proving theorems. The rst one says: if A and
A /) B aretheorems, then B is atheorem. This is not a theorem, because it requires the fact
that A and B are relations. On the other hand x /x is a theorem (the rstin the book). The
difference is the following: if A and B are lettersthen A /&) B is not well-formed. Until the
end of E.II.5, Bourbaki uses a special fontasin A A) B to emphasize that A and B are to be
replaced by something else.

Criterion C1 works as follows. If R 1,Rp,...,R, and S1,Sy,...,Sy are two proofs, if the rst
one contains A, if the second one contains A A B, then

R1,Ro,...,Ry,S1,52,...,5m,B

is a proof that contains B. Assume that we have two annotated proofs R and Sj, where A is
Ry and A /) Bis Sy . Each statement has a line number, and we can change these numbers
so that they are all different (this is akind of ~®-conversion). Let N and M be the line numbers
of Ry and S;,,. We get an annotated proof by choosing a line number for the last statement,
and annotating it by: detachment N M (this is also known as syllogism, or Modus Ponens).

Criterion C6 says the following: assume P /&) Qand Q A/ R. From axiom scheme S4,
weget(QA R)YA (PA Q A (PA R)).Applying CriterionClgives(P A Q) A
(P /& R). Applying it again gives P A R. IfR1,Ry,...,R, and S1,Sy,...,Sy are proofs of
PA Qand Q A Rthenaproofof P &) Ris

R1,R2,...,R1,S1,52,...,Sm, R, R2, ..., Ry, S1,S2,., S, A, Dy, Dy

Here A4 and Dy are to be replaced by the appropriate relation, or in the case of an annotated
proof, by the appropriate annotation (for instance in the case of A 4, we must give the values
of three arguments of the axiom scheme S4, in the case of detachment D y we must give the
position of the arguments of the syllogism in the proof tree).

Inria

Bourbaki: Theory of sets in Coq | (v6) 11

Criterion C8 says A /&) A. This is a trivial consequence from S2, A /) (A_A)and S1,
(A_A) A A Thisisbydenition : A_ A, andis called the “Law of Excluded Middle".

There is a converse to C1. If we can deduce, from the statement that A is true, a proof
of B, then A A) Bistrue. This is called the method of the auxiliary hypothesis . Almost all
theorems we shall prove in C 0Q have this form.

Criterion C21 saysthat _::_: A: BAis atheorem, whenever A and B are relations. We
have already seen this assembly and showed that it is a relation. If we could quantify rela-
tions, the criterion could be converted into a theorem thatsays“(8A)(8B)((Aand B) /&) A)"

If P and Q are propositions, one can show that :: P) P, ((P) Q)) P)) P,P_: P,
(PN Q) P_Qand(P) Q)) (: P_Q)areequivalent. These statements are unprovable
in CoQ. They are true in Bourbaki since the last statement is a tautology. In [4]/[1here is
the Double-Tilde Rule that says that the string = ~~ can be deleted from any theorem, and
can be inserted into any theorem provided that the resulting string is itself well-formed. We
solve this problem by adding the rst statement as axiom. Then all theorems of Bourbaki
can be proved in C 0Q. There are still two dif culties: the rst one concerns the status of é
(see below); the second concerns sets. Bourbaki says in the formalistic interpretation of what
follows, the word “set” is to be considered as strictly synonymous with “term” [2] p. 65]. Recall
that there are only two kinds of valid assemblies, namely terms and relations. We shall see
below how to implement setsin C 0Q.

In CoQ, we can quantify everything so that criterion C21 becomes a conjunction of two
theorems (proj1l and proj2 inthe C oQq library); the rst of them can be proved as follows.

Lemma example: forall A B, A A B -> A. intros. induction H. exact H. Qed.

There are three steps in the proof. We start with a single task without assumption: ~ 8 A,B,
ANB /) A, then introduce some names and assumptions in order to get A,B,A "~ B~ A,
then destruct the logical connector: A,B,H a,Hg A. Thisis atrivial task since H a asserts the
conclusion A. The last step could have been trivial |, since Coqis able to nd the assump-
tion H ao. In the second step, we could use destruct , case or elim (the Coq library uses
destruct).

Printing the theorem yields

example =

fun (A B : Prop) (H: A A B) => and_ind (fun (HO : A) (_ : B) => HO) H
: forall AB : Prop, ANB > A

Arguments A, B are implicit

Argument scopes are [type_scope type_scope _]

This tells you that the arguments A and B are implicit (since they can be deduced from the
third argument H), and gives information about the scope used by notations. The theorem
has he form “name = proof : value” The last line is the value of the theorem. The second line
is the proof. The proof could also be

fun A B : Prop => [eta and_ind (fun (HO : A) (_ : B) => HO)]

Here ‘[eta f] 'isanotationfor™ fun x => f X 'sothat"[eta f z] 'isanotation for " fun
x => f z X' Note that the notations hide the argument H and its type. Inthecase A "B /&)
B you would see:

fun A B : Prop => [eta and_ind (fun _ : A => id)]

RR n°® 6999

12 José Grimm

As you can see, this is not just a sequence of statements with their justi cation, but function
calls. It applies and_ind to f, and H where f; is a function of two arguments that returns the
rstone, and ignores the second (the proof of B). Inthe caseof A ~ B /&) B, you see afunction
f2°of two arguments that ignores the rstargument, so that f2°(x) is the identity function (with
argument of type B, x being of type A and ignored). We show here the function:

and_ind =
fun A B P : Prop => and_rect (A:=A) (B:=B) (P:=P)

. foral ABP: Prop, A->B->P)->ANB->P
Arguments A, B, P are implicit

Here and_rect is a function with ve arguments, two propositions A and B, a type P, a func-
tion f : Al B! P andan object c of type A" B. It deduces two objects a and b of type A
and B, and applies f toit, yielding an object of type P. The rst three arguments are implicit.
Now, and_ind is the same asand_rect (except for the type of P). This is a function that re-
turns an object of type P, given f and c. Note that the arguments of and_rect must be given
explicitly (they could be deduced from f, but f is not an argument). Assume that f returns
its rst (resp. second) argument and P is the type of this argument. We get: if there is an
object of type A ” B, there is an object of type P.

You could also use destruct or case. In this case you see

fun (A B : Prop) (H: A A B) => match H with | conj HO _ => HO end

This has to be understood as follows. The object H is of type and, and we perform a case
analysis on its constructors. There is only one, conj, that takes two arguments, says H g and
H;. The function returns H ¢ (in this case, induction is the same as case analysis).

In SSREFLECTYOU can say

Lemma example A B: A A B -> A. Proof. by case. Qed.

This yields the following proof

fun (A B : Prop) (_top_assumption_ : A \ B) =>

(fun _evar 0 : forall (a : A) (b : B), (fun _ : AN B => A) (conj a b) =>
match _top_assumption_ as a return ((fun _ : A A B => A) a) with

| conj x x0 => _evar_ 0_ x x0

end) (fun (@ : A) (_ : B) => a)

Let's write Hand z for the two variables introduced by ssRerFLEcTand let f be the third fun.
This function returns A given any argument of type A~ B. This function is called twice. In the
rst case, the argumentis® conj a b’ where a and b are of type A and B, so that the argument
has the right type. In the second case, its argument is a, where a is bound to H, so has the
correct type. This means that we can replace f (x) by A in both cases. Now, the argument of
the second fun has type 8a:A,8b:B,A, thisis the type of f,. Lines 3 and 4 become: “match
H as c return T with C end”, where T is A. Note that H has a single constructor; assume that

its arguments are u and v. We apply f, and coerce this to type T; the coercion is trivial.

We show here the proof tree of the third variant of union2_or .
union2_or =
fun x y a : Set =>
eq_ind_r

Inria

Bourbaki: Theory of sets in Coq | (v6) 13

(fun _pattern_value_: Prop => _pattern_value_ -> inc a x V inc a y)
(fun _top_assumption_ : exists y0O : Set, inc a yO & inc yO (doubleton x y) =>
match _top_assumption_ with
| ex_intro t (conj aat td) =>
match doubleton_or td with
| or_introl _top_assumption_1 =>
eqg_ind t
(fun _pattern_value_ : Set => inc a _pattern_value_ V inc a y)
(or_introl (inc a y) aat) x _top_assumption_1
| or_intror _top_assumption_1 =>
eqg_ind t
(fun _pattern_value_ : Set => inc a x V inc a _pattern_value_)
(or_intror (inc a x) aat) y _top_assumption_1
end
end) (union_rw a (doubleton x y))
: forall x y a : Set, inc a (union2 x y) ->inc a x \Vinc ay

The current version is bit longer; we show here only a part of it. Youcanseethetwo iffLR
and the exists2 .

setU2_hi =
fun (x y a : Set) (_top_assumption_ : inc a (x \cup y)) =>
(fun
_evar_0_ : forall (xO : Set) (p : [eta inc a] x0)
(q : (inc™~ (doubleton x y)) x0),
(fun _ : exists2 z : Set, inc a z & inc z (doubleton x y) =>
inc axVinc ay)
(ex_intro2 [eta inc a] (inc™~ (doubleton x y)) x0 p q) =>

match

iffLR (setU_P (doubleton x y) a) top_assumption_ as e

return

((fun _ : exists2 z : Set, inc a z & inc z (doubleton x y) =>
inc axVinc ay)e)

with
| ex_intro2 x0 x1 x2 => evar 0_ x0 x1 x2
end)

(iffLR (set2_P t x y) _top_assumption_0))

Quanti ed theories. As mentioned above, Bourbaki de nes ¢« (R) as the construction ob-
tained by replacing all x in R by &, adding ¢ in front, and drawing a line between ¢ and this
square. Anexampleis ¢:::2 ¢::283& . ltcorrespondsto ¢x(ii2 ¢y(:2 yx)Xx). The
positions of the parentheses is xed by the structure, but not the names (without the links

the expression is ambiguous). If we admit that the double negation of P is P and use in x
notation, the previous termis equivalentto ¢y (éy(y 2 x) 6X). This is the empty set.

Denote by (T jx) R the expression R where all free occurrences of the letter x have been
replaced by the term T. Paragraph 2.4.1 of [1]lexplains that this is a natural operationin C 0Q;
the right amount of ®-conversions are done so that free occurrences of variables in T are
still free in all copies of T. For instance, if R is (9z)(z Z&£X), if we replace x by z, the result
becomes (9w)(w Az). These conversions are not needed in Bourbaki: thereisno x in ¢x(R)
and no zin (9z)(z /x). Of course, if we want to simplify (zjx) (9z)(z Ax), we can replace it by
(zjx) (9w)(w AEX) (thanks to rule CS8) then by (9w)((zjx) (w AX)) (thanks to rule CS9), then
simplify as (9w)(w Az).

RR n°® 6999

14 José Grimm

Bourbaki de nes (8x)R as “not ((9x) not R)”, whereas “forall x:T, R 'is a CoqQ prim-
itive, whose meaning is (generally) obvious; instead of T, any type can be given, it may be
omitted if it is deducible via type inference. The expression (81X)R is de ned in Bourbaki,
similar to the C 0Q expression, but not used later on; we shall not use it here. The dual ex-
pression “exists x:A, R 'is equivalentin C 0Q to ‘ex(fun x:A=>R) ' Note that the syntax
rules allow “forall X y, P x y ‘'or'exists x y, P X y ' Thereis a similar construction
{x:A | P} ' These are de ned by

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
ex_intro : forall x : A, P x -> exists X, P X
Inductive sig (A : Type) (P : A -> Prop) : Type =

exist : forall x : A, P x -> {x | P x}

If y is of type “{X:A | P} ' thenthereis x of type A satisfying P; itis “sval y ' If y is of type
‘exists x, P ' thenthereis an x satisfying P, and it can be used in proof; however, there is
no function y! x. This can be restated as: if f : A! B is a surjective function, forany y:B
thereis x : A such that f (x) &y, but there is no function g suchthat f (g(y)) &£y; aform of the
axiom of choice is needed.

Bourbaki de nes (9x)R as (¢x(R)jx)R. Write y instead of ¢x(R). Our expression is (yjx)R.
It does not contain the variable x, since x is notin y. If (9x)R s true, then Ris true for at least
one object, namely y. This object is explicit: we do not need to introduce a speci ¢ axiom of
choice. Axiom scheme S5 states the converse: if for some T, (Tjx)Ris true, then (9x)Ris true.

Let's give an example of a non-trivial rule. As noted in [4][it is possible to show, for each
integer n, that 0 An &n (where addition is de nedby nA0/4n and n ASm £Sn Am)), but
it is impossible to prove 8n,0An Zn. The following induction principle is thus introduced:
“Suppose u is a variable, and X{u} is a well-formed formula in which u occurs free. If both
8u :hX{u}3X{Su/u}i and X{0/u} are theorems, then 8u : X{u}is also a theorem.”

Criterion C61 [2,/p. 168] is the following: Let R &habe arelation in atheory T (where nis
not a constant of T). Suppose that the relation

RéD&aand (8n)((n is anintegerand R&nd /) Ran A 1§
is atheorem of T . Under these conditions the relation
(8n)((n isaninteger) A R&nd

isatheoremof T .

The syntax is different, but the meaning is the same. This criterion is a consequence of the
fact that a non-empty set of integers is well-ordered. InC 0Q a consequence of the de nition
of integers is the following induction principle (which follows trivially from the fact that one
can de ne recursive functions):

nat_ind: forall P : nat -> Prop,
P O -> (forall n: nat, P n -> P n+1) -> forall n : nat, P n

Equality. In Bourbaki, equality is de ned by the two axioms schemes S6 and S7, as well as
axiom Al (see section B.1]for details). The rst scheme says that if P is a property depending
on avariable z, if x Ay, then P(x) and P(y) are equivalent. The second scheme says that if Q
and R are two properties depending on a variable z, if Q(z) and R(z) are equivalent for all z,
then ¢;(Q) A¢;(R). The axiom says thatif x 2 Ais equivalentto x 2 B then A /B (the converse
being true by S6).

Inria

Bourbaki: Theory of sets in Coq | (v6) 15

Let R(z) be a relation. If R(x) and R(y) implies x Ay, then R is said single-valued. If
moreover there exists x such that R(x) is true, then R is said functional . In this case R(x)
is equivalent to x A¢z(R). Proof. The relation (9z)R is the same as R¢z(R)). Since this is
true, R(x) implies x Z&¢z(R), since R is single-valued. Conversely, if x /¢ ,(R) then R(x) is
equivalent to R(¢,z(R)) which is true.

Let Q(z) and R(z) be two functional relations, x and y denote ¢,(Q), and ¢ (R) respec-
tively. By S7, if, forall z, Q(z) and R(z) are equivalentthen x Ay, andin this case, the converse
is true (if for some z, Q(z) is true, we have z /X, thus z /&¢;(R) and R(z) is true). Example.
If y E Ois an integer, there exists a unique x such that y /x A 1. Denote by p(y) the quantity
éx(y Z/xA1). We have then the conclusion: y ExAlifandonlyif x Z£p(y). Thus p(y1) &p(y2)
if and only if y; ZEy,. From now on, we can forget that p is de ned via ¢ and equality is de-
ned by S7.

Let Q(x) and R(x) be two relations, and P(z) the following relation (8x)(x2z () Q(x)).
Itis single-valued by the axiom of extent. Assume that it is functional E]; applying ¢, to it gives
a set denoted by {x, Q(x)}; assume that R shares the same property. The previous argument
says , Q(x)} A£{x,R(x)}ifand only if (8x)(Q(x) (R(x)). Forinstance {a,b} A&{b,a}. More-
over {a} /E{b} is equivalentto a Zb.

Consider now an equivalence relation P(X,y): we assume that P(x,y) implies P(y,x), and
that P(x,y) and P(y,z) imply P(x,z). Let x be ¢,(P(a,z)), and y be ¢,(P(b,z)). We have that
P@,z) (P(b,z) is equivalent to P(a,b), so that S7 says that P(a,b) implies x £y. Con-
versely, assume a and b in the domain of P; this means that for some z, P(a,z) is true, it
implies that P(a,x) is true; we also assume P(b,y) true. Then from S6 we get: if x £y then
P(a,y) is true, thus P(a,b). Thus: x Ay if and only if P(a,b) is true. Example: Let P be the
property that a £(®,7) and b £(@, 79 are pairs of integers such that ®A °£®A ™. This
is an equivalence relation, and the domain is the set of pairs of integers. Dene | ®as
¢zP((®7),2). If ®and ~ are integers, this is a pair of integers and ~j ® & °; @Pif and only if
®A 70 &®PA ™. We can from now on forget that this quantity is de ned via ~ ¢.

Consider an equivalence relation whose domain is a set E. Let C(a) be the equivalence
class of a, namely the set of all z 2 E such that P(a,z) is true. Then P(a,z) is equivalent
to z2 C(a), and x /¢,(z 2 C(a)). Denote by r (X) the quantity ¢,(z 2 X), so that x Zr (C(a)).
Now, P(a,b) implies C(a) A£C(b) thus x Ay and scheme S7 is not required. Conversely, if a2 E
and x &r (C(a)) then x 2 C(a) and P(a,x). It follows, as before, thatif b 2 E and y 4&r (C(b))
and x Ay then P(a,b) is true. The quantity r (X) will be called the representative of the set X;
it satis es r(X) 2 X whenever X is non-empty. Whenever possible we shall use r rather than
¢- There are two exceptions: for de ning cardinals and ordinals (equivalence classes are not
sets). Our current implementation of cardinals and ordinals differs from that of Bourbaki
(see second part of this report), and this use of ¢, is not needed any more.

Finally, we may have ¢;(Q) A£¢z(R) even when Q and R are non-equivalent. For instance
consider two distinct elements a, b, the three sets {x}, {y} and {x, y}, denoted by X, Y and Z.
The quantities r (X), r (Y) and r (Z) take the values a and b, thus cannot be distinct. We have
r (X) Aa and r (Y) A&b. Thus one of r (X) A&r (Z) and r (Y) Ar (Z) must be true, but which one is
undecidable.

In our framework, few objects are de nedvia ¢, and Axiom Scheme S7 is rarely used. For
instance {1 A 1} A£{2} is a trivial consequence of 1 A1 /A2, and Criterion C44. Lets prove this
criterion and the rst three theorems of Bourbaki.

Theorem 1is x AXx. Bourbaki uses an auxiliary theory in which x is not a constant, so that

4For instance, if Q is x 6X then P is not functional

RR n°® 6999

16 José Grimm

(8x)(R() R)istrue, whatevertherelation R. Notethat x is aletter, thus aterm, and it could
denote the set of real numbers R, case where quanti cation over x makes no sense, while R
is just a notation. Scheme S7 gives ¢x(R) E¢x(R). This can be rewritten as (¢xRjx)(X 4A£X).
Let Sdenote x /£x and R denote : S. By de nition of the universal quanti er, the previous
relationis 1 (8x)(S), from which follows (8 x)(x Ax). It follows that, whatever x (evenif x is
a constant) we have x Zx.

Theorem 2says (x Ey) () (y Ax). Let's show one implication. Assume x Ay. We apply
S6 toy /X, considered as a function of y. ltsaysx /x (Yy 4X, the conclusion follows by
Theorem 1.

Theorem 3 says (x £y ™ y /Ez) /) x Az. The same argument as above says that if x Ay,
then x £z () vy Az, making the theorem obvious.

The same argument shows thatif T £U, andif V is aterm (depending on a parameter z),
then VATr a4&VaJ a This is Criterion C44, and is known in C oqQ aseq_ind, while Scheme S6
is eq_rec. Theorem 1is the de nition eq_refl , other theorems are eq_symand eq_transE]

There is no equivalent of Scheme S7 in C 0Q. The Leibniz equality says that two objects
x and y are equal iff every property which is true of x is also true of y. We shall later on
de ne special terms called sets. They satisfy x Ay if x Y2y and y ¥2x. This makes equality
weaker. In fact, if x 64, the middle excluded law implies that there exists some a such that
either a2x andnot a2y or a2y andnot a2Xx. Thus, assuming that 0 and 1 are sets, one
of the following statements is true: there exists a such that a 2 1 and a 6D, or there exists b
suchthat b 2 0and b 62, or 0 A1 (with the Bourbaki de nition of integers as cardinals, the
rst assumption is true, but nothing can be said of a). In Bourbaki all terms are sets. In our
work, we shall consider objects that are not sets. For instance, neither 1 nor 2 (considered as
natural numbers) are sets. The relations 1 A 1 /2 and 1 6/ are the consequence of the fact
that these objects have the same (or different) normal forms (modulo ®-conversion).

Carlos Simpson introduced an axiom that says that two propositions are equal if they are
equivalent. This is not possible in Bourbaki (since equality applies only to sets). Assume that
we have shown a theorem H that says P () Q. Let e be the equality P A£Q); thanks to the
axiom, the equality is true, and we case rewrite it. In fact we can rewrite H as well (thanks to
the setoid rewrite rules). Better yet, we can use the constructions move/Hand apply/H . This
explains why the axiom has been removed in Version 5.

One can add an axiom that says if f and g are two functions, oftype A ! B, andif f(x) A&
g(x) whenever x is of type A, then f Ag. A stronger form is the following, introduced by
Carlos Simpson, but not used anymore

(*
Axiom prod_extensionality :
forall (x : Type) (y : x -> Type) (u v : forall a : x, y a),
(forall a : x, ua=va ->u=v.
Axiom proof_irrelevance : forall (P : Prop) (g p : P), p = Q.
)

We are sometimes faced to the following problem: given a proposition P, twosets aand b,
we want to select a if P is true, and b otherwise. Bourbaki uses ¢x((x ££a” P) or (x £b”: P)).
Assume that can nd two functions A(p) and B(q) whose values are a and b, whenever p is
a proof of P and g a proof of : P. Consider the relation R: for any p and g as above, we have

5These lemmas have alternate names, and SSREFLECTrede nes them, and provides alternatives erefl | esym
and etrans .

Inria

Bourbaki: Theory of sets in Coq | (v6) 17

y £A(p) and y ZB(q), and lets apply ¢y. If Pis true, it has proofa p and y ZA(p) Aa; if P
is false, then : P is true and has a proof g so that y £B(q) Zb. The trick is the following; the
expression ¢y(R) is in general unde ned, since there are undecidable propositions (there are
also true propositions without proofs). However, we consider ¢y (R) only in the case where
we know a proof of P or a proof of : P. The proof irrelevance axiom says that if p and p
are two proofs of P, then p Z&£p® which implies A(p) £A(pY, and makes some proofs easier.
Example. Let | be a non-empty set, X ; a family of set indexed by i 2 X; we may de ne the
intersection by { y 2 X;,8j 21,y 2 Xj}. This de nition depends on i, assumed to satisfy i 21; it
exists because | is non-empty. Assume now that we have two proofs that | is non-empty; this
give two possible indices i, and we must show that our de nition is independent of i (which
is obvious here).

0

In CoQ, there is a data type bool that contains two values true and false (say T and F),
and itis easy to de ne afunction whose valueis aif P &£T and b otherwise (if P /F). Thus one
can say one can say (if 1<=2 then 3 else 4) . (we assume here that we use the ssrnat
library where - is of type bool rather than Prop). We do not use the bool datatype, thus
cannot use the if-then-else construction.

1.6 Thetheory of sets

According to Bourbaki, “the theory of setsis a theory which contains the relational sings /&
2 (of weight 2); in addition to the schemes S1 to S7 given in Chapter I, it contains the Scheme
S8, and the explicit axioms Al, A2, A4, and A5. These explicit axioms contain no letters; in
other words, the theory of sets is a theory without constants . Since the theory of sets is an
equalitarian theory, the results of Chapter | are applicable.”

The English version[2] is a bit different: there is a substanti c sign ¥, of weight 2, and
an axiom A3 that governs its use. If we write (X,y) instead of 3 xy, then for any sets x and
y, the assembly (x,y) is well-formed and is a set. It is called an ordered pair; in the French
version [B], a pair is de ned in terms of symbols, and the axiom is replaced by a theorem (see
discussion below, £.9].

The last axiom of Bourbaki states that there exists an in nite set. It is equivalent to the
existence of the set of natural numbers and will be discussed in the second part of this report.
The other axioms, as well as axiom scheme S8, use the symbols 2, 2 or Coll 4R, that are not
de nedin C 0Q. The notation x %2y is a short-hand for:

(82)(z2x) A) (z2Y)).

If x are y are two distinct letters, and R arelation that does not depend on 'y, the relation

Y@Ex)(x2y) 0 R)

is denoted by Coll R, and read as: the relation R s collectivizingin X. The rstaxiom (axiom
of extent) in Bourbaki says:

(8x)(8Y)((x ¥2y) and (y ¥2x)) A (x AY).

We can restate it as: if x and y are two sets, then x /Ay ifand only if z 2 x isequivalentto z2y.
As a consequence, if R(x) is collectivizing in X, there exists a unique set y such that x 2 y if
and only if R(x) is true. Itis denoted by { x,R(x)}, or {xjR(x)} or Ex(R(x)).

Some relations are not collectivizing, for instance x 6X. In fact, if we assume that this is
equivalentto x 2y, replacing x by y gives: y 62 is equivalentto y 2y, which is absurd. Almost

RR n°® 6999

18 José Grimm

all sets de ned by Bourbaki are obtained by application of Axiom A2 (the relation “ x /Ea or
X AEb” is collectivizing), Axiom A4 (the relation x Y2y is collectivizing) or Scheme S8 (Scheme
of Selection and Union); a notable exception is the set of integers, for which a special axiom

is required. Scheme S8 is a bit complicated. In [5].]it is replaced by the axiom

Bx)(9y)(82)(z2y) 0 ((9t)(t2x and z21))

that asserts the existence of the union of sets, and the following scheme (Scheme of Replace-
ment):

If E is a relation that depends on x, vy, ai,...,ak, then for all x1, Xo, ..., Xk, if
we denote by R(x, y) the relation E(x,y,X1,...Xn), the assumption (8 x)(8y)(8y9Y
R(x,y) £R(x,y9 /B vy A£y’impliesthat, forall t,therelation(9u)(u 2t and R(u,V))
is collectivizing in v.

The conclusion is the same as in S8. This scheme is more powerful than S8; for instance, it
implies the axiom of the set of two elements A2. In fact we can deduce the existence of the
empty set ; from this scheme (or from S8). Applying A4 to the empty set asserts the existence
of a set that has a single element which is ; , applying A4 again asserts the existence of a set
t with two elements ; and{; }. If a and b are any elements, and R(u,v) is“u /& ; and v Aa
or u A{; }and v /Ab", we get as conclusion: there exists a set formed solely of a and b. The
assumption is clear: for xed u, thereis a unique v suchthat R(u,v). Question: can we apply
S8to this case? the answer is yes, provided that there exists a set X such that a 2 X5 and a set
Xp such that b 2 Xp. Such sets exist by virtue of Axiom A2. Hence A2 is required in Bourbaki,
a conclusion of other axioms in [5].] The rules introduced below are closer to a Scheme of
Replacement than to a Scheme of Selection and Union.

In the previous section, we have given a proof with seven lines that says 1 A1 /&2. The
analogue proofis trivial in C 0Q (both objects have the same normal form SSQ We have also
seen that the induction principle for integers in Bourbaki is the same as that of integers in
CoQ; as a consequence, if we can identify the C oQintegers with the integers of Bourbaki,
then a lot of theorems will become trivial (i.e., are already proved by someone else). For this
reason, all types, such as nat, will be a set. In the framework of C. Simpson, one can show
that False isthe empty setand True is{; }. In our framework, a set is any type whose sort is
Set. Thus nat will be a set, but neither False nor True (whose sortis Prop).

Let N be the set of integers (i.e., the type nat) and N the set of even integers, de ned as
follows

Definition even n := ~odd n.
Lemma ed (n:nat): even(n.*2).
Lemma de n: even n -> n = (n./2).*2.

Definition N2 := { z : nat | even z}.

Definition to_N2 n := (exist (fun z => even z) n.*2 (@ed n)).
Lemma N2_a (z:N2): exists u, sval z = u.*2,

Lemma N2_b (z:nat): sval (to_N2 z) = z.*2.

We have already explained that an object y of type N2is the combination of an integer z
(namely “sval y ") and a proof that z is even. On the other hand, for any integer n, ‘to_N2
n' has type N2 its value is the double of n. We say that N, is a subtype of N and write this

as Ny %2 N; this should be understood as: the function sval is an injection N, ! N. The
Bourbaki interpretation will be: forall x,Xx 2N A& x 2 N, where x 2 N should be the same

Inria

Bourbaki: Theory of sets in Coq | (v6) 19

as x is an integer, or, x has type nat. However, if x is of type Ny, itis not a set (according to
our de nitions) and it is of course not of type N. For this reason, we interpret x 2 y as: there
is x%of type y, such that x £R y(x‘b, for some injective mapping R y. In this case, N» %2N
is a consequence of R n,(y) £R n(val (y)). One could postulate that R a(y) £R p(val (y)),
whenever a is a sigma-type based on b; but this is not really needed. Without this postulate,
the statement N> ¥2N might be wrong; but this causes no trouble: according to Bourbaki,
there is a unique set N » such that x 2 N, if and only if n is an even integer, and we have
N2 ¥2N. There is no reason why this should be equal (as a C 0Q object) to N»,. One could
postulate, as did Simpson, that R y(n) is the n-th von Neumann ordinal; this would imply
that R 2 is Prop.

Notes. A reference of the form E.II.4.2 refers to [Z]] Theory of Sets, Chapter 2, section 4,
subsection 2 (properties of union and intersection).

The document gives no proofs, except for the exercises. In order to show how dif cult
some theorems are, the numbers of lines of the proof is sometimes indicated in a comment.

Some statistics: there are 171 lemmas in jset, 98 in jfunc, 424 in set2 (correspondences),
364 in set3 and set31 (union; intersection, products) and 257 in set4 (equivalence relations).

In version 2, les jset and jfunc have been merged into setl, les set3 and set31 have also
been merged. The number of theorems in these four les is now 279, 431, 375 and 257.

In Version 3, many trivial theorems have been removed, so that these numbers are re-
spectively 202, 397, 338 and 242.

In Version 4, these numbers are respectively 241, 406, 322 and 241.
In Version 5, these numbers are respectively 221, 408, 318 and 241.
In Version 6, these numbers are respectively 326, 431, 297 and 227.

RR n°® 6999

20

José Grimm

Inria

Bourbaki: Theory of sets in Coq | (v6) 21

Chapter 2

Sets

This chapter describes the content of the le ssetl.y that is an adaptation of the work of
C. Simpson. Itis formed of several modules, that will be commented one after the other. It
implements the basis of the theory of sets; this is alogical theory (as described in the previous
chapter) that contains a speci ¢ sign 2 and some rules about its usage; we must de ne the
CoQ equivalent inc and the associated rules.

2.1 Module Axioms

De nitions. In our code, the term property denotes the type Set! Prop. For instance,
if P is a property and x a set, then P(x) is a proposition. The term relation denotes the
type Set! Set! Prop. Forinstance inc and sub are relations. Relations can be re exive,
symmetric, antisymmetric, transitive (in ssrRerLEcTreflexive means 8x: T, R(x,x), where
Rhastype T! T! bool). We say that T is a functional term (in short fterm) if T(x) is a set,
whenever x is a set. In some cases, we assume that T(X, y) is a set, whenever x and y are sets.
The types fterm , fterm2 , property and relation are often inferred by C 0qQ, but we may
give them explicitly for emphasis.

Let p(x) be a property; if p(x) and p(y) imply x /&£y, then p is said single-valued; we
consider also the case where p is a conjunction, i.e., the case where p(x), p(y), g(x) and q(y)
imply x &£y. If p(x) and p(y) imply f(x) Zf (y), then p is said single-valued modulo f ; we
sometimes say that f is constanton p.

Definition property := Set -> Prop.

Definition relation := Set -> Set -> Prop.

Definition reflexive_r (R: relation) := forall x, R x x.

Definition symmetric_r (R: relation) := forall x y, R Xy -> Ry Xx.

Definition transitive_r (R: relation) := forall y x z, R xy -> Ry z -> R X z
Definition antisymmetric_r (R: relation) := forall x y, R Xy -> Ry X ->Xx = .

Definition fterm:= Set -> Set.
Definition fterm2:= Set -> Set -> Set.
Definition singl_val (p: property):=
forall Xy, pXx >py->Xx=y.
Definition singl_val2 (p q: property):=
foral Xy, pXx ->qx->py->qy->X=YV.
Definition singl_val fp (p: property) (f: fterm) =
foral x y, px >py >fx=1y.

RR n°® 6999

22 José Grimm

Definition exactly one (P Q: Prop) .= (P V Q) A ~(P A Q).

Some trivial lemmas. Given a conjunction A ~ B, we get A or B via proj1 , or proj2 . We
extend this to three-terms conjunctions. We also restate trivial properties of equivalence.

Lemma proj31 A B C: [A A, B & C] -> A
Lemma proj32 A B C: [A A, B & C] -> B.
Lemma proj33 A B C: [N A, B & C] -> C.

Lemma iff_sym (P Q: Prop): (P <-> Q) -> (Q <-> P).
Lemma iff_trans (P Q R: Prop): (P <> Q) > (Q <> R) -> (P <-> R).
Lemma iff_neg (P Q: Prop): (P <> Q) > (~ P <> ~ Q).

Is element of. We assert existence of a function R such that, for any set x and any y : X,
R x(y) is a set. Moreover, for any set x, the function R isinjective.

Parameter Ro : forall x : Set, x -> Set.
Axiom R_inj : forall (x : Set), injective (@Ro Xx).

We de ne " x 2 y'to be: there is an object a of type y such that R a /X. Inclusion x Yy is
de ned as in Bourbaki. These two operations are called inc and sub in our framework. We
also conider x (y (strict subset).

Definition inc (x y : Set) := exists a : y, Ro a = x.
Definition sub (a b : Set) := forall x : E, inc x a -> inc x b.
Definition ssub (a b : Set) := (sub a b) A (a <> b).

Extensionality. The axiom of extent is the same as in Bourbaki: if Xx %y and y ¥2x then
X AEy. It could be restated as: %zis antisymmetric.

Axiom extensionality : antisymmetric_r sub.

Let X be atype; if x : X we say that x inhabits X and that X is inhabited . If X is a set, we
say honemptyinstead of inhabited (in fact, thanksto R, the two properties are equivalent).

Colnductive nonempty (x : Set) : Prop :=
nonempty_intro : forall y : Set, inc y X -> nonempty x.

The axiom of choice. The restricted form of the axiom of choice says that there is a function
¢, such that c(y) 2 y, whenever y is a hon-empty set. We can generalize it to any predicate
p(x), and any type t.

Assume that t is any type, p oftype t! Prop, and q proves that t is inhabited. We assert
the existence of a function Cy suchthat ¢ £C+(p,q) is of type t, and if there exists an object
x of type t such that p(x)istrue, then p(c)is true.

Section Choose.
Variable (t : Type).
Implicit Type (p : t -> Prop) (g:inhabited t).

Parameter chooseT : forall p g, t.
Axiom chooseT _pr : forall p q, ex p -> p (chooseT p q).

End Choose.

Inria

Bourbaki: Theory of sets in Coq | (v6) 23

Images. The scheme of selection and union is the following: Given a relation R(X, y); as-
sume that for xed vy, we have a set E;, such that R(x,y) implies x 2 Ey. Then, for every Y,
there is a set Zy containing all x for which thereisan y 2Y such that R(x,y). A simple case is
when R is independent of y. Another simple case is when R has the form x Zf (y). ltis called
the axiom of replacement. The axiom of the set of two elements (shown later) says that we
can select Ey Z{f (y)}. As a consequence the image of a set by a function is a set. We de ne
here a parameter IM, and the corresponding axiom.

Parameter IM : forall x : Set, (x -> Set) -> Set.

Axiom IM_P : forall (x : Set) (f : x -> Set) (y : Set),
incy (IMf) <> exists a: x, fa=y.

Double negation axiom. The excluded middle axiom says that P or its negation is true. This
is equivalent to say that the double negation of P implies P.

Axiom p_or_not_p: forall P:Prop, P V ~ P.

Lemma equal_or_not (x y:Set): x =y V x <> y.
Lemma inc_or_not (x y:Set): inc x y V ~ (inc x y).
Lemma excluded_middle (p:Prop): ~ ~p -> p.

2.2 Module constructions

These lemmas say that x ¥2x, and if x Y2y and y %z, then x ¥2z; if one Yzis replaced by (
in the assumption, then the same holds in the conclusion.

Lemma sub_refl x: reflexive r sub.

Lemma sub_trans b: transitive_r sub.

Lemma ssub_transl b a c: ssub a b -> sub b ¢ -> ssub a c.
Lemma ssub trans2 b a ¢c: sub a b -> ssub b ¢ -> ssub a c.

Empty sets. We say that a set is empty if it has no element; by extensionality, x is empty if
and onlyifitisequalto ; . Bourbakiproves existence of ; by considering the complement of
x initself. In C 0Q, the situation is simpler: we de ne ; as a type without constructor, hence
thereis no a 2 x, since thereisno b : x.

Definition empty (x : Set) := forall y : Set, ~ inc y x.
Colnductive emptyset : Set :=.

By excluded middle, a set is empty or nonempty. We deduce that non-empty is the same
as not empty.

Lemma R_inc (x : Set) (a : x): inc (Ro a) x.

Lemma in_set 0 x; ~ inc x emptyset.

Lemma set0_P x: empty X <-> x = emptyset.

Lemma not_nonempty_empty: ~(nonempty emptyset).
Lemma emptyset_dichot x: x = emptyset \/ nonempty Xx.
Lemma nonemptyP X: nonempty x <-> (X <> emptyset).

Lemma sub_Oset x: sub emptyset x.
Lemma sub_set0 x: sub x emptyset <-> (x = emptyset).

RR n°® 6999

24 José Grimm

Aninversefor R. Wede neafunction B thattakes 3 arguments, X,y and H, two setsand a
proof of x 2 y. The rsttwo arguments are implicit: they are deduced from the type of H. We
shall sometimes write B (H: x 2 y). The function uses the axiom of choice C+(p,q) to select
an object a of type y such that p(a), namely R a /£x. Assumption H says that such an object
exists, and as a consequence it implies q, a proof that the type v is inhabited. Thus p(B) is
true, i.e.,

R (B (H:x2y)) AX.

If we replace x by R z, we getR (B (H)) AR z, hence, by injectivity
BMH:Rz2y) Az

Definition Bo (x y : Set) (hyp : inc x y) =
chooseT (fun a : y => Ro a = x)
(match hyp with | ex_intro w _ => inhabits w end)

Lemma B_eq x y (hyp : inc x y): Ro (Bo hyp) = x.
Lemma B_back (x:Set) (y:x) (hyp : inc (Ro y) x): Bo hyp =y.

Axiom of choice for sets. Let p be a property of sets. Since the empty set is a set, we get
a function C (p), such that p(C (p)) is true whenever there is a set x satisfying p. Note that
if p and q are equivalent properties, we do not pretend that C (p) £C (q). Thus C (p) is not
equivalent to Bourbaki's ¢.

Definition choose (p: property) := chooseT p (inhabits emptyset).
Lemma choose_pr p: ex p -> p (choose p).

Representatives of nonempty sets. If we apply the axiom of choiceto x 2 y we get: there is
afunction r(x) suchthat r (x) 2 x, for every nonempty set x. It will be denoted by rep z.

Definition rep (x : Set) := choose (fun y : Set => inc y Xx).
Lemma rep_i x: nonempty x -> inc (rep X) X.

Setof elements suchthatP. In Bourbaki, the “Scheme of selection and union” is the follow-
ing : we have four distinct variables x, y, X and Y, and a relation R that depends on x and vy,
butnoton X, Y. The assumptionis 8y,9X,8x,R /&) x 2 X. The conclusion is that for every Y,
the relation 9y,y 2 Y” Ris collectivizing in x. Said otherwise, for every Y, there is a set Z such
that x 2 Z is equivalent to the existence of y 2 Y such that R. A simple case is when R does not
depend on y. Then, the assumption 8x,R(x) A x 2 X implies the existence of Z such that
X 2 Zis equivalent to R(x). In particular, if Q(x) is any relation, there is a set Z suchthat x2Z
is equivalentto x 2 Y” Q(x). Here is the C 0Q implementation.

Colnductive Zorec (x : Set) (f : x -> Prop) : Set =
Zorec_c : forall a: x, f a -> Zorec f.
Definition Zo (x:Set) (p:property) =
IM (fun (z : Zorec (fun (a : X) => p (Ro a))) => let (a, _) := z in Ro a).

Consider a set X and a function f de ned on the type X. We shall later on consider the
case where f takes its values in Set. An object is of type * Zorec X f'if and only if it is a pair
(a,b) where a is of type X, and b of type f (a) and such a pair is created by Zorec_c. When we

Inria

Bourbaki: Theory of sets in Coq | (v6) 25

construct a pair, we have to provide a proof of f (a), and when we destruct the pair, we can
extract the proof.

The construction " let (a,_) := z in F ' means: replace in F all occurrences of a by
the rst eld of the instance z. Using IM, we thus get the set of all a : X satisfying f. If p(x) is
a predicate de nedfor x 2 X, and f (a) £p (R a), we get the set of all x 2 X satisfying p.

The set is denoted in Bourbaki by Ey(P and x 2 A). In the French version, it is denoted by
{xj P and x 2 A}; Bourbaki notes that this may be abbreviated as{ x 2 Aj P}.

Lemma Zo_i x (p: property) y: incy x -> py ->inc y (Zo x p).
Lemma Zo_hi x (p: property) y: incy (Zo x p) -> p V.

Lemma Zo_S x (p: property) : sub (Zo x p) x.

Lemma Zo P x (p: property) y : incy (Zo x p) <> (incy x A p y).

We have {x 2 X,p(x)} Z&{x 2 X,q(x)}, whenever p and q are equivalentin X.

Lemma Zo_extenl (X : Set) (p q: property):
(forall x, inc x X-> (p X <> g X)) -> Zo X p = Zo X q.
Lemma Zo_exten2 (X Y: Set) (p q: property):
(forall x, (inc x X Apx<>incxY Ngx)->2ZoXp=20Yq.

2.3 Module Little

Given two sets x and y, we construct a set, a doubleton, denoted by {x,y}, satisfying
z2{x,y} (0 z/&Ex_z /A&y, astheimage of bool by the function f that associates x to true,
and y to false. Bourbaki uses Axiom A2 to show existence of such a set.

Definition doubleton (x y : Set) :=
IM (fun z => if z then x else y).

Lemma set2 1 x y: inc x (doubleton x y).

Lemma set2 2 x y: inc y (doubleton x y).

Lemma set2_hi z x y: inc z (doubleton x y) ->z =x\V z =y.
Lemma set2_ P z x y : inc z (doubleton x y) <-> (z = x \VV z = y).

Lemma doubleton_inj x y z w :
doubleton x y = doubleton zw -> x=zAy=w)V xX=wANAy=2).

Lemma set2_ne x y: nonempty (doubleton x y).
Lemma sub_set2 x y z: inc x z -> inc y z -> sub (doubleton x y) z.
Lemma set2_C : commutative doubleton.
Lemma set2_pr a b X:

inca X ->inc b X ->

(forall z : Set, incz X ->z=a\Vz=Dh)

-> X = doubleton a b.

The set ‘'doubleton X X 'iscalled a singleton and denoted { x}. By construction z 2 {x} (
z /Ex. From this one can deduce that a singleton is nonempty, and we have an extensionality

property.
Definition singleton x := doubleton x x.

Lemma setl 1 x: inc x (singleton Xx).

RR n°® 6999

26 José Grimm

Lemma setl eq x y: inc y (singleton x) -> y = X.
Lemma setl_inj: injective singleton.

Lemma setlP x y: inc y (singleton x) <-> (y = X).
Lemma setl sub x X: inc x X -> sub (singleton x) X.
Lemma setl ne x: nonempty (singleton x).

In the original version, we introduced a set TPwith two elements TPa TPh We use here
the elements ; and {; }, renamed as COand Cland the set will be called C2

Definition CO := emptyset.
Definition C1 := singleton CO.
Definition C2 := doubleton CO C1.

Lemma C1_pl x: inc x Cl1 <-> x = CO.

Lemma TP_ne: CO <> C1.

Lemma TP_ne: C1 <> CO.

Lemma C2 P x: inc C2 <> (x = CO V x = C1).
Lemma inc_CO0_2: inc CO C2.

Lemma inc_C1_2: inc C1 C2.

We say that x isasmall setif a2 x and b 2 x imply a Ab. Itis either empty or has a single
element.

Definition singletonp x := exists u, X = singleton u.
Definition doubletonp x:= exists a b, a <> b A x = doubleton a b.

Definition small_set x := singl_val (inc *~ x).

Lemma setl pr x X: inc x X -> (forall z, inc z X -> z = x) ->
X = singleton x.

Lemma setl prl x X: nonempty X -> (forall z, inc z X -> z = x) ->
X = singleton x.

Lemma small0: small_set emptyset.

Lemma smalll x: small_set (singleton x).

Lemma singletonP x: singletonp x <-> (honempty x A\ small_set x).

Lemma small_set pr x: small_set x -> x = emptyset V singletonp x.

Lemma subsetlP A x: sub A (singleton x) <-> (A = emptyset \/ A = singleton x).
Lemma sublsetP A x : sub (singleton x) A <-> inc x A.

2.4 Module Image

If f isamapping, x a set, we denote the image of x by f as f hxi.

Definition fun_image (x : Set) (f : fterm) := IM (fun a : x => f (Ro a)).
Lemma funl_i x f a: inc a x -> inc (f a) (fun_image x f).

Lemma funl_P f x y:
inc y (fun_image x f) <-> exists2 z, inc z x & y = f z.

Inria

Bourbaki: Theory of sets in Coq | (v6) 27

2.5 Module Complement

If A and B are two subsets of E, the complement of A (in E) is the set of all x in E that are
not in A; it is denoted by Aor UA, or LEA. The set B\ Ais the set of all x in B that are not in A;
itis called the set difference It is independent of E, and denoted by B\A or sometimes B | A.
We shall not distinguish between these two notions.

By excluded middle, if x2Band x 6Bj A, then x 2 A. Itfollowsthatif B j Aisempty, then
B12A.

Definition complement (A B : Set) := Zo A (fun x : Set => ~ inc x B).

Lemma setC_P A B x: inc x (A -s B) <> (inc x A A ~ inc x B).
Lemma setC i x A B: inc x A -> ~inc x B ->inc x (A -s B).
Lemma nin_setC x A B: inc Xx A -> ~inc x (A -s B) -> inc x B.
Lemma empty setC A B: A -s B = emptyset -> sub A B.
Lemma setC_ T A B: sub A B -> A -s B = emptyset.

These lemmas are obvious. If A “2E thenEj (Ej A)A£A. WehaveEj EA; andEj; £ E.
If A¥2X and BY¥2X, then X\A %2X\Bifand only if B %2A.

Lemma sub_setC A B: sub (A -s B) A.
Lemma setC_ne A B: ssub A B -> nonempty (B -s A).
Lemma setC K AB:sub AB ->B -s (B -s A) = A
Lemma setC_v A: A -s A = emptyset.
Lemma setC_0 A: A -s emptyset = A.
Lemma set SC AB C :sub AB ->sub (A-sC) (B -s C).
Lemma set CS A B C : sub AB ->sub (C -s B) (C -s A).
Lemma set CSS AB CD :sub AC ->sub DB ->sub (A -s B)(C -s D).
Lemma set CSm A B X: sub A X -> sub B X ->

(sub A B <-> sub (X -s B) (X -s A)).
Lemma subsetC P AB E : sub AE ->subBE ->

((sub A (E -s B)) <-> (sub B (E -s A))).
Lemma subCset P A B Eisub A E -> sub B E ->

((sub (E -s A) B) <-> (sub (E -s B) A)).

We study some properties of X | {a}.

Notation "a -s1 b" := (a -s (singleton b)) (at level 50).

Lemma setC1_P x A b: inc x (A -s1 b) <-> (inc x A A x <> h).
Lemma setCl_1 x A: ~ (inc x (A -s1 Xx)).

Lemma setC1l_proper A x : inc X A -> ssub (A -s1 x) A.
Lemma setCl eq a X: ~(inc a X) -> X -s1 a = X.

2.6 Module Union

: | : :
Bourbaki de nes the union =~ Xqof a family of sets. This means that we have a set | and

a mapping 17! Xqgde ned for i 2112||. The union exists as a direct consequence of S8 (Scheme
of Selection and Union). The assumptionis (8i)(92)(8x)(i 2 land x 2 X;) /&) X 2 Z (take
Z /EX;). The conclusion is the existence of a set containing all elements satisfying (9i)(i 2
land x 2 X;). We use the same construction as in the case of Selection (compare with Zorec).

RR n°® 6999

28 José Grimm

Section UnionDef.
Variable (I:Set)(f : I->Set).

Colnductive Uaux : Set =

Uaux_c : forall a:l, f a -> Uaux.
Definition uniont :=

IM (fun a : Uaux => (let: Uaux_c u v := a in @Ro (f u) v)).
End UnionDef.

Assume that | is a set, and f a function de ned on the type I. We use a record, that holds
(a,b) for all a: X, where b is of type f(a). By de nition of R we have Rb 2 f (a). Note that
the implicit argument of R must be given explicitly here. The set of allthese R b isasetU
suchthat x 2 U is equivalentto 9a, x 2 f (a). This set will be called uniont . Let X be a setand
f /ER x. Since a : X is the same asR a 2 X, then X ?SU if and only if there is b 2 X such that
X 2 b. This set will be called union, and denoted by ~ X.

Definition union X := uniont (@Ro X).
Lemma setUt P (I:Set) (f:I->Set) x:
inc x (uniont f) <-> exists z, inc x (f z).
Lemma setU P X x:
inc x (union X) <-> exists2 z, inc x z & inc z X.

Some properties of union.

Lemma setU_i x y a: inc x y ->inc y a -> inc x (union a).

Lemma setU_hi x a: inc X (union a) -> exists2 y, inc Xy & inc y a.
Lemma setU_sl1 x y: inc X y -> sub x (union vy).

Lemma setU_s2 x z: (forall y, inc y z -> sub y x)-> sub (union z) x.
Lemma setU_0: union emptyset = emptyset.

The union a family of two sets X and Y is denoted by X [Y. An elementis in the union if
and only if itis in one of the sets. We have A %2A[B and B*2A[B, and other properties.

Definition union2 (x y : Set) := union (doubleton x).
Notation "a \cup b" := (union2 a b) (at level 50).

Lemma setU2_hi x y a: inc a (X \cup y) -> inc a x V inc a y.
Lemma setU2_1 x y a: inc a x -> inc a (x \cup).

Lemma setU2 2 x y a: inc ay -> inc a (X \cup y).

Lemma setU2 P a b x: inc x (a \cup b) <-> (inc x a V inc x b).
Lemma subsetU2l a b: sub a (a \cup b).

Lemma subsetU2r a b: sub b (a \cup b).

Lemma setU2_ C: commutative union2.

Lemma setU2_id: idempotent union2.

Lemma setU2_A: associative union2.

Lemma setU2_CA : left_ commutative union2.
Lemma setU2_AC : right commutative union2.
Lemma set2 _UUI : left_distributive union2 union2.
Lemma set2_UUr : right_distributive union2 union2.

Lemma setU2_S

1ABC:sub AB ->sub (C \cup A) (C \cup B).
Lemma setU2_S2 A B

C :sub A B -> sub (A \cup C) (B \cup C).

Inria

Bourbaki: Theory of sets in Coq | (v6) 29

Lemma setU2 SS ABCD:sub AC->subBD ->sub (A \cup B) (C \cup D).
Lemma setU2 12S A B C: sub A C -> sub B C -> sub (A \cup B) C.

Lemma subU2_setP A B C : (sub (B\cup C) A) <-> (sub B A A sub C A).
Lemma sub_setU2 A B C : (sub A B) V (sub A C) -> sub A (B \cup C).

Lemma setU2id Pl A T: sub AT <>A\up T=T.

Lemma setU2id Pr A T: sub AT <> T \cup A =T.

Lemma setU2_0 A : A \cup emptyset = A.

Lemma set0_U2 A : emptyset \cup A = A,

Lemma setU_1 x: union (singleton x) = x.

Lemma setU2 11 x y: (singleton x) \cup (singleton y) = doubleton x y.

Lemma setU2 eqOP A B : (A \cup B = emptyset) <-> (A = emptyset A\ B = emptyset).
Lemma subCset P2 A B C : (sub (A -s B) C) <-> (sub A (B \cup Q)).

Lemma setU2Crl A B: A \cup (A -s B) = A
Lemma setU2Cr2 A B: A \cup (B -s A) = A \cup B.
Lemma setU2 Cr AT: sub AT -> A\cup (T -s A) =T.

In some cases (induction on nite sets), one needs to consider the union of a set and a
singleton.

Notation "a +s1 b" := (a \cup (singleton b)) (at level 50).

Lemma setUl P xy z: (inc z (X +s1y)) <> (inc z x V z = y).

Lemma setUl1 1 a b: inc a (b +s1 a).

Lemma sub_setUl a b: sub b (b +s1 a).

Lemma setUl ra b y:incy b ->incy (b +s1 a).

Lemma setUl_eq x y: inc y X -> X +sl y = Xx.

Lemma setUl_sub x y z: sub x z ->incy z -> sub (x +s1 y) z.

Lemma setCU K x y: sub y x <-> (x -sy) \cup y = x.

Lemma setCl K x y:incy x -> (X -sly) +s1l y = x.

Lemma setUl K a x; ~(inc a x) -> (x +sl a) -s1 a = x.

Lemma setUl inj x A B: ~(inc x A) -> ~(inc x B) -> A +s1 x = B +s1 x -> A = B.
Lemma setCl inj x AB:inc xA ->incxB->A-s1lx=B-s1x->A=B.

If we add an element to a doubleton we get a tripleton.

Definition tripleton a b ¢ := (doubleton a b) +sl1 c.
Lemma set3 P a b ¢ x:

inc x (tripleton abc)<>Vx=a,x=b | x=c]

The union of x and {x} will be denoted later on by xA, and called the successor of x. The
successor of C2will be C3and successor of C3will be C4 The sets C3and C4have exactly
three and four distinct elements.

Definition C3 :
Definition C4 :

C2 +s1 C2.
C3 +s1 C3.

Lemma C3 P x: inc x C3 <> [V x = CO, X
Lemma C4_P x: inc x C4 <> [\ x = CO, x
Lemma C2 neC01: C2 <> CO N C2 <> C1.
Lemma C3_neC012: [\ C3 <> C0O, C3 <> C1 & C3 <> C2].

Cl|x = C2.
Cl, x =C2| x = C3].

The direct image of a set by a function is compatible with union.

RR n°® 6999

30 José Grimm

Lemma funl_set0 f: fun_image emptyset f = emptyset.
Lemma funl_setne f x: nonempty x -> nonempty (fun_image x f).
Lemma funl_setnel f x: fun_image x f = emptyset -> x = emptyset.
Lemma funl_set2 f a b:

fun_image (doubleton a b) f = doubleton (f a) (f b).
Lemma funl_setl f x: fun_image (singleton x) f = singleton (f x).

Lemma funl_setU f X:
fun_image (union X) f = union (fun_image X (fun z => (fun_image z f))).
Lemma funl_setU2 f: {morph (fun_image "~ f): x y / x \cup vy}.
Lemma funl_setUl g X a:
fun_image (X +sl1 a) g = fun_image X g +sl1 (g a).
Lemma funl_S f a b: sub a b -> sub (fun_image a f) (fun_image b f).

Varignt of the axiom of choice. Let E be any set, p(x) be a property, F A£{x 2 E,p(x)} and
z /£ F. Ifthereis aunique x in E that satises p, then F /A&{x}, and z /x so that p(z) holds.
This quantity z is denoted by “select p E ' Assume that p depends on a parameter y and
p(x)implies x 2 f (y). Then ‘select (p y) (f y) 'isthe same as ‘choose p Y. Whenever
possible, we use select rather then choose.

Definition select (p: property) (E: Set) := union (Zo E p).

Lemma select_uniq (p: property) E:

(singl_val2 (inc ~~ E) p) ->

forall x, inc x E -> p x -> x = (select p E).
Lemma select _pr (p : property) E:

(exists2 x, inc x E & p x) ->
(singl_val2 (inc ~~ E) p) ->

(p (select p E) N\ inc (select p E) E).

Conditional de nition. Let x and y be two sets, E A{x, y}, P any property and p(z) be
(zAxandP)or(z £y and : P)

If p(z) holdsthen zisis either x or y, thusisin E. Moreover, there is at most one elementin E
satisfying p. More precisely, assume P true. Then p(z) implies z /£x and p(x) holds; assume
P false; then p(z) implies z £y and p(y) holds.

This allows us to construct a function Y (P,x,y)whichis x if P holds and y otherwise (the
Ytac tactic uses the fact that either P or : P hold).

Definition Yo (P : Prop) (x y : Set) =
select (fun z => (z =x AN P)V (z =y A ~P)) (doubleton x vy).
Lemma Y_true (P:Prop) (hyp :P) x y: Yo P x y = x.
Lemma Y_false (P:Prop) (hyp : ~P) x y: Yo P xy =y.
Lemma Y_same (P: Prop) x : YO P X x = Xx.

2.7 Module Powerset

Bourbaki introduces an axiom that says that for every set X, there is a set y, the powerset
of x, denoted P (x) containing the subsets of x. This set is canonically isomorphic to the set
of functions x! X, where X is a set with two elements A and B (to each function f, associate

Inria

Bourbaki: Theory of sets in Coq | (v6) 31

fi1hAi). The set of (graphs of) functions x ! X is a subset of P (x £ X). Thus existence of the
powerset is equivalent to existence of sets of functions. We consider here the type of functions
rather than the set of functions.

We shall denote here by 0, 1 and 2 the sets ; , {; } and {0,1}. Let g be a function x! 2.
Thus, whenever z 2 x we have q(z) 2 2. We construct a function p oftype x! 2 as follows: if
t:x,then R (t) 2 X, so that q(R (t)) 2 2, and applying B to this gives an object of type 2. We
de ne qi 1(0)asthe setofall z2 x such that q(z) Z0. This set is also denoted by pi 1(0). If H
saysz 2 x, then z 2 pi 1(0) is equivalentto R (p(B H)) ZAO. Let X be the set of all pi 1(0). An
element of X is a subset of x.

Let y be a subset of x, and q the function that maps ztoOif z2 y and to 1 otherwise (we
use the function Y de ned above). Then y Z&pi 1(0), so that y 2 X. In other words, X is the
power set of x.

Definition powerset (x : Set) =
IM (funp:x->C2=>
Zo x (fun y : Set => forall hyp : inc y x, Ro (p (Bo hyp)) = CO0)).

All properties but the rst are trivial. Note that the canonical doubleton is just PMPG)).

Lemma setP_i x y: sub x y -> inc x (powerset y).

Lemma setP_hi x y: inc x (powerset y) -> sub x v.

Lemma setP_P x y: inc x (powerset y) <-> sub x y.

Lemma setP_Ti x: inc x (powerset Xx).

Lemma setP_0i x: inc emptyset (powerset Xx).

Lemma setP_S a b: sub a b <-> sub (powerset a) (powerset b).

Lemma setP_0: powerset emptyset = singleton emptyset.

Lemma setP_1 x: powerset (singleton x) = doubleton emptyset (singleton Xx).
Lemma setP_00 : powerset (powerset emptyset) = C2.

2.8 Module Intersection

\Bourbaki de nes the intersection of a family of sets (X | as the dual of union. We have
x2 Xgifandonlyif x isin every element of the family. We consider here the case (denoted

I
by X) where the mapping 17! Xqis the identity of X, the general case will be studied in a
future Chapter. We have then

XA{x2E,8a,a2X A x2a}

where E is any adequate set. If the family is empty, then Bourbaki de nes the intersection to
be E. We do not like this de nition, since it depends on the context. Taking for E the union
of the family solves the problem, it de nes the intersection of an empty family to be empty.

Definition intersection (x : Set) :=
Zo (union x) (fun y : Set => forall z : Set, inc z x -> inc y 2).

Lemma setl_O: intersection emptyset = emptyset.
Lemma setl i x a:

nonempty x -> (forall y, inc y x -> inc a y) -> inc a (intersection Xx).
Lemma setl_hi x a y: inc a (intersection x) -> inc y X -> inc a vy.
Lemma setl_s1 x y: inc y x -> sub (intersection Xx) Y.

RR n°® 6999

32 José Grimm

The intersection of two sets is denoted X \ Y, the properties listed here are obvious.

Definition intersection2 (x y : Set) := intersection (doubleton x vy).
Notation "a \cap b" := (intersection2 a b) (at level 50).

Lemma setl2 i x y a: incax ->incay->inc a (x \cap y).
Lemma setl2_1 x y a: inc a (x \cap y) -> inc a x.

Lemma setl2 2 x y a:inc a (X \cap y) -> inc a y.

Lemma setl2 P x y a: inc a (x \cap y) <> (inc a x /\ inc a vy).
Lemma subsetl2l a b: sub (a \cap b) a.

Lemma subsetl2r a b: sub (a \cap b) b.

Lemma setl2_id: idempotent intersection2.

Lemma setl_1 x: intersection (singleton x) = x.

Lemma setl2_C: commutative intersection2.

Lemma setl2_A: associative intersection2.

Lemma setl2_CA : left_commutative intersection2.

Lemma setl2_AC : right_commutative intersection2.

Lemma set2_llIl : left_distributive intersection2 intersection2.
Lemma set2_lIr : right_distributive intersection2 intersection2.

Lemma setl2_S

1AB :sub A B -> sub (C \cap A) (C \cap B).
Lemma setl2_S2 A B
A B

C
C : sub A B ->sub (A \cap C) (B \cap C).
Lemma setl2_SS CD:subAC->subBD ->sub (A \cap B) (C \cap D).
Lemma setl2_12S A B C: sub C A -> sub C B -> sub C (A \cap B).

Lemma subsetl2 P A B C : sub C (Alcap B) <-> (sub C A N\ sub C B).
Lemma subl2_set A B C : (sub A C)V (sub B C) -> sub (A \cap B) C.

Lemma subsetl2 P A B C : sub C (Alcap B) <-> (sub C A N\ sub C B).
Lemma setl2id_PlI A T: sub AT <> A\cap T = A

Lemma setl2id_Pr A T: sub A T <> T \cap A = A

We state here some distributivity properties.

Lemma set_UI2I: left_distributive union2 intersection2.

Lemma set_Ul2r: right_distributive union2 intersection2.

Lemma set IU2l: left_distributive intersection2 union2.

Lemma set_IU2r: right_distributive intersection2 union2.

Lemma setPl : morphism_2 powerset intersection2 intersection2.

Lemma set_U2K A B: (A \cup B) \cap A =
Lemma set K2U A B: A \cap (B \cup A) =
Lemma set_I2K A B: (A \cap B) \cup A =
Lemma set_K2I A B: A \cup (B \cap A) =
Lemma setU2_ni x A B: ~inc x (A\cup B) -> (~ inc x A N ~ inc x B).
Lemma setl2_ni x A B: ~inc x (A\cap B) -> (~ inc x AV ~ inc x B).
Lemma setC_ni x A B: ~inc x (A -s B) -> (~ inc x AV inc x B).

A.

A.
A.
A.

Lemma set CU2 A B X: X -s (Alcup B) = (X -s A) \cap (X -s B).
Lemma set CI2 A B X: X -s (Alcap B) = (X -s A) \cup (X -s B).
Lemma setCI2 prl AB E: sub AE ->A -s B = A \cap (E -s B).
Lemma set CC A B E: sub BE -> (E -s (A -s B)) = (E -s A) \cup B.
Lemma setl2_Cr A B : (A \cap B) \cup (A -s B) = A.

Lemma setCU2_| (A \cup B) -s = (A -s C) \cup (B -s C).

ABC:
Lemma setCU2 r ABC : A-s (B \cup C) = (A -s B) \cap (A -s C).
Lemma setCI2 | AB C: (A\ap B) -sC = (A -s C) \cap (B -s C).

Inria

Bourbaki: Theory of sets in Coq | (v6)

33

Lemma setCI2 r ABC : A -s (B\cap C) = (A -s B) \cup (A -s C).
Lemma setCC IABC:(A-sB)-sC=A-s (B \cup C).
Lemma setCCrABC:A-s (B -sC)=(A-s B)\cup (A \cap C).

We say that two sets are disjoint if the intersection is empty. Here are some properties.

Definition disjoint (x y: Set) := x \cap y = emptyset.
Definition disjointVeq (x y: Set) := x = y V disjoint x y.
Lemma disjoint_pr a b:
(forall u, inc u a -> inc u b -> False) -> disjoint a b.
Lemma nondisjoint a b ¢: inc a b -> inc a ¢ -> ~ disjoint b c.
Lemma disjointVeq_pr x y z: disjointVeq X y ->inc z x ->inc zy -> x = V.

Lemma setl2_0 A : disjoint A emptyset.

Lemma setO_I2 A : disjoint emptyset A.

Lemma set IC1lr A B: A \cap (A -s B) = A -s B.
Lemma set_[2Cr A B: disjoint B (A -s B).

Lemma disjoint_S: symmetric_r disjoint.

Lemmas using disjoint and complement.

Lemma subsets_disjoint P A B E: sub A E ->

(sub A B <-> disjoint A (E -s B)).
Lemma disjoint_subsets P A E: sub A E -> forall B,

(disjoint A B <-> sub A (E -s B)).
Lemma setCld_Pl A B: A -s B = A <-> disjoint A B.
Lemma subCset P3 A B C : sub A (B -s C) <> ((sub A B) N\ (disjoint A C)).
Lemma subsetCl P A B x: (sub A (B -s1 x)) <-> (sub A B A\ ~inc x A).
Lemma properl2_ r A B : ~(sub B A) -> ssub (A \cap B) B.
Lemma properl2_| A B : ~(sub A B) -> ssub (A \cap B) A.
Lemma properU2_r A B : ~(sub A B) -> ssub B (A \cup B).
Lemma properU2_| A B : ~(sub B A) -> ssub A (A \cup B).
Lemma properl2_set A B C : (ssub B A) V (ssub C A) -> (ssub (B \cap C) A).
Lemma properl2 A B C : (ssub A (B \cap C)) -> (ssub A B A\ ssub A C).
Lemma properU2 A B C : (ssub (B \cup C) A) -> (ssub B A A ssub C A).

2.9 Module Pair

We de ne here three functions, kpair , kprl, and kpr2, and a hack that makes them

completely opaque. Some comments can be found in section 8.3.]

Definition kpair x y := doubleton (singleton x) (doubleton x y).
Definition kprl x := union (intersection Xx).
Definition kpr2 x :=

union (Zo (union x) (fun z => (doubleton (kprl x) z) = (union Xx))).

This is the hack.

Module Type PairSig.

Parameter first_proj second_proj : Set -> Set.
Parameter pair_ctor : Set -> Set -> Set.
Axiom KkprlE: first_proj = kprl.

Axiom Kkpr2E: second_proj = kpr2.

RR n° 6999

34 José Grimm

Axiom KprE: pair_ctor = kpair.
End PairSig.

Module Pair : PairSig.

Definition pair_ctor := kpair.

Definition first_proj := kprl.

Definition second_proj := kpr2.

Lemma KkprE: pair_ctor = kpair. Proof. by []. Qed.
Lemma KkprlE: first_proj = kprl. Proof. by []. Qed.
Lemma kpr2E: second_proj = kpr2. Proof. by []. Qed.
End Pair.

The three functions de ned above will be renamed as J, P and Q. The usual notations are
(X,y),priz and pr,z.

Notation J := Pair.pair_ctor.
Notation P := Pair.first_proj.
Notation Q := Pair.second_proj.

The important properties are: if z A&(x,y), then pr ;z /Ex and pr,z Ay.

Lemma prl_pair x y: P (J X y) = x.
Lemma pr2_pair x y: Q (I x y) = V.

It follows: if (x,y) £(x°yY then x £x%and y £y°® We say that z is a pair is z has the form
(x,y), forsome x and vy, in particular, if z A(pr,z,pr,z).

The properties of projectors say that (a,b) A(c,d) implies a Ac and b /A£d. We say that
X is a pair if (pr 1X,pryx) Z£x. Any (a,b) is a pair. Two pairs x and y are equal if and only if
prx Aprqy and pr,x Apr,y.

Definition pairp x =J (P X) (Q X) = Xx.

Lemma prl. defabcd:Jab=Jcd->
Lemma pr2 defabcd:Jab=Jcd->
Lemma pair_is_pair x y : pairp (J X y).
Lemma pair_exten a b:

pairp a -> pairpb ->Pa=Pb->Qa=Qb->a=h.

T o

J,Pand Q

In the English Edition, Bourbaki assumes that there is way to create ordered pairs. This
means that, given any two sets x and vy, there is a third set z, denoted here *J X Yy’ and
traditionally (x,y). Sets of these form are called “ordered pairs”. The “axiom of the ordered
pair” states that if (x,y) £(x°y9, then x £x%and y £y® The unique quantity x (de ned
by the Axiom of Choice) such that z A(x,y) is called the “rst projection”, and denoted here
as P Z and by Bourbaki as pr ;z. The unique quantity y such that z £(x,y) is called the
“second projection’, and denoted hereas ™ Q 2and by Bourbakias pr ,z. Thus z &A(pr,z,pr,z)
is equivalentto “ z is an ordered pair”.

Note that pr 4; and pr,; , are two well-de ned sets, but whether ; is an ordered set or
notis undecidable. Thus ;4 (prq; ,pr,;) could be true or false.

In the French Version, Bourbaki shows that (x,y) £{{x},{x, y}} satis es the axiom of the
ordered pair, and uses this to de ne a pair. It follows that a pair is a set with one or two ele-
ments, so that the empty set is not a pair, and the relation given above is false. The de nition

Inria

Bourbaki: Theory of sets in Coq | (v6) 35

of pr is the same as above, so that pr; is some well-de ned set that satis es no particular
relation, since the Axiom of Choice does apply here.

In the de nition that follows, we avoid using the Axiom of Choice. Then pr 1 /E pry; E
; . We use a hack that forbids C 0Q to unfold the de nitions.The de nition of a pair was
introduced by Kuratowski in 1923, and used in [3]._]Consider two sets __ x and y, and the pair
z E(x,y). If a £{x} a§d b A{x,y}, then z A{a,b}. IfU £ zand| £ z,thenU A{x,y}and
| {x}. Itfollows x /& 1, and this gives a de nition for pr ;. Given | and U, one can deduce .
In effect, either U A, and y is the single element of U, and otherwise vy is the single element
of U not in I. Wikipedia de nes pr , as the single element of {t 2 U,U 64 A&) t 63} (this
strange de nition avoids the if-then-else construction). Note that y is the single element t of
U suchthat { x,t} AU, and this is the de nition we shall use.

2.10 Module Cartesian

The cartesian product A£ B of two sets A and B is the set of all pairs z such that pr ,z2 A
and pr,z 2 B. Itis the union (for x 2 A) of the sets By of all (x,y) for y 2 B.

Definition product (A B : Set) :=
union (fun_image A (fun x => (fun_image B (J x)))).
Definition coarse A := product A A.

Notation "A \times B" := (product A B) (at level 40).

Lemma setX P x A B:

inc x (A \times B) <-> [/ pairp X, inc (P x) A & inc (Q x) B].
Lemma setX_pair x A B: inc x (A \times B) -> pairp x.
Lemma setX i x A B:

pairp x -> inc (P x) A ->inc (Q x) B -> inc x (A \times B).
Lemma setXp_i x y A B:

inc x A ->incy B ->inc (J xy) (A \times B).
Lemma setXp_P x y A B:

inc (J x y) (A \times B) <-> (inc x A A\ inc y B).

A product is empty if and only one factor is empty. This is Proposition 2 [2, p.175].

Lemma setX 0l B: emptyset \times B = emptyset.
Lemma setX_Or A: A \times emptyset = emptyset.
Lemma setX_0 A B:
A \times B = emptyset -> (A = emptyset / B = emptyset).

The product A £ B is increasing in A and B, strictly if the other argument is non empty.
This is Proposition 1 [2,1p. 74].

Lemma setX_ Sl x X' y: sub x x' -> sub (x \times y) (X' \times y).
Lemma setX_Sr x y y: sub y y' -> sub (x \times y) (x \times y").
Lemma setX_SIr x X' y y"

sub x X' -> sub y y' -> sub (x \times y) (x' \times y").
Lemma setX_IS x x' y: nonempty y ->

sub (x \times y) (x' \times y) -> sub x X'
Lemma setX_rS x y y' nonempty x ->

sub (x \times y) (x \times y') -> sub y y"

RR n°® 6999

36 José Grimm

We sometimes write X ; instead of (X,{i}).

Definition indexed (x i: Set) := x \times singleton i.
Definition indexedr (i x: Set) := singleton i \times x.
Notation "a *s1 b" := (indexed a b) (at level 50).

Lemma indexed_pi x i y: incy x ->inc (J y i) (x *s1 i).
Lemma indexed_P x i y:

incy (x *s1 i) <> [\ pairpy,inc(Py) x&Qy=Il].
Lemma indexedrP a b c:

inc a (indexedr b ¢c) <-> [\ pairpa, Pa=Db & inc (Q a) c].

2.11 Module Function

We introduce here some notations. Assume that P means 8x,p(x). Then {inc X, P}
means 8x 2 X,p(x). Assume that Q means 8x8y,q(x,y). Then {inc X & Y, Q} means
8x2X,8y2VY,q(x,y)and {inc X & Q} means8x2X,8y 2 X,q(x,y). (notethat prop_incl
takes 3 arguments; a set X, a property p and third argument, that is not used, but whose type
is some phantom built from P. Since p can be deduced from P, thus from the type of the third
argument, the second argument is implicit; with this trick the de nition can use p, although
P is given).

Definition prop_incl (X : Set) (P: property)
& (phantom Prop (forall x0 : Set, P x0)) :
forall x, inc x X -> P x.

Definition prop_incll X Y (P: relation)

& (phantom Prop (forall x y: Set, P x y)) :
forall x y, inc x X ->incy Y -> P xy.
Definition prop_inc2 X (P: Set -> Set -> Prop)
& (phantom Prop (forall x y: Set, P x y)) :=

forall x y, inc x X ->incy X -> P xy.

Notation "{ 'inc' d , P }" :=
(prop_incl d (inPhantom P))
(at level 0O, format "{ 'inc’ d , P }") : type_scope.

Notation "{ 'inc' d1 & d2 , P }" :=
(prop_incl11l di1 d2 (inPhantom P))
(at level O, format "{ 'inc’ d1 & d2, P }"): type scope.

Notation "{ 'inc' d & , P }" :=
(prop_inc2 d (inPhantom P))
(at level O, format "{'incc d &, P }") : type_scope.

Assume that P is as above; then {when r, P} means 8x,r(x) A/ p(x). We consider also
variants where a property q depends on two variables. In particular {when: r, Q} means

8X,y,r(x,y) A a(x,y).

Definition prop_whenl (X : property) (P: property)
& (phantom Prop (forall x0 : Set, P x0)) =
forall X, X x -> P x.

Inria

Bourbaki: Theory of sets in Coq | (v6) 37

Definition prop_whenll (X Y: property) (P: Set -> Set -> Prop)
& (phantom Prop (forall x y: Set, P x y)) :=
forall x y, X x > Yy ->P xy.
Definition prop_when2 (X: property) (P: relation)
& (phantom Prop (forall x y: Set, P x y)) :=
forall x y, X x -> Xy -> P xy.
Definition prop_when22 (X: relation) (P: relation)
& (phantom Prop (forall x y: Set, P x y)) :=
forall x y, X xy -> P x V.
Notation "{ 'when' d , P }" :=
(prop_whenl d (inPhantom P))
(at level 0O, format "{ 'when' d , P }") : type_scope.

Notation "{ 'when' d1 & d2 , P }" :=
(prop_whenll d1 d2 (inPhantom P))
(at level 0O, format "{ 'when' di1 & d2, P }") : type_scope.

Notation "{ ‘when' d & , P }" :=
(prop_when2 d (inPhantom P))
(at level O, format "{ 'when' d &, P }") : type_scope.

Notation "{ ‘when' : d , P }' :=
(prop_when22 d (inPhantom P))
(at level 0O, format "{ 'when' : d , P }") : type_scope.

We say that f and g commute at x if f (g(x)) £g(f (x)). We say that f and g commute if
they commute everywhere.

Definition commutes_at (f g: Set -> Set) x:= f (g x) = g (f x).
Definition commutes f g := forall x, commutes_at f g x.

More notations. We say that an operation f is compatible with p and q if p(x) implies
q(f (x)). If f takes two arguments, this meansthat p(x,y) implies q(f (x), f (y)).

Definition compatible_1 f (p q: property) =
forall x, (p x) -> q (f x).

Definition compatible_ 2 f (p q:relation) =
forall x y, (p xy) > q (f x) (fy).
Definition compatible_3 f (p q:property) :=

forall xy, (p X) > (py) > q (fxy).

Notation "{ ‘compat' f : x / p >>q }' =
(compatible_1 f (fun x => p) (fun x => Qq))
(at level 0, f at level 99, x ident,
format "{ '‘compat’ f :x / p >> q}") : type_scope.

Notation "{ ‘compat’' f : x / p }" =
(compatible_1 f (fun x => p) (fun x => p))
(at level 0, f at level 99, x ident,
format "{ 'compat' f :x [/ p }) : type_scope.

Notation "{ '‘compat' f : x y / p >>q }' =

(compatible_2 f (fun x y => p) (fun x y => Qq))
(at level 0, f at level 99, x ident, y ident,

RR n°® 6999

38 José Grimm

format "{ 'compat’ f
Notation "{ ‘compat' f : xy / p }':
(compatible_2 f (fun x y => p) (fun x y => p))
(at level 0, f at level 99, x ident, y ident,
format "{ '‘compat’ f :x y [/ p}") : type_scope.

X y [p >> q}): type_scope.

Notation "{ 'compat’ f : x & / p >-> q }" =
(compatible_3 f (fun x => p) (fun x => q))
(at level 0, f at level 99, x ident,
format "{ '‘compat’ f :x & [/ p >> q}) : type_scope.

Notation "{ 'compat' f : x & / p }" =
(compatible_3 f (fun x => p) (fun x => p))
(at level 0, f at level 99, x ident,
format "{ ‘compat’ f :x & [/ p }) : type_scope.

We give here examples

(*

Lemma setU2 2 a y: {compat (union2 y): x / inc a x >-> inc a x}.

Lemma setU2_2 a y: {compat (union2 y): x / inc a x}.

Lemma funl_setne f: {compat (fun_image "~ f): x / nonempty x }.

Lemma setl2_S1 C: {compat (intersection2 C) : x y / sub x y }.

Lemma set SC C: {compat (fun z => z -s C) : x y / sub x y}.

Lemma set CS C: {compat (fun z => C -s z) : x y / sub x y >> sub y x}.
Lemma setl2_12S y: {compat intersection2 : x & / sub y x}.

Lemma setU2_12S y: {compat union2 : x & / sub x y}.

*)

A simple graph is a set of pairs. If (x,Y) is in the graph, we say that x and y are related. A
functional graph is one for which the rst projection is injective. We use sgraph and fgraph
in the de nitions that follow. The domainand range are the images of the rst and second
projection.

Definition alls (X: Set)(P: property) := forall a, inc a X -> P a.
Definition sgraph r := alls r pairp.

Definition fgraph f := sgraph f A {inc f &, injective P}.
Definition domain f := fun_image f P.

Definition range f := fun_image f Q.

Definition related r x y :=inc (J x y) r.

Some properties of a functional graph.

Lemma fgraph_sg f: fgraph f -> sgraph f.
Lemma fgraph_pr f x y y": fgraph f -> inc U xy) f->inc A xy)f->y=y.

The domain and range of a graph are characterized by the following two lemmas.
Lemma domainP r: sgraph r -> forall x,

(inc x (domain r) <-> (exists y, inc (J x y) r)).
Lemma rangeP r: sgraph r -> forall vy,

(inc y (range r) <-> (exists x, inc (J X y) r)).

These lemmas are obvious from the de nitions.

Inria

Bourbaki: Theory of sets in Coq | (v6) 39

Lemma domain_il f x: inc x f -> inc (P x) (domain f).
Lemma range i2 f x: inc x f -> inc (Q x) (range f).
Lemma domain_i f x y: inc (J x y) f -> inc x (domain f).
Lemma range_i f x y: inc (J x y) f -> inc y (range f).

Some properties of a simple graph.

Lemma sgraph_exten r r":

sgraph r -> sgraph r' ->

(forall u v, related r u v <-> related r' u v) ->r ="
Lemma setl2_graphl x y: sgraph x -> sgraph (x \cap y).
Lemma setl2_graph2 x y: sgraph y -> sgraph (x \cap y).
Lemma setU2 graph x y: {compat union2 : x & / sgraph x}.

We consider the domain and range of various sets. In particular, domain and range are
morphisms for union.

Lemma range_set0: range emptyset = emptyset.

Lemma domain_set0: domain emptyset = emptyset.

Lemma domain_setOP x: nonempty (domain X) <-> nonempty X.

Lemma domain_set0_P r: (domain r = emptyset <-> r = emptyset).
Lemma range_setO_ P r. (range r = emptyset <-> r = emptyset).
Lemma domain_setl x y: domain (singleton (J x y)) = singleton x.
Lemma range_setl x y: range (singleton (J x y)) = singleton v.

Lemma range_setU2: {morph range: x y / X \cup y}.

Lemma domain_setU2: {morph domain: x y / x \cup y}.

Lemma domain_setU z: domain (union z) = union (fun_image z domain).
Lemma range_setU z: range (union z) = union (fun_image z range).
Lemma domain_setUl f x y: domain (f +s1 (J x y)) = (domain f) +s1 x.
Lemma range_setUl f x y: range (f +s1 (J x y)) = (range f) +sl .

We consider here some special graphs. The union of functional graphs is a functional
graph, when the domains are mutually disjoint; we consider here the union of two graphs,
the general case will be considered later on.

Lemma sgraph_setO: sgraph emptyset.
Lemma fgraph_setO: fgraph emptyset.
Lemma fgraph_setUl f x y:
fgraph f -> ~inc x (domain f) ->
fgraph (f +s1 (J x y)).
Lemma fgraph_setU2 a b: fgraph a -> fgraph b ->
disjoint (domain a) (domain b) ->
fgraph (a \cup b).

Assume that g is a functional graph, and x is in the domain. Then there is y such that
(x,y) 2 g (since g is a graph), and this y is unique (since the graph is functional). Moreover, vy
is in the range of g. Thus, we can de ne afunction™ Vg g Xor V(x,g), or Vg(x), that maps x
to y under these circumstances.

We say same_Vg f gor °f =1g g' when Vi (x) EVy(x) for every x, so that *{inc a,
f =19 g} ' means Vi (x) £Vy(x) for every x 2 a. We say allf g p ' when p(Vy(x)) holds
whenever x is in the domain of g.

Definition action_prop (f g: Set -> Set -> Set) =

RR n°® 6999

40 José Grimm

forall a b x, f (g a b) x = (fa (f b x)).

Definition Vg (f x: Set) := select (fun y : Set => inc (J x y) f) (range f).
Definition allf (g: Set) (p: property) :=
forall x, inc x (domain g) -> (p (Vg g X)).

Definition same_Vg f g: Vg f =1 Vg g.
Notation "f1 =1g f2" := (same_Vg fl1 f2)
(at level 70, no associativity) : fun_scope.

Assume that f is a functional graph. If x is in the domain, then (x,V;(x))2f. Ifz2 f,
then z is a pair, say z Z£(x,y), and y /V;s (x). It follows that vy is the range of f if and only if
there is x in the domain of f suchthat y A£V; (x). Finally, if f and g are two functional graphs
with the same domain, such that Vi (x) Z££Vy(x) on the domain, it follows f Ag.

Section Vprops.
Variable f. Set.
Hypothesis fgf: fgraph f.

Lemma fdomain_prl x: inc x (domain f) -> inc (J x (Vg f x)) f.
Lemma in_graph V x; inc x f ->x =J (P x) (Vg f (P Xx)).
Lemma pr2_V x: inc x f > Q x = Vg f (P x).
Lemma range_gP vy:

(inc y (range f) <-> (exists2 x, inc x (domain f) & y = Vg f x)).
Lemma inc_V_range x: inc x (domain f) -> inc (Vg f x) (range f).

End Vprops.

Lemma fgraph_exten f g:
fgraph f -> fgraph g -> domain f = domain g ->
{inc (domain f), f =1g g} -> f = g.

Consider now a function f and a set x. The set of all pairs (a, f(a)) for a 2 x will be
denoted by L «f. Thisis a functional graph; its domainis X, and its evaluation functionis f.
If f and g are equalon a,then L 5f AL ;0.

Definition Lg (x : Set) (p : fterm) :=
fun_image x (fun'y => J vy (p y)).

Lemma Lg i xy p:inc xy -> inc J x (p X)) (LgQ Yy p).
Lemma Lg_fgraph p x: fgraph (Lg x p).

Lemma Lg_domain | x p: domain (Lg x p) = x.

Lemma LVg E xpy:incyx->Vg(Lgxp y=pYy.
Lemma Lg exten af g: {inca, f=1g}->Lgaf=Lgag.

Therange of L 4 f isthe image f hxi (according to Section 2.4]on page 45 jwe shall de ne
ghxi where g is a graph). There are some other useful properties.

If v is a graph with domain x and evaluation function f,then v £L 4f. We havel «f A&
L ygif x £y, and f and g agree on x.

Lemma Lg_range p x: range (Lg x p) = fun_image x p.
Lemma Lg create a f: Lg a (fun x => Vg (Lg a f) x) = Lg a f.
Lemma Lg_range P sf f a:

inc a (range (Lg sf f)) <-> exists2 b, inc b sf & a = f b.

Inria

Bourbaki: Theory of sets in Coq | (v6) 41

Lemma Lg_recovers f:
fgraph f -> Lg (domain f) (Vg f) = f.
Lemma Lg_exten a f g: {inc a, f =1 g} ->Lgaf=1Lg ag.

An interesting function is the identity function: it maps everything on itself. We consider
here the graph of this function. More properties will be given later.

Definition identity_g (x : Set) := Lg x id.

Lemma identity fgraph x: fgraph (identity_g x).

Lemma identity_sgraph x: sgraph (identity g x).

Lemma identity_d x: domain (identity_g x) = x.

Lemma identity_r x: range (identity g x) = X.

Lemma identity ev x a: inc x a -> Vg (identity g a) X = x.

Another interesting function is the constant function that maps any element of X onto
y. Its graph is X £ {y}. This set will be denoted X y (for instance when we consider disjoint
unions, and cardinal sums).

Definition cst_graph x y:= Lg x (fun _ =>y).

Lemma cst_graph_pr x y: cst_ graph x y = x *sl y

Lemma cst_graph_ev x y t :inc t x -> Vg (cst_graph x y) t = v.
Lemma cst graph_d x y : domain (cst_graph x y) = x.

Lemma cst_graph_fgraph a b: fgraph (cst_graph a b).

We give here the evaluation function for the graph f, extended by x 7! y.

Lemma setUl V out f x y:

fgraph f -> ~ (inc x (domain f)) -> Vg x (f +s1 (J x y)) = V.
Lemma setUl_V_in f x y u:

fgraph f -> ~ (inc x (domain f)) -> inc u (domain f) ->

Vg (f +s1 (3 x y)) u = vg f u.

Assume that g is a functional graph, and f %2g. Then f is a functional graph, its domain
and range are subsets of the domain and range of g; its evaluation function is the same. There
is a converse: if we have two functional graphs, if the domain of f is a part of the domain of
g, and if the evaluation function is the same onthe domainof ~ f, then f isa subsetof g. From
this we deduce an extensionality property.

Lemma sub_graph_fgraph f g: fgraph g -> sub f g -> fgraph f.
Lemma domain_S f g: sub f g -> sub (domain f) (domain g).
Lemma range_S f g: sub f g -> sub (range f) (range g).
Lemma sub_graph_ev f g:

fgraph g -> sub f g -> {inc (domain f), f =1g g}.

The restriction of agraph f toasetx isthegraphof t! V;(t)fort 2x.

Definition restr f x := Lg x (Vg f).

Lemma restr_d f x: domain (restr f x) = x.

Lemma restr_fgraph f x: fgraph (restr f x).

Lemma restr_ ev f x i: inc i x -> Vg (restr f x) i = Vg f i.

Lemma double_restr f a b: sub a b -> (restr (restr f b) a) = (restr f a).

RR n°® 6999

42 José Grimm

Lemma restr Lgab f.subba->restr(Lgaf)b =Lghbf
Lemma restr_to_domain f g: fgraph f -> sub g f -> restr f (domain g) = g.
Lemma restr_rangel f x: fgraph f -> sub x (domain f) ->

sub (range (restr f x)) (range f).

1 We denote by g +f the composition of the two functions. It maps x to g(f (x)). We shall
give three de nitions, one adapted for functional graphs, one for simple graphs, and one for
functions. We consider here functional graphs. Assume that the range of f is a subset of the
domain of g. In this case, for any x in the domain of f, f(x) is in the domain of g, so that
g(f (x)) isin the domain of g.

Definition composablef (f g : Set) :=
[\ fgraph f, fgraph g & sub (range g) (domain f)].
Definition composef f g := Lg (domain g) (funy => Vg f (Vg g y)).

Notation "x \cf y" := (composef x y) (at level 50).
Notation "x \cfP y" := (composablef x y) (at level 50).

Lemma composef ev x f g:

inc x (domain g) -> Vg (f \cf g) x = Vg f (Vg g x).
Lemma composef_fgraph f g: fgraph (f \cf g).
Lemma composef_domain f g: domain (f \cf g) = domain g.
Lemma composef _range f g: f \cfP g ->

sub (range (f \cf g)) (range f).

Inria

Bourbaki: Theory of sets in Coq | (v6) 43

Chapter 3

Correspondences

From now on, we follow Bourbaki as closely as possible. The series “Elements of mathe-
matics” is divided in 9 books, the rst one is called “Theory of sets”. This book is divided into
four chapters, the second one is “Theory of sets”. This chapter is divided into 6 sections; we
implement here section 3 “Correspondences”. When we talk about Proposition 1, this is to
be understood as Proposition 1 of [2]lof the current section (i.e., the current Chapter of this
report).

3.1 Graphs and correspondences

The next theorem is Proposition 1 in [2[_p. 76]; it claims existence and unigueness of
two sets denoted by pr {Iri and pr,lri. The notation pr ;fri is de ned in section 2t is the
domain of r.

Theorem range_domain_exists r: sgraph r ->
((exists! a, forall x, inc x a <-> (exists y, inc (J x y)) N\
(exists! b, forall y, inc y b <-> (exists x, inc (J X y) r))).

A product x £ y is a graph. The domain is x, the range is y, whenever the sets are non-
empty. Itis a functional graph only if the domain is a singleton.

Lemma setX_graph x y: sgraph (x \times y).
Lemma sub_setX_graph u x y: sub u (x \times y) -> sgraph u.
Lemma sub_graph_setX r: sgraph r -> sub r ((domain r) \times(range r)).
Lemma setX relP x y a b:

related (x \times y) a b <-> (inc a x A inc b y).
Lemma setX_domain x y: nonempty y -> domain (X \times y) = x.
Lemma setX_range X y: nonempty x -> range (x \times y) =vy.

The diagonal of x, denoted ¢, is the set of all pairs (a,a), with a 2 x. This is the graph of
the identity functionon x.

Definition diagonal x := Zo (coarse x)(fun y=> P y = Q V).
Lemma diagonal_i P x u:

inc u (diagonal x) <-> [/ pairp u, inc (P u) x & P u = Q u].
Lemma diagonal_pi_ P x u v:

RR n°® 6999

44 José Grimm

inc (J u v) (diagonal x) <-> (inc u x A u = v).
Lemma diagonal_is_identity x: diagonal x = identity_g x.

For Bourbaki, “a correspondencebetweenaset AandasetBisa tripIeE]i (G, A,B) where
G is a graph such that pr ;hGi %2 A and pr,hGi¥2 B". The quantities G, A, and B are respectively
called the graph, source and target of j. We get an equivalent de nition by using G “2A£ B,
and thisis the same as G 2 P (A£ B).

Definition triplep f := pairp f A pairp (Q f).
Definition triple stg =J g (J s t).
Definition source x := P (Q X).
Definition target x = Q (Q X).
Definition graph x = P x.

Definition correspondence f :=
triplep f i A\ sub (graph f) ((source f) \times (target f)).

Denote by s, t and g, the source, target and graph of a correspondence. If | A(a,b,c)
then s(j) Za, t(j) Ab and g(j) Z&c. If j isatriple, then i A&(s(j),t(j).g()).

Lemma triple_corr s t g: triplep (triple s t Q).
Lemma corresp_s s t g: source (triple st g) = s.
Lemma corresp_t s t g: target (triple st g) = t.
Lemma corresp_g s t g: graph (triple st g) = g.
Lemma corresp_recov f: triplep f ->
triple (source f) (target f) (graph f) = f.
Lemma corresp_recovl f: correspondence f ->
triple (source f) (target f) (graph f) = f.

If j isacorrespondencede nedby s,t,and g,then g%s£ t. Thisis equivalentto: gisa
graph whose domain is a subset of sand whose range is a subset of t.

Lemma corr_propcc s t g:

sub g (s \times t) <-> [\ sgraph g, sub (domain g) s & sub (range g) t].
Lemma corr_propc f (g := graph f):

correspondence f ->

[\ sgraph g, sub (domain g) (source f) & sub (range g) (target f)].

Lemma corresp_create s t g:

sub g (s \times t) -> correspondence (triple s t Q).
Lemma corresp_is_graph g:

correspondence g -> sgraph (graph g).
Lemma corresp_sub_range g:

correspondence g -> sub (range (graph g)) (target Q).
Lemma corresp_sub_domain g:

correspondence g -> sub (domain (graph g)) (source g).

A triple (G, A, B) is a correspondence if and only if G 2 P (A£ B), but Bourbaki de nes the
powerset only later. From this, we deduce that the set of all correspondences between A and

Bis P (A£ B)£ {A}£ {B}.

Definition correspondences x y =

1Bourbaki interprets (G, A, B) as ((G, A), B). We prefer (G, (A, B)).

Inria

Bourbaki: Theory of sets in Coq | (v6) 45

(powerset (x \times y)) \times((singleton x) \times (singleton y)).
Lemma correspondencesP x y z:

inc z (correspondences x y) <->

[\ correspondence z, source z = X & target z = vy].

1 Direct image of a set X by a functional object f. This will be denoted by f hXi. Inthe rst
de nition f is a graph, and we consider all elements y for which there isa z 2 X such that
(z,y) 2 f. In the other de nitions, f is a correspondence, and we consider the image by its
graph of either X or the source of f.

Definition direct_image f X:=

Zo (range f) (fun y=>exists2 x, inc x X & inc (J x y) f).
Definition image_by fun f := direct_image (graph f).
Definition image_of fun f := image_by fun f (source f).

We give now some basic properties. The image is a part of the range; it is the full range if
we consider the full domain. The image of a subset X of the domain is empty if and only if X
is empty. Proposition 2 in [2,_p. 77] says that the X 7! f hXi is increasing

Lemma dirim_P f X vy:
inc y (direct_image f X) <-> exists2 x, inc x X & inc (J x y) f.
Lemma dirimE f X: fgraph f -> sub X (domain f) ->
direct_image f X = fun_image X (Vg f).
Lemma dirim_Sr f X: sub (direct_image f X) (range f).
Lemma dirim_domain f: sgraph f -> direct_image f (domain f) = range f.
Lemma dirim_set0 f: direct image f emptyset = emptyset.
Lemma dirim_setnO f u: sgraph f -> nonempty u -> sub u (domain f)
-> nonempty (direct_image f u).
Theorem dir_im_S f: {compat (direct_image f): u v / sub u v}.

A special case iswhen X is a singleton {x}. If f is a correspondence, the notation G(f)h{x}
issometimes simpliedto f h{x}i or f (x) (this last notation is ambiguous, since it denotes also
the value of f at x).

Definition im_of_singleton f x := direct_image f (singleton x).
Lemma dirim_setl P f x y:
inc y (im_of singleton f x) <-> inc (J x y) f.

Lemma dirim_setl S f . sgraph f -> sgraph f' ->
((forall x, sub (im_of_singleton f x) (im_of_singleton f' x)) <-> sub f).

3.2 Inverse of a correspondence

1 _
The inverse graph of G, denoted by IG, orGi tisthe setofall pairs (x,y) suchthat (y,x) 2 G.
This is also the set of all (pr ,z,pr,z) for z 2 G (these two sets may be different if G is not a

graph).

Definition inverse_graph r :=
Zo ((range r) \times (domain r)) (fun y=> inc (J (Q y)(P y))).

Lemma igraph_alt r: sgraph r ->
inverse_graph r = fun_image r (fun z => J(Q z) (P 2)).

RR n°® 6999

46 José Grimm

Some trivialities to start with.

Lemma igraph_graph r: sgraph (inverse_graph r).
Lemma igraphP r y:

inc y (inverse_graph r) <-> (pairp y A inc (J (Q y)(P y)) n).
Lemma igraph_pP r x vy:

inc (J x y) (inverse_graph r) <->inc (Jy X) r.

Taking the inverse swaps range and domain. Taking twice the inverse gives the same
graph. The inverse of a product is the product in reverse order. The inverse of the empty set
or identity is itself.

Lemma igraph_involutive : {when sgraph, involutive inverse_graph}.

Lemma igraph_range r: sgraph r -> range (inverse_graph r) = domain r.
Lemma igraph_domain r: sgraph r -> domain (inverse_graph r) = range r.
Lemma igraphO: inverse_graph (emptyset) = emptyset.

Lemma igraphX x y: inverse_graph (x \times y) = y \times x.

Lemma igraph_identity g X: inverse_graph (identity g x) = identity g x.

i1 il
The inverse of the correspondence | A&(G,A,B)is ('G,B,A). It is denoted by li . It satis es
some trivial properties.

Definition inverse_fun m :=
corresp(target m) (source m)(inverse_graph (graph m)).

Lemma ifun_s f: source (inverse_fun f) = target f.
Lemma ifun_t f: target (inverse_fun f) = source f.
Lemma ifun_g f: graph (inverse_fun f) = inverse_graph (graph f).
Lemma icor_correspondence m:
correspondence m -> correspondence (inverse_fun m).
Lemma icor_involutive: {when correspondence, involutive inverse_fun}.

The inverse image by a graph (or correspondence or a function) is the direct image of its
inverse. Itis denoted by gi thxi.

Definition inverse_image r := direct_image (inverse_graph r).
Definition inv_image_by fun r:= inverse_image (graph r).

Lemma iim_fun_pr r :
inv_image_by fun r = image_by fun (inverse_fun r) x.
Lemma iim_graph_P x r y:
(inc y (inverse_image r x)) <-> (exists2 u, inc u x & inc (J y u) r)).
Lemma iim_fun P x r vy:
(inc y (inv_image_by fun r x))
<-> (exists2 u, inc u x & inc (J y u) (graph r)).

3.3 Composition of two correspondences

The composition of two graphs G 2 +G; is the set of all (x,z) for which there is a y such
that (x,y) isin G and and (y,z) isin G». Itis a subset of the product of the domain of the
rst graph and the range of the second. If both arguments are functional graphs and are
composable, then the result is a functional graph such that G 5 +G;(x) £G»(G1(x)), for any

Inria

Bourbaki: Theory of sets in Coq | (v6) 47

x in the domain of G 1; in other terms, this notion coincides with the previous de nition of
composition.

Definition composeg r' r :=
Zo((domain r)itimes (range r"))

(fun w => exists2 y, inc 3 Pw)y)r&inc Jy (Qw)r).
Notation "x \cg y" := (composeg x y) (at level 50).

Lemma compg_graph r r': sgraph (r \cg r').
Lemma compg_P r r' x:

inc x (r'\cg r) <->

(pairp x N (exists2 y, inc J (P x) y) r &inc (Jy (Q x))).
Lemma compg_pP r r' x vy:

inc 3 xy) (r\cgr) <> (exists2 z, inc I x z)r &inc J zy)r).
Lemma compg_domain_S r r': sub (domain (r' \cg r)) (domain r).
Lemma compg_range S r r: sub (range (r' \cg r)) (range r').
Lemma compg_composef f g: f\cfP g -> f\cf g = f\cg g.

Proposition 3 in [Z,]p. 79] says (G %+G)i 1 £Gi 1 +(GYi L.

Theorem compg_inverse: {morph inverse graph : a b / a \cg b >-> b \cg a}.
Proposition 4 [2,lp. 79] says that graph composition is associative.

Theorem compgA: associative composeg.

Proposition 5 [Z]p. 79] says (G °+G)hAi £ GhGhAii . We have a characterization of the
domain and range of the composition as direct or inverse image of the domain or range. We
have an interesting formula A %G/ *hGhAii .

Theorem compg_image: action_prop direct_image composeg.

Lemma compg_domain r r";

sgraph r' -> domain (r' \cg r) = inverse_image r (domain r).
Lemma compg_range r r"

sgraph r -> range (r' \cg r) = direct_image r' (range r).
Lemma inverse_direct_imageg r Xx:

sgraph r -> sub x (domain r) ->

sub x (inverse_image r (direct_image r Xx)).
Lemma compg_S rr s s

sub r s ->subr s ->sub (r'\cg r) (s' \cg 9).

We say that f and f °are composable if they are correspondences where the target of f is
the source of f° We may assume f A(G, A,B) and f °&£(G° B, C). Let GG be the composition
of the two graphs (both previous de nitions agree in this case). We de ne the composition
% f /E(G%G, A, C); thisis a correspondence, with source A, target C, and graph G %G. Propo-
sition 5 implies (f % f)hAi £ f %f hAii , and Proposition 3 gives (f%f)i 1 £fi1+£ 01 provided
both correspondences are composable.

Definition composableC r' r =

[\ correspondence r, correspondence r' & source r' = target r].
Definition compose r' r :=

triple (source r)(target r') ((graph r') \cg (graph r)).

RR n°® 6999

48 José Grimm

Notation "f1 \co f2" := (compose fl f2) (at level 50).

Lemma compf_correspondence r' r:
correspondence r -> correspondence r' ->
correspondence (r' \co r).
Lemma compf_image: action_prop image_by fun compose.
Lemma compf_inverse: {morph inverse_fun : a b / a \co b >-> b \co a}.

The identity | A of a set A is the correspondence (¢ a, A, A), where ¢ A the diagonal of A.

Definition identity x := triple x x (identity_g x).

Lemma identity triple x: correspondence (identity fun x).

If f isacorrespondence between AandBthen f +laandlgtf are equalto f. In particular
Iatla Al a. We can restate this statement as: the identity of B is a left inverse for composition,
whenever f is a correspondence with target B.

Lemma identity s x: source (identity x) = x.
Lemma identity t x: target (identity x) = x.
Lemma identity_graphO x: graph (identity x) = identity g X.
Lemma compf_id_left m:

correspondence m -> (identity (target m)) \co m = m.
Lemma compf_id_right m:

correspondence m -> m \co (identity (source m)) = m.
Lemma compf_id _id x:

(identity x) \co (identity x) = (identity x).
Lemma identity_self_inverse x:

inverse_fun (identity x) = (identity x).

Corollary compose_identity_left E:
{when (fun x => correspondence x N (target x) = E),
left_id (identity E) compose}.

3.4 Functions

We say that a graph r is functional if each x is related to at most one y. We show that this
de nition is equivalent to the one given in Section 2.11, that says thatif ~ z and zlarein r, then
pr,z /pr,z%implies z /Ez°

Definition functional_graph r :=
forall x, singl_val (related r x).

Lemma functionalP r:
(sgraph r A functional_graph r) <-> (fgraph r).

A function is a correspondence f A(G,A,B) with a functional graph G, where A is the
domain of G. This means thatevery x in Ais related to unique y. This is denoted in Bourbaki
by f (x) or G(x). Here we use either Vgx or W; x. Note: Bourbaki says [2] p. 82] “we shall often

use the word “function' in place of functional graph' "

Inria

Bourbaki: Theory of sets in Coq | (v6) 49

Definition function f :=
[\ correspondence f, fgraph (graph f) & source f = domain (graph f)].

Lemma function_pr s t g:

fgraph g -> sub (range g) t -> s = domain g ->

function (triple s t g).
Lemma function_fgraph f: function f -> fgraph (graph f).
Lemma function_sgraph f: function f -> sgraph (graph f).
Lemma f_domain_graph f: function f -> domain (graph f) = source f.
Lemma f_range_graph f: function f -> sub (range (graph f))(target f).
Lemma image_by fun_source f: function f ->

image_of_fun f = range (graph f).
Lemma function_functional f: correspondence f ->

function f <-> (forall x, inc x (source f) ->

exists! y, related (graph f) x vy).

Each property of V gives a corresponding one for W. All lemmas listed here are trivial.
Let f /£(G,A,B) be a function. If x 2 A then (x,Wx) 2 G, Wt x 2 range(G) and W; x 2 B. If
y 2 range(G), there exists x such that y AW, x. If z 2 G then z &A(pr 1z, W, pr4,z), proz AW prqz,
andpr,z2 A. If(x,y) 2 Gthen y AW x, x 2 Aand y 2 B. Finally, if X ¥2A then y 2 f hXi if and
only if there is x 2 X such that y AW x.

Definition Vf f x := Vg (graph f) x.

Section W_pr.
Variable f: Set.
Hypothesis ff: function f.

Lemma Vf_pr3 x: inc x (source f) -> inc (3 x (Vf f x)) (graph f).
Lemma in_graph_Vf x: inc x (graph f) -> x = (3 (P x) (Vf f (P X))).
Lemma Vf_pr2 x: inc x (graph f) -> Q x = Vf f (P x).
Lemma Vf_pr x y: inc (J x y) (graph f) -> y = Vf f x.
Lemma range_fP y:

inc y (range (graph f)) <-> exists2 X, inc x (source f) & y = Vf f x.
Lemma Vf _range_g f x:inc x (source f) -> inc (Vf x tf) (range (graph f)).
Lemma Vf_target x: inc x (source f) -> inc (Vf f x) (target f).
Lemma plgraph_source x y: inc (J x y) (graph f) -> inc x (source f).
Lemma p2graph_target x y: inc (J x y) (graph f) -> inc y (target f).
Lemma plgraph_sourcel x: inc x (graph f) -> inc (P x) (source f).
Lemma p2graph_targetl x: inc x (graph f) -> inc (Q x) (target f).

Lemma Vf_image_P x: sub x (source f) -> forall vy,

(inc y (image_by fun f x) <-> exists2 u, inc u x & y = Vf f u).
Lemma Vf_imageP1: forall vy,

inc y (image_by fun f (source f))

<-> (exists u, inc u (source f) & y = Vf f u).

Lemma fun_image_Starget: sub (image_of fun f) (target f).
Lemma fun_image_Stargetl x: sub (image_by fun f x) (target f).
End W_pr.

Two functions having same source, same target and same evaluation function are the
same. Two functions having same graph and target are the same.

Definition same_Vf f g:= Vf f =1 Vf g.
Definition cstfp f (E: Set) := singl_val_fp (inc ~~E) (Vf f).

RR n°® 6999

50 José Grimm

Definition cstgp (f E: Set) := singl_val_fp (inc "~E) (Vg f).

Notation "f1 =1f f2" := (same_Vf f1 f2)
(at level 70, no associativity) : fun_scope.

Lemma function_exten3 f g:
function f -> function g ->
graph f = graph g -> target f
f=g.

Lemma function_extenl f g:
function f -> function g ->
graph f = graph g -> target f = target g ->
f=g.

Lemma function_exten f g:
function f -> function g ->
source f = source g -> target f = target g -> {inc (source f), f =1f g}
> f=g

target g -> source f = source g ->

The rstlemma says f hx}i £{f (x)}. Remember that the LHS is the set of all y related to
x by the function; we claim that there is exactly one such element, and is chosen by the W
function. We have fi1hB\Xi/ZEA\ filhXi ifitis a function from Ato B.

Lemma fun_image_setl f x:
function f -> inc x (source f) ->
image_by fun f (singleton x) = singleton (Vf f x).

Lemma iim_fun_C g x:
function g ->
inv_image_by fun g ((target g) -s x) = (source g) -s (inv_image by fun g Xx).

Lemma iim_fun_setl hi f x y: function f ->
inc x (inv_image_by fun f (singleton y)) -> y = Vf f x.
Lemma iim_fun_setl i f x y: function f -> inc x (source f) ->
Vf f x =y ->inc x (inv_image_by fun f (singleton vy)).
Lemma iim_fun_setl P f y: function f -> forall x,
inc x (inv_image_by fun f (singleton y)) <->
(inc x (source f) Ny = x Vf f).
Lemma iim_fun_setl E f y: function f ->
(inv_image_by_fun f (singleton y)) = Zo (source f) (fun x =>y = Vf f x).

1 Let h be amapping (forinstance x 7! xA1)and A a set (for instance the set of odd integers).

We can associate a graph, namely L ah. If B is another set (for instance the set of the even

integers), such that x 2 A implies h(x) 2 B we can consider the function L a.gh from A to
B whose graph is L ah (see Section). Assume now that f maps type A into type B, its

composition h with R is a mapping that satis es: x 2 Aimplies h(x) 2 B. The quantity L agh
will be denoted by L f. The graph of L f isthe setofall (Ri,R f(i)), forall i : A. We shall
see in a moment that f can be obtained from g /AL f by the formula f /M agg. Lemma
acreate V says that the following diagram (left part) commutes.

f A A M A
A—000 g Ay Ao B0 (a/b create)

R R

wa f f
Set ————/Ket R_inc Ll’(/f_mapping

Inria

Bourbaki: Theory of sets in Coq | (v6) 51

Given a function f :a! b, where a and b are two sets, we consider the set G of pairs
(x, f (x)). This is a functional graph, a subset of a£ b. The correspondence (G, a,b) is denoted
byL f.

Definition gacreate (a b:Set) (f.a->b) :
Definition acreate (a b:Set) (f:a->b)

IM (fun y:a => J (Ro y) (Ro (f y))).
triple a b (gacreate f).

Lemma acreate_triple (a b:Set) (f:a->b): correspondence (acreate f).

Lemma acreateP (A B:Set) (f:A->B) x:

inc x (graph (acreate f)) <-> exists u:A, J(Ro u)(Ro (f u)) = x.
Lemma acreate_function (A B:Set) (f:A->B): function(acreate f).
Lemma acreate V (A B:Set) (f:A->B) (x:A):

Vf (acreate f) (Ro x) = Ro (f x).

Given a function g, with source A and target B, we can use the inverse function B of R to
getamap f fromtype Atotype B. We shall denoteitby M gor M ao.gg. We havelL f Ag. The
notation M g is a shorthand for M source(g):target(g)9- If A ZESource(g) and B Atarget(g) but if
equality is not identity then M g and M a.gg are objects of different type, and are not equal
in CoQ. In particular, if h is a mapping oftype A ! B,andif g £L h, then M g is a function
A% B® where A%s source(g) and not A, so that ML h is notequalto h.

We create here M f. The expression 'R_inc X'is a proof of x 2 source(f). The expression
(inc_Vf_target _) showsw 2 B, where B is the target of f and w the value of f. Eval-
uating B yields an object of type B, whose evaluation by R is w. This is summarized by the
rstlemma. The second one says LM f ZAf. Rememberthatin ordertouse M f one needs
aproof Hthat f isafunction,and f isimplicit, since it can be deduced from H.

Definition bcreatel f (H:function f) :=
fun x:source f => Bo (inc_Vf_target H (R_inc x)).

Lemma prop_bcreatel f (H:function f) (x:source f):
Ro(bcreatel H x) = Vf f (Ro x).

Lemma bcreate_invl f (H:function f):
acreate (bcreatel H) = f.

We create here M 5,g. It depends on three assumptions, g is a function, a is the source
and b is the target. See diagram (a/b create) above, right part. If x:a, and y £R X, the
assertion "R_inc X'saysy 2 a, and applying B to the assertion gives y. Let w Wyx. The
Vf_mapping lemma says (because of our three assumptions) that w 2 b. If we apply B, we
get some element of type b, whichis M 4.,9(X).

We have LM apg /&g and M agL f &f. Infact, if f%isM apL f we have f Ya) Z&f (a) for
all a of type A. This follows from injectivity of R.

Lemma Vf_mapping f A B (Ha:source f = A)(Hb:target f = B) x:
function f -> inc x A -> inc (Vf f x) B.

Lemma acreate_source (A B:Set) (f:A->B): source (acreate f)= A.

Lemma acreate target (A B:Set) (f:A->B): target (acreate f)= B.

Definition bcreate f A B

(H:function f)(Ha:source f = A)(Hb:target f = B):=
fun x:A => Bo (Vf_mapping Ha Hb H (R_inc x)).

RR n°® 6999

52 José Grimm

Lemma prop_bcreate2 f A B
(H:function f) (Ha:source f = A)(Hb:target f= B)(x:A):
Ro(bcreate H Ha Hb x) = Vf f (Ro x).

Lemma bcreate_inv2 f A B
(H:function f) (Ha:source f = A)(Hb:target f = B):
acreate (bcreate H Ha Hb) = f.

Lemma bcreate_inv3 (A B:Set) (f:A->B):
bcreate (acreate_function f) (acreate_source f)(acreate_target f) =1 f.

Lemma bcreate_eq f (H:function f):
bcreatel H =1 bcreate H (refl_equal (source f)) (refl_equal (target f)).

Let's consider some examples of functions. A function whose graph or target is empty has
empty source. Thus, if the target is empty, it is the identity of the empty set. For any set X,
there is a unique function with empty graph and target x.

Definition function_prop f s t:=
[A function f, source f = s & target f = t].

Definition empty functionCt x := fun t:emptyset => match t return x with end.
Definition empty_functionC := empty_functionCt emptyset.

Definition empty function_tg (x: Set) := acreate (empty_functionCt x).
Definition empty function:= empty_function_tg emptyset.

Lemma empty_function_tg_function x:
function_prop (empty_function_tg x) emptyset x.
Lemma empty_function_function: function_prop empty_function emptyset emptyset.

Lemma empty_function_graph x: graph (empty_function_tg x) = emptyset.
Lemma empty function_p1 f: function f ->

graph f = emptyset -> source f = emptyset.
Lemma empty function_p2 f: function f ->

target f = emptyset -> source f = emptyset.
Lemma empty_source_graph f:

function f -> source f = emptyset -> graph f = emptyset.
Lemma empty_target graph f:

function f -> target f = emptyset -> graph f = emptyset.
Lemma empty_function_tg_function x:

function_prop (empty_function_tg x) emptyset x.
Lemma empty_source_graph2 f:

function f -> source f = emptyset ->

f = empty_function_tg (target f).

1 We have already met the identity function. The properties shown here are trivial.

Lemma identity_prop x: function_prop (identity x) x x.
Lemma identity_f x: function (identity x).
Lemma identity V x y: inc y x -> Vf (identity x) = vy.

We de ne " identityC a 'to be the identity on a as a Coq function.

Definition identityC (a:Set): a->a := @id a.

Inria

Bourbaki: Theory of sets in Coq | (v6) 53

Lemma identity propl (a: Set): acreate (identityC a) = identity a.
Lemma identity _prop2 a:
bcreate (identity f a) (identity_s a) (identity t a) =1 @id a.

1 We say that a function or graph f is constant if f(a) £f (b) whenever both terms are
de ned. Itfollows that f has a small range.

Definition constantp x y (f:x->y) := forall a b, f a = f b.
Definition constantfp f := function f A\ cstfp f (source f).
Definition constantgp f := fgraph f A\ cstgp f (domain f).

Lemma constant_propl f. constantgp f -> small_set (range f).
Lemma constant_prop2 f: constantfp f -> constantgp (graph f).
Lemma constant_prop3 x y: constantgp (cst_graph X y).
Lemma constant_prop4 f: function f ->

(constantfp f <-> small_set (range (graph f))).

Given two sets A and B, and y 2 B, one can consider the constant function with value .
Its graphis “cst_graph A y'orAE£ {y}.

Section ConstantFunction.
Variables (A B y: Set).
Hypothesis (yB: inc y B).

Definition constant function := acreate ([fun: A => Bo yB]).

Lemma constant_s: source (constant_function) = A.

Lemma constant_t: target (constant_function) = B.

Lemma constant_g: graph (constant_function) = A *sl1 .

Lemma constant_f: function (constant_function).

Lemma constant_prop: function_prop (constant function A yB) A B.
Lemma constant_ V x: inc x A -> Vf (constant_function) x = vy.
Lemma constant_constant_fun: constantfp (constant_function).

End ConstantFunction.
We show here that every constant function is constant or empty.

Lemma constant_fun_constantC x y (a:y)
constantp ([fun:x => a)).
Lemma constant_prop5 x y (f:x->y)(b:x): constantp f ->
exists aty, f =1 [fun :x => a].
Lemma constant_prop6 f:
constantfp f ->
f = empty_function_tg (target f) V
exists a: target f, f = constant_function (source f) (R_inc a).

3.5 Restrictions and extensions of functions

The restriction of a function f to a set x can be de ned in different ways, for instance as
the composition with the inclusion map from x to the source of f. This is the de nition we
shall use for CoQ functions. In Bourbaki, composition is de ned for correspondences, and
the case of functions is studied later, in Section 3[7. |

RR n°® 6999

54 José Grimm

We de ne here the composition oftwo C 0Q functions; associativity is trivial, it suf ces to
unfold the de nitions. Identity is a unit; this relies on the fact that f is equal to the function
that maps u to f (u).

Lemma composeC _ev a b ¢ (g:b->c) (f: a->b) x:
(g Vo f) x =g (f).
Lemma compositionC_A a b ¢ d (f: c->d)(g:b->c)(h:a->b):
(f\og)\oh=1fl(g\oh)
Lemma compose_id_leftC (a b:Set) (f:a->b):
(@id b) \o f =1 f.
Lemma compose_id_rightC (a b:Set) (f:a->b):
(@id b) \o f =1 f.

IX; . .
X —Y/&/OO (inclusion)

R B
R_inc i/H_sub

We now de ne the inclusion | yy. See diagram (inclusion) which is an instance of (a/b
create). If x and y are two sets, H is the assumption x %2y, if u is of type x, then "R_inc u'
says that R u 2 x. Applying H gives R u 2y, denoted by H_subon the diagram, and using B
yields an object of type y. The important property is R a AR (Ixy(a)). From the injectivity of
R we deduce Iy Aly and |y *lyy Aly, (Where sub_refl saysx ¥%x and sub_trans expresses
the transitivity of inclusion, in other words, it says thatif| y,*lyy isde nedsois|).

Definition inclusionC x y (H: sub x y):=
[fun u:x => Bo (H (Ro u) (R_inc u))].

Lemma inclusionC_pr x y (H: sub x y) (a:x):
Ro(inclusionC H a) = Ro a.

Lemma inclusionC_identity x:
inclusionC (sub_refl (x:=x)) =1 @id x.

Lemma inclusionC_compose x y z (Ha:sub x y)(Hb: sub y 2):
(inclusionC Hb) \o (inclusionC Ha) =1 inclusionC (sub_trans Ha Hb).

We say that two functions agree on a set x if this set is a subset of the sources, and if the
functions take the same value on x. Consider two functions (G,A,B) and (G %A% BY. If A £A°
and G £GP, the functions agree on A. Conversely, the property “A % A%and the functions
agree on A” is the same as G % G% Thus if A A we have G £G° If moreover B AB° the
functions are the same.

» (restriction/agree)

<
>

'
N

X Set

e

In the case of Coq functions, f : Al Band f%: A% BPagree on X if the diagram (restric-
tion/agree) commutes.

Iya0

AT

Inria

Bourbaki: Theory of sets in Coq | (v6) 55

Definition agrees_on x f f' :
[A sub x (source f), sub x (source f) & {inc x, f =1f f}].

Definition restrictionC (x a b:Set) (f.a->b)(H: sub x a) =
f \o (inclusionC H).

Definition agreeC (x a a' b b"Set) (f.a->b) (f:a'-> b")
(Ha: sub x a)(Hb: sub x a") :=
forall u:x, Ro(restrictionC f Ha u)

Ro(restrictionC f Hb u).

Lemma same_graph_agrees f f"
function f -> function f' -> graph f = graph f' ->
agrees_on (source f) f f'.

Lemma function_exten2 f f'
function f -> function ' ->
(f=f <>
[N\ source f = source f, target f

target f' & agrees_on (source f) f f]).

Lemma sub_function f g:
function f -> function g ->
(sub (graph f) (graph g) <-> agrees_on (source f) f g).

1 We consider here the restriction of a function f :x! yasafunction z! t. We assume
z%x,and fhzi‘zt Y2y. Inthe rstde nition we consider t /Ay, and in the second de nition
t &f hzi; in the last one, t is a parameter.

Definition restriction f x :=
triple x (target f) (restr (graph f) x).
Definition restrictionl f x :=
triple x (image_by fun f x) (restr (graph f) x).
Definition restriction2 f x y :=
triple x y (graph f) \cap (x \times (target f))).
Definition restriction2_axioms f x y :=
[A function f,
sub x (source f), sub y (target f) & sub (image_by fun f x) y].

Here are some properties.

Lemma restr_range f x:
function f-> sub x (source f) ->
sub (range (restr (graph f) x)) (target f).
Lemma restriction2_props f x y:
restriction2_axioms f x y ->
domain ((graph f) \cap (x \times (target f))) = x.

Lemma restriction1_prop f x:
function f -> sub x (source f) ->
function_prop (restrictionl f x) x (image_by fun f x).
Lemma restriction_prop f x:
function f -> sub x (source f) ->
function_prop (restriction f x) x (target f).
Lemma restriction2_prop f x y:
restriction2_axioms f x y -> function_prop (restriction2 f x y) x y.

Lemma restriction_function f x:

RR n°® 6999

56 José Grimm

function f -> sub x (source f) ->
function (restriction f x).

Lemma restrictionl_function f x,:
function f -> sub x (source f) ->
function (restrictionl f Xx).

Lemma restriction_V f x:
function f -> sub x (source f) ->
{inc x, (restriction f x) =1f f}.

Lemma restrictionl V f x:
function f -> sub x (source f) ->
{inc x, (restrictionl f x) =1f f}.

Lemma restriction2_V f x y:
restriction2_axioms f x y ->
{inc x, (restriction2 f x y) =1f f}.

Lemma restrictionl_pr f:
function f -> restriction2 f (source f) (image_by fun f (source f)) =
restrictionl f (source f).

We say that g /&(G, C,D) extends f /&(F, A,B) if F¥2G and B %2D. This implies A % C. Both
functions agree on A. In the case of C 0Q functions, there is no notion of graph, hence: for
every f and g such that the source of f is a subset of the source of g, we say that g extends f
if the target of f is a subset of the target of g, and if the functions agree on the source of f.

Definition extends g f :=
[\ function f, function g, sub (graph f) (graph g)
& sub (target f)(target g)].
Definition extendsC (a b a' b:Set) (g:a'->b")(f:a->b)(H: sub a a") :=
sub b b' A\ agreeC g f H (sub_refl (x:=a)).

Lemma extends_Ssource f g:

extends g f -> sub (source f) (source Q).
Lemma extends_sV f g:

extends g f -> {inc (source f), f =1f g}.

Lemma extendsC_pr (a b a' b:Set) (g:a'->b")(f:a->b)(H: sub a a’):
extendsC g f H -> forall x:a, Ro (f x) = Ro(g (inclusionC H x)).

If f is a function, X a subset of its source, then f extends its restriction to X. If f and
g are two functions with the same target, that agree on X, their restrictions to X are equal.
The same is true for C 0Q functions. Bourbaki notes that the graph of the restriction is the
intersection with the product of X and the target (but he cannot prove this statement, since
intersection is not yet de ned).

Lemma function_extends_restr f x:
function f -> sub x (source f) ->
extends f (restriction f x).
Lemma function_extends _restC (x a b:Set) (f:a->b)(H:sub x a):
extendsC f (restrictionC f H) H.
Lemma agrees_samel f g x: agrees on x f g -> sub x (source f).
Lemma agrees_same2 f g x: agrees _on x f g -> sub x (source g).
Lemma agrees_same_restriction f g x:
function f -> function g -> agrees_on x f g ->
target f = target g ->
restriction f x = restriction g x.

Inria

Bourbaki: Theory of sets in Coq | (v6) 57

Lemma agrees_same_restrictionC (a a' b x:Set) (f:a->b)(g:a'->b)

(Ha: sub x a)(Hb: sub x a:

agreeC f g Ha Hb -> restrictionC f Ha =1 restrictionC g Hb.
Lemma restriction_graphl f x:

function f -> sub x (source f) ->

graph (restriction_function f x) = (graph f) \cap (x \times (target f)).
Lemma restriction_recovers f x:

function f -> sub x (source f) ->

restriction_function f x = triple x (target f)

((graph f) \cap (x \times (target f))).

1 The restriction agrees with f on X. If f is the extension of some function g, then g is the
restriction of f toits source and target.

Lemma function_rest _of prolongation f g:
extends g f -> f = restriction2 g (source f) (target f).

¢
a—Jb (restriction2C)

lac Iba

In the case of C0Q functions, we start with a function f :a! b, with the assumptions
cY%aand d ¥2b. Therestriction R 4 f isthe one that makes diagram (restriction2C) commute.
In order for it to exist, each y in the image of the LHS must be convertible to type d, i.e.
Ryz2d.

Definition restriction2C (a a' b b:Set) (f.a->b)(Ha:sub a' a)
(H: forall u:a', inc (Ro (f (inclusionC Ha u))) b") :=
fun u=> Bo (H u).
Lemma restriction2C_pr(a a' b b':Set) (f:a->b)(Ha:sub a' a)
(H: forall u:a’, inc (Ro (f (inclusionC Ha u))) b’) (x:a):
Ro (restriction2C f Ha H x) = Vf (acreate f) (Ro x).
Lemma restriction2C _prl (a a' b b:Set) (f:a->b)
(Ha:sub a' a)(Hb:sub b' b)
(H: forall u:a', inc (Ro (f (inclusionC Ha u))) b"):
f \o (inclusionC Ha) =1 (inclusionC Hb) \o (restriction2C f Ha H).

3.6 De nition of a function by means of a term

In Bourbaki [2,/p. 83], Criterion C54 says thatif Aand T are two terms, x and y are two
distinct letters, xisnotin A,y isneitherin T norin A, thentherelation x2 Aandy AT admits
a graph F, which is functional, and F(x) AT . If C is a set which contains the set B of objects
of the form T for x 2 A (where y does not appear in C), the function (F,A,C) is also denoted
by the notation x! T (x2 A, T 2 C), where the terms in parentheses may be omitted. It can
also be written as (T)x2a. In what follows, we shall use x 7! T to denote the function that
associates Ttox,and x! T to mean a function from the set (or type) x to the set (or type) T.

The non-trivial point is the existence of the set B, since F is then a subset of A£ B. The
range of F is B, so that (F,A,C) is a function when B %C. In these de nitions, Y is just an

RR n°® 6999

58 José Grimm

auxiliary letter (because it neither appearsin A, B, T nor F). On the other hand, x may appear
in T, itdoes not appearin A, B, nor F.

If we have an object f : E! E, and consider T A&f (x) then F /L aof. The second claim
of the criterion, namely F(x) &T, is just V(x,L af) &£f (x) (see Section[2.1]). The function
(R A,C) will be denoted by BL f A Gor L acf. The following lemmas are obvious from the
de nitionsof L pand L ac.

Definition Lf f a b := triple a b (Lg a f).
Lemma If _source f a b: source (Lf f a b) = a.
Lemma If target f a b: target (Lf f a b) =
Lemma If graphl f a b c:

inc ¢ (graph (Lc fa b)) ->c=J (P c) (f (P c)).
Lemma If _graph2 f a b c:

inc c a->inc (J c (f ¢)) (graph (Lf f a b)).
Lemma If graph3 f a b c:

inc ¢ (graph (Lf f a b)) -> inc (P c) a.
Lemma If graph4 f a b c:

inc ¢ (graph (Lf f a b)) -> f (P ¢) = (Q c¢).

b.

The expression L agf is a function if f maps A into B. If x 2 A, the value at x is f (x).
By extensionality, if f is a function with source A, target B, and evaluation function W, then
L asW Af.

Definition If_axiom f a b :=
forall ¢, inc c a -> inc (f c) b.

Lemma If function f a b:
If axiom f a b -> function (Lf f a b).

Lemma If V fabc:

If axiom fab-> incca->Vfc (Lffab)=*fc
Lemma If recovers f:

function f -> Lf (Vf f)(source f)(target f) = f.
Lemma identity Lf x: identity x = Lf id x x.
Lemma resrtriction_Lf f x: function f -> sub x (source f) ->
restriction f x = Lf (Vf f) x (target f).

We consider here an example of a function de ned by a term, the rst and second pro-
jection, denoted pr ; and pr,, on the range and target.

Definition first_proj g := Lf P g (domain g).
Definition second_proj g := Lf Q g (range Q).

Lemma first_proj V g: {inc g, Vf (first_proj g) =1 P}.
Lemma second_proj_V g: {inc g, Vf (second proj g) =1 Q}.
Lemma first_proj_f g: function (first_proj g).

Lemma second_proj_f g: function (second_proj g).

Inria

Bourbaki: Theory of sets in Coq | (v6) 59

3.7 Composition of two functions. Inverse function

L (g=f)
A ///B\fé (composition)
L f Lg
R R R
f
Set /Bet 2 Ket
gf

We say that f &(F, A, B) and g &A(G, B, C) are composableif they are functions and if they
are composable as correspondences. Their graphs are composablef. Proposition 6 [Z]p. 84]
says that the composition is a function. The evaluation function is the composition of the
evaluation functions. We have L (g+f)A&(L g)x(L f). In other words, the two de nitions of
composition (for Bourbaki and C 0Q functions) are really the same.

Definition composable g f :=
[A function g, function f, source g = target f].
Notation "f1 \coP f2" := (composable f1 f2) (at level 50).

Lemma composable_pr f g: g \coP f -> (graph g) \cfP (graph f).
Lemma compf_graph:

{when: composable, {morph graph: f g / f \co g >-> f \cf g}}.

(* g \coP f -> graph (g \co f) = (graph g) \cf (graph f) *)
Lemma compf_domg g f: g \coP f->

domain (graph (g \co f)) = domain (graph f).

Lemma compf s f g: source (g \co f) = source f.
Lemma compf t f g: target (g \co f) = target g.
Theorem compf_f g f: g \coP f -> function (g \co f).

Lemma compf V g f x: g \coP f ->
inc x (source f) -> inc x (source f) -> Vf (g \co f) x = Vf g (Vf f x).

Lemma composable_acreate (a b c:Set) (f: a-> b)(g: b->c):
(acreate g) \coP (acreate f).

Lemma compose_acreate (a b c:Set) (g: b->c)(f: a-> b):
(acreate g) \co (acreate f) = acreate(g \o f).

Composition is associative, and identity is a unit. One could write the rst lemma as
{when ??, associative compose} , butthisis horrible.

Lemma compfA f g h: f\coP g -> g \coP h ->
f \co (g \co h) = (f \co g) \co h.
Lemma compg_id_| m:
function m -> (identity (target m)) \co m = m.
Lemma compf_id_r m:
function m -> m \co (identity (source m)) = m.
Corollary fcomp_identity left E:
{when (fun x => function x A (target x) = E),
left_id (identity E) compose}.

We say that f is injective if itis a function such that f (x) A&f (y) implies x A£y. We say that
f is surjective if the range of its graph is the target. The phrase“ f is a mapping of A onto B” is

RR n°® 6999

60 José Grimm

sometimes used by Bourbaki as a shorthand of “ f is surjective, its source is A, and its target is
B”. We say that f is bijective if it satis es both properties. We list here some trivial properties.
Note that two surjective functions with the same source and evaluation functions have the
same graph, thus the same target, thus are equal.

Definition injection f:=
function f A {inc source f &, injective (Vf f)}.

Definition surjection f :=

function f A

(forall y, inc y (target f) -> exists2 X, inc x (source f) & Vf f x
Definition bijection f :=

injection f A\ surjection f.

y)-

Lemma inj_function f: injection f -> function f.
Lemma surj_function f: surjection f-> function f.
Lemma bij_function f: bijection f-> function f.
Lemma bij_inj f: bijection f -> {inc source f &, injective (Vf f)}.
Lemma bij_surj f: bijection f ->
(forall y, inc y (target f) -> exists2 x, inc x (source f) & Vf f x

y).

Lemma injective_pr f y: injection f ->
singl_val (fun x => related (graph f) x y).
Lemma injective_pr3 f y: injection f ->
singl_val (fun x => inc (J x y) (graph f)).
Lemma injective_pr_bis f:
function f -> (forall y, singl_val (fun x => related (graph f) x y)) ->
injection f.

Lemma surjective_prO f: surjection f -> image_of fun f = target f.
Lemma surjective_prl f: function f -> image_of fun f = target f ->
surjection f.
Lemma surjective_pr f y:
surjection f -> inc y (target f) ->
exists2 X, inc x (source f) & related (graph f) x y .
Lemma surjective_pr5 f:
function f -> (forall y, inc y (target f) ->
exists2 x, inc x (source f) & related (graph f) x y) -> surjection f.
Lemma surjective_pr3 f:
surjection f -> range (graph f) = target f.
Lemma surjective_pr4 f:
function f-> range (graph f) = target f -> surjection f.

Lemma If_injective f a b: If_axiom f a b ->
(forall u v, incua>incva->fu=fv->u=yv ->
injection (Lf f a b).

Lemma If_surjective f a b: If _axiom f a b ->
(forall y, inc y b -> exists2 x, inc x a & y = f x) ->
surjection (Lf f a b).

Lemma If_bijective f a b: If axiom fa b ->
(forall u v, incua>incva->fu=fv->u=v) >
(forall y, inc y b -> exists2 x, inc x a & y = f x) ->
bijection (Lf f a b).

Lemma bijective_pr f y:
bijection f -> inc y (target f) ->
exists! x, (inc x (source f) A Lf f x = y).

Inria

Bourbaki: Theory of sets in Coq | (v6) 61

Lemma function_exten4 f g: source f = source g ->
surjection f -> surjection g -> {inc source f, f =1f g} ->
f=ag.

Let's consider the case of C 0Q functions. Assume f : Al B surjective. Whenever b : B,
thereis a: Asuchthat f (a) Z/b. The axiom of choice gives a function g, suchthat f (g(b)) Ab.
It is called a “right inverse” of f. If f is moreover injective, we get g(f(a)) A£a, and g is the
inverse of f. In particular, our de nition of bijective agrees with that of C 0Q.

Definition injectiveC (a b:Set) (f.a->b) := forall u v, fu =fv -> u =v.
Definition surjectiveC (a b:Set) (f.a->b) := forall u, exists v, f v = u.
Definition bijectiveC (a b:Set) (f:a->b) := injectiveC f A\ surjectiveC f.
Definition right_inverseC (a b:Set) (f: a->b) (H:surjectiveC f) (v:b) :=

(chooseT (fun kia => f k = v)

match H v with | ex_intro x _ => inhabits x end).

Definition inverseC (a b:Set) (f: a->b) (H:bijectiveC f)

:= right_inverseC (proj2 H).

Lemma bijectiveC_pr (a b:Set) (f:a->b) (y:b):
bijectiveC f -> exists! x:a, f x = vy.

Lemma composeC_inj (a b c:Set) (f:a->b)(f':b->c):
injectiveC f-> injectiveC f' -> injectiveC (f' \o f).

Lemma composeC_surj (a b c:Set) (f.a->b)(f:b->c):
surjectiveC f-> surjectiveC f' -> surjectiveC (f' \o f).

Lemma composeC_bij (a b c:Set) (f:a->b)(f:b->c):
bijectiveC f-> bijectiveC f' -> bijectiveC (f' \o f).

Lemma identityC fb (x: Set): bijectiveC (@id x).

Section InverseProps.
Variables (A B: Set) (f: A -> B).
Hypothesis (H:bijectiveC f).

Lemma inverseC_prb (x: B): f ((inverseC H) x) = x.
Lemma inverseC_pra (x: A): (inverseC H) (f x) = x.
Lemma bij_left_inverseC: (inverseC H) \o f =1 @id A.
Lemma bij_right_inverseC: f \o (inverseC H) =1 @id B.
Lemma bijective_inverseC: bijectiveC (inverseC H).
End InverseProps.

Lemma bijection_coq (a b: Set) (f:a->b):
bijective f <-> bijectiveC f.

Lemma inverse_fun_involutiveC (a b:Set) (f:a->b) (H: bijectiveC f):
f =1 inverseC(bijective_inverseC H).

The acreate/bcreate mappings are morphisms for the notion of injectivity, surjectivity
and bijectivity.

Lemma bcreate fi f a b
(H:function f)(Ha:source f = a)(Hb:target f = b):
injection f -> injectiveC (bcreate H Ha Hb).
Lemma bcreate fs f a b
(H:function f)(Ha:source f = a)(Hb:target f = b):
surjection f -> surjectiveC (bcreate H Ha Hb).
Lemma bcreate fb f a b

RR n°® 6999

62 José Grimm

(H:function f)(Ha:source f = a)(Hb:target f = b):
bijection f -> bijectiveC (bcreate H Ha Hb).

Lemma bcreatel fi f (H:function f),
injection f -> injectiveC (bcreatel H).

Lemma bcreatel fs f (H:function f):
surjection f -> surjectiveC (bcreatel H).

Lemma bcreatel_fb f (H:function f):
bijection f -> bijectiveC (bcreatel H).

Lemma acreate fi (a b:Set) (f.a->b):
injectiveC f -> injective (acreate f).

Lemma acreate fs (a b:Set) (f.a->b):
surjectiveC f -> surjective (acreate f).

Lemma acreate_fb (a b:Set) (f:a->b):
bijectiveC f -> bijective (acreate f).

We say that two sets are equipotent if there is a bijection between them. Which de nition
of bijection used is irrelevant. Note that Bourbaki uses a pre x notation Eq(X, Y), while we use
here an in x notation X \Eq Y. This is an equivalence relation, since identity is a bijection,
composition of two bijections is a bijection and the inverse of a bijection is a bijection.

Definition bijection_prop f s t :=

[\ bijection f, source f = s & target f
Definition surjection_prop f x y:=

[\ surjection f, source f = x & target f = y].
Definition injection_prop f x y:=

[\ injection f, source f = x & target f

f.

yl.

Definition equipotent x y :=
Notation "x \Eq y" := (equipotent x y) (at level 50).

Lemma equipotent_aux f a b:
bijection (Lf f a b) -> a \Eq b.
Lemma equipotentC x y: x \EqQ y <-> exists fix->y, bijectiveC f.
Lemma equipotent_aux f a b:
bijection (Lf f a b) -> a \Eq b.
Lemma equipotentR: reflexive_r equipotent.
Lemma equipotentT: transitive_r equipotent.
Lemma equipotentS: symmetric_r equipotent.

The identity function is bijective; the restriction of a function f to X and Y is injective if
f is injective; it is surjective if for instance X is the source and Y the range. It is surjective if
Y AT (X).

Lemma identity_fb x: bijection (identity x).
Lemma restriction2_fi f x y:
injection f -> restriction2_axioms f x y
-> injection (restriction2 f x y).
Lemma restriction2_fs f x y:
restriction2_axioms f x y ->
source f = x -> image_of fun f =y ->
surjection (restriction2 f x y).
Lemma restrictionl fs f x:
function f -> sub x (source f) ->

Inria

Bourbaki: Theory of sets in Coq | (v6) 63

surjection (restrictionl f x).
Lemma restrictionl_fb f x:

injection f -> sub x (source f) ->

bijection (restrictionl f x).

We deduce: if f isinjective, its source is equipotent to its range.

Definition restriction_to_image f =
restriction2 f (source f) (image_of fun f).

Lemma restriction_to_imageE f: function f ->
restriction_to_image f = restrictionl f (source f).

Lemma restriction_to_image_axioms f: function f ->
restriction2_axioms f (source f) (image_of fun f).
Lemma restriction_to_image_fs f: function f ->
surjection (restriction_to_image f).
Lemma restriction_to_image_fb f: injection f ->
bijection (restriction_to_image f).
Lemma iim_fun_r f (h:=restriction_to_image f): function f ->
forall a, image_by fun f a = inv_image_by fun (inverse_fun h) a.

Lemma equipotent restrictionl f x:
sub x (source f) -> injection f ->
x \Eq (image_by_fun f x).

Lemma equipotent_range f: injection f ->
(source f) \Eq (range (graph f)).

1 Given a correspondence f and a pair (x,Yy), we can extend f as f °by imposing f4x) £y;
this is a correspondence, itis a functionif x is notin the source of f. This extension is unique
if we merely add x to the source, y to the target and (X, y) to the graph. The extension is a
surjective function if f is surjective.

Definition extension f x y:=
triple ((source f) +s1 x) ((target f) +s1 y) ((graph f) +s1 (J x y)).

Lemma extension_injective x f g a b:
domain f = domain g -> ~ (inc x (domain f)) ->
(f+sl U xa) =g +sl U x b)) >f=qg.
Lemma restr_setUl f x a:
fgraph f -> ~ (inc x (domain f)) ->
restr (f +s1 (J x a)) (domain f) = f.
Lemma setUl restr f x E:
fgraph f -> ~ (inc x E) -> domain f = E +s1 x->
(restr f E) +s1 (J x (Vg f x)) = f.

Section Extension.
Variables (f x y: Set).
Hypothesis (ff: function f) (xsf: ~ (inc x (source f))).

Lemma extension_f: function (extension f x vy).
Lemma extension_Vf_in: {inc (source f), (extension f x y) =1f f}.
Lemma extension_Vf out: Vf (extension f x y) x = vy.
Lemma extension_fs: surjection f -> surjection (extension f x y).
Lemma extension_restr:

restriction2 (extension f x y) (source f) (target f) = f.

RR n°® 6999

64 José Grimm

End Extension.

Lemma extension_f _injective x f g a b:
function f -> function g -> target f = target g ->
source f = source g -> ~ (inc x (source f)) ->
(tack_on_f f x a = tack_on_f g x b) -> f = g.

1 The canonical injection of Aiinto B is the identity of B restricted to A. In other terms, if A 1B
it is the function with source A, target B, whose evaluation functionis x 7! x. Itis injective
with range A. Its C 0Q equivalent has been introduced page

Definition canonical_injection a b :=
triple a b (identity_g a).

Lemma canonical_injection_pl a b (H:sub a b):

(canonical_injection a b) = acreate (inclusionC H).
Lemma inclusionC_fi a b (H: sub a b): injectiveC (inclusionC H).
Lemma ci_fi a b: sub a b -> injection (canonical_injection a b).
Lemma ci_f a b: sub a b -> function (canonical_injection a b).
Lemma ci_ V a b x:

sub a b -> inc x a -> Vf (canonical_injection a b) x = x.
Lemma ci_range a b: sub a b ->

range (graph (canonical_injection a b)) = a.

A constant function h can be written as h Ag +f where the image of f is a singleton and
f is surjective surjective (let x be in the source of h, y £h(x), so that E A{y} is the image of
h; let g be the canonical injection of E into the target of h, and f the constant function with
value y).

Lemma constant_function_pr2 x h:

inc x (source h) -> constantfp h ->

exists g f,

[A g \coP f, h = g \co f, surjection f & singletonp (target f)].
Lemma constant_function_pr3 (a:Set) (h:a->Set) (x:a):

gconstantp h ->

exists f: a -> singleton (Ro x),

exists g:singleton (Ro x) -> Set,

(forall u:a, h u =g (f u) A (g (Bo (setl_1 (Ro x))) = h x).

1 The diagonal application is the function from X to X £ X that maps x to (x,x). Itis an
injection into the diagonal of X.

Definition diagonal_application a =
Lf (fun x=> J x x) a (coarse a).

Lemma diag_app_f a: function (diagonal_application a).
Lemma diag_app_fi a: injection (diagonal_application a).
Lemma diag_app_V a x:

inc x a -> Vf (diagonal_application a) x = J X x.
Lemma diag_app_r a:

range (graph (diagonal_application a)) = diagonal a.

1 Both projections pr ; and pr, are surjective by construction. The rst projection on G is
injective if only if G is a functional graph.

Inria

Bourbaki: Theory of sets in Coq | (v6) 65

Lemma second_proj_fs g: surjection (second_proj g).
Lemma first_proj_fs g: surjection (first_proj g).
Lemma first_proj_fi g:
sgraph g -> (injection (first_proj g) <-> functional_graph g).

1 If Gis agraph, the map (x,y) 7! (y,x)is abijectionG ! Gi ! Itfollowsthat A £ BandB£ A
are equipotent. The three sets A, A £ {b} and {b}£ A are equipotent.

Lemma inv_graph_canon_fb g: sgraph g ->

bijection (Lf (fun x=> J (Q x) (P x)) g (inverse_graph @)).
Lemma equipotent_product_sym a b:

(a \times b) \Eq (b \times a).
Lemma equipotent_indexed a b: a \Eq (a *sl1 b).
Lemma equipotent_rindexed a b: a \Eq (indexedr b a).
Lemma equipotent_source_graph f: function f ->

(graph f) \Eq (source f).

Proposition 7 [2,]p. 85] states thatif f is a bijection, then the inverse correspondence fi?t
is a function. It also says thatif f and fi ! are functionsthen f is a bijection.

Theorem bijective_inv_f f:
bijection f -> function (inverse_fun f).
Theorem inv_function_fb f:
function f -> function (inverse_fun f) -> bijection f.

The case of Coq functions is a bit more tricky: if f : A! B is a function, its inverse is
fil/EM (L f)i1). However M can be used only if some conditions hold (in particular, if
B is non-empty, the set A has to be non-empty too). For this reason, we consider the inverse
of f only when f is bijective.

Lemma inverseC_prc (a b:Set) (f.a-> b) (H:bijectiveC f):
inverse_fun(acreate f) = acreate(inverseC H).

If a function has a left and right inverse, the function is bijective, and its inverse is equal
tothese inverses. Infact, if f (g(x)) &x forall x, then f is surjective, since every x is the image
of g(x). If g%f (y)) £y, applying g°to f (y) Z&f (y% gives y £y, hence proves injectivity. Now,
gqf (9(x))) £g%x) £g(x), this shows that g £g°% We have g4x) &£f i 1(x), since x £f (g(x)),
and, by de nition, the RHS is g(x). We have already seen that the LHS is this quantity.

We deduce from this that the inverse function of a bijection is a bijection.

Lemma bijective_double_inverseC (a b:Set) (f.a->b) g g"
glof=1@da->flog-=1@idb->
bijectiveC f.

Lemma bijective_double_inverseC1 (a b:Set) (f:a->b) g @'
(Ha: g \o f =1 @id a)(Hb: f \o g' =1 @id b):
g =1 inverseC (bijective_double_inverseC Ha Hb)
N g' =1 inverseC (bijective_double_inverseC Ha Hb).

If f is a bijective, then fi1is also a bijective. The composition in any order is the identity
function. The proofs of these three lemmas are similar: let g /£M 4, f;then f AL g, f/ LE
L (g'h), f£fitAEL (g+gi).

RR n°® 6999

66 José Grimm

Lemma acreate_exten (a b: Set) (f g: a-> b):
f =1 g -> acreate f = acreate g.
Lemma ifun_involutive: {when function, involutive inverse_fun}.

Lemma inverse_bij_fb f:

bijection f -> bijection (inverse_fun f).
Lemma composable_f_inv f:

bijection f -> f \coP (inverse_fun f).
Lemma composable_inv_f f:

bijection f -> (inverse_fun f) \coP f.
Lemma bij_right_inverse f:

bijection f -> f \co (inverse_fun f)
Lemma bij_left_inverse f:

bijection f -> (inverse_fun f) \co f = identity (source f).
Lemma compf_IK f g : bijection g -> g \coP f ->

(inverse_fun g) \co (g \co f) = f.
Lemma compf rK f g : bijection g -> f \coP g ->

(f \co g) \co (inverse fun g) = f.
Lemma compf_regr f f' g : bijection g ->

g \coP f->g\coP ff->g\lcof=g\o f ->f
Lemma compf regl f f g : bijection g ->

f\coP g ->f\oPg->fl\og=Ff\og->f

identity (target f).

1
—

1
-+

Lemma inverse_V f x:
bijection f -> inc x (target f) ->
Vf f (Vf (inverse_fun f) x) = x.
Lemma inverse_V2 fvy:
bijection f -> inc y (source f) ->
Vf (inverse_fun f) (Vf fy) =y.
Lemma inverse Vis f x:
bijection f -> inc x (target f) -> inc (Vf (inverse_fun f) x) (source f).

We apply the results of C oqQ functions to Bourbaki functions. Note that Bourbaki shows
that the inverse h &£f i1 is a bijection by noting that its inverse is f, hence is a function and
Proposition 7 [2,]p. 85] applies. The relation x AWy is equivalentto y AW, 1X if either x is
in the target of f or y in the source.

Lemma bijective_inv_aux a b (f:a->b):

bijectiveC f -> function (inverse_fun (acreate f)).
Lemma bijective_source_aux a b (f:a->b):

source (inverse_fun (acreate f)) = b.
Lemma bijective_target_aux a b (f:a->b):

target (inverse_fun (acreate f)) = a.

Let f be a function from A to B. We have shown before that x % f i 1hf hxii if x %2A (this is
true for any correspondence). Equality holds if f is injective. We have f hf i thyii%s y if y %B.
Equality holds if f is surjective.

Lemma sub_inv_im_source f vy:
function f -> sub y (target f) ->
sub (inv_image_by fun f y) (source f).
Lemma nonempty _image f x:
function f -> nonempty x -> sub x (source f) ->
nonempty (image_by fun f x).
Lemma direct_inv_im f y:

Inria

Bourbaki: Theory of sets in Coq | (v6) 67

function f -> sub y (target f) ->
sub (image_by fun f (image_by fun (inverse_fun f) y)) v.

Lemma direct_inv_im_surjective f y:
surjection f -> sub y (target f) ->
(image_by _fun f (image_by fun (inverse_fun f) y)) = v.

Lemma inverse_direct_image f x:
function f -> sub x (source f) ->
sub x (image_by fun (inverse_fun f) (image_by fun f x)).

Lemma inverse_direct_image_inj f x:

injection f -> sub x (source f) ->
x = (image_by_fun (inverse_fun f) (image_by fun f x)).

3.8 Retractions and sections

f f
A—IB 88 B—/A—4M8 (retraction/section)
v _/
IA IB

Aretractionr of f is arightinverse; a section sis a left inverse. This means that r +f and
f £sare the identity functions. Assume f isafunction from Ato B. The de nitionof r implies
the existence of r £f , i.e. the source of r is B. A consequence is that the targetis A. In the same
way, the de nition of simplies the existence of f s, i.e. the target of sis A. A consequence
is that the source is B. In the case of C 0Q functions, if f hastypea! b,itsinverse r or shas
type b! a (there is a unique type for r compatible with the relation r £f Ala).

Definition is_left_inverse f r :=
r \coP f A\ r \co f = identity (source f).

Definition is_right_inverse f s :=
f \coP s N\ f \co s = identity (target f).

Definition is_left_inverseC (a b:Set) (f.a->b) rr=r \o f =1 @id a.
Definition is_right_inverseC (a b:Set) (f.a->b) s:= f \o s =1 @id b.

Lemma left_i _target f r: is_left inverse f r -> target r = source f.
Lemma left_i_source f r: is_left_inverse f r -> source r = target f.
Lemma right_i_source f s: is_right_inverse f s -> source s = target f.
Lemma right_i target f s: is_right inverse f s -> target s = source f.

Lemma right i V f s x:

is_right_inverse f s -> inc x (target f) -> Vf f (Vf s X) = x.
Lemma left i V fr x:

is_left_inverse f r -> inc x (source f) -> Vfr (Vf f x) = x.
Lemma right i v (a b:Set) (f.a->b) s (x:b):

is_right_inverseC f s -> f (s x) = x.
Lemma left_i v (a b:Set) (f:a->b) r (x:a):

is_left_inverseC fr ->r (f x) = x.

Proposition 8 [2,Ip. 86] expresses the next four theorems. Assumethat f isafunctionfrom
A to B. If for some function s, f +s/lg then f is surjective; if for some function r,r +f /Ela

RR n°® 6999

68 José Grimm

then f is injective. The converse holds; one has to take care thatif A /& ;, every function is
injective, and there is in general no function from B to A (unless B is empty). Hence for the
retraction r to exist, we assume A 64 ; We start with the easy case.

Lemma inj_if _exists_left_invC (a b:Set) (f:a-> b):
(exists r, is_left_inverseC f r) -> injectiveC f.
Lemma surj_if_exists_right_invC (a b:Set) (f:a->b):

(exists s, is_right_inverseC f s) -> surjectiveC f.

Theorem inj_if_exists_left_inv f:

(exists r, is_left_inverse f r) -> injection f.
Theorem surj_if_exists_right_inv f:

(exists s, is_right_inverse f s) -> surjection f.

i Consider afunction f :a! b. For x:b we consider“ f (y) Z£x or X is not in the image
of f”, and apply the axiom of choice to select an element vy, call it g(x). If x £f (z), suchay
exists, hence f (g(f (2))) Z&f (2). If f isinjective, we have g(f (z)) £z, and g is a left inverse of
f . In the second case, y exists also as we assumea non-empty.

Definition left_inverseC (a b:Set) (f: a->b)(H:inhabited a)
(v:b) := (chooseT (fun u:a => (~ (exists x:a, f x = v)) V (f u = v)) H).
Lemma left_inverseC_pr (a b:Set) (f: a->b) (H:inhabited a) (u:a):
f(left_inverseC f H (f u)) = f u.
Lemma left_inverse_comp_id (a b:Set) (f:a->b) (H:inhabited a):
injectiveC f -> (left_inverseC f H) \o f =1 @id a.
Lemma exists_left_inv_from_injC (a b:Set) (f:a->b): inhabited a ->
injectiveC f -> exists r, is_left_inverseC r f.

Definition right_inverseC (a b:Set) (f: a->b) (H:surjectiveC f) (v:b) :=

(chooseT (fun kia => f k = v)
match H v with | ex_intro x _ => inhabits x end).

Lemma right_inverse_pr (a b:Set) (f: a->b) (H:surjectiveC f) (x:b):
f(right_inverseC H x) = x.

Lemma right_inverse_pr (a b:Set) (f: a->b) (H:surjectiveC f) (x:b):
f(right_inverseC H x) = x.

Lemma right_inverse_comp_id (a b:Set) (f:a-> b) (H:surjectiveC f):
f \o (right_inverseC H) =1 @id b.

Lemma exists_right_inv_from_suriC (a b:Set) (f:a-> b)(H:surjectiveC f):
exists s, is_right_inverseC f s.

Bourbaki shows existence of a left inverse of the function f : A! B by considering the
subset of B£ A formed of all pairs (x,y) suchthat y2 Aand y Af (x) or y AZe and x 2 B\ f hAi,
where e 2 A (such an element exists when A is nonempty). This set is a functional graph, and
the function with this graph is an answer to the question.

Theorem exists_left_inv_from_inj f:

injection f -> nonempty (source f) -> exists r, is_left_inverse f r.
Theorem exists_right_inv_from_surj f:

surjection f -> exists s, is_right_inverse f s.

9 Some consequences. If r is aleftinverse of f, then f is arightinverse of r, and vice versa.
A left inverse is surjective, a right inverse is injective. If g is both a left inverse and a right
inverse of f,then g is bijective as well as f.

Inria

Bourbaki: Theory of sets in Coq | (v6) 69

Lemma bijective_from_compose g f:
g \coP f -> f \coP g -> g \co f = identity (source f)
-> f \co g = identity (source Q)
-> [N\ bijection f, bijection g & g = inverse_fun f].

Lemma right_inverse_from_leftC (a b:Set) (r:b->a)(f:a->b):
is_left_inverseC f r -> is_right_inverseC r f.

Lemma left_inverse_from_rightC (a b:Set) (s:b->a)(f:a->b):
is_right_inverseC f s -> is_left_inverseC s f.

Lemma left_inverse_surjectiveC (a b:Set) (r:b->a)(f:a->b):
is_left_inverseC f r -> surjectiveC r.

Lemma right_inverse_injectiveC (a b:Set) (s:b->a)(f:a->b):
is_right_inverseC f s -> injectiveC s.

Lemma section_uniqueC (a b:Set) (f:a->b)(s:b->a)(s":b->a):
is_right_inverseC f s -> is_right_inverseC f s' ->
(forall x:a, (exists u:b, x = s u) = (exists u:b, x = s' u)) ->
s =1 s

Lemma right_inverse_from_left f r:
is_left_inverse f r -> is_right_inverse r f.
Lemma left_inverse_from_right s f:
is_right_inverse f s -> is_left_inverse s f.
Lemma left_inverse_fs f r:
is_left_inverse f r -> surjection r.
Lemma right_inverse fi f s:
is_right_inverse f s -> injection s.
Lemma section_unique f:
{when (is_right_inverse f) &, injective (fun s => range (graph s)) }.

Theorem 1 in Bourbaki [2,]p. 87] comes next. We assume that f and f %are two compos-
able functions and f%%Ef%+f. If f and f ®are injective sois f%0if f and f Care surjective, so
is f %9 Hence, if f and f ®are bijections, sois f%If f and f °have a left inverse, so has f °Yitis
the composition of the inverses in reverse order). The same holds for right inverses.

If f%has a left inverse r °%hen r % f Ois a right inverse of f, and f +r %is a left inverse of
f Oprovided that f is surjective (in which case f isinvertible). If f%has arightinverse s®then
f +s%s a right inverse of f%and s%% f %is a left inverse of f, provided that f°is injective, in
which case f %is a bijection.

If f %sinjective then f isinjective, and for f °to be injective it suf cesthat f is surjective;
if f%s surjective then f %is surjective; and for f to be surjective it suf ces that f is injective.

Lemma left_inverse_composeC (a b c:Set)
(f:a->b) (f:b->c)(r:b->a)(r'.c->b):
is_left_inverseC f' r' -> is_left_inverseC f r ->
is_left_inverseC (f' \o f) (r \o r).

Lemma right_inverse_composeC (a b c:Set)
(f:a->b) (f:b->c)(s:b->a)(s":c->b):
is_right_inverseC f' s' -> is_right_inverseC f s ->
is_right_inverseC (f' \o f) (s \o s .

Lemma inj_right composeC (a b c:Set) (f.a->b) (f:b->c):
injectiveC (f' \o f) -> injectiveC f.

Lemma surj_left_compose (a b c:Set) (f:a->b) (f:b->c):
surjectiveC (f' \o f) -> surjectiveC f'.

Lemma surj_left_ compose2C (a b c:Set) (f.a->b) (f:b->c):
surjectiveC (f' \o f) -> injectiveC f' -> surjectiveC f.

RR n°® 6999

70 José Grimm

Lemma inj_left compose2C (a b c :Set)(f:a->b) (f:b->c):
injectiveC (f' \o f) -> surjectiveC f -> injectiveC f.

Lemma left_inv_compose_rfC (a b c:Set) (f:a->b) (f:b->c)(r": c->a):
is_left_inverseC (f' \o f) r" ->
is_left_inverseC f (r" \o f).

Lemma right_inv_compose_rfC (a b c:Set) (f:a->b) (f:b->c)(s": c->a):
is_right_inverseC (f' \o f) s" ->
is_right_inverseC f' (f \o s").

Lemma left_inv_compose_rf2C (a b c:Set) (f:a->b) (f:b->c)(r": c->a):
is_left_inverseC (f' \o f) r"* -> surjectiveC f ->
is_left_inverseC ' (f \o).

Lemma right_inv_compose_rf2C (a b c:Set) (f.a->b) (f:b->c)(s": c->a):
is_right_inverseC (f' \o f) s" -> injectiveC f'->
is_right_inverseC f (s" \o f).

Now the same results, in Bourbaki notations.

Theorem compose_fi f f"
injection f -> injection f' -> f' \coP f -> injection (f' \co f).

Lemma inj_composel f f:
injection f -> injection f' -> source f' = target f -> injection (f\co f).

Theorem compose_fs f f
surjection f -> surjection f* -> f' \coP f -> surjection (f' \co f).

Lemma compose_fb f f"
bijection f -> bijection f' -> f' \coP f -> bijection (f \co f).

Lemma left_inverse_composable f f r r: f \coP f ->
is_left_inverse f' r' -> is_left_inverse f r -> r \coP r.

Lemma right_inverse_composable f f s s: f \coP f ->
is_right_inverse f' s' -> is_right_inverse f s -> s \coP s

Theorem left_inverse_compose f f' r r: f \coP f ->
is_left_inverse f' r' -> is_left_inverse f r ->
is_left_inverse (f' \co f) (r \co r).

Theorem right_inverse_compose f f' s s f \coP f ->
is_right_inverse f' s' -> is_right_inverse f s ->
is_right_inverse (f' \co f) (s \co s").

Theorem right_compose_fi f f:

f' \coP f -> injection (f' \co f) -> injection f.

Theorem left_compose_fs f f
f' \coP f -> surjection (f' \co f) -> surjection f.

Theorem left_inv_compose_rf f f' r":

f' \coP f -> is_left_inverse (f' \co f) r" ->
is_left_inverse f (r" \co f).

Theorem right_inv_compose_rf f f' s™
f' \coP f -> is_right_inverse (f' \co f) s" ->
is_right_inverse f' (f \co s").

Theorem left_compose _fs2 f f'

f' \coP f-> surjection (f' \co f) -> injection f' -> surjection f.

Theorem left_compose_fi2 f f:

f' \coP f -> injection (f' \co f) -> surjection f -> injection f'.

Theorem left_inv_compose_rf2 f f' r":

f' \coP f -> is_left_inverse (f' \co f) r" -> surjection f ->
is_left_inverse f' (f \co r").

Theorem right_inv_compose_rf2 f ' s"

f' \coP f -> is_right_inverse (f' \co f) s" -> injection f->
is_right_inverse f (s" \co f').

If f £g is a bijection, one of f or g is a bijection, so is the other.

Inria

Bourbaki: Theory of sets in Coq | (v6) 71

Lemma right_compose _fb f f:

f' \coP f -> bijection (f' \co f) -> bijection ' -> bijection f.
Lemma left_compose_fb f f:

f' \coP f -> bijection (f' \co f) -> bijection f -> bijection f".

RRr R (decomposition, Prop 9)
g(N %(g
F—6 -

Proposition 9 [2,]p. 88] is implemented in the next lemmas. If f and g have the same
source and if g is surjective, then the condition g(x) £g(y) A f(x) £f(y) is a necessary
and suf cient condition for the existence of h with f /Ah +g. Such a mapping is then unique
andis f £s, for any right inverse of g.

Lemma exists_left_composableC (a b c:Set) (f:a->b)(g:a->c):
surjectiveC g ->
((exists h, h \o g =1 f) <>
(forall (x y:a), g x =gy ->fx="fy).

Theorem exists_left_composable f g:
function f -> surjection g -> source f = source g ->
((exists h:E, h \coP g A h\co g = f) <>
(forall (x y:E), inc x (source g) -> inc y (source g) ->

Vigx=Vigy > Vffx=Vffy)).

Lemma exists_left_composable_auxC (a b c:Set) (f:a->b) (g:a-> ¢) s h:
is_right_inverseC g s ->
hlog=1f->h=1f\s.
Theorem exists_left composable_aux f g s h:
function f -> source f = source g ->
is_right_inverse g s -> h \coP g ->
h\cog=f->h=1f\cos.

Lemma exists_unique_left composableC (a b c:Set) (f:a->b)(g:a->c) h h":
surjectiveC g > h\og=1f->h'"\og=1f->
h =1 h'
Theorem exists_unique_left composable f g h h':
function f -> surjection g -> source f = source g ->
h \coP g -> h' \coP g ->
h\cog=f-> h'\}cog=f->h=nh"

Lemma left_composable valueC (a b c:Set) (f:a->b)(g:a->c) s h:
surjectiveC g -> (forall (x y:a), gx =gy >fx="Ffy) >
is_right_inverseC gs -> h=1f\os ->
hlog=1f.

Theorem left_composable_value f g s h:
function f -> surjection g -> source f = source g ->
(forall x y, inc x (source g) -> inc y (source Q) ->

Vigx=Vfgy >Vffx=Vffy) >
is_right_inverse g s -> h=f\cos->h\cog-="H

Second part of Proposition 9. We assume that f and g have the same target, g is injective;
the condition range(f)%range(g) is a necessary and suf cient condition for the existence of

h with f Ag+h, such a mapping is then unique andis r xf, for any left inverse of g.

RR n°® 6999

72 José Grimm

Lemma exists_right composable_auxC (a b c:Set) (f:.a->b) (g:c->b) h r:
is_left_inverseC gr ->g\o h=1f
->h=1 r\of.
Theorem exists_right_composable_aux f g h r:
function f -> target f = target g ->
is_left inverse gr -> g \coP h ->g\co h =f
-> h =r \co f.

Lemma exists_right_composable_uniqueC (a b c:Set) (f:a->b)(g:c->b) h h"
injectiveC g ->g\o h=1f->g\oh =1f->h=1h.
Theorem exists_right_composable_unique f g h h':
function f -> injection g -> target f = target g ->
g \coP h -> g \coP h' ->
g\coh=f->g\coh =f->h=h.
Lemma exists_right_composableC (a b c:Set) (f:a->b) (g:c->b):
injectiveC g ->
((exists h, g \o h =1 f) <> (forall u, exists v, g v = f u)).
Theorem exists_right_composable f g:
function f -> injection g -> target f = target g ->
((exists h, g \coP h A g \co h = f) <>
(sub (range (graph f)) (range (graph Q)))).

Lemma right_composable valueC (a b c:Set) (f:a->b) (g:c->b) r h:
injectiveC g -> is_left_inverseC r g -> (forall u, exists v, g v = f u) ->
h=lr\wf-> glbh-=1*1

Theorem right_composable _value f g r h:
function f -> injection g -> target g = target f ->
is_left_inverse g r ->

(sub (range (graph f)) (range (graph g))) ->
h=r\of->g\o =f

3.9 Functions of two arguments

For Bourbaki, a function of two arguments is a function f whose domain is a set of pairs.
Let D be its domain, and assume D 2 A£ B. If z 2 D, there exist x 2 A and y 2 B such that
z A(x,y). Instead of f((x,y)), one writes f(x,y). For any y, we may consider the set A y of
all x 2 A, such that (x,y) 2 D, and the mapping x 7! f((x,y)) with source A y, that has the
same target as f. This is called the partial mapping de ned by f, with respect to the value
y of the second argument. It is sometimes denoted fy of f(¢y). Similarly, fy is de ned by
fx(y) Z£f ((x,y)) (whenever (x,y) 2 D).

In a future chapter, we shall de ne the set of functions X ! Y and denote it by F (X;Y).
We shall show that F (A£ B, C) is canonically isomorphicto F (A,F (B;C)); in CoqQ, the two
typesAEB! CandA! (B! C)arealsoisomorphic. Inthis section, we just assume that the
source of f is a subset of a product (so that A y may depend on y).

Definition partial_fun2 fy :=
Lf(fun x=> Vf f (J x y)) (im_of_singleton(inverse_graph (source f)) y)
(target f).

Definition partial_funl f x =
Lf(fun y=> Vf f (J x y))(im_of _singleton (source f) x) (target f).

Section Funtion_two_args.
Variable f:Set.

Inria

Bourbaki: Theory of sets in Coq | (v6) 73

Hypothesis ff: function f.
Hypothesis sgf: sgraph (source f).

Lemma partial_funl_axioms x:
If_axiom (fun y=> Vf f (J x y))(im_of_singleton (source f) x) (target f).
Lemma partial funl_f f x: function (partial_funl f x).
Lemma partial_funl_V x y:
inc (J x y) (source f) -> Vf (partial_funl f x) y = Vf f (J x y).
Lemma artial_fun2_axioms vy:
If_ axiom (fun x=> Vf f (J x y))(im_of_singleton(inverse_graph (source f)) y)
(target f).
Lemma partial_fun2_f y:
function (partial_fun2 f y).
Lemma partial_fun2_V x vy:
inc (J x y) (source f) -> Vf (partial_fun2 fy) x = Vf f (3 x y).
End Funtion_two_args.

An example of function of two arguments is the function obtained from two functions u
and v by associating to (X, y) the pair (u(x),v(y)).

Definition ext_to_prod u v :=
Lf(fun z=> J (Vf (P 2))(Vf v (Q 2)))
((source u) \times (source Vv))
((target u)\times (target v)).

Section Ext_to_prod.
Variables u v: Set.
Hypothesis (fu: function u) (fv: function v).

Lemma ext_to _prod f: function (ext_to_prod u v).
Lemma ext_to _prod_s: source (ext to _prod u v) = source u \times source V.
Lemma ext_to_prod V a b:

inc a (source u) -> inc b (source v)->

Vf (ext_to_prod u v) J ab) = J (vVfua) (Vfvh).
Lemma ext_to prod V2 u v c:

inc ¢ ((source u) \times (source v)) ->

Vf (ext_to_prod u v) ¢ = J (Vfu (P c) (Vf v (Q ¢)).
Lemma ext_to_prod r u v:

range (graph (ext_to_prod u v)) =

(range (graph u)) \times (range (graph v)).

End Ext_to_prod.

1C 2C
a0d™ qpp X (prod extension)
u uEv

a®——/h% p000 o
J J

\

We can consider the product of two C 0Q functions. We rst de ne the projections from
a£ b to a and b and the inverse function. In the diagram above, this inverse function corre-
sponds to the two arrows named J. In other words, if z is the pair (X, y), we have P(z) £x and
Q(z) A£y. To say that J is the inverse means that J applied to x and y gives z. This function
takes two arguments (its typeis Set! Set! Set)butis nota function of two arguments (its
typeisnot Set£ Set! Set).

RR n°® 6999

74 José Grimm

Lemma ext_to_prod_propP: forall a a' (x: a \times a'), inc (P (Ro X)) a.
Lemma ext_to_prod propQ: forall a a' (x: a \times a’), inc (Q (Ro x)) a'
Lemma ext_to_prod_propJ: forall (b bSet) (x:b)(x"b",

inc (J (Ro x)(Ro xY)) (b \times b).

Definition prlC a b:= fun x:a \times b => Bo(ext_to_prod_propP Xx).
Definition pr2C a b:= fun x:a \times b => Bo(ext_to_prod_propQ x).
Definition pairC a b:= fun (x:a)(y:b) => Bo(ext_to_prod_propJ x y).

Definition ext_to_prodC (a b a' b:Set) (u:a->a’)(v:b->b") :=
fun x => pairC (u (priC x)) (v (pr2C x)).

Lemma prC_prop(a b:Set) (x: a \times b):

Ro x = J (Ro (pr1C x)) (Ro (pr2C x)).
Lemma prlC_prop (a b:Set) (x:a \times b): Ro (prlC x) = P (Ro x).
Lemma pr2C_prop (a b:Set) (x: a \times b): Ro (pr2C x) = Q (Ro Xx).
Lemma prJ_prop (a b:Set) (x:a)(y:b): Ro(pairC x y) = J (Ro x) (Ro V).
Lemma prJ_recov (a b:Set) (x:a \times b): pairC (prlC x) (pr2C x) = x.
Lemma ext_to_prod_prop:

(a b a' b:Set) (u:a->a')(v:b->b") (x:a)(x":b):

J(Ro (u x)) (Ro (v xY)) = Ro(ext_to_prodC u v (pairC x X9).

If both functions are injective, surjective or bijective, so is the product. The inverse is the
product of the inverses. It is compatible with composition.

Lemma ext_to_prod _injective u v:

injection u -> injection v -> injection (ext_to_prod u v).
Lemma ext_to_prod_surjective u v:

surjection u -> surjection v-> surjection (ext_to_prod u v).
Lemma ext_to_prod_bijective u v:

bijection u -> bijection v-> bijection (ext_to_prod u v).
Lemma ext_to_prod_inverse u v:

bijection u -> bijection v->

inverse_fun (ext_to_prod u v) =

ext_to_prod (inverse_fun u)(inverse_fun v).
Lemma composable_ext to_prod2 u v u' V"

u' \coP u -> V' \coP v -> (ext_to_prod u' v') \coP (ext_to_prod u v).
Lemma compose_ext_to_prod2 u v u' v"

u' \coP u -> v' \coP v ->

(ext_to_prod u' v') \co (ext_to_prod u v) =

ext_to_prod (u' \co u)(v' \co v).

Same lemmas for CoQ functions.

Lemma injective_ext to_prod2C (a b a' b":Set) (u:a->a')(v:b->b"):
injectiveC u -> injectiveC v -> injectiveC (ext_to_prodC u v).
Lemma surjective_ext_to_prod2C (a b a' b":Set) (u:a->a’)(v:b->b'):
surjectiveC u -> surjectiveC v -> surjectiveC (ext_to_prodC u v).
Lemma bijective_ext to_prod2C (a b a' b":Set) (u:a->a’)(v:b->b"):
bijectiveC u -> bijectiveC v -> bijectiveC (ext_to_prodC u v).
Lemma compose_ext_to_prod2C (a b ¢ a' b' c:Set) (u:b-> c)(v:a->b)
(u:b'-> c(v:a'->b"):
(ext_to_prodC u u") \o (ext_to_prodC v Vv) =1
ext_ to_prodC (u \o v)(u' \o V).
Lemma inverse_ext to prod2C (a b a' b:Set) (u:a->a')(v:b->b")

Inria

Bourbaki: Theory of sets in Coq | (v6) 75

(Hu: bijectiveC u)(Hv:bijectiveC v):
inverseC (bijective_ext to_prod2C Hu Hv) =1
ext_to_prodC (inverseC Hu)(inverseC Hyv).

1 Canonical decomposition of a function, version one. Let f be a function from A to B, and

Citsrange. Then f is the composition of the restriction of f to its range, and the canonical

injection from the range to the target. The rst function satis es g(x) £f (x); the second
satis es i (x) AX.

Lemma image_of fun_range f:. function f ->
image_of fun f = range (graph f).

Lemma canonical_decompositionl f
(g:= restriction_to_image f)
(i := canonical_injection (range (graph f)) (target f)):
function f ->
[ANi\coP g, f =i \co g, injection i, surjection g
(& injection f -> bijection g)].

In the case of C 0Q functions, we replace the range of the graph by the image.

Definition imageC (a b:Set) (f.a->b) := IM (fun u:a => Ro (f u)).
Lemma imageC_inc (a b:Set) (f.a->b) (x:a): inc (Ro (f x)) (imageC f).
Lemma imageC_exists (a b:Set) (f.a->b) x:

inc x (imageC f) -> exists y:a, x = Ro (f y).
Lemma sub_image_targetC (a b:Set) (f.a->b): sub (imageC f) b.

Definition restriction_to_imageC a b (f:a->b) =
fun x;a => Bo (imageC _inc f Xx).

Lemma restriction_to_imageC_pr (a b:Set) (f.a->b) (x:a):
Ro(restriction_to_imageC f x) = Ro (f x).

Lemma canonical_decomposition1C (a b:Set) (f:a->b)
(g:a-> imageC f)(i:imageC f ->b):
g = restriction_to_imageC f ->
i = inclusionC (sub_image_target (f:=f)) ->
[\ injectiveC i , surjectiveC g &
(injectiveC f -> bijectiveC g)].

RR n° 6999

76

José Grimm

Inria

Bourbaki: Theory of sets in Coq | (v6) 77

Chapter 4

Union and intersection of a family of
sets

Bourbaki gives the following de nitions:

De nition 1. Let (Xgp be a family of sets (resp. a family of suPsets of a setE). The setD1,

thatisto say [...], is called the union of the family and denoted by Xq.
®I

De nition 2. Let (Xgp be a family of sets whose index setl is\not empty. The setD», thatis

to say [...], is called the intersection of the family and denoted by ~ Xq
0

De nition 3. Let (Xgg be a family of subsets of a setE. The setDs, in other words [...], is

called the intersection of the family and denoted by X
g

The de nitions use the following sets

D1 :AE{xj(99(2 1 and x 2 Xg},

D2 A{XjB((121) A (x2Xg)},
D3 :A{xjx2Eand (89((121) A (x2Xg)}

that Bourbaki explicits in plain English as, for instanceforD ;1: “the setofall x which belongto
at least one set of the family (X gp|”. Let P1(x) and P,(x) be the predicates (99 (12 | and x 2 Xg)
and (89((121) A (x 2 Xy), so that D 3 is the set of all x 2 E such that P»(x) holds. The two
quantities D 1 and D, are sets provided that P 1 and P are collectivizing, which is a non-trivial
property.

Let's recall that a “family” is a functional graph. If Gissuch agraph,and xisinits domain,
thereisaunique y suchthat(x,y) 2 G. Thisis called the value of G at x, and generally denoted
by G(x). The domain of the family is also called the “index set”. The notation (X ¢ has to
ge understood as: | is the domain of the family, and {lis just a dummy variable. Similarly in

@1 Xy, the variable flis a dummy one By abuse of language, the union may also be written as
Xg. By another abuse of language, —pjXgdenote the union of the restriction of X to J.

In order to “help the intuitive interpretation”, Bourbaki uses the phrase “family of sets”
(this is an obvious pleonasm), and he writes G instead of G(x) (for instance in D 1). A “family
of subsets of asetE" isafunction j A&(G, A, B) suchthatany element of Bis a subsetof E. Thus
G is a functional graph, A its index set, G(x) 2 B whenever x 2 A, so that G(x) ¥2E whenever
x 2 A. In De nition 3, (as well as in De nition 1, “resp.” part), the notation (X 9 has to be

RR n°® 6999

78 José Grimm

understood as “we have some function with graph X, source |, target G” and Yis a dummy
variable. In D 1 and D 3, the quantity X qis the value of the function at 1

Existence of union follows from Axiom Scheme S8 that reads: “Let R be arelation, let x
and y be distinct letters, and let X and Y be letters distinct from x and y which do not appear
in R. Then the relation

(BY)OX)(BX)(R A) (x2X)) A) (8Y)Collx((9y)((y2Y)and R))

is an axiom.”

Take R :AEX 2 Xq, X 1AEX, Yy AN X AEZ,and Y Al We get

(89(92)(8x)((x 2 Xy A (x22)) A (81)Collx((99((121) and (x 2 Xy)).

The assumption is true, since it suf cesto take Z AXg. Thus the conclusion holds, and we get
(81)Coll x (P1(x)). This implies Coll yx(P1(x)), thus the existence of the setD ;.

Note that Bourbaki proves the following

(89(92)(Bx)((121and x 2 Xy A) (x 2 2)).

and applies S8. There is a subtlety here. If Ris relation that appears here, it contains I, so that
we cannot use Y &l anymore. Taking Y instead gives

(8Y)Collx(99((12 Y) and (12 and x 2 Xg))

We can now take Y ZI and simplify.

Consider now a non-empty family. Fix some ®2 1. Then Py(x) implies x 2 X@, so thatD
is just the set of all x in X@that satisfy P, so that De nition 2 makes sense.

Consider now a family of subsets of E; in the case of intersection, we shall assume the
index set non-empty. Then both the union and intersection are subsets of E. They are inde-
pendent of E and of the target of the function. In particular D » A£D3.

Assume now | empty. In this case P »(x) holds for every x and D3 /EE. However, P, is
not collectivizing, and D ; is not a set, so that De nition 2 cannot be applied. In summary:
in the case of union, there is no difference between the two de nitions, and in the case of
intersection, there is a difference only if the index set is empty. In this case, we do not follow
Bourbaki. In the case where the index set is empty, we shall de ne the intersection to be
empty.

4.1 De nition of the union and intersection of a family of sets

We give four de nitions of union and intersection. We have already de ned ° uniont f ',
where f isoftype | | Set, and | is a set; it is the set of all x such that x 2 f (z) for some z
of type I. If gis of type Set! Set and | a set, composing g with R yields a function of
type I ! Set. The union (in the previous sense) is * unionf | g '; thisis the set of all x such
that there exists i 2 |1 such that x 2 g(i). If G is any functional graph, * unionb G is the union
(in the previous sense) of the evaluation function of G on its domain; this is the Bourbaki
de nition. Finally * union X' has already been de ned to be union (in the previous sense) of
the identity graph of X.

We de ne similarly * intersectiont f ', ‘intersectionf | g ' ‘intersectionb G 'and
‘intersection X ', using D 3, where E is the union. Note that intersection is de ned for

Inria

Bourbaki: Theory of sets in Coq | (v6) 79

empty families, but some lemmas apply only when the family is non-empty. Note also that
few theorems assume that G is functional graph. This is because of the following: let G any
set, | the setof all pr 1x, where x 2 G, and f the function that associates to each y 2 Ithe quan-
tity V(x) where prx /y. Then the union of G is the union of f over I. If G is a functional
graph, then for any y 21, there is a unique z suchthat (y,z)2 G and z Z&f (y).

Definition intersectiont (I:Set) (f : 1->Set):=
Zo (uniont f) (fun y => forall z : I, inc y (f 2)).

Definition unionf (x:Set)(f: fterm) := uniont (fun a:xx => f (Ro a)).
Definition unionb g := unionf (domain g)(Vg).

Definition intersectionf (x:Set)(f: fterm):= intersectiont(fun a:x => f (Ro a)).
Definition intersectionb g := intersectionf (domain g) (Vg Q).

We have now a bunch of lemmas that show how to use these de nitions.

Lemma setUf P x i f:
inc x (unionf i f) <-> exists2 y, inc y i & inc x (f y).
Lemma setUb_P x f:
inc X (unionb f) <-> exists2 y, inc y (domain f) & inc x (V f y).
Lemma setUb _P1 x a f:
inc X (unionb (Lg a f)) <-> exists2 y, inc y a & inc x (f y).
Lemma setUt i (In:Set) (f : In->Set) y x:
inc x (f y) -> inc x (uniont f).
Lemma setUf i x y i f:
incyi->incx (fy)->inc x (unionf i f).
Lemma setUb i x y f:
inc y (domain f) -> inc x (Vg fy) -> inc x (unionb f).
Lemma setUf_hi x i f:
inc x (unionf i f) -> exists2 y, inc y i & inc x (f y).
Lemma setUb_hi x f:
inc x (unionb f) -> exists2 y, inc y (domain f) & inc x (Vg f y).

Trivial cases where the domain is empty.

Lemma setUt 0 (I:Set) (f:I-> Set): | = emptyset -> uniont f = emptyset.
Lemma setUf 0 f: unionf emptyset f = emptyset.

Lemma setUb_0: unionb emptyset = emptyset.

Lemma setlt_0 (I:Set) (f:I-> Set): | = emptyset -> intersectiont f = emptyset.
Lemma setlf_O f: intersectionf emptyset f = emptyset.

Lemma setlb_0: intersectionb emptyset = emptyset.

Some lemmas for the intersection. All these lemmas are obvious from the de nitions and
the link between R and B .

Lemma setlt_ P (I:Set) (f:I-> Set): nonempty | -> forall x,
(inc x (intersectiont f) <-> (forall j, inc x (f).
Lemma setlf P | f: nonempty | -> forall X,
(inc x (intersectionf | f) <-> (forall j, inc j | -> inc x (f))).
Lemma setlb_P g: nonempty g -> forall x,
(inc x (intersectionb g) <-> (forall i, inc i (domain g) -> inc x (Vg g i))).
Lemma setl P y: nonempty y -> forall x,
(inc x (intersection y) <-> (forall i, inc i y -> inc x i)).

RR n°® 6999

80 José Grimm

Lemma setlt_i (I:Set) (f:I-> Set) x: nonempty | ->

(forall j, inc x (f j)) -> inc x (intersectiont f).
Lemma setlt_hi (I:Set) (f:I-> Set) x j:

inc x (intersectiont f) -> inc x (f j).
Lemma setlf i | f x; nonempty | ->

(forall j, inc j I -> inc x (f j)) -> inc x (intersectionf | f).
Lemma setlf_hi | f x j:

inc x (intersectionf | f) -> inc j | -> inc x (f j).
Lemma setlb_i g x: nonempty g ->

(forall i, inc i (domain g) -> inc x (Vg g i)) -> inc x (intersectionb g).
Lemma setlb_hi g x i

inc x (intersectionb g) -> inc i (domain g) -> inc x (Vg g).

These lemmas are trivial consequences of the previous ones. They explain when two
unions or intersections are equal.

Lemma setUt_exten (I:Set) (f: I-> Set) (f:I->Set):
f =1 f -> uniont f = uniont f.
Lemma setUf exten sf f f"
{inc sf, f =1 f} -> unionf sf f = unionf sf f'.
Lemma setlt_exten (I:Set) (f f:lI-> Set):
f =1 f - -> (intersectiont f) = (intersectiont f").
Lemma setlf exten | f f: {inc I, f =1} ->
intersectionf | f = intersectionf | f.

- . S T .

These trivial lemmas say that for all, j, X; %2 X; an.F X ¥2Xj. On the other hand, if

forall i, we have A% X; ¥2B,then A2 X; 2B and AY2 X; %2B. Note that for two of these
inclusions, the index set must be nonempty.

Lemma setUt sl (In:Set) (f: I-> Set) i
sub (f i) (uniont f).
Lemma setlt_s1 (I:Set) (f: I-> Set) i:
sub (intersectiont f) (f i).
Lemma setUt sl (I:set) (f: I-> Set) x:
(forall i, sub (f i) x) -> sub (uniont f) x.
Lemma setl2_s2 (I:Set)(f: 1-> Set) x: nonempty | ->
(forall i, sub x (f i)) -> sub x (intersectiont f).
Lemma setl_sub2 (I:Set) (f: In-> Set) x:
(forall i, sub (f i) x) -> sub (intersectiont f) x.
Lemma setUt_sub2 (I:Set) (f: I-> Set) x:
nonempty | -> (forall i, sub x (f i)) -> sub x (uniont f).

Bourbaki says in Proposition 1 [Z,]p. 92]: Let f be a function from K onto I, X qa family
of sets indexed by I. Then the union and the intersection of the family is the union and the
intersection of X ¢ .y over K. Note that I and K are both empty or non-empty.

Theorem setUt _rewrite (I K:Set) (f: K->I) (g:l ->Set):
surjectiveC f ->
uniont g = uniont (g \o f).

Theorem setlt_rewrite (I K:Set) (f: K->I) (g:l ->Set):
surjectiveC f ->
intersectiont g = intersectiont (g \o f).

The Bourbaki statement about unionis setUb_rewritel . In the second lemma we just
assume that f is a functional graph. In the case of intersection, if g is empty, sois g+f, and
conversely.

Inria

Bourbaki: Theory of sets in Coq | (v6) 81

Lemma setUb_rewritel f g:
function f -> fgraph g -> range (graph f) = domain g ->
unionb g = unionb (g \cf (graph f)).
Lemma setUb_rewrite f g:
fgraph f -> range f = domain g ->
unionb g = unionb (g \cf f).
Lemma setlb_rewrite f g:
fgraph f -> range f = domain g ->
intersectionb g = intersectionb (g \cf f).

Let f be a constant function and x 2 |. Then the intersection and union of f onlis f(x).
(Bourbaki uses a strange method: he writes f Ag +h, where h is a surjective function whose
target is a singleton; by surjectivity, the union of f is that of g. Now the domain of g is a
singleton, and the range of g contains f (x)).

Lemma seUt_constant (I:Set) (f:I ->Set) (x:I):
constantp f -> uniont f = f x.

Lemma setlt_constant (I:Set) (f:l ->Set) (x:In):
constantp f -> intersectiont f = f x.

Lemma setUg_constant f x: constantgp f -> inc x (domain f) ->
unionb f = Vg f x.

Lemma setlg_constant f x: constantgp f -> inc x (domain f) ->
intersectionb f = Vg f x.

Lemma setUt_1 (a:Set) (x:a) (f: singleton (Ro x) -> Set):
uniont f = f (Bo (setl_1 (Ro x))).

Lemma setlt_1: (a:Set)(x:a) (f: singleton (Ro x) -> Set):
intersectiont f = f (Bo (setl_1 (Ro x))).

Lemma setUf 1 f x: unionf (singleton x) f = f x.

Lemma setlf 1 f x: intersectionf (singleton x) f = f x.

9 Link between these unions and intersections and the old ones: the union of a set of sets
X is the union of the identity function on X. If f is a functional graph, its union is also the
union of the range.

Lemma setU_prop x: union x = unionf x id.

Lemma setUb_alt f; fgraph f -> unionb f = union (range f).

Lemma setUb_identity x: unionb (identity_g x) = union x.

Lemma setl_prop x: intersection x = intersectionf x id.

Lemma setlb_alt f: fgraph f -> intersectionb f = intersection (range f).
Lemma setlb_identity x: intersectionb (identity_g Xx) = intersection x.

4.2 Properties of union and intersection

We rst show that the union and intersection of F over | are monotone with respect to the
function and index. In the last theorem, one index set must be non-empty.

Lemma setUt S (In:Set) (f g:In->Set):
(forall i, sub (f i) (g i)) -> sub (uniont f) (uniont g).
Lemma setlt_S (I:Set)(f g:I->Set):
(forall i, sub (f i) (g i)) -> sub (intersectiont f)(intersectiont).
Lemma setUf _S2 f: f: {compat (unionf "~ f) : x y / sub x y }.
Lemma setlf S f:
{compat (intersectionf ~~ f) : x y / sub x y A nonempty x >-> sub y x}.

RR n°® 6999

82 José Grimm

Proposition 2 [2,Ip. 93] states associativity of union and intersection. It says:

A ! A !

[[\ Vo [
X /E Xg X A Xg 1E J.

RI 2L BRI ®I 2L’

In the case of intersection, we require J to be non-empty, since these sets are not taken into
account in the LHS, while the corresponding intersection is replaced by the empty set in the
RHS.

Theorem setUf A sg f g:

unionf (unionf sg g) f = unionf sg (fun | => unionf (g I) f).
Theorem setlf_A sg f g:

(alls sg (fun i => (nonempty (g i)))) ->

intersectionf (unionf sg g) f

= intersectionf sg (fun | => intersectionf (g I) f).

Propos'jtion 3 [2]p. 94] says that if | is a correspondence, then hS Xq ﬁES i X and
ih X4q% jhXq. (note: let G be the graph of i, so that j hXi &£ GhXi; the two formulas are
true whatever G). Proposition 4 [2,]p. 95] says that we have equality if i is the inverse of a
function, and, as a consequence, if j is an injective function. In fact, we use the canonical
decomposition | Ai +g, where g is the restriction of | onitsimage (hence is bijective), and i
is the inclusion map from the image of toits target. Then j hxi Z£gi *hxi for every set x.

Theorem dirim_setUt (l:Set) (f:I->Set) g:

direct_image g (uniont f) = uniont (fun i => direct_image g (f i)).
Theorem dirim_setlt (I:Set) (f:I->Set) g:

sub (direct_image g (intersectiont f))

(intersectiont (fun i => direct_image g (f i))).
Theorem iim_fun_setlt (I:Set) (f:I->Set) g:

function g ->

(inv_image_ by fun g (intersectiont f)) =

(intersectiont (fun i => inv_image_by fun g (f i))).
Lemma inj_image_setlt (I:Set) (fiI->Set) g:

injection g ->

(image_by_fun g (intersectiont f))

= (intersectiont (fun i => image_by fun g (f i))).

4.3 Complements of unions and intersections

Let Xqbe a non-empty family of sets; de ne Y ¢&X\Xq Then the intersection (resp. union)
of the X ¢is the complement in X of the union (resp. intersection) ofthe Y ¢ This is Proposition
5[2] p. 96] (Bourbaki assumes, X ¢¥2X, which is not needed).

Theorem setCUt2 (I:Set) (f:I-> Set) x: nonempty | ->

X -s (uniont f) = intersectiont (fun i=> x -s (f i)).
Theorem setClt2 (I:Set) (f:I-> Set) x: nonempty | ->

X -s (intersectiont f) = uniont (fun i=> x -s (f i)).
Lemma setCUf2 sf f x: nonempty sf ->

X -s (unionf sf f) = intersectionf sf (fun i=> x -s (f i)).
Lemma setClIf2 sf f x: nonempty sf ->

X -s (intersectionf sf f) = unionf sf (fun i=> x -s (f i)).

Inria

Bourbaki: Theory of sets in Coq | (v6) 83

4.4 Union and intersection of two sets

Bourbaki de nes the union and intersection of two sets A and B as the union and in-
tersection of the identity function on the doubleton {A, B}. This was de ned as union2 and
intersection2 . All results shown here are easy.

Lemma setUf2f x y f: unionf (doubleton x y) f = (f x)\cup (f y).
Lemma setlf2f x y f: intersectionf (doubleton x y) f = (f x) \cap (f y).
Lemma setUf2 x y: unionf (doubleton x y) id = x \cup v.

Lemma setlf2 x y: intersectionf (doubleton x y) id = x \cap .

We have (these results have been proved in a previous chapter).

G {y} Ax, v} x[xAX, x\ X /X, x\ yAEy\ x, x[yA&y[x.

We have:
X[yl 2) & y)[z, x\ (y\ 2) AXx\ y)\ z,

X[(y\ 2) AX[Y\ (x[2), x\ (y[2) AXx\ y)[(x\ 2).
We have x %2y ifand only if x[y Ay. We have x %2y ifand only if x\ y Ax. We have:

zZ\(x[y) A(z\ x)\ (z\vy), zZ\(x\ y) Az\x)[(z\y).

We have x[(z\ x) £z and x\ (z\ x) &£ ;. If g is a correspondence, we have ghx[yi /&
ghxi[ghyi and ghx\ yi% ghxi\ ghyi. Equality holds if g is an injective functionor g Z&fi?
where f is a function.

Lemma dirim_setU2 g: {morph (direct_image g): x y / x \cup y}.
Lemma dirim_setl2 g x vy:

sub (direct_image g (x \cap Y))

((direct_image g x) \cap (direct_image g Y)).

Lemma iim_fun_setl2 g: function g ->

{morph (inv_image_by fun g): x y / x \cap y}.
Lemma inj_image_setl2 g : injection g ->

{morph (image_by fun g): x y / x \cap v}.

If f is a function from A into B, thenwe have fi1hB\xiZA\ filhxi and f hA\ xi £B\ f hxi
if f is ainjective with range B (Proposition 6, [2] . 98]).

Lemma iim_fun_C1 f: function f ->

{when eg"~ (target f) & sub”~ (target f),
{morph inv_image by fun f : a b / a -s b}}.

Lemma inj_image_C f: injection f ->

{when eg"~ (source f) & sub”~ (source f),
{morph image_by fun f : a b / a -s b}}.

4.5 Coverings

A covering of a set X is a family X qwhose union contains X. By extension, a set whose
union contains X is also called a covering.

RR n°® 6999

84 José Grimm

Definition covering f x := fgraph f A sub x (unionb f).
Definition covering_s f x := sub x (union f).

Lemma covering_P f x: fgraph f ->
(covering f x <-> covering_s (range f) x).

We say that a covering (Y.). 2k re nes (X g if for all - there is fsuch that Y. %2 Xq We
sometimes say that Y is ner than X, or that X is coarser than Y. This de nition will be ex-
tended to set coverings: the de nition* coarser_cs y y' 'says that the set of sets y°re nes
y. In other words, forall a 2 y°thereis b 2 y such that a %b. We will show that this is an order
on the set of all partitions.

Definition coarser_cg f g :=
[\ fgraph f, fgraph g &
forall j, inc j (domain Q)
-> exists2 i, inc i (domain f) & sub (Vg g j) (Vg f i)].
Definition coarser_cs y y' =
forall a, inc a y' -> exists2 b, inc b y & sub a b.

Lemma coarser_cP f g: fgraph f -> fgraph g ->
(coarser_cg f g <-> coarser_cs (range f) (range Q)).
Lemma sub_covering f | x (g := restr f I):
(sub I (domain f)) -> covering f x -> covering g x ->
coarser_cg f g.

Given two families X qand Y., we can consider the family X ¢\ Y.. Given two sets of sets X
and Y, we can consider the set of elements of the form a\ b for a2 X and b 2 Y. Hence, given
two coverings X qand Y. of Zwe nd acovering i(XgY.)of Zthatre nes X qand Y., thisis the
supremum for the coarser ordering (ordering are de ned in the second part of this report).

Definition intersection_covering f g =
Lg ((domain f) \times (domain @))
(fun z => (Vg f (P 2)) \cap (Vg g (Q 2))).
Definition intersection_covering2 x y:=
range (intersection_covering (identity_g x) (identity_g v)).

Lemma setl_covering2_P x y z:

inc z (intersection_covering2 x y) <->

exists a b, [Nincax,incby, alapb=2z].
Lemma setl_covering E: {compat intersection_covering : x & / covering x E}.
Lemma setl_coarser_cl f g x:

covering f x -> covering g X ->

coarser_cg f (intersection_covering f g).
Lemma setl_coarser_cr f g x:

covering f x -> covering g X ->

coarser_cg g (intersection_covering f g).
Lemma setl_coarser_clr h x:

covering h x -> {when covering *~ x &,

{compat intersection_covering : f & / coarser_cg f h}}.

We show here the equivalent properties for sets of sets. Essentially, we prove that i(X,y)
is the least upper bound for the order de ned by coarser_cs (which is de ned on the set of
partitions, as will be seen later).

Inria

Bourbaki: Theory of sets in Coq | (v6) 85

Lemma setl_covering2 E:

{compat intersection_covering2 : x & / covering_s x E}.
Lemma setl_coarser2_cl f g x:

covering_s f x -> covering_s g x ->

coarser_cs f (intersection_covering2 f g).
Lemma setl_coarser2 cr f g x:

covering_s f x -> covering_s g x ->

coarser_cs g (intersection_covering2 f g).
Lemma setl_coarser2_clr h x:

covering_s h x -> {when covering_s "~ x &,

{compat intersection_covering2 : f & / coarser_cs f h}}.

If Xqis a covering and g a function, then the family of sets gi 1hX1j is a covering; if g is
surjective, then ghXq is a covering.

Lemma image_of covering f g:

surjection g -> covering f (source Q)

-> covering (Lg (domain f) (fun w => image_by_fun g (Vg f w))) (target g).
Lemma inv_image_of_covering f g:

function g -> covering f (target g)

-> covering (Lg (domain f) (fun w => inv_image_by fun g (Vg f w))) (source g).
Lemma product_of covering f g x v:

covering f x -> covering g y ->

covering (Lg ((domain f) \times (domain g))

(fun z => (V f (P 2)) times (Vg g (Q 2))))
(x \times vy).

Proposition 7 [2]p. 99] says that if X qis a covering of E, then two functions that agree
on each Xqagree on E. Moreover, assume that fqis a function de ned on X ¢ (with target T).
Assume that fqand f. agree on Xq\ X.. There is a unique function f de nedonE, that agrees
with fqon Xq, whose target is the union of the T ¢ We prove uniqueness only in the case where
allthe T qare equal to a same T.

Definition function_prop_sub f s t:=
[A function f, source f = s, sub (target f) t].
Definition common_ext f h t:=
triple (unionb f) t (unionb (L (domain f) (fun i => (graph (h))))).

Lemma agrees_on_covering f x g g"
covering f x -> function g -> function g' ->
source g = X -> source ¢g' = X ->
(forall i, inc i (domain f) -> agrees on (x \cap (Vg fi)) g g) ->
agrees_on x g g
Lemma extension_covering f t h
(d:= domain f) (g := common_ext f h t) :
(forall i, inc i d -> function_prop (h i) (Vg f i) t) ->
(forall i j, incid->incjd->
agrees_on ((Vg fi) \cap (Vg f) (hi) (h]) ->
[\ function_prop g (unionb f) t A
graph g = (unionb (Lg d (fun i => (graph (h i))))),
range (graph g) = unionb (Lg d (fun i => (range (graph (h i))))),
(forall i, inc i d -> agrees_on (Vg f i) g (h)]
Lemma extension_covering_thm f t h (d:= domain f):
(forall i, inc i d -> function_prop (h i) (V fi)t) ->
(forall i j, incid->incjd ->

RR n°® 6999

86 José Grimm

agrees_on ((Vg f i) \cap (Vg fj)) (hi) (hj) ->
fgraph f ->
exists! g,(function_prop g (unionb f) t A

(forall i, inc i d -> agrees_on (Vg f i) g (h i))).

4.6 Partitions

De nition 7 in Bourbaki [2,[p. 100]is: a partition of a set E is a family of non-empty mu-
tually disjoints subsets of E which covers E; the phrase non-empty is missing in the French
version. We consider the strong and weak versions, as well as version where a family is re-
placed by a set of sets.

Definition nonempty fam f := allf f nonempty.

Definition mutually_disjoint f :=

(forall i j, inc i (domain f) -> inc j (domain f) ->

i = j V (disjoint (Vg f i) (Vg f)))).

Definition partition_w y x:=

(union y = x) A\

(forall a b, inc ay -> inc b y -> disjointVeq a b).
Definition partition_s y x:=

partition_w y x A (alls y nonempty).
Definition partition_w_fam f x:=

[A fgraph f, mutually_disjoint f & unionb f = x].
Definition partition_s fam_s f x:=

partition_w_fam f x A nonempty_fam f.

We list below some properties of partitions.

Lemma mutually_disjoint_prop f:
(forall i j vy, inc i (domain f) -> inc j (domain f) ->
incy (Vg fi)->incy (gfj->i=j ->
mutually_disjoint f.
Lemma mutually_disjoint_prop2 x f:
(forall i jy, incix->incjx ->
incy (fi) >incy (fj) >i=j ->
mutually_disjoint (Lg x f).
Lemma mutually_disjoint_propl f: function f ->
(forall i j y, inc i (source f) -> inc j (source f) ->
incy (Vffi)->incy (Vffj) ->i=j ->
mutually_disjoint (graph f).

Lemma partition_same y x:
partition_w y x -> partition_w_fam (identity_g y) x.
Lemma partition_same2 y x:
partition_fam y x -> partition_s (range y) Xx.
Lemma partitions_is_covering y x:
partition_w y X -> covering_s y X.
Lemma partition_fam_is_covering y x:
partition_w_fam y x -> covering y X.

If (X Is a partition of E, each element of E is in a unique X ¢ Thus, we have a function
f:E! I, suchthat x 2 X (x).

Inria

Bourbaki: Theory of sets in Coq | (v6) 87

Definition cover_at f y := select (fun i => inc y (Vg f i)) (domain f).

Lemma cover_at_in f x y (i := cover_at f y):
partition_w_fam f x -> inc y x ->
(incy (Vg fi) \linc i (domain f)).
Lemma cover_at pr f x y i:
partition_w_fam f x -> inc i (domain f) -> inc y (Vg f i) ->
cover_at fy =i
Lemma same_cover_at f x y z (i := cover_at f y):
partition_w _fam f x -> incy x ->inc z (Vg fi) -> cover at fz =

We show here that “coarser” is an ordering on the set of partitions of a set E.

Lemma coarserR: reflexive_r coarser_cs.
Lemma coarserT: transitive_r coarser_cs.
Lemma coarserA x: {when partition_s "~ x &, antisymmetric_r coarser_cs}.

1 We construct here a function that maps ato x and and b to y. This function is well-de ned
if a and b are distinct element, for instance in the case of COand C1

Definition variant a x y = (fun z:Set => Yo (z = a) X y).
Definition variantL a b x y := Lg (doubleton a b) (variant a x y).
Definition variantLc f g:= Lvariant CO C1 f g.

Definition varianti x a b := fun z => Yo (inc z x) a b.

Lemma variant_true a x y z: z = a -> variant a X y z =
Lemma variant false a x y z: z <> a -> variant a x y z
Lemma varianti_in z x a b: inc z x -> (varianti x a b 2)
Lemma varianti_out z x a b: ~ inc z x -> (varianti x a b z) = b.
Lemma variant. V_a a b x y: Vg (variantL a b x y) a = x.
Lemma variant V.b a b xy: b <> a -> Vg (variantL a b x y) b = vy.
Lemma variant_fgraph a b x y: fgraph (variantL a b x vy).
Lemma variant d a b x y: domain (variantL a b x y) = doubleton a b.
Lemma variantLc_fgraph x y: fgraph (variantLc x vy).
Lemma variantLc_dxs f g: domain (variantLc f g) = C2.
Lemma variantLc_domain_ne: forall f g, nonempty (domain (variantLc f Q)).
Lemma variant_ V_ca x y: Vg (variantL.c x y) CO = x.
Lemma variant_V_cb x y: Vg (variantLc x y) C1 = vy.
Lemma variant_truel x y: variant CO x y CO = x.
Lemma variant_falsel x y: variant CO x y C1 =y.
Lemma variantLc_comp a b f:

variantLc (f a) (f b) =

Lg (domain (variantLc a b)) (fun z => f (Vg (variantLc a b) 2z)).

X.
= y'
= a.

If X is a subset of E then X and E\X form a partition of X (it is a non-empty partition only
if X is neither empty nor E).

Definition partition_with_complement x j :=
variantLc j (x -s j).

Lemma is_partition_with_complement x j:
sub j x -> partition_w_fam (partition_with_complement x j) x.

The set of non-empty partitions on X can be ordered by the ner ordering on coverings;
we give here the smallest and largest element of the set. If X gis a partition family, then the

RR n°® 6999

88 José Grimm

mapping 7! Xqis injective (we use the fact that X qis not empty). Inverse images of disjoint
sets by a function are disjoint.

Definition greatest_partition x := fun_image x singleton.
Definition least_partition x := (singleton Xx).
Definition injective_graph f:=

fgraph f A {inc domain f &, injective (Vg f)}.

Lemma least_is_partition x:

nonempty x -> partition_s (least_partition x) x.
Lemma greatest_partition_P x z:

inc z (greatest_partition x) <-> exists2 w, inc w x & z = singleton w.
Lemma greater_is_partition x: partition_s (greatest_partition x) x.
Lemma injective_partition f x:

partition_s_fam f x -> injective_graph f.
Lemma partition_fam_partition f x:

partition_s_fam f x -> partition_s (range f) x.
Lemma inv_image_disjoint g: function g ->

{compat (inv_image_by fun g) : x y / disjoint x y}.

Proposition 8 [2.Ip. 100] is an immediate consequence of Proposition 7. If (X g)qis a parti-
tion of X and fq2 F (Xg, T), then there exists a unique f 2 F (X, T) that extends every fq The
assumption is that fqis a function de ned on X ¢, with target T. We give a variant (without
uniqueness) where the target of fqis a subset of T. The set of functions F will be de ned
later.

Lemma extension_partition_aux f x t h:
partition_w_fam f x ->
(forall i, inc i (domain f) -> function_prop (h i) (Vg fi) t) ->
(forall i j, inc i (domain f) -> inc j (domain f) ->
agrees_on ((Vg f i) \cap (Vg f j)) (h i) (hj).
Lemma extension_partitionl f x t h (g := common_ext f h t):
partition_w_fam f x ->
(forall i, inc i (domain f) -> function_prop (h i) (Vg fi) t) ->
(function_prop g x t A
(forall i, inc i (domain f) -> agrees on (Vg f i) g (h i))).
Lemma extension_partition2 f x t h
(g:= common_ext t (fun i => (triple (Vg f i) t (graph (h i)))) t):
partition_w_fam f x ->
(forall i, inc i (domain f) -> function_prop_sub (h i) (Vg fi) t) ->
(function_prop g x t A
forall i, inc i (domain f) -> agrees_on (Vg f i) g (h i)).

Theorem extension_partition_thm f x t h:
partition_w_fam f x ->
(forall i, inc i (domain f) -> function_prop (h i) (Vg fi) t) ->
exists ! g, (function_prop g x t A
(forall i, inc i (domain f) -> agrees_on (Vg f i) g (h i))).

4.7 Sum of a family of sets
Proposition 9 [2,p. 100] says that, for any family X ¢ there exists a family X %of sets equipo-
tent to X ¢, that are mutually disjoint, and a set X that is the union of these sets. After that,

Bourbaki de nes the sum of a family as the union of the family X ¢£ {f}. These sets form a

Inria

Bourbaki: Theory of sets in Coq | (v6) 89

partition of the sum. Proposition 10 [2,[p. 101] says that that if X ¢is a family with union A
and sum S, there is a bijection between A and S if the family is disjoint. A comment says that
there always exists a surjection. This will be used later on to prove that the cardinal of a union

is not greater that the sum of the cardinals of the members of the family.

Definition disjointU_fam f := Lg (domain f)(fun i => (Vg f i) *sl1 i).
Definition disjointU f := unionb (disjointU_fam f).

Lemma disjointU_disjoint f:

mutually_disjoint(disjointU_fam f).
Lemma disjointU_fgraph f: fgraph (disjointU_fam f).
Lemma disjointU_d f: domain (disjointU_fam f) = domain f.

Theorem disjoint_union_lemma f:
exists g X,
[\ fgraph g, x = unionb g,
(forall i, inc i (domain f) -> (Vg f i) \Eq (Vg g i)
& mutually_disjoint g].

Lemma disjointU_hi f x: inc x (disjointU f) ->

[N inc (Q x) (domain f), inc (P x) (Vg f (Q X)) & pairp X].
Lemma disjointU_P f x: inc x (disjointU f) <->

[N inc (Q X) (domain f), inc (P x) (Vg f (Q X)) & pairp X].
Lemma disjointU_pi f x y:

inc y (domain f) -> inc x (Vg f y) ->

inc (J x y) (disjointU f).

Lemma disjointU2_rw a b xy: y <> x ->

disjointU (variantL x y a b) = (a *s1 x) \cup (b *s1 y).
Lemma disjoint_union2_rwl a b:

disjointU (variantLc a b) = (a *s1 CO) \cup (b *s1 C1).

Lemma partition_disjointU f:
partition_w_fam (disjointU_fam f) (disjointU f).

Theorem disjointU_pr f
(h := fun i => Lf P ((vVg f i) *s1 i) (unionb f))
(g := common_ext (disjointU_fam f) h (unionb f)):
[\ source g = disjointU f,
target g = unionb f,
surjection g,
(mutually_disjoint f -> bijection g)].

We sometimes consider the disjoint union of two sets A and B. This is the set
A£ {0}[BE {1}.

Definition canonical_du2 a b := disjointU (variantLc a b).

Lemma candu2_rw a b:

canonical_ du2 a b = (a *s1 CO) \cup (b *s1 C1).
Lemma candu2P a b x:

inc x (canonical_du2 a b) <-> (pairp x N\

((inc (P x) aNQx=2C0)V(nc (Px)bANAQ x =C1))).
Lemma candu2_pr2 a b x:

inc X (canonical_du2 a b) -> (Q x = CO V Q x = C1).
Lemma candu2_pra a b x:

RR n°® 6999

90

José Grimm

inc X a -> inc (J x CO) (canonical_du2 a b).
Lemma candu2_prb a b x:
inc X b -> inc (J x C1) (canonical_du2 a b).

Inria

Bourbaki: Theory of sets in Coq | (v6) 91

Chapter 5

Product of a family of sets

5.1 The axiom of the set of subsets

Bourbaki has an axiom (Axiom 4 in the English edition) that asserts the existence, for
every set X, of the set of subsets of X. This is sometimes called the powerset of X, it is denoted
by P (X). C. Simpson has de ned it in Section 2[7. |

If f isacorrespondence from Ato B, then f hXi% B whenever X ¥2A. This gives a function
from P (A)to P (B), called extension to sets of subsetslIf we denote it by f, then the extension
of f xgis f +§. The extension of the identity is the identity. The extension of an inverse is an
inverse of the extension; this can be more formally restated in Proposition 1 [2, p.J101] as: if f
is surjective (resp. injective), then its restriction to the set of sets is surjective (resp. injective).

Definition extension_to_parts f =
Lf (image_by fun f) (powerset (source f)) (powerset (target f)).
Lemma etp_axiom f. correspondence f ->
If axiom (image_by fun f) (powerset (source f)) (powerset (target f)).
Lemma etp_f f:
correspondence f -> function (extension_to_parts f).
Lemma etp_V f x:
correspondence f -> sub x (source f)
-> Vf (extension_to_parts f) x = image_by fun f x.
Lemma etp_composable f g:
composableC g f ->
(extension_to_parts g) \coP (extension_to_parts f).
(*
Lemma etp_compose f g:
composableC g f ->
(extension_to_parts g) \co (extension_to_parts f)
= extension_to_parts (g \co f).
*
)
Lemma etp_compose:
{when: composableC , {morph extension_to_parts: x y / x \co y }}.

Lemma etp_identity x:
extension_to_parts (identity x) = identity (powerset Xx).
Lemma composable_for_function f g: g \coP f -> composableC g f.

Theorem etp_fs f: surjection f -> surjection (extension_to_parts f).
Theorem etp_fi f: injection f -> injection (extension_to_parts f).

RR n°® 6999

92 José Grimm

5.2 Setof mappings of one set into another

The set of all graphs of functions from E to F is denoted by F E: this is a subset of the
powerset of E £ F. The set of all functions, namely the set of triples (G,E,F) where G 2 FE, is
denoted by F (E;F). A bijection from E to itselfis called a permutation of E.

Definition functions x y :=
Zo (correspondences X YY)
(fun z => fgraph (graph z)\A x = domain (graph z)).
Definition permutations E :=
Zo (functions E E) bijection.
Lemma fun_set P x y f:
inc f (functions x y) <-> (function_prop f x).

We introduce now F E. It is canonically isomorphicto F (E;F); this means that using one
set or the other does not change the size of a proof.

Definition gfunctions x y :=
Zo (powerset (x \times y))(fun z => fgraph z A x = domain 2z).

Lemma gfun_set_i f:
function f -> inc(graph f) (gfunctions (source f) (target f)).
Lemma gfun_set hi x y z:
inc z (gfunctions x y) -> exists f,
[A function f, source f = x, target f = y & graph f = z].

The set of partial functions from x to y will be used later on. It is the union of the sets of
functions from x°to y, where x%%x. We give the characteristic property of this set.

Definition sub_functions x y:=
unionf(powerset x)(functions ~~).
Lemma sfun_set P x y f:
inc f (sub_functions x y) <->
[A function f, sub (source f) x & target f = y].

The set of functions E ! Fis small (has at most one element) if E or F is empty. It is non-
empty if E is empty, or if F is non-empty. We could restate this as: if x and y are two cardinals,
if one of them is zero, then xY is zero or one; if x is non-zero, or vy is zero, then xY is non-zero.
We then show that there is an obvious bijection between F (E;F) and FFE.

Lemma function_exten5 x y a b:
inc a (functions x y) -> inc b (functions x y) ->
graph a = graph b -> a = b.
Lemma fun_set_small_source y: small_set (functions emptyset vy).
Lemma fun_set small_target x: small_set (functions x emptyset).
Lemma fun_set ne x y: (X = emptyset V nonempty y) -> nonempty (functions x y).
Lemma graph_If axiom x y: If_axiom graph (functions x y) (gfunctions x).
Lemma graph_fb x y: bijection (Lf graph (functions x y) (gfunctions x vy)).
Lemma fun_set_equipotent x y: (functions x y) \Eq (gfunctions x y).

f
%O_M: (compose3function)

u \

EO / 4:0

Inria

Bourbaki: Theory of sets in Coq | (v6) 93

Given f 2 F (E;F), we construct f°2 F (E®F9 via f °/v+f +u, provided that u is a function
from E®to E and v is a function from F into F © Proposition 2 [2]p. 102] says that if u is
surjective and v is injective, then this mapping is injective; if u isinjective and v is surjective,
then this mapping is surjective. The situation is a bit more tricky when some sets are empty.

Definition compose3function u v :=
Lf (fun f => (v \co f) \co u)
(functions (target u) (source V))
(functions (source u) (target v)).

Lemma c3f axiom u v:

function u -> function v ->

If_ axiom (fun f => ((v \co f) \co u))

(functions (target u) (source V))

(functions (source u) (target v)).
Lemma c3f_f u v:

function u -> function v -> function (compose3function u v).
Lemma c3f V u v f:

function u -> function v ->

function f -> source f = target u -> target f = source v ->

Vf (compose3function u v) f = (v \co f) \co u.
Theorem c3f_fi u v:

surjection u -> injection v -> injection (compose3function u v).
Theorem c3f fs u v:

(nonempty (source u) VV (nonempty (source v)) V (nonempty (target v))

\/ target u = emptyset) ->

injection u -> surjection v -> surjection (compose3function u v).
Lemma c3f fb u v:

bijection u -> bijection v -> bijection (compose3function u v).

We now de ne the canonical bijectionsfrom F (BEC;A)into F (B;F (C;A)orF (C;F (B;A)).
For any function f (x,y)we can x one of the variables to get a function.

Definition partial_fun_axiom f :=
function f A\ exists a b, source f = a \times b.
Definition first_partial_fun f y:=
Lf(fun x => Vf f (J x y)) (domain (source f)) (target f).
Definition second_partial_fun f x:=
Lf(fun y => Vf f (J x y)) (range (source f)) (target f).
Definition first_partial_function f:=
Lf(fun y => first_partial_fun f y) (range (source f))
(functions (domain (source f)) (target f)).
Definition second_partial_function f:=
Lf(fun x => second_partial_fun f x) (domain (source f))
(functions (range (source f)) (target f)).
Definition first_partial_map b ¢ a:=
Lf (fun f=> first_partial_function f)
(functions (b \times c) a)
(functions ¢ (functions b a)).
Definition second_partial_map b ¢ a:=
Lf (fun f=> second_partial_function f)
(functions (b \times ¢) a)
(functions b (functions c a)).

The next lemmas show that for xed X, the partial application fy that maps y to f (x,y)is
afunction. Similarly for fy.

RR n°® 6999

94 José Grimm

Lemma partial_fun_axiom_pr f:
partial_fun_axiom f ->
source f = (domain (source f)) \times (range (source f)).
Lemma fpf_axiom f y:
partial_fun_axiom f -> inc y (range (source f)) ->
If axiom (fun x => Vf f (J x y)) (domain (source f)) (target f).
Lemma spf_axiom f x:
partial_fun_axiom f -> inc x (domain (source f)) ->
If axiom (fun y => Vf f (J x y)) (range (source f)) (target f).
Lemma fpf f f y:
partial_fun_axiom f -> inc y (range (source f)) ->
function (first_partial_fun f y).
Lemma spf_f f x:
partial_fun_axiom f -> inc x (domain (source f)) ->
function (second_partial_fun f x).
Lemma fpf V x vy:
partial_fun_axiom f -> inc x (domain (source f)) ->
inc y (range (source f)) ->
Vf (first_partial_fun f y) x = Vf f (J x y).
Lemma spf V f x y:
partial_fun_axiom f -> inc x (domain (source f)) ->
inc y (range (source f)) ->
Vf (second_partial_fun f x) y = Vf f (3 x).

The next lemmas show that both x 7! f, and y 7! fy are functions.

Lemma fpfa_axiom f:

partial_fun_axiom f ->

If_ axiom (fun y => first_partial_fun f y)(range (source f))

(functions (domain (source f)) (target f)).
Lemma spfa_axiom f :

partial_fun_axiom f ->

If_axiom (fun x => second_partial_fun f x)(domain (source f))

(functions (range (source f)) (target f)).
Lemma fpfa f f:

partial_fun_axiom f -> function (first_partial_function f).
Lemma spfa_f f:

partial_fun_axiom f -> function (second_partial_function f).
Lemma fpfa_V f y:

partial_fun_axiom f -> inc y (range (source f)) ->

Vf (first_partial_function f) y = first_partial_fun f y.
Lemma spfa_V f x:

partial_fun_axiom f -> inc x (domain (source f)) ->

Vf (second_partial_function f) x = second_partial_fun f x.

Denote the mapping x 7! fy by f. We show here that the mapping f 7! f is a function.
We assume that the source is nonempty.

Lemma fpfb_axiom a b c:
nonempty b -> nonempty ¢ ->
If_axiom (fun f=> first_partial_function f)
(functions (b \times ¢) a)
(functions ¢ (functions b a)).
Lemma spfb_axiom a b c:
nonempty b -> nonempty ¢ ->
If_axiomf (fun f=> (fun f=> second_partial_function f)

Inria

Bourbaki: Theory of sets in Coq | (v6) 95

(functions (b \times ¢) a)

(functions b (functions c a)).
Lemma fpfb_f a b c:

nonempty a -> nonempty b -> function (first_partial_ map a b c).
Lemma spfb f a b c:

nonempty a -> nonempty b -> function (second_partial map a b c).
Lemma fpfb_V a b c f:

nonempty a -> nonempty b -> inc f (functions (a \times b) c) ->

Vf (first_partial_ map a b c) f = first_partial_function f.
Lemma spfb V a b c f:

nonempty a -> nonempty b -> inc f (functions (a \times b) c) ->

Vf (second_partial map a b c) f = second_partial_function f.
Lemma fpfb_VV a b c f x:

nonempty a -> nonempty b -> inc f (functions (a \times b) c) ->

inc x (a \times b) ->

VFE (Vf (Vf (first_partial_map a b ¢) f) (Q x)) (P x) = Vf f x.
Lemma spfb VWV a b c f x:

nonempty a -> nonempty b -> inc f (functions (a \times b) c) ->

inc x (a \times b) ->

Vf (Vf (Vf (second_partial_ map a b c) f) (P x)) (Q x) = Vf f x.

We now prove the main result, Proposition 3 of [2,[d. 103].

Theorem fpfa fb a b c:

nonempty a -> nonempty b -> bijection (first_partial_map a b c).
Theorem spfa_fb a b c:

nonempty a -> nonempty b -> bijection (second_partial_map a b c).

5.3 De nition of the product of a family of sets

An element of the product of two sets X 1 and X5 is a pair of elements of X ; and X, an
element of the product of n sets Xi,..., X, is atuple (Xz,...,Xn), and thus an element of the
product of a family (X g is a family (xge such that xq2 Xq We give two de nitions of the
product, in the same way as we gave four de nitions for the union or the intersection (the
variant productt could be de ned but it not used, the last variant product corresponds to
the notion of an unordered product; for an example, see annex of the second part of this
report).

Given a family (X gp| of sets de ned.on I, we may consider functions f suchthat f () 2 Xq
The target of f (9 isd'n the union A £ Xqand the graph is an element of P (I £ A). Thus, we
de ne the product Xgas the set of all elements of P (I £ A) that are graphs of functions with
this property. If all X qare the same set E, then A ZE, this justi es the notation E ! for the set of
functional graphs from | to E since it is the product of a constant family.

Definition productb f.=
Zo (powerset ((domain f) \times (unionb f)))
(fun z => [\ fgraph z, domain z = domain f
& forall i, inc i (domain f) -> inc (Vg z i) (Vg f D)]).

Definition productf sf f := productb (Lg sf f).

We list below some basic properties of products.

RR n°® 6999

96 José Grimm

Lemma setXb P f x,
inc x (productb f) <->
[\ fgraph x, domain x = domain f A\
forall i, inc i (domain f) -> inc (Vg x i) (Vg f i)].
Lemma setXf P sf f x:
inc x (productf sf f) <->
[\ fgraph x, domain x = sf & forall i, inc i sf -> inc (Vg x i) (f i)].

We give here an extensionality properties for elements of a product.

Lemma productb_gr x: productb (Lg (domain x) (Vg x)) = productb x.
Lemma unionb_gr X : unionb (Lg (domain X) (Vg X)) = unionb X.
Lemma setXb_exten f x X"
inc x (productb f) -> inc x' (productb f) -> {inc (domain f), x =1g x'} ->
X = X\,
Lemma setXf exten sf f x X"
inc x (productf sf f) -> inc x' (productf sf f) -> {inc sf, x =1g x} ->
X = x.

We de ne now pr ¢, the fth projection of a product; it is like pr ; and pr, for the product
of two sets. Let f be an element of the product and flan index; we have pr «f Afq, where fg
denotes f (). Thus thi(sé mapping is nothing else than V. Here we de ne a function, whose
source is the product = X. and whose target is X

Definition pr_i f i:= Lf (Vg *~ i) (productb f) (Vg f i).

Lemma pri_axiom f i

inc i (domain f) ->

If_axiom (Vg "~ i)(productb f)(Vg f i).
Lemma pri_f fi: inc i (domain f) -> function (pr_i f i).
Lemma pri_V fi x:

inc i (domain f) -> inc x (productb f) ->

VFf (pri fi) x = Vg x i

If the sets Xqare non empty, so is the product, and conversely. The idea is that we have
Xq2 Xqfor some xq, and we can construct a function 7! Xg

Lemma setXb_0 : productb emptyset = singleton emptyset.
Lemma setXb_0' f: productb (Lg emptyset f) = singleton emptyset.
Lemma setXb_ne f. nonempty_fam f -> nonempty (productb f).
Lemma setXb_ne2 f: nonempty (productb f) -> nonempty_fam f.

Assume Xg%2E. An element of the produygt Qw Xqis the graph of a function from | to E.
The converse is true if X g &E for all § Then ~ ¢, E AE".

Lemma graphset P1 a b z:

inc z (gfunctions a b) <->

[\ fgraph z, domain z = a & sub z (a \times b)].
Lemma graphset P2 a b z:

inc z (gfunctions a b) <->

[N fgraph z, domain z = a & sub (range z) b].
Lemma setXb_sub_graphset f x:

sub (unionb f) x ->

sub (productb f) (gfunctions (domain f) x).

Inria

Bourbaki: Theory of sets in Coq | (v6) 97

Lemma setXb_eq_graphset f x:
(forall i, inc i(domain f) -> Vg i f = x) ->
productb f = gfunctions (domain f) x.

1 Special cases of products. We have already seen that if the index set | is empty, then the
product has a single element: the empty graph. We consider here the case where the index
set has one element ®. The product is then canonically isomorphicto X .

Definition productl x a := productb (cst _graph(singleton a) x).
Definition productl_canon x a :=
Lf (fun i => cst_graph (singleton a) i) x (productl x a).

Lemma cst_graph_pr x y: productb (cst_graph x y) = gfunctions x vy.
Lemma setX1l pr x a: productl x a = gfunctions (singleton a) x.

Lemma setX1_P x a y:
inc y (productl x a) <->
[\ fgraph y, domain y = singleton a & inc (Vg y a) x].
Lemma setX1 pr2 f x: domain f = singleton x ->
productl (Vg f x) x = productb f.

Lemma setX1_canon_axiom X a:

If_axiom (fun i => cst_graph (singleton a) i) x (productl x a).
Lemma setX1 canon_f x a: function (productl _canon x a).
Lemma setX1l canon_V X a i:

inc i x -> Vf (productl_canon x a) i = cst_graph (singleton a) i.
Lemma setX1_canon_fb x a: bijection (productl_canon x a).

We now consider the case of two sets. For each index set | A{®, }, if x and y are two
sets, we can consider the family (X @‘IIZI such that x /£Xg, y A£X-. We can de ne a bijection
between x £ y and the the product ~ Xg For simplicity, we consider only the case where | is
the canonical doubleton.

Definition product2 x y := productf C2 (variant CO x vy).
Definition product2_canon x y :=
Lf (fun z => (variantLc (P z) (Q 2))) (x \times y) (product2 x y).

Lemma setX2 P x y z:

inc z (product2 x y) <->

[\ fgraph z, domain z = C2P , inc (Vg z C0) x & inc (Vg z C1) y].
Lemma setX2_canon_axiom X y:

If axiom (fun z => Lvariantc (P z) (Q 2))

(x \times y) (product2 x).
Lemma setX2_canon_f x vy:

function (product2_canon x).
Lemma setX2_canon_V X y z:

inc z (x \times y) -> Vf (product2_canon x y) z = variantL.c (P z) (Q 2).
Lemma setX2_canon_fb x y:

bijection (product2_canon x).

If each Xgqis a singleton, so is the product Q Xq.
Lemma setX_setl f: (allf f singletonp) -> singletonp (productb f).

RR n°® 6999

98 José Grimm

The set of graphs of constant functions | | E is called the diagonal of E '. The application
that associates to x the constant function with value x is an injection fromEto E .

Definition diagonal_graphp e i =
Zo (gfunctions i e) constantgp.
Definition constant_functor i e:=
Lf (fun x => cst_graph i x) e (gfunctions i e).

Lemma diagonal_graph_P e i x:

inc x (diagonal_graphp e i) <->

[\ constantgp X, domain x = i & sub (range x) e].
Lemma cf_injective i e:

nonempty i -> injection (constant_functor i e).

Proposition 4 [2,| p. 104]says: Given a family X qand a bijection f, the product QXﬂ is
isomorphic to the product X¢(9- Note that in the case of union or intersection, we have
equality if f is surjective. The idea is that, if xq2 Xqand AT (-) then (x£f). 2 (Xxf)..
Some machinery is needed because x is a graph and f a function. These objects are not
composable (we must compose x and the graph of f).

Definition product_compose f u :=
Lf (fun x => x \cg (graph u))
(productb f) (productf (source u) (fun k => Vg f (Vf u k))).

Section ProductCompose.
Variables (f u: Set).
Hypotheses (bu: bijection u) (tudf: target u = domain f).

Lemma pc_axiomO ¢
(g:= (triple (domain c) (range c) c) \co u):
inc ¢ (productb f) ->
[\ function g, ¢ \cg (graph u) = graph g &
(forall i, inc i (source u) ->
Vg (graph g) i = Vg c¢ (Vg (graph u) i))].
Lemma pc_axiom:
If axiom (fun x => x \cg (graph u))
(productb f) (productf (source u) (fun k => Vg f (Vf u K))).
Lemma pc: function (product_compose f u).
Lemma pc_V x:
inc x (productb f) -> Vf (product_compose f u) x = x \cg (graph u).
Lemma pc_VV f u x i
inc x (productb f) -> inc i (source u) ->
Vg (Vf (product_compose f u) x) i = Vg x (Vf u i).
Lemma pc_fb: bijection (product_compose f u).
End ProductCompose.

5.4 Partial products

S G'éven a f?mily_[xi with index | and a subset J %21, we can restrict the Bmily to J; we have

3% and, ;% . The case of a product is more complicateg2 If x2 7, the restriction of
x to Jisin ~; The converse is not clear: given an element of ~j, is there an extension? Is it
unique? We start with some lemmas concerning restrictions.

Lemma restriction_graph2 f j:

Inria

Bourbaki: Theory of sets in Coq | (v6) 99

fgraph f -> sub j (domain f) ->
Lg j (Vg f) = f \cg (diagonal j).

We now de ne the restriction product and the function that associates to each x of the
product its restriction to J. This function will be denoted by pr ;.

Definition restriction_product f j := productb (Lg j (Vg f)).

Definition pr_j f j :=
Lf (fun z => restr z j) (productb f)(restriction_product f j).

Section RestrictionProduct.
Variables (f j: Set).
Hypotheses (jdf: sub j (domain f)).

Lemma restriction_productE :
restriction_product f j = productb (restr f j).
Lemma prj_axiom:
If_axiom (fun z => restr z j)
(productb f)(restriction_product f j).
Lemma prj_f: function (pr_j f j).
Lemma prj_V x: inc x (productb f) -> Vf (pr_j f j) x = (restr x j).
Lemma pri_VV X i
inc x (productb f) -> inc i j
> Vg (VE(prjfj)x)i= Vxi
End RestrictionProduct.

Propositions 6 and 5 [2,]p. 105] state that if X ¢is nonempty for 62, then we can extend a
function de ned on J to the whole of | (using the axiom of choice or the fact that a nonempty
product is nonempty). Then pr ;is surjective. A special case is when J has a single element ®.
Then pr ; is the composition of pr g and the canonical function that identi es a product of a
single set with this set. Thus pr g is surjective.

Theorem extension_psetX f j g:
nonempty fam f ->
fgraph g -> domain g = j -> sub j (domain f) ->
(forall i, inc i j -> inc (Vg g i) (Vg f i) ->
exists h, [\ domain h = domain f, fgraph h,
(forall i, inc i (domain f) -> inc (Vg h i) (Vg f i) &
{inc j, h =1g g} |.
Theorem prj_fs f j; nonempty_fam f -> sub j (domain f) ->
surjection (pr_j f j).
Lemma pri_fs f k: nonempty_fam f ->
inc k (domain f) -> surjection (pr_i f k).

A consequence is that if X %2 Yqthen Q X'nl/zQ Yq(the converse is true if no X qis empty).

Lemma setXb_monotonel f g:
domain f = domain g ->
(forall i, inc i (domain f) -> sub (Vg f i) (Vg g i)
-> sub (productb f) (productb Q).
Lemma setXb_monotone2 f g:
domain f = domain g ->
nonempty fam f ->
sub (productb f) (productb g) ->
(forall i, inc i (domain f) -> sub (Vg f i) (Vg g i)).

RR n° 6999

100 José Grimm

5.5 Associativity of products of sets

Consider a family X . Assume Egat the index set | iéthe unionofsetsJ . Foreach, ,wecan
consider the functionpr ;. If f 2 ~ Xg thenpr; f 2 ~“¢; . We can consider this as a function
of , andwriteitas (pr ; f) . Thus we get a function

Y Y iY ¢
f 7! (prJ f)’2|_, Xﬂ! Xﬂ.
i I 2L’

Itis a bijection if the sets J are mutually disjoint, in other words if they form a partition of I.
This is Proposition 7 [2,]p. 106].

Definition prod_assoc_axioms f g :=
fgraph f A partition_w_fam g (domain f).

Definition prod_assoc_map f g =

Lf (fun z => (Lg domain g) (fun | => Vf (pr_j f (Vg g 1)) 2)))

(productb f)

(productf (domain g) (fun | => (restriction_product f (Vg g 1)))).
Lemma pam_axiom f g:

prod_assoc_axioms f g ->

If_axioms (fun z => (Lg (domain @) (fun | => Vf (pr_j f (Vg g I)) 2)))

(productb f)

(productf (domain g) (fun | => (restriction_product f (Vg g 1)))).
Lemma pam_f f g:

prod_assoc_axioms f g ->

function (prod_assoc_map f g).
Lemma pam_V f g x:

prod_assoc_axioms f g -> inc x (productb f) ->

Vf (prod_assoc_map f g) x = (Lg (domain g) (fun | => Vf (pr_j f (Vg g I)) x)).
Lemma pam_fi f g:

prod_assoc_axioms f g ->

injection (prod_assoc_map f g).
Theorem pam_fb f g:

prod_assoc_axioms f g ->

bijection (prod_assoc_map f g).

Assume that the domain | is the disjoint union of two setl jandl,. LetY, Y; and Y, be the
products of the family X ; overl, 11 and 1. There is a bijection between Y and Y 1 £ Y, because
this set is equipotent to the product of the family with two elements. Assume now that each
X; is a singleton when i 2 1,. Then Y5 is a singleton. The rst projectionfromY 1£ Y,ontoY;
is then a bijection. This gives a bijection between Y and Y ;. The last lemma here says that
this bijectionis pr | .

Lemma variantLc_prop X y:
variantLc x y = Lg C2 (variant CO x y).
Lemma prod_assoc_map2 f g:
prod_assoc_axioms f g -> domain g = C2
-> (productb f) \Eq
((restriction_product f (Vg g CO0)) \times (restriction_product f (Vg g C1))).

Lemma first_proj_fb x v:

singletonp y -> bijection (first_proj (x \times vy)).
Lemma prj_fb f j:

Inria

Bourbaki: Theory of sets in Coq | (v6) 101

sub j (domain f) ->
(forall i, inc i ((domain f) -s j) -> singletonp (Vg f i)) ->
bijection (pr_j f j).

5.6 Distributivity formulae

Q

Let (X, 9ra), 2L be a family of families of sets. Let| A& ~J. (For the rst formula, we
assume J non-empty). We have (Proposition 8 [2] p. 107])
[l ¢\l ¢
X g9k X £
2L’ f21 2L

\ gl ¢ [i\ ¢
X“ﬂ s X,’f(,) .
2L I fa1 2L

The rst result can be shown as follows. If x is in the LHS, there is a , such x is in the
intersection over J , hence x 2 X ., whatever ! ; in particular it could be f(,). Conversely,
Bourbaki assumes that x is not in the LHS; he considers the set { 12 J jx 6X . This setis
not empty so that there is a function f 2 1whose value isin the set, so that x cannot be in the
union of X ¢). The second result is shown by taking complements in a big set, namely the
union of all sets involved. This gives a large proof (90 lines). The direct proof is shorter (ten
lines).

Theorem distrib_union_inter f:

(forall I, inc | (domain f) -> nonempty (domain (Vg f I))) ->

unionf (domain f) (fun | => intersectionb (Vg f I)) =

intersectionf (productf (domain f) (fun | => (domain (Vg f 1))))

(fun g => (unionf (domain f) (fun | => Vg (Vg f I) (Vg g I)))).
Lemma distrib_inter_union f:

intersectionf (domain f) (fun | => unionb (Vg f 1)) =

unionf (productf (domain f) (fun | => (domain (Vg f 1))))

(fun g => (intersectionf (domain f)(fun | => Vg (Vg f I) (Vg g 1)))).

The result is now the following: the union of Tﬂg, Fgand T .2k G. is the intersection on L
of all Fq[G.; there is a similar formula if we exchange union and intersection. The general
distributivity formula says that L is some complicated product, but it can be replaced by an
equivalent set; we use the fact that the product of the family of two sets is equipotent to a
normal product, so that L /I £ K (this gives a proof who size is 50 lines long; direct proof
requires only 14 lines for union, and 5 for intersection).

Lemma distrib_union2_inter:
(intersectionb f)\cup (intersectionb g) =
intersectionf((domain f) \times (domain g))
(fun z => ((Vg f (P 2)) \cup (Vg g (Q 2)))).
Lemma distrib_inter2_union f g:
(unionb f) \cap (unionb g) =
unionf((domain f) \times (domain g))

(fun z => ((Vg f (P 2)) \cap (Vg g (Q 2)))).
Let (X 9wa), 2L be afamily of families of sets. Let | AEQ J . We assume L and I not empty
in the case of intersection. Proposition 9 [2[p. 109] says
Yol ¢ [iY ¢
X 1A X f0)
,2L R f21 2L

RR n°® 6999

102 José Grimm

Y i\ ¢ \ Y ¢
X q & X () -
2L I f21 2L
In the case of union, we have to consider the special cases where L and | could be empty.
Otherwise the proofs are similar. We must sometimes nd an element f in the product |
such that f (,) satis es a given property P(,). We do this by considering the representative of
the non-empty set{ , 2L,P(,)}

Theorem distrib_prod_union f:
productf (domain f) (fun | => unionb (Vg f I)) =
unionf (productf (domain f) (fun | => (domain (Vg f 1))))
(fun g => (productf (domain f) (fun | => Vg (Vg f 1) (Vg g 1)))).
Theorem distrib_prod_intersection f:
(forall 1, inc | (domain f) -> nonempty (domain (V f I))) ->
productf (domain f) (fun | => intersectionb (Vg f 1)) =
intersectionf (productf (domain f) (fun | => (domain (V f 1))))
(fun g => (productf (domain f) (fun | => Vg (Vg f 1) (Vg g 1)))).

Let X be the union of X ¢ The distributivity formula says that the product QX is a
union; th|s union is a partition of the product, provided that the sets are mutually disjoint,
i.e., ifthe X qform a partition of X

Lemma partition_product f:
(forall 1, inc | (domain f) -> (partition_w_fam (Vg f I) (unionb (Vg f)))) ->
partition_w_fam(Lg(productf (domain f) (fun | => domain (Vg f I)))
(fun g => (productf (domain f) (fun | => Vg (Vg f I) (Vg g 1)))))
(productf (domain f) (fun | => unionb (Vg f 1))).

We apply the distributivity formulas to the case of two families of sets. In a rst variant,
we consider the product of a family of two sets, after that, we convert it to a normal product.

Lemma distrib_prod2_union f g:
product2 (unionb f)(unionb g) =
unionf((domain f) \times (domain g))

(fun z => (product2 (V f (P 2)) (V g (Q 2)))).

Lemma distrib_prod2_inter f g:
product2 (intersectionb f)(intersectionb g)=
intersectionf((domain f) \times (domain g)) (fun z

(product2 (Vg f (P 2)) (Vg g (Q 2))).

1
\%

Lemma distrib_product2_union f g:
(unionb f) \times (unionb g) =
unionf(product (domain f)(domain g)) (fun z =>

((v f (P 2)) \times (V g (Q 2)))).
Lemma distrib_product2_inter f g:
(intersectionb f) \times (intersectionb g) =
intersectionf(product (domain f)(domain g)) (fun z =>

((vg f (P 2)) \imes (Vg g (Q 2))).

Proposition 10 [2,/ p. 110] says that the intersection of a product is the product of the
intersection. Y i\ ¢ \ Y ¢

Xy A Xy. .
®l 2K 2K I

This is a special case of the general distributivity formula where the setJ is independent of
. In the case of two families of two sets, we get (a£ b)\ (c£d) /A(a£ c)\ (b£ d). Inthe case

Inria

Bourbaki: Theory of sets in Coq | (v6) 103

of union, the general theorem says (a£ b)[(cEd)ZA(a£c)[(b£d)[(@aEd)[(b£c)and
there is no simpler formula. Note that if | and K are empty, the intersection is empty and the
product is a singleton; this is the only case of failure.

Theorem distrib_inter_prod f sa sb:
(nonempty sa V nonempty sb) ->
intersectionf sb (fun k => productf sa (fun i=> Vg f (J i k))) =
productf sa (fun i => intersectionf sb (fun k=> Vg f (J i k))).

If one of the sets | or K is a doubleton then we get
iY ¢ ;Y ¢ Y i\ ¢ i\ ¢\
Xg \ Yg £ (Xq\ Yy, Xg £ Yq £ (X¢E Yy.
I I 4 I I I

Lemma distrib_prod_inter2_prod f g:
domain f = domain g ->
(productb f) \cap (productb g) =
productf (domain f) (fun i => (Vg f i) \cap (Vg g i)).

Lemma distrib_inter_prod_inter f g:
domain f = domain g ->
product2 (intersectionb f) (intersectionb g) =
intersectionf (domain f) (fun i => product2 (Vg f i) (Vg g i)).
Lemma distrib_prod2_sum A f:
A \times (unionb f) = unionb (Lg (domain f) (fun x => A \times (Vg f x))).

1 Given two functional graphs f and f °with the same domain I, we de ne the product to be

the graph that associates (f (x), f {x)) to x. Let f °%E(f , f Y be a pair of graphs; wegan c&nsider

itas a function that associates (f (x), f {x)) to x. Thus we have a mapping from FoE F%into
(Fgf F%. We need a bunch of lemmas in order to prove that this mapping is a bijection.

Definition prod_of fgraph x x':=
Lg (domain x)(fun i => J (Vg x i) (Vg X' i)).

Definition prod_of_products_canon f f:=
Lf (fun w => prod_of fgraph (P w) (Q w))
((productb f)\times (productb f))
(productf (domain f)(fun i => (Vg f i) \times (Vg f' i))).

Definition prod_of_product_aux f f' :=
fun i => ((Vf f i) times (Vf ' i)).

Definition prod_of prod_target f f :=
fun_image(source f)(prod_of product_aux f f).

Definition prod_of_products f f' :=
Lf (prod_of product_aux f f)(source f)(prod_of prod_target f f'.

Lemma prod_of products f f f:
function (prod_of products f).
Lemma prod_of products_V f f' i
inc i (source f) ->
Vf (prod_of products f f) i = (Vf f i) times (Vf f' i).

Section ProdProdCanon.

RR n°® 6999

104 José Grimm

Variables (f f: Set).
Hypotheses (ff:function f) (ff. function f').
Hypothesis (sfsf:source f = source f).

Lemma prod_of function_axioms x X"
inc (graph x) (productb (graph f)) -> inc (graph x') (productb (graph f)) ->
If axiom (fun i => J (Vf x i) (Vf x' i)
(source f) (union (prod_of prod_target f f')).
Lemma prod_of _function_V x X' i
inc x (productb (graph f)) -> inc x' (productb (graph f)) ->
inc i (source f) ->
Vg (prod_of fgraph x x) i = J (Vg x i) (Vg X' i).
Lemma prod_of_function_f x x":
inc x (productb (graph f)) -> inc x' (productb (graph f)) ->
inc (prod_of fgraph x Xx')
(productb (graph (prod_of products f f)).
Lemma popc_target_aux:
productb(Lg (domain (graph f))
(fun i => (Vg (graph f) i) \times (Vg (graph f) i))) =
productb(graph (prod_of products f f)).
Lemma popc_axioms :
If axiom(fun w => prod_of fgraph (P w) (Q w))
((productb (graph f)) \times (productb (graph f))
(productb (graph (prod_of products f f)).
Lemma popc_V w:
inc w ((productb (graph f)) \times (productb (graph f))) ->
Vf (prod_of products_canon (graph f) (graph f)) w=
prod_of fgraph (P w) (Q w).
Lemma popc_fb:
bijection (prod_of_products_canon (graph f) (graph f).
End ProdProdCanon.

5.7 Extensions of mappings to products

X@OLW@O (extension)

Pry

Q

Pry

Xy R Yy
(fpi

Assume that Xgq, Yqand fqare families with therame index . We assume that fqis a func-
tional graph wi8 source X qand target Yq If 62 Xﬁhen Xg2 Xq, fe(xg 2 Ygand the mapping
17! f(xgisin = Yq This induces a function = Xq! Yqcalled the extension of the functions
fi.

Definition ext_map_prod_aux x f := fun i=> Vg (f i) (Vg x i).
Definition ext_map_prod | src trg f :=
Lf (fun x => Lg | (ext_map_prod_aux x f))
(productf | src) (productf | trg).

Definition ext_map_prod_axioms | src trg f :=

forall i, inc i | ->
[\ fgraph (f i), domain (f i) = src i & sub (range (f i)) (trg i)].

Inria

Bourbaki: Theory of sets in Coq | (v6) 105

Section ExtMapProd.
Variables (I: Set) (src trg f: Set-> Set).
Hypothesis ax: ext_map_prod_axioms | src trg f.

Lemma ext_map_prod_taxioms:

If_axiom (fun x => Lg | (ext_map_prod_aux x f))

(productf | src) (productf | trg).

Lemma ext_map_prod_f: function (ext_map_prod In src trg f).
Lemma ext_map_prod_V x: inc x (productf | src) ->

Vf (ext_map_prod | src trg f) x= L In (ext_map_prod_aux x f).
Lemma ext_map_prod_VV X i

inc x (productf | src) -> inc i | ->

Vg (Vf (ext_map_prod | src trg f) x) i = Vg (f i) (Vg x i).
End ExtMapProd.

Proposition 11 [2, p. 111] says that composition of extensions is extension of composi-
tions. Bourbaki uses this property to show that if all ~ fqare injective, so is the extension, by
exhibiting a left inverse. We use a direct proof because it is easier (note that fqis not a func-
tion, just the graph of a function).

Lemma ext_map_prod_composable | pl p2 p3 g f h:
ext_map_prod_axioms | pl p2 f ->
ext_map_prod_axioms | p2 p3 g ->
(forall i, inc i1 ->hi=(gi) \cf (fi) ->
(forall i, inc i | -> (g i) \cfP (f i)) >
ext_map_prod_axioms | pl p3 h.

Lemma ext_map_prod_compose | pl p2 p3 g f h:
ext_map_prod_axioms | pl p2 f ->
ext_map_prod_axioms | p2 p3 g ->
(forall i, inc i | -> hi = (g i) \cf (fi) >
(forall i, inc i | -> (g i) \cfP (f i)) ->
(ext_map_prod | p2 p3 g) \co (ext_ map _prod | pl p2 f) =
(ext_map_prod | p1 p3 h).

Lemma ext_map_prod_fi | pl p2 f:
ext_map_prod_axioms | pl p2 f ->
(forall i, inc i | -> injective_graph (f i)) ->
injection (ext_map_prod | pl p2 f).
Lemma ext_map_prod_fs | p1 p2 f:
ext_map_prod_axioms | pl p2 f ->
(forall i, inc i | -> range (f i) = p2 i) ->
surjection (ext_map_prod | pl p2 f).

Let f be a function from E to A, where A is a product X gqover I. Considebthe function
prgtf from E to X ¢ Its extension to products is some function f from E'to ~Xq Letd be
the diagonal mapping fromE to E '. We have f A&f +d. If fqis a family of functions from E to
Xq and f isits extergion to the aroducts, then pr ¢ (f +d) £fy The mapping from f to f isa
bijection between (~ XpF and X

Definition fun_set to_prod src F :=
Lf (fun f =>
Lg(domain F)(fun i=> (graph ((pr_i F i) \co
(triple src (productb F) f)))))

RR n°® 6999

106

José Grimm

(gfunctions src (productb F))
(productb (Lg (domain F) (fun i=> gfunctions src (Vg F i)))).

Lemma fun_set to _prodl F f i:
fgraph F -> inc i (domain F) ->
function f -> target f = productb F ->
function_prop (pr_i F i \co f) (source f) (Vg F i) A

(forall x, inc x (source f) -> Vf (pr_i F i \co f) x = Vg (Vf f x) i).

Section FunSetToProd.
Variables (src F:. Set).
Hypothesis (fF: fgraph F).

Lemma fun_set to_prod2 f gf:
inc gf (gfunctions src (productb F)) ->
f = (triple src (productb F) gf) -> function_prop f src (productb F).
Lemma fun_set_to_prod3 :
If_axiom(fun f =>
Lg(domain F)(fun i=> (graph (compose (pr_i F i)
(triple src (productb F) 1)))))
(gfunctions src (productb F))
(productb (Lg (domain F) (fun i=> gfunctions src (Vg F i)))).
Lemma fun_set to_prod4:
function_prop (fun_set_to_prod src F) (gfunctions src (productb F))
(productb (Lg (domain F) (fun i=> gfunctions src (Vg i F)))).
Definition fun_set to prod5 F f :=
ext_map_prod (domain F) (fun i=> source f)(fun i=> Vg F i)
(fun i => (graph (compose (pr_i F i) f))).
Lemma fun_set_to_prod6 f:
function f -> target f = productb F ->
(function (fun_set to_prod5 F f) A

(fun_set_to_prod5 F f) \coP (constant functor (domain F)(source f))A
(fun_set_to_prod5 F f) \co (constant_functor (domain F)(source f)) =f).

Lemma fun_set to_prod7 f g: (* 56 *)
(forall i, inc i (domain F) -> inc (f i) (gfunctions src (Vg F i))) ->
g = ext_map_prod (domain F) (fun i=> src)(Vg F) f ->
(forall i, inc i (domain F) ->

f i = graph ((pr_i F i) \co (g \co (constant_functor (domain F) src)))).

Lemma fun_set to_prod8: (* 60 *)
bijection (fun_set to_prod src F).

End FunSetToProd.

Inria

Bourbaki: Theory of sets in Coq | (v6) 107

Chapter 6

Equivalence relations

The code of the rsttwo sections of this chapter was originally written by Carlos Simpson.
Arelation between two objects x and y, often denoted by x » vy, is a function of type Set !
Set! Prop. An equivalence relation will be a relation with some properties; an equivalence
will be a graph with similar properties; this differs from the Bourbaki's de nition, where an
equivalence is a correspondence.

6.1 De nition of an equivalence relation

We say that x is related to y by the graph r and denote itby x» y whenever the pair (X, y)
is in the graph. The set of related objects is called the substrate of the graph.

Definition substrate r := (domain r) \cup (range r).

We have some characterizations of the substrate. Only the last one requires that r be a
graph.

Lemma prl_srry: incyr ->inc (P y) (substrate r).
Lemma pr2_srry: incy r ->inc (Q y) (substrate r).
Lemma argl srr x y: related r x y -> inc x (substrate r).
Lemma arg2_sr: forall r x y, related r x y -> inc y (substrate r).
Lemma substrate_smallest r s:

(forall y, incy r ->inc (P y) s) ->

(forall y, incy r -> inc (Qy) s) ->

sub (substrate r) s.
Lemma substrate P r: sgraph r -> forall x,

inc X (substrate r) <->

((exists y, inc (3 xy) r) V (exists y, inc (J y X)).
Lemma substr_i r x: inc (J X X) r -> inc X (substrate r).

We say that a relation » is symmetric if x » y implies y » x, antisymmetric if x » y and
y » X imply x Ay, transitive if x » y and y » z implies x » z. We say that it is re exive on E if
x 2 E is equivalentto x » X; we say thatitis re exive if x » y implies x» x and y » y.

We say that » is an equivalence relation if it is symmetric and transitive (it is then re ex-
ive). We say thatitis a preorder relation ifitis re exive and transitive; we say thatitisan order
relation ifitis re exive, antisymmetric and transitive. We say that a relation is an equivalence
relation on E or an order on E if it is an equivalence or an order, and moreover is re exive
onE.

RR n°® 6999

108 José Grimm

Section Definitions.
Implicit Type (r: relation).

Definition reflexive_re r E := forall X, inc X E <-> r X X.

Definition reflexive_rr r ;= forall x y, r xy -=> (r x x A ryy).
Definition equivalence_r r := symmetric_r r A\ transitive_r r.
Definition equivalence _re r E := equivalence_r r N\ reflexive_re r E.

Definition order_r r := [\ transitive_r r, antisymmetric_r r & reflexive_rr r].

Definition preorder r r ;= transitive_r r N\ reflexive rr r.
Definition order_re r E := order_r r N\ reflexive_re r E.
End Definitions.

The de nitions for a graph are similar. We say that a graph is re exive if its associated
relation is re exive on the substrate, i.e., if x» y implies x » x and y>r> y. An equivalenceis a
set that is re exive, symmetric, and transitive.

Definition reflexivep r := forall y, inc y (substrate r) -> related r y v.
Definition symmetricp r := symmetric_r (related r).

Definition antisymmetricp r := antisymmetric_r (related r).

Definition transitivep r := transitive_r (related r).

Definition equivalence r :=

[\ sgraph r, reflexivep r, transitivep r & symmetricp r].
Definition order r :=

[\ sgraph r, reflexivep r, transitivep r & antisymmetricp r].
Definition preorder r :=

[\ sgraph r, reflexivep r & transitivep r].
Definition order_on r E := order r /\ substrate r = E.

Letr be aset, R, D and S be the range, domain and substrate of r; by de nitonS AD[R.
If (x,x)2r,then x 2D, thus x 2 S. The relation r is re exive when x 2 S implies (x,x) 2r. If
this is the case, we have S /AD. In particular S AD whenever r is an equivalence or an order.
Note that if r is symmetric, transitive and a graph, it is re exive, thus an equivalence. Since
both D and R are increasing functions of r (forinclusion), sois S.

Lemma equivalence_sgraph r: equivalence r -> sgraph r.
Lemma order_sgraph r: order r -> sgraph r.
Lemma preorder_sgraph r: preorder r -> sgraph r.

Lemma reflexive_domain g: reflexivep g -> domain g = substrate g.
Lemma domain_sr g: equivalence g -> domain g = substrate g.
Lemma domain_srl r: order r -> domain r = substrate r.
Lemma symmetric_transitive_equivalence r:

sgraph r -> symmetricp r -> transitivep r -> equivalence r.
Lemma equivalence_relation_prl g:

sgraph g -> equivalence_r (related g) -> equivalence g.
Lemma substrate_sub: {compat substrate : x y / sub x y}.

Some trivial properties of an equivalence.

Lemma reflexivity e r u:
equivalence r -> inc u (substrate r) -> related r u u.

Inria

Bourbaki: Theory of sets in Coq | (v6) 109

Lemma symmetricity e r u v:

equivalence r -> related r u v -> related r v u.
Lemma transitivity_e r v u w:

equivalence r -> related r u v -> related r v w -> related r u w.
Lemma equivalence_equivalence r:

equivalence r -> equivalence _re (related r)(substrate r).

For every set E and relation » we can de ne a set r Agg(»), the graph of » on E, which
is the set of all pairs (X,y) 2 EE E such that x » y. We deduce a relation % whose substrate is
a subset of E. By de nition, x» y is equivalentto x 2 E, and y 2 E and x » y. Assume that »
is an equivalence or order relation on E. Then x » y simpliesto x» y. Infact, in the case of
an ordering, we assume that x » y implies x » x and y » y. In the case of an equivalence this
follows from symmetry and transitivity. Now x » x implies x 2 E by re exivity.

Definition graph_on (r:relation) x
:= Zo(coarse x)(fun w =>r (P w)(Q w)).

Lemma graph_on_graph r x: sgraph(graph_on r x).
Lemma graph_on_PO r x a b:
inc (J a b) (graph_onr x) <> [Ainc a x, inc b x & r a b].
Lemma graph_on_P1 r x a b:
related (graph_on r x) a b <> [Ainc a x, inc b x & r a b].
Lemma graph_on_P2 r x : equivalence_re r x -> forall u v,
(related (graph_on r x) u v <->r u V).
Lemma graph_on_P3 r x: order_re r x -> forall u v,
(related (graph_on r x) u v <->r u V).
Lemma graph_on_srl r x:
sub (substrate (graph_on r x)) x.

If the relation » is a preorder, an order, or an equivalence relation, then its graph gg(») is
a preorder, an order, or an equivalence. If x » x holds for any x 2 E, then the substrate of this
graphis E.

Lemma order_preorder r: order r -> preorder r.
Lemma preorder_from_rel r x:

preorder_r r -> preorder (graph_on r Xx).
Lemma order_from_rel r x:

order_r r -> order (graph_on r Xx).
Lemma equivalence_from_rel r x:

equivalence_r r -> equivalence (graph_on r x).
Lemma graph_on_sr (r: relation) x:

(forall a, inc a x ->r a a) ->

substrate (graph_on r x) = x.

If E is a set, and x » y is the equality relation restricted to E, namely,* x2E andy 2 E and
X ABy’, its graph is the diagonal of E. This is both an equivalence relation and an order (note
that, if r is an equivalence and an order, itis symmetric and antisymmetric, sothat x » y gives
X AEy).

Definition restricted_eq x := fun u v =>inc u x A u = v.
Lemma diagonal_graph_on x: graph_on (restricted_eq x) x = diagonal x.

Lemma diagonal_equivalence x: equivalence (diagonal x).
Lemma diagonal_osr x: order_on (diagonal x) x.

RR n°® 6999

110 José Grimm

We have already shown that to be equipotent is re exive, symmetric and transitive. Thus,
itis an equivalence relation.

Lemma equipotent_equivalence: equivalence_r equipotent.

We can consider the relation on E for which all elements are related. Its graphisE £ E.

Lemma coarse_sr u: substrate (coarse u) = u.
Lemma coarse_graph Xx: sgraph (coarse Xx).

Lemma coarse_related u x y:

related (coarse u) x y <-> (inc x u /\ inc y u).
Lemma coarse_equivalence u:

equivalence (coarse u).

Lemma sub_graph_coarse_substrate r:
sgraph r -> sub r (coarse (substrate r)).

The set of all elements related to x is its class. We have seen two examples where (a)
classes are singleton, and (b) there is a unique class, the whose set. We give here an example,
with A %2E, where the classes are A, and all singletons {x}, for x 6.

Lemma equivalence_relation_bourbaki_ex5 A E
(r:=(fun xy =>(inc x (E-s A) AN (x=y)V (inc x ANincy A)):
sub A E >
(equivalence (graph_on r E) A substrate (graph_on r E) = E).

Consider a family of relations (»)j2;. This intersection is re exive, symmetric, transitive,
an equivalence, and order, provided that each member of the family has the property.

Lemma setlrel_graph z:

(all z sgraph) -> sgraph (intersection z).
Lemma setlrel_P z: nonempty z -> forall x vy,

(related (intersection z) x y <->

(forall r, inc r z -> related r x vy)).
Lemma setlrelR z:

(alls z reflexivep) -> reflexivep (intersection z).
Lemma setlrel_sr z e:

nonempty z -> (alls z reflexivep) ->

(forall r, inc r z -> substrate r = e) ->

substrate (intersection z) = e.
Lemma setlrelT z:

(alls z transitivep) -> transitivep (intersection z).
Lemma setlrelS z:

(all s z -> symmetricp) -> symmetricp (intersection z).
Lemma setlrel_equivalence z:

(alls z equivalence) -> equivalence (intersection z).
Lemma setlrel_or z: (alls z order) -> order (intersection z).

We can consider the set of all equivalences on E. It is not empty.

Definition equivalences x =
Zo (powerset (coarse X)) (fun r => (equivalence r)
N\ (substrate r = x)).
Lemma equivalencesP r x:

Inria

Bourbaki: Theory of sets in Coq | (v6) 111

inc r (equivalences x) <->(equivalence r N\ (substrate r = Xx)).
Lemma inc_coarse_all_equivalence_relations u:
inc (coarse u) (equivalences u).

Proposition 1 [2,Ip. 114] says that a correspondence between X and X is an equivalence
on X if and only if X is the domain of j, & Tand j i £j. We prove this property for
graphs rather than correspondences.

Lemma selfinverse_graph_symmetric r: sgraph r ->
(symmetricp r <-> (r = inverse_graph r)).

Lemma idempotent_graph_transitive r:
sgraph r -> (transitivep r <-> sub (r \cg 1)).

Theorem equivalence_pr r:
equivalence r <-> ((r\cg r) = r A r = inverse_graph r).

6.2 Equivalence classes; quotient set

Let f be afunction on E; the relation f (x) Zf (y) is an equivalence relation on E. We shall
denoteitby » ;. Ithas a graph, namely F | 1 +F, where F is the graph of f.

Definition eq_rel_associated f x y :=

[\ inc x (source f), (inc y (source f)) & (Vf f x = Vf fy).
Definition equivalence_associated f :=

(inverse_graph (graph f)) \cg (graph f).

Section EquivalenceAssociated.
Variable (f: Set).
Hypothesis (ff : function f).

Lemma ea_graph_on:
graph_on (eq_rel _associated f) (source f) = equivalence_associated f.
Lemma graph_ea_equivalence:
equivalence (equivalence_associated f).
Lemma graph_ea_substrate:
substrate (equivalence_associated f) = source f.
Lemma ea_relatedP x vy:
related (equivalence associated f) x y <->
[\ inc x (source f), (inc y source f) & (Vf f x = Vf f y)].
End EquivalenceAssociated.

Bourbaki says that for every equivalence relation » on E, there is a function f such that
the equivalence associated with f is » such that » /£ »;. Let G be the graph of the equiva-
lence relation and x 2 E. For x 2 E, the set G(x) of all y such that (x,y) 2 G will be called the
equivalence classof x, and the set of all equivalence classes will be called the quotient set, and
denoted by E/ » (or E/R if the relation is R). Let's denote by X the class of x modulo R, this is
also pr,Gyx, where Gy denotes the set all elements z 2 G with pr ;z /x. We shall use the four
characteristic properties of classes: (a) y 2 x ifand only if x 5 y, (b) x%E, (c) x 2 E if and only

if X 6/E ;and (d) if x 2 E, then x 5 y and x /Ay are equivalent. This last property says that » is
the equivalence associated to the function x 7! X.

Definition class r x := fun_image (Zo r (fun z => P z = X)) Q.

Definition quotient r := fun_image (substrate r) (class r).
Definition classp r x := inc (rep X) (substrate r) A x = class r (rep X).

RR n°® 6999

112 José Grimm

Section Class.
Variable (r:Set).
Hypothesis (er: equivalence r).

Lemma class P x y: (inc y (class r x) <-> related r x y).
Lemma class_is_im_of singleton x:

class r x = im_of_singleton r x.
Lemma sub_class_substrate x: sub (class r x) (substrate r).
Lemma class_eql u v: related r u v -> class r u = class r v.
Lemma class_eg2 u v: inc u (class r v) -> class r u = class r v.

We denote by X A¢,(z 2 x) some element of x (if x is non-empty of course), sothat x 7! X
is is a mapping from E/R into E (it is a retraction of the canonical projection, meaning X /AX).
We say that x is a class for r if r is an equivalence (with substrate s;), X 2 s, and x AX. Clearly,

if x 2 E, then X is a class. Thusa$ b if and only ifthereisaclass x suchthat a2 x and b 2 x. If
x 2 E/Rand y 2 x then >‘<>5y.

Lemma setQ _ne x: inc x (quotient r) -> nonempty X.
Lemma setQ_repi x: inc x (quotient r) -> inc (rep X) X.
Lemma class_class x: inc x (substrate r) -> classp r (class r x).
Lemma inc_class_setQ x:

inc x (substrate r) -> inc (class r x) (quotient r).
Lemma setQ P x: inc x (quotient r) <-> classp r x.
Lemma class_rep x: inc x (quotient r) -> class r (rep x) = X.
Lemma in_class_relatedP y z:

related r y z <-> (exists x, [\ classp r X, inc y X & inc z Xx]).
Lemma related_rep_in_class x vy:

inc x (quotient r) -> inc y x -> related r (rep Xx) v.

A classx is a nonempty subset of E such that for all y 2 x, properties z2 x and y Rz are
equivalent. Two classes are equal or disjoint. If x 2Ethen X 2E/R. If x 2y and y 2 E/R then
x 2 E. As a consequence, the union of E/Ris E. If x 2 E/R then X 2 E, and % Ax. If x 2 E then
x 2 X and x5 X. If u and v are in E/R, then 4 » V if and only if u ZEv. The relation u S v is
equivalentto u2Eandv2Eandu A&v. If x2y and y 2 E/R then y AX.

Lemma rep_in_class x: classp r x -> inc (rep X) X.
Lemma rel_in_class x y: classp r x -> inc y x -> related r (rep x) v.
Lemma sub_class_sr x: classp r x -> sub x (substrate r).
Lemma rel_in_class2 x y: classp r x -> related r (rep X) y -> inc y x.
Lemma class_dichot x vy:

classp r x -> classp r y -> disjointVeq x V.

Lemma inc_in_setQ_sr X y:
inc x y -> inc y (quotient r) -> inc x (substrate r).
Lemma setU_setQ: union (quotient r) = substrate r.
Lemma rep_i_sr x: inc x (quotient r) -> inc (rep X) (substrate r).
Lemma inc_itself_class x: inc x (substrate r) -> inc x (class r x).
Lemma related _rep_class r x:
inc x (substrate r) -> related r x (rep (class r x)).
Lemma related_rr P u v:
inc u (quotient r) -> inc v (quotient r) ->
(related r (rep u) (rep v) <-> (U = V)).
Lemma related_equiv._ P r u v:
related r u v <->

Inria

Bourbaki: Theory of sets in Coq | (v6) 113

[A inc u (substrate r), inc v (substrate r) & class r u = class r v].
Lemma is_class_pr X y:

inc x y -> inc y (quotient r) -> y = class r x.
End Class.

The canonical projection is the mapping x 7! x from E onto E/R. An important property
is that this function is surjective.

Definition canon_proj r := Lf(class r) (substrate r) (quotient r).

Section CanonProj.
Variable (r:Set).
Hypothesis (er: equivalence r).

Lemma canon_proj_s: source (canon_proj r) = substrate r.
Lemma canon_proj_t: target (canon_proj r) = quotient r.
Lemma canon_proj_f: function (canon_proj r).
Lemma canon_proj_V Xx:

inc X (substrate r) -> Vf (canon_proj r) x = class r x.
Lemma canon_proj_setQ i x:

inc x (substrate r) -> inc (Vf (canon_proj r) x) (quotient r).
Lemma rel_gcp P x v:

inc x (substrate r) -> inc y (quotient r) ->

(inc (3 x y) (graph (canon_proj r)) <-> inc X y).
Lemma canon_proj_fs: surjection (canon_proj r).

The next lemma says that if A “2E and x A (where Ais the set of all a for a 2 A) then

X 2 E/R. We then state Criterion 55 [2,]p. 115]: u Rvifand only if U Av. The exact Bourbaki
statement is “Let R be an equivalence relation on aset E, and let p be the canonical mapping
of Eonto E/R. ThenR&x,ya((p(x) £p(y))" The correct statement would be: R &x,yaif
andonlyif x2Eandy 2 E and p(x) Z£p(y). The proof is a bit strange. It starts with: “let x and
y be elements of E such that (x,y) 2 G. Then x 2 E and y 2 E; let us show...”

Lemma sub_im_canon_proj_quotient a x:
sub a (substrate r) ->
inc x (image_by fun (canon_proj r) a) ->
inc x (quotient r).
Lemma related e P u v:
related r u v <->
[\ inc u (source (canon_proj r)),
inc v (source (canon_proj 1)) &
Vf (canon_proj r) u = Vf (canon_proj r) v].
End CanonProj.

The canonical projection E 7! E/R is a bijection if and only if each class is a singleton. In
other terms, iff R is the equality relation on E.

Lemma diagonal_class x u:
inc u x -> class (diagonal x) u = singleton u.
Lemma canon_proj_diagonal_fb x:
bijection (canon_proj (diagonal x)).
Lemma canon_proj_diagonal_fb_contra r:
equivalence r -> hijection (canon_proj r) ->
r = diagonal (substrate r).

RR n° 6999

114 José Grimm

1 Equivalence associated with projectors. In the product E £ F, one can consider the equiva-
lence associated to the projectors pr | and pr,. Since E£ F is canonically isomorphicto F £ E,
it suf ces to consider the rst projection. The equivalence associated to this function is such

that (x,y) » (x,z) holds for every x, y and z. Classes are objects of the form {x}£ F. The
function x 7! {x}£ Fis a bijection of E onto (E £ F)/R.

Definition first_proj_eq x y :=
equivalence_associated (first_proj (x \times vy)).

Lemma first_proj_equivalence x y:

equivalence (first_proj_eq x v).
Lemma first_proj_eq_related_P x y a b:

related (first_proj_ eq x y) a b <>

[Ainc a (x \times y), inc b (x \times y) & P a = P Db].
Lemma first_proj_sr x y:

substrate(first_proj_eq x y) = x \times vy.
Lemma first_proj_classP x y : nonempty y -> forall z,

(classp (first_proj_eq x y) z <->

exists2 u, inc u x & z = (singleton u) \times vy).
Lemma first_proj_equiv_proj x y:

nonempty y ->

bijection (Lf (fun u => (singleton u) \times)

X (quotient (first_proj_eq x Y))).

For any equivalence, the quotient is a partition of the substrate.

Lemma sub_quotient_powerset r:

equivalence r -> sub (quotient r) (powerset (substrate r)).
Lemma partition_from_equivalence r:

equivalence r ->

partition(quotient r)(substrate r).

We consider now the converse. Let f be a function de ned on E and F its graph. Assume
that F is a partition of X. We shall write X ; instead of f (i). There is a function g de ned on
X with values in E such that x 2 Xg(x). We can consider the relation x » y de ned by: there
isani suchthat x 2 X; and y 2 X;. This relation is also g(x) Zg(y). This relation has a graph
on X, sayr. Then r is an equivalence on X. Each class of r is some X;. Conversely, if X; is
non-empty, itis a class. If no X ; is empty, then i 7! f (i) is a bijectionfromE ! X/r.

Definition in_same_coset f x y:=
exists i, [\ inc i (source f) , inc x (Vf fi) & inc y (Vf fi)].

Definition partition_relation f x :=
graph_on (in_same_coset f) x.

Section InSameCoset.

Variables (f x: Set).

Hypothesis (ff: function f).

Hypothesis fpa: partition_w_fam (graph f) x.

Lemma partition_inc_uniquel i j y:
inc i (source f) -> inc y (Vf fi)->
inc j (source f) > incy (Vff)) >1i=].
Lemma isc_hi a b: (in_same_coset f a b) -> (inc a x A\ inc b x).

Inria

Bourbaki: Theory of sets in Coq | (v6) 115

Lemma isc_rel P a b:
(related (partition_relation f x) a b <-> in_same_coset f a b).
Lemma isc_rellP a b: inc a x -> inc b x ->
((in_same_coset f a b) <-> (cover_at (graph f) a = cover_at (graph f) b)).
Lemma isc_rel_sr: substrate (partition_relation f x)= x.
Lemma isc_rel_equivalence :
equivalence (partition_relation f x).

Lemma isc_rel class a:

classp (partition_relation f x) a

-> exists2 u, inc u (source f) & a = Vf f u.
Lemma isc_rel_class2 u:

inc u (source f) -> nonempty (Vf f u)

-> classp (partition_relation f x) (Vf f u).
Lemma partition_fun_fb:

(allf (graph f) nonempty)

-> bijection (Lf (Vf f)

(source f) (quotient (partition_relation f x))).

End InSameCoset.

With the same notations, a system of representatives is a set S such that X ;\ S is a sin-
gleton. The same name is given to an injective function g whose image is a system of repre-
sentatives. In this case, for every i there is a unique j such that g(j) 2 X;. Conversely if this
condition holds and g is injective, it is a system of representatives. As a consequence, every
right inverse of the canonical projection of X on the quotient set de ned by the partition X i
of X is a system of representatives.

Definition representative_system s f x =
[A function f, partition_w_fam (graph f) x, sub s x
& forall i, inc i (source f) -> singletonp ((Vf f i) \cap 9)].

Definition representative_system_function g f x :=
injection g N\ (representative_system (range (graph g)) f x).

Lemma rep_sys_function_pr g f x i
representative_system_function g f x -> inc i (source f)
-> exists! a, (inc a (source g) N\ inc (Vf g a) (Vf fi)).
Lemma rep_sys_function_pr2 g f x:
injection g -> function f -> partition_w_fam (graph f) x
-> sub (target g) x
-> (forall i, inc i (source f)
-> exists! a, (inc a (source g) N\ inc (Vf g a) (Vf i)
-> representative_system_function g f x.
Lemma section_canon_proj_ pr g f x y r:
r = partition_relation f x -> function f -> partition_w_fam (graph f) x
-> is_right_inverse (canon_proj r) g ->
incy x ->
related r y (Vf g (class r y)).
Lemma section_is_representative_system_function g f x:
function f -> partition_w_fam (graph f) x
-> is_right_inverse (canon_proj (partition_relation f x)) g ->
(forall u, inc u (source f) -> nonempty (Vf f u)) ->
representative_system_function g f x.

RR n°® 6999

116 José Grimm

6.3 Relations compatible with an equivalence relation

We say that P(x) is compatible with » if P(x) and x » y imply P(y). Every property is
compatible with the equality.

Definition compatible_with_equiv_p (p: property)(r:Set) :=
forall x X', p x -> related r x X' -> p X.

Lemma trivial_equiv p x: compatible_with_equiv_p p (diagonal x).
If p is compatible with », we can de ne P(t) on the quotient E/R of » by:
t 2E/Rand (9x)(x 2t and p&xd.
Criterion C56 says that this is equivalent to
t2E/Rand (8x)(x2t /&) paxd).

It is said to be induced by p&x&on passing to the quotient (with respectto x) with respect to
R. Ifthereis x 2t with p(x), thenforall x 2t we have p(x). If x is in the substrate, then p(x)
is equivalent to P(X) where X is the class of x.

Definition relation_on_quotient p r :=
fun t => inc t (quotient r) \ exists2 x, inc X t & p x.

Lemma rel_on_quoP p r:
equivalence r -> compatible_with_equiv_p p r -> forall t,
(relation_on_quotient p r t
<-> (inc t (quotient r) A forall x, inc x t -> p Xx)).
Lemma rel_on_quoP2 p r:
equivalence r -> compatible_with_equiv_p p r -> forall vy,
((inc y (substrate r) A relation_on_quotient p r (Vf (canon_proj 1) v))
<-> (inc y (substrate r) \ p y)).

6.4 Saturated subsets

A subset A of the substrate of a relation r is said saturated if x 2 A is compatible with r.
This is the same as saying that for every y 2 Athe class of y is a subset of A, or that there exists
a set B formed by classes modulo r whose union is A.

Definition saturated r x := compatible_with_equiv_p (fun y=> inc y x) r.

Lemma saturatedP r x:
equivalence r -> sub x (substrate r) ->
((saturated r x) <-> (forall y, inc y x -> sub (class r y) x)).
Lemma saturated2P r x:
equivalence r -> sub x (substrate r) ->
((saturated r x) <->
exists2 vy, (forall z, inc z y -> classp r z) & X = union Y).

Given a function f and a set X, we consider X; to be i *hf hXii . We havey 2 X; if and
onlyifthereisa z 2 X such that f (y) Zf (z). If we have an equivalence relation r and f is the

Inria

Bourbaki: Theory of sets in Coq | (v6) 117

canonical projection onto the quotient set, then f (y) Z£f (z) is the same as y » z. If X is the
singleton { x}, then X is the class of x modulo r. As a consequence X is saturated if and only
if X /EXs. If X is part of the substrate, it is saturated if and only if it is the inverse image (of
some set) by the canonical projection on the quotient set.

Definition inverse_direct value f x :=
image_by_fun (inverse_fun f) (image_by fun f x).
Lemma idvalue_P f x: function f -> sub x (source f) ->forall vy,
inc y (inverse_direct_value f x) <->
(inc y (source f) N (exists2 z, inc z x & Vf fy = Vff z)).
Lemma idvalue_cprojP r x:
equivalence r -> sub x (substrate r) ->forall v,
inc y (inverse_direct_value (canon_proj r) x) <->
(inc y (substrate r) N\ (exists2 z, inc z x & class r y = class r z)).
Lemma class_is_inv_direct value r x:
equivalence r -> inc x (substrate r) ->
class r x = inverse_direct value (canon_proj r) (singleton x).
Lemma saturated P3 r x:
equivalence r -> sub x (substrate r) ->
(saturated r x <-> (x= inverse_direct_value (canon_proj r) x)).
Lemma saturated P4 r x:
equivalence r -> sub x (substrate r) ->
(saturated r x <-> (exists2 b, sub b (quotient r)
& x = image_by fun (inverse_fun (canon_proj r)) b)).

The following lemmas show that saturated behaves friendly with union, intersection
and complement.

Lemma saturated_setU r x:
equivalence r ->
(alls x (sub™~ (substrate r))) -> (alls x (saturated r)) ->
(sub (union x) (substrate r) A saturated r (union Xx)).
Lemma saturated_setl r x:
equivalence r -> nonempty x ->
(alls x (sub™~ (substrate r))) -> (alls x (saturated r)) ->
(sub (intersection x) (substrate r) A saturated r (intersection Xx)).
Lemma saturated_setC r a:
equivalence r -> sub a (substrate r) -> saturated r a ->
saturated r ((substrate r) -s a).

The set X; is called the saturation of X by r if f is the canonical projection associated to
r. Itis the union of classes of elements of X. Itis the smallest saturéated se§ that contains X. If
X; is afamily of sets, A; their saturations, then the saturation of Xiis A.

Definition saturation_of r x :=
inverse_direct_value (canon_proj r) Xx.
Lemma saturation_of pr r x:
equivalence r -> sub x (substrate r) ->
saturation_of r x =
union (Zo (quotient r)(fun z=> exists2 i, inc i X & z = class r i)).
Lemma saturation_of smallest r x:
equivalence r -> sub x (substrate r) ->
[\ saturated r (saturation_of r x),
sub x (saturation_of r x)
& (forall y, sub y (substrate r) -> saturated r y -> sub x y

RR n° 6999

118 José Grimm

-> sub (saturation_of r x) y)].

Definition union_image x f:=
union (Zo x (fun z=> exists2 i, inc i (source f) & z = Vf f i)).

Lemma saturation_of union r f g:
equivalence r -> function f -> function g ->
(forall i, inc i (source f) -> sub (Vf f i) (substrate r)) ->
source f = source g ->
(forall i, inc i (source f) -> saturation_of r (Vf f i) = Vf g i)
-> saturation_of r (union_image (powerset(substrate r)) f) =
union_image (powerset(substrate r)) g.

6.5 Mappings compatible with equivalence relations

We start with some properties of the function s that maps a non-empty set x to a repre-
sentative: If R is an equivalence relation, this is a function from E/R to E; itis a section (r ight
inverse) of the canonical projection.

Definition section_canon_proj r :=

Lf rep (quotient r) (substrate r).
Lemma section_canon_proj_axioms r:

equivalence r ->

If axiom rep (quotient r) (substrate r).
Lemma section_canon_proj_V r Xx:

equivalence r ->

inc x (quotient r) -> Vf (section_canon_proj rNx = (rep X).
Lemma section_canon_proj_f r:

equivalence r -> function (section_canon_proj r).
Lemma right_inv_canon_proj r:

equivalence r ->

is_right_inverse (canon_proj r) (section_canon_proj r).

We say that a function f is compatible with R if the relation f (x) £y is compatible; by
de nition this is: if x5 xthen f (x) £y implies f (x9 /y. By symmetry, these two relations
are equivalent, and we can eliminate y. We rst prove that our de nition is the same as the
original one, then show that this means that the function is constant on equivalence classes.
This means that f can be factored through the canonical projection g (see below; we show
here g(x) Z£g(y) implies f (x) &£f (y)). (see diagram (retraction/section) on page 6[).|

Definition compatible_with_equiv f r =
[A function f, source f = substrate r &
forall x X', related r x x' -> Vf f x = Vf f X].

Lemma compatible_with_equiv_pr f r:

function f -> source f = substrate r ->

compatible_with_equiv f r <->

(forall y, compatible_with_equiv_p (fun x =>y = Vf f x) r)).
Lemma compatible_constant_on_classes f r x vy:

equivalence r ->

compatible_with_equiv f r -> inc y (class r x) -> Vf f x = Vf f y.
Lemma compatible_constant_on_classes2 f r x:

equivalence r -> compatible_with_equiv f r ->

constantfp (restriction f (class r x)).

Inria

Bourbaki: Theory of sets in Coq | (v6) 119

Lemma compatible_with_proj f r x vy:
equivalence r -> compatible_with_equiv f r ->
inc x (substrate r) -> inc y (substrate r) ->
Vf (canon_proj r) x = Vf (canon_proj r) y -> Vf f x = Vf fy.

Given two relations r and s, we say that the function f is compatible with r and sif g +f
is compatible with r, when g is the canonical projection of F/ s. We can restate this as: x » y
implies f (x)» f (y). If h is the canonical projection of E/ r, then h(x) &h(y) implies that f (x)
and f (y) have the same class modulo s.

Definition compatible_with_equivs f r r' :=
[A function f, target f = substrate r' &
compatible_with_equiv ((canon_proj r') \co f) r].

Lemma compatible_with_pr r r' f x vy:
equivalence r -> equivalence r' ->
compatible_with_equivs f r r' ->
related r x y -> related r' (Vf f x) (Vf fy).

Lemma compatible_with_pr2 r r' f:
equivalence r -> equivalence r' ->
function f ->
target f = substrate r'-> source f = substrate r->
(forall x y, related r x y -> related r' (Vf f x) (Vf f y)) ->
compatible_with_equivs f r r'.

Lemma compatible_with_proj3 r r' f x y:
equivalence r -> equivalence r' ->
compatible_with_equivs f r r'->
inc X (substrate r) -> inc y (substrate r) ->
Vf (canon_proj r) x = Vf (canon_proj r) y ->
class r' (Vf f x) = class r' (Vf f y).

Assumethat f is compatible with an equivalence r onE, let g be the canonical projection
onto E/ r and sa section of g. If f is compatible with r, there exists a unique function h such
that h+g Af and h Af +s. This mapping is said to be induced by f on passing to the quotient .
This is criterion C57 (for details, see page .

Definition fun_on_quotient r f :=
f \co (section_canon_proj r).

Lemma exists_fun_on_quotient f r:
equivalence r -> function f -> source f = substrate r ->
(compatible_with_equiv f r <->
(exists h, h \coP (canon_proj r) A h \co (canon_proj r) = f)).
Lemma exists_unique_fun_on_quotient f r h:
equivalence r -> compatible_with_equiv f r ->
h \coP (canon_proj r) -> h \co (canon_proj r) = f ->
h = fun_on_quotient r f.
Lemma compose_foq_proj f r:
equivalence r -> compatible_with_equiv f r ->
(fun_on_quotient r f) \co (canon_proj r) = f.

f f
E— /£ E—JEO (fun on quotient)

% e ‘1/"0

E/r E/r W/Eolro

RR n°® 6999

120 José Grimm

Assume that f is a function from E into E °on which we have equivalence relations r
and r% Let Ysand ¥4 be the canonical projections onto E/ r and EYr® s and s®associated
sections. We can consider f Af s, the mapping induced by f on passing on the quotient, or
f O%Ey.+ f +s, the mapping induced by f on passing to the quotients with respectto r and s.
We consider two cases: f is a mapping, and f is a graph. In order to simplify the statements,
we write X and X %instead of is_equivalence r or is_equivalence r'

Definition fun_on_rep f: Set -> Set := fun x=> f(rep x).
Definition fun_on_reps r' f := fun x=> Vf (canon_proj r')(f(rep Xx)).
Definition function_on_quotient r f b =
Lf (fun_on_rep f)(quotient r)(b).
Definition function_on_quotients r r' f :=
Lf (fun_on_reps r' f)(quotient r)(quotient r').
Definition fun_on_quotients r r' f :=
((canon_proj r') \co f) \co (section_canon_proj r).
Lemma foq_axioms r f b: X->
If axiom f (substrate r) b ->
If_axiom (fun_on_rep f) (quotient r) b.
Lemma fogs_axioms r r' f: X -> X' ->
If axiom f (substrate r)(substrate r') ->
If_axiom (fun_on_reps r' f) (quotient r) (quotient r').
Lemma foqc_axioms r f; X->
function f -> source f = substrate r ->
f \coP (section_canon_proj r).
Lemma foqcs_axioms r r' f:
function f -> source f = substrate r -> target f = substrate r' ->
(canon_proj r' \co f) \coP (section_canon_proj r).

Lemma foq_f r f b: X->
If axiom f (substrate r) b ->
function (function_on_quotient r f b).
Lemma fogqs frr f. X-> X' ->
If axiom f (substrate r)(substrate r') ->
function (function_on_quotients r r' f).
Lemma foqc_f r f: X-> X' ->
source f = substrate r ->
function (fun_on_quotient r f).
Lemma foqcs frr fi X-> X' ->
function f -> source f = substrate r -> target f = substrate r' ->
function (fun_on_quotients r r' f).
Lemma foq_V r f b x: X->
If_axiom f (substrate r) b ->
inc x (quotient r) ->
Vf (function_on_quotient r f b) x = f (rep X).
Lemma fogqc_ V r f x: X ->
function f ->
source f = substrate r -> inc x (quotient r) ->
Vf (fun_on_quotient r f) ¢ = Vf f (rep x).
Lemma fogs V rr f x;: X -> X' ->
If axiom f (substrate r)(substrate r') -> inc x (quotient r) ->
Vf (function_on_quotients r r' f) x = class r' (f (rep x)).
Lemma foqcs V r r' f xi X-> X' ->
function f -> source f = substrate r -> target f = substrate r' ->
inc x (quotient r) ->
Vf (fun_on_quotients r ' f) x = class r' (Vf f (rep x)).

Inria

Bourbaki: Theory of sets in Coq | (v6) 121

More lemmas; statement fun_on_quotient_pr4 is the diagram on the right part of (fun

on quotient) on page

Lemma fun_on_quotient_pr r f x:

Vf f x = fun_on_rep (fun _ => Vf f x) (Vf (canon_proj r)x).
Lemma fun_on_quotient_pr2 r r' f x:

Vf (canon_proj r) (Vf f x) =

fun_on_reps r' (fun _ => Vf f x) (Vf (canon_proj r) x).
Lemma composable_fun_proj r f b:

If axiomf f (substrate r) b ->

(function_on_quotient r f b) \coP (canon_proj r).
Lemma composable_fun_projs r r' f:

fl_axiomf f (substrate r) (substrate r') ->

(function_on_quotients r r' f) \coP (canon_proj r).
Lemma composable_fun_projc r f:

compatible_with_equiv f r ->

(fun_on_quotient r f) \coP (canon_proj r).
Lemma composable_fun_projcs r r' f:

compatible_with_equivs f r r'->

(fun_on_quotients r r' f) \coP (canon_proj r).
Lemma fun_on_quotient pr3 r f x:

inc X (substrate r) -> compatible_with_equiv f r ->

Vf f x = Vf (fun_on_quotient r f) (Vf (canon_proj r) x).
Lemma fun_on_quotient_pr4 r r' f:

compatible_with_equivs f r r->

(canon_proj r') \co f = (fun_on_quotients r r' f) \co (canon_proj r).
Lemma fun_on_quotient_pr5 r r' f x:

compatible_with_equivs f r r'->

inc x (substrate r) ->

Vf (canon_proj r') (Vf f x) =

Vf (fun_on_quotients r r' f) (Vf (canon_proj r) x).
Lemma compose_fun_proj ev r f b x:

compatible_with_equiv (Lf f (substrate r) b) r ->

inc x (substrate r) ->

If_ axiom f (substrate r) b ->

Vf (function_on_quotient r f b \co canon_proj r) x = f x.
Lemma compose_fun_proj_ev2 r r' f x:

compatible_with_equivs (BL f (substrate r) (substrate r)) r r' ->

If_axiom f (substrate r) (substrate r) ->

inc x (substrate r) ->

inc (f X) (substrate r) ->

Vf (canon_proj ') (f x) =

Vf (function_on_quotients r r' f \co canon_proj r) x.
Lemma compose_fun_proj_eq r f b:

compatible_with_equiv (Lf f (substrate r) b) r ->

If_ axiom f (substrate r) b ->

(function_on_quotient r f b) \co (canon_proj r) =

Lf f (substrate r) b.

Lemma compose_fun_proj_eq2 r r' f:

If_axiom f (substrate r) (substrate r) ->

compatible_with_equivs (Lf f (substrate r) (substrate r)) r r'->

(function_on_quotients r r' f) \co (canon_proj r) =

(canon_proj r') \co (Lf f (substrate r) (substrate r")).

RR n°® 6999

122 José Grimm

f f
E —/4?00 E—LE (canonical decomposition)
Y % Ya /
. f
E/ » TM:O E/ »

Assume now that f isafunctionfromEtoF,and » the associated equivalence, for which
x and y are equivalentif f(x) &f (y). Then f is compatible and we cande ne f on the quo-
tient. If we denote itby f, and if x is the class of x then f(x) &£f (x). From f(x) £f (y) we
get f (x) Zf (y), so that x and y are in the same class: hence f is injective. If we restrict this
function to the image F Cof f we get a bijection, say f° The diagram (canonical decomposi-
tion) says that if we compose the projection ¥from E to E/ », the bijection f %into F%and the
inclusion map from F °to F, then we get f. If f is surjective then F A£F°and we can simplify a
bit: only three arrows are needed. Moreover, there is no need to restrict f_(this is shown on
the right part of the diagram).

Lemma compatible_ea f:
function f ->
compatible_with_equiv f (equivalence_associated f).
Lemma ea_foq_fi f:
function f ->
injection (fun_on_quotient (equivalence_associated f) f).
Lemma ea_fog_on_im_fb f:
function f ->
bijection (restriction2 (fun_on_quotient (equivalence_associated f) f)
(quotient (equivalence_associated f)) (range (graph f))).
Lemma canonical_decompositiona f (r:= equivalence_associated f):
function f ->
function ((restriction2 (fun_on_quotient r f)
(quotient r) (range (graph f)))
\co (canon_proj r)).
Lemma canonical_decomposition f (r:= equivalence_associated f):
function f ->
f = (canonical_injection (range (graph f))(target f))
\co (restriction2 (fun_on_quotient r f) (quotient r) (range (graph f))
\co (canon_proj r)).
Lemma surjective_pr7 f:
surjection f ->
canonical_injection (range (graph f))(target f) = identity (target f).
Lemma canonical_decompositiona f (r:= equivalence_associated f):
function f ->
function (compose (restriction2 (fun_on_quotient r f)
(quotient r) (range (graph f)))
(canon_proj r)).
Lemma canonical_decomposition_surj f (r:= equivalence_associated f):
surjection f ->
f = (restriction2 (fun_on_quotient r f) (quotient r) (target f))
\co (canon_proj r).
Lemma canonical_decompositionb f (r:= equivalence_associated f):
function f ->
restriction2 (fun_on_quotient r f) (quotient r) (target f) =
(fun_on_quotient r f).
Lemma canonical_decomposition_surj2 f (r:;= equivalence_associated f):
surjection f ->
f = (fun_on_quotient r f) \co (canon_proj r).

Inria

Bourbaki: Theory of sets in Coq | (v6) 123

6.6 Inverse image of an equivalence relation; induced equivalence
relation

If Ais a function from E to F, S an equivalence on F, and u the canonical projection from
F to F/S, the inverse image of S by A is the equivalence R associated to u +A, characterized

by x Xy ifand only if A(x)5 A(y). If X is a class modulo S then Ai 1hXi is a class modulo R (if
nonempty) and conversely.

Definition inv_image_relation f r :=
equivalence_associated (canon_proj r \co f).
Definition iirel_axioms f r ;=
[\ function f, equivalence r & substrate r = target f].

Lemma iirel_f f r:
iirel_axioms f r -> function (canon_proj r \co f).
Lemma iirel_relation f r:
iirel_axioms f r -> equivalence (inv_image_relation f r).
Lemma iirel_substrate f r:
iirel_axioms f r -> substrate (inv_image_relation f r) = source f.
Lemma iirel_relatedP f r; iirel_axioms f r -> forall x vy,
(related (inv_image_relation f r) x y <->
[A inc x (source f), inc y (source f) & related r (Vf f x) (Vf f y)]).
Lemma iirel_classP f r: iirel_axioms f r -> forall x,
(classp (inv_image_relation f r) x <->
exists y, [\ classp r vy,
nonempty (y \cap (range (graph f)))
& x = inv_image_by fun f y]).

A J IE (induced equivalence)

g f

AR ——mt 2R
_/

h

Let R be anequivalence on E, AasubsetonE, and j theinclusionmap A ! E. Theinverse
image of R by j is called the relation induced on A and is denoted by R . If x and y are in A,
then they are related by R A if and only if they are related by R. Classes for R 5 are nonempty
sets of the form A\ X where X is a class for R. The inclusion map is compatible with the
relations. Let f and g be the canonical projections and h the function on the quotient. This
function is injective, its range is the range of f. Hence h is the composition of a bijection k
with the inclusion map.

Definition induced relation r a =

inv_image_relation (canonical_injection a (substrate r)) r.
Definition induced_rel _axioms r a :=

equivalence r N\ sub a (substrate r).
Definition canonical_foq_induced rel r a :=

restriction2 (fun_on_quotients (induced_relation r a) r

(canonical_injection a (substrate r)))
(quotient (induced_relation r a))
(image_by_fun (canon_proj r) a).

RR n°® 6999

124 José Grimm

Section InducedRelation.
Variables (r a: Set).
Hypothesis ira: induced_rel_axioms r a.

Lemma induced_rel_iirel_axioms:
iirel_axioms (canonical_injection a (substrate r)) r.
Lemma induced_rel_equivalence:
equivalence (induced_relation r a).
Lemma induced_rel_substrate:
substrate (induced_relation r a) = a.
Lemma induced_rel_relatedP u v:
related (induced relation r a) u v <->
[Ninc u a, inc va&related r u v].
Lemma induced_rel classP x:
(classp (induced_relation r a) x <->
exists y, [\ classp r y, nonempty (y \cap a) & x = (y \cap a)]).
Lemma compatible_injection_induced_rel:
compatible_with_equivs (canonical _injection a (substrate r))
(induced_relation r a) r.
Lemma foq_induced_rel_fi:
injection (fun_on_quotients (induced_relation r a) r
(canonical_injection a (substrate r))).
Lemma foq_induced_rel_image:
image_by fun (fun_on_quotients (induced_relation r a) r
(canonical_injection a (substrate r))) (quotient (induced_relation r a))
= image_by_fun (canon_proj r) a.
Definition canonical_foq_induced rel r a :=
restriction2 (fun_on_quotients (induced_relation r a) r
(canonical_injection a (substrate r)))
(quotient (induced_relation r a))
(image_by_fun (canon_proj r) a).
Lemma canonical_foq_induced_rel_fb:
bijection (canonical_foq_induced_rel r a).
End InducedRelation.

6.7 Quotients of equivalence relations

We say that arelation S is ner than R if S implies R. We say that an equivalence r is ner
than sif » implies %, i.e.,ifforall x and y, x> y implies x» y. If r and s are equivalences on a
same set, this is equivalentto s¥%r. If we denote by C sx the class of x for s, itis also: for each
X, there is an y such that C sx %2C; y. Equivalently: each C, vy is saturated by s. We give two
examples.

Definition finer_equivalence s r:=
forall x y, related s x y -> related r x vy.

Definition finer_axioms s r :=

[\ equivalence s, equivalence r & substrate r = substrate s].
Lemma coarsest_equivalence r:

equivalence r -> finer_equivalence r (coarse (substrate r)).
Lemma finest_equivalence r:

equivalence r -> finer_equivalence (diagonal (substrate r)) r.

Section FinerEquivalence.

Inria

Bourbaki: Theory of sets in Coq | (v6) 125

Variable (r s: Set).
Hypothesis fa: finer_axioms s r.

Lemma finer_sub_equivP:
(finer_equivalence s r <-> sub s r).
Lemma finer_sub_equivP2:
(finer_equivalence s r <->
(forall x, exists y, sub(class s x)(class r y))).
Lemma finer_sub_equivP3:
(finer_equivalence s r <->
forall y, saturated s (class r y)).

E— %% JE (quotient of equivalences)
g f
Els —"—Eigo

s ‘;E

(E/S)I(RIS) h;E/R

Assume that R and S are two equivalences on E, S nerthan R, and let f and g be the
canonical projections. Then f is compatible with S. This gives a surjective function h that
satis es h(Cgx) ACRrX.

Lemma compatible_with_finer:

finer_equivalence s r ->

compatible_with_equiv (canon_proj r) s.
Lemma foq_finer_f:

finer_equivalence s r -> function(fun_on_quotient s (canon_proj r)).
Lemma foq_finer_V x:

finer_equivalence s r -> inc x (quotient s) ->

Vf (fun_on_quotient s (canon_proj r)) x = class r (rep Xx).
Lemma foq_finer_fs:

finer_equivalence s r -> surjection (fun_on_quotient s (canon_proj r)).
End FinerEquivalence.

On the quotient we can consider the equivalence induced by h. This will be denoted

R/S. We have Csx RiS Cgy if and only if x 5 y; this is the same as g(x) RS a(y). We have
x 2 (E/S)/(R/S) if and only if there exists y 2 E/R such that y Ag(y). We can consider the
canonical decomposition of h Aj th,+hi. Since h is surjective, we can simplify this as
h Ah,+hy; here hy is the canonical projection of E/S onto (E/S)/(R/S).

Definition quotient_of relations r s :=
equivalence_associated (fun_on_quotient s (canon_proj r)).

Lemma cgr_aux s X y u:
equivalence s -> sub y (substrate s) ->
X = image_by fun (canon_proj s) y ->
(inc u x <-> (exists2 v, inc vy & u = class s v)).

Section QuotientRelations.

Variables (r s: Set).
Hypotheses (fa:finer_axioms s r) (fe: finer_equivalence s r).

RR n°® 6999

126 José Grimm

Lemma quo_rel_equivalence:
equivalence (quotient_of relations r s).
Lemma quo_rel_substrate:
substrate (quotient_of relations r s) = (quotient s).
Lemma quo_rel_relatedP x y:
related (quotient_of relations r s) x y <->
[A inc x (quotient s), inc y (quotient s) & related r (rep x) (rep Y)].
Lemma quo_rel_related_bisP x vy:
inc x (substrate s) -> inc y (substrate s) ->
(related (quotient_of relations r s) (class s x) (class s y)
<-> related r x).

Lemma quo_rel_class_bisP x:
(inc x (quotient (quotient_of relations r s)) <->
exists2 y, inc y (quotient r) & x = image_by fun (canon_proj s) y).

Let S be an equivalence on E and g the canonical projection. Let T be an equivalence on
the quotient, and R the inverse image of T by g. Thisis a relation on E, S is nerthan R and
R/S is nothing else than T.

Lemma quotient_canonical_decomposition

(f := fun_on_quotient s (canon_proj r))

(gr := quotient_of_relations r s):

f = (fun_on_quotient gr f) \co (canon_proj qr).
End QuotientRelations.

Lemma quotient_of relations_pr s t
(r := inv_image_relation (canon_proj s) t):
equivalence s -> equivalence t -> substrate t = quotient s ->
t = quotient_of relations r s.

6.8 Product of two equivalence relations

0
Given two relations R and R % we can de ne R £R%by (x,x3" 5" (y,y9ifand onlyif x5y and

x°§0 y® This relation is re exive, symmetric, antisymmetric, transitive of both relations are.
Thus, we get a preorder, an order, or an equivalence from two such relations. If the substrates
are E and EC then the substrate of the productif E £ ECin the these cases.

Definition prod_of relation r r:=
graph_on
(fun x y=>inc (J(P X)(P y)) r \inc (J(Q x)(Q y)) r)
((substrate r) \times (substrate r").

Lemma order_product2_srl f g:

preorder f -> preorder g ->

substrate (prod_of relation f g) = (substrate f) \times (substrate g).
Lemma order_product2_sr f g:

order f -> order g ->

substrate (prod_of relation f g) = (substrate f) \times (substrate Q).
Lemma substrate_prod_of rel r r':

equivalence r -> equivalence r' ->

substrate (prod_of relation r r') = (substrate r)\times (substrate r')

Inria

Bourbaki: Theory of sets in Coq | (v6) 127

Lemma equivalence_prod_of rel r r":

equivalence r -> equivalence r' ->

equivalence (prod_of relation r r).
Lemma order_product2_preorder f g:

preorder f -> preorder g -> preorder (prod_of relation f g).
Lemma order_product2_or f g:

order f -> order g -> order (prod_of relation f Q).

A class in the product is a product of classes.

Lemma prod_of rel P r r' a b:
related (prod_of relation r r') a b <->
[\ pairp a, pairp b, related r (P a) (P b) & related r' (Q a) (Q b)].
Lemma related_prod_of relP1 r r' x X' v :
related (prod_of relation r r') (J x X) v <->
(exists y y, [Nv=Jyy, related r x y & related r' x' y']).
Lemma related_prod_of relP2 r r' x X' v:
related (prod_of relation r r') (J x X) v <->
inc v ((im_of _singleton r x) \times (im_of_singleton r' x").
Lemma class_prod_of_relP2 r r":
equivalence r -> equivalence r' -> forall x,
(classp (prod_of relation r r') x <->
exists u v, [\ classp r u, classp r v & x = u \times v]).

With the same notations, let Ysand ¥#be the canonical projections. We can consider the
function Y£ ¥4 it maps (x,y) to (¥{x),¥x)): its target is (E/R) £ (E/RY. This function is not
the canonical projection ¥#Yassociated to R£ R® whose target is (E £ E)/(R £ RY. However
there is a bijection h such that ¥4£ v2/h +14°

Lemma ext_to_prod_rel f r r"
equivalence r -> equivalence r' ->
function (ext_to_prod(canon_proj r)(canon_proj r')).
Lemma ext_to_prod_rel_V r r' x X"
equivalence r -> equivalence r' ->
inc x (substrate r) -> inc x' (substrate r') ->
Vf (ext_to_prod(canon_proj r)(canon_proj r)) (J x X) =
J (class r x) (class r' x).
Lemma compatible_ext to_prod r r"
equivalence r -> equivalence r' ->
compatible_with_equiv (ext_to_prod (canon_proj r) (canon_proj r'))
(prod_of_relation r r').
Lemma compatible_ext to_prod_inv r r' x X"
equivalence r -> equivalence r' ->
pairp x -> inc (P x) (substrate r) -> inc (Q x) (substrate r') ->
pairp x' -> inc (P x') (substrate r) -> inc (Q x') (substrate r') ->
Vf (ext_to_prod (canon_proj r) (canon_proj r')) x =
Vf (ext_to_prod (canon_proj r) (canon_proj r)) x'
-> related (prod_of relation r r') x X"
Lemma related_ext to prod_rel r r"
equivalence r -> equivalence r' ->
equivalence_associated (ext_to_prod(canon_proj r)(canon_proj r')) =
prod_of_relation r r".
Lemma decomposable_ext to_prod rel r r: (* 51 *)
equivalence r -> equivalence r' ->

RR n° 6999

128 José Grimm

exists h, [A bijection h,
source h = quotient (prod_of relation r r'),
target h = (quotient r) \times (quotient r') &
h \co (canon_proj (prod_of relation r r)) =
ext_to_prod(canon_proj r)(canon_proj r].

6.9 Classes of equivalent objects

Let » be an equivalence relation; we do not assume that it has a graph. Let px be the
generic object associated to x. In Bourbaki's notation, thisis ¢y (x » y). We could implement
this via chooseT. Assume x » x% Then x » y and x%» y are equivalent, and the properties of
¢ say pux Z£px® The quantity px is the class of objects equivalent to x. Bourbaki notes that

“x » x and x% x%and px £ux® is equivalentto x » x°.

Assume now that there is a set T such that y » y implies that there exists x 2 T such that
X » y. Let £ be the setof all ux for x 2 T. If y » y, there exists x 2 T such that x » y, hence
pux ZEuy and thus py 2 £. If X » x, then px is the unique z 2 £ such that x » z.

Assume that x » y implies A x £EAy. We can consider the set of all A x such that x » x. If f
maps t to At, then we have Ax Af (pux). Bourbaki says that if we have an equivalence relation
on a set E, then we can choose for A x the class of x, and f becomes a bijection from £ into
the quotient set.

We write px and Ax instead of p(x) and A(x) in order to emphasize the fact that these
objects are not functions. However, px is a set. No code is associated to this section. It seems
that this section is not used in the remaining of the work of Bourbaki; for instance, if we
consider the relation X is equipotentto Y, then pX is the cardinal of X. Bourbaki proves the
existence of the cardinal by repeating the arguments previously exposed in this section.

Inria

Bourbaki: Theory of sets in Coq | (v6) 129

Chapter 7

Exercises

We start with some properties of the Theory of Sets, not used elsewhere. We show that
Colly(y 6%) is false. This implies that there isno set x such thatforall y we havey 2 x, buton
the contrary, there is a set x such that for no y we have y 2 x (this being the empty set). Then
we show that for every property p, we have p(x), provided that x2; .

Assume that there is a set x such that y 2 x is equivalentto y 62/. Let q be the property
X 2 X. By de nition, q is equivalent to its negation. Thus we have p thatsaysq A& : q and
pOthatsays: q &) q. If hisaproofof qthen p(h)isaproofof : qand p(h,h)is false. Thus
H:h 7! p(h,h)is aproofthat q is false, and p{H) is a proof that q is true. Thus H(pYH)) is a
proof of false.

Lemma not_collectivizing_notin:
~ (exists z, forall y, inc y z <-> not (inc y y)).
Proof.
case=> x hx; move: (hx x) => [p p'].
pose H:= (fun h : inc x x => (p h h));exact (H (p' H)).
Qed.

Lemma collectivizing_special :
(exists x, forall y, ~ (inc y x)) A\ ~ (exists x, forall y, inc y x).
Proof.
split; first by exists emptyset; apply: in_setO.
move=> [x Px]; apply: not_collectivizing_notin.
exists (Zo x (fun z => ~ (inc z 2))) => z.
by split;[case /Zo_P | move => zz; apply:Zo_i].

Qed.

Lemma emptyset_pra x (p: property):
inc x emptyset -> (p X).
Proof. case;case. Qed.

The two objects False and True have type Prop, but can be considered as sets. They
have exactly zero and one element; in particular, False is equal to the emptyset.

Lemma rel_False: emptyset = False.
Proof.
apply: extensionality.
by move => t /in_setO.
move => t; case; case.

Qed.

RR n°® 6999

130 José Grimm

Lemma rel_True: singleton (Ro 1) = True.
apply: extensionality.

move => t /setl P ->; apply: R_inc.
move => t [a <-]; apply /setl_P.

have -> //: a = | by case:a.
Qed.
7.1 Sectionl

1. Showthattherelation (x £y) () (BX)(x2X) A (y2X))isatheorem.

Comment . In Bourbaki, you can prove x Ax (thisis the rsttheorem)or (8x)(x Ax) (this
is different theorem). In Coq, we can prove only the second property. We try to be as close
as possible to the Bourbaki statement by using a section. The quanti ers are still present,
but invisible. This looks like the axiom of extent for the relation 3; implication) s trivial;
implication (is a consequence of a weaker property, where we restrict X to be a singleton,
which reads then: (8 2)((x A&z) /&) (y A£z)).

Section exercisel_1.
Variable x y:Set.

Lemma exercisel 1. (x=y) <-> (forall X, inc x X -> inc y X).

Proof.

split; first by move=> ->.

by move=> spec_sub; symmetry; apply: setl eq; apply: spec_sub; fprops.
Qed.

End exercisel 1.

2. Showthat ; 6/Hx}is atheorem. Deduce that (9x)(9y)(x 64) is a theorem.

Comment . The rstclaimis really (8x)(; 6/{x}). Note that the “axiom of the singleton”
(for each x there is a set that has a unique element, namely x) asserts that the number of sets
is not nite.

Lemma exercisel 2: exists X y:Set, x <> .
Proof.
have theorem:forall x:Set, emptyset <> singleton x.
by move=> x esx; empty tacl x.
by exists emptyset; exists (singleton emptyset); apply: theorem.

Qed.

3. Let Aand B be two subsets of a set X. Show that the relation B % WA is equivalentto A% B
and that the relation UB %A is equivalentto UAY:B.

Comment . The notation UA is an abuse of language for X j A. It suf ces to prove one
implication, all other follow. We give here a different proof: we showthatB % (A s equivalent
to A\ B/ ; and UA%B is equivalent to A [B Z£X. The result follows by commutativity of
union and intersection.

Lemma exercisel 3 X A B: sub A X -> sub B X ->

((sub (X -s B) A <-> sub (X -s A) B) N
(sub B (X -s A) <-> sub A (X -s B))).

Inria

Bourbaki: Theory of sets in Coq | (v6) 131

Proof.
have auxl: forall a b, sub a X -> sub b X ->
(sub (compl a) b <-> a \cup b = X).
move => a b aX bX; split.
move => sl; set_extens t; first by case /setU2_P => ts; fprops.
rewrite - (setU2_Cr aX); case /setU2_P => ts; fprops.
by rewrite /compl => <- t /setC_P [/setU2_P] [l.
have aux2: forall a b, sub a X -> sub b X ->
(sub b (compl a) <-> a \cap b = emptyset).
move => a b aX bX; split.
move => sl; apply /set0 P =>t /setl2_P [ta tb].
by move /setC_P: (s1 _ th) => [].
move => abe t tb; apply /setC_P; split; fprops.
move => ta; empty_tacl t.
move => ax bx; split.

apply: (iff_trans (auxl _ _ bx ax)); rewrite setU2_C.
by apply: iff_sym; apply/aux1.
apply: (iff_trans (aux2 _ _ ax bx)); rewrite setl2_C.

by apply: iff_sym; apply/aux2.

4. Prove that the relation X¥2{x}is equivalentto“ X A{x}or X & ;"

Comment . This has been proved in the main text. If X is a non-empty subset of { x}, and
zisin X, then z /x.

Lemma exercisel 4 X Xx:
sub X (singleton x) <-> (X = singleton x \V X = emptyset).
Proof.
split; last by case => ->; fprops.
move => asx; case (emptyset_dichot X); first by right.
by move => nea; left; apply: setl prl => /[z /asx /setl_P.

Qed.

5. Provethat ; /E ¢x(éx(x 2 X) 6X).

Comment . We shall give a proof that uses choose, which not exactly the same as Bour-
baki's ¢ function. Hence we start, informally, with a Bourbaki proof. We have to show

ex((9X)(: (x 6X))) Aex(: (9x)(x 2 X)),

(by de nition of ; , 8 and 9). Write this as ¢x(: (9X)P) £éx(: (9x)Q). According to Scheme
S7, it suf ces to prove (8X)(: (9X)P () : (9%)Q). Fix X. Criterion C24 says that : x 62X is
equivalentto x 2 X, i.e.,, P () Q. From Criterion C31 it follows that (9x)P () (9%)Q.
Criterion C23 implies : (9x)P () : (9x)Q. Qed.

The expression ¢x(x 2 X) is denoted by rep in Coq. Write this as r(X). From y 2 Y, it
follows r(Y)2 Y. Let p(X) stand for r (X) 62. By double negation, if r(Y) is true, then Y must
be empty. We must show that Y A¢xp is empty; it suf ces to prove p(¢xp), which follows
from p(;).

Lemma exercisel 5:
emptyset = choose (fun X => ~ (inc (rep X) X)).
Proof.
have rep_pr: forall Y y, incy Y ->inc (rep Y) Y.
by move=> Y y yY; apply: (choose_pr (p:=inc’~ Y)); exists y.

RR n°® 6999

132 José Grimm

have Ye: forall Y, ~ (inc (rep Y) Y) -> emptyset = Y.

move => y ye; symmetry.

by apply /set0_P; move=> t; dneg aux; apply (rep_pr _ _ aux).
apply: Ye; apply: (choose_pr (p:= fun z => ~ inc (rep z) z)).
exists emptyset; case; case.

Qed.

We give here a shorter proof. Note that in_set0 say that no element is in the empty set,
and rep_i saysrep X isin x if x is non-empty.

Lemma exercisel 5:
emptyset = choose (fun X => ~ (inc (rep X) X)).
Proof.
pose p = fun z => ~ inc (rep z) z.
have pe: p emptyset by exact: in_setO.
move:(choose_pr (ex_intro p emptyset pe)) => pcp.
case (emptyset_dichot (choose p)) => // ney; by move: (rep_i ney).

Qed.

6. Consider (8y)(y £ix((82)(z2x () z2'y))). Show that this axiom A1%mplies the axiom
of extent Al

Comment . We introduce an axiom, equivalent to Axiom Scheme S7, that says that if P
and Q are equivalent propositions, then ¢xP A¢xQ. Write R(x,y) for (8z)(z2x (z2Yy).
Let A and B be two sets such that A 2B and B %2 A, so that R(A,B) holds. It follows, by
transitivity of equivalence, that for all x, R(x,A) is equivalent to R(x,B) so that (S7) gives
ixR(X, A) EéxR(X, B). Axiom Al1%says AZE¢ R(x,A) and B £¢xR(x, B). If follows A /B.

Section Ex1_6.
Hypothesis choose_equiv: forall (p q: property),
(forall x, p x <-> g Xx) -> choose p = choose q.

Lemma exercisel_6:
(forall y, y = choose (fun x => (forall z, (inc z x)<->(inc z y))))
-> (forall a b : Set, sub a b -> sub b a ->a =b).

Proof.

move=> hyp a b; rewrite /sub => sab sba.

rewrite (hyp a) (hyp b).

apply: choose_equiv; move=> X.

split; move=> aux z; rewrite aux; split; auto.

Qed.
End Ex1_6.
7.2 Section?2

1. Let R&,yabe arelation, the letters x and y being distinct; let z be a letter distinct from x
and y which does not appear in Rax,ya Show that the relation (9x)(9y)Réx,ydis equivalent to

(92)(z is an ordered pair and Ré&pr,z, pr,zd)
and the relation (8x)(8y)Réax,yéis equivalent to

(82)(zis anordered pair A) (Rpr,z,pr,zd).

Inria

Bourbaki: Theory of sets in Coq | (v6) 133

Comment . Compare this with the section “Function of two variables”.

Lemma exercise2_1 (R: relation):
((exists x, exists y, R x y) <-> (exists z, pairp z N R(P z) (Q 2))) A
((forall x, forall y, R x y) <-> (forall z, pairp z -> R(P z) (Q 2))).

Proof.

split;split.

- move=> [x] [y] Rxy; exists (J x y); aw;fprops.

- by move => [z [zp RZz]]; exists (P z); exists (Q z).

- move=> hyp z _; apply: hyp.

- move => hyp x y; move: (hyp _ (pair_is_pair x y)); aw.

Qed.

2. (a) Show thatthe relation {{x},{x,y}} £{x%,{x°y%} is equivalentto x A£x°and y A£y°

(b) Let T g be the theory of sets, and let T ; be the theory which has the same schemes and
explicit axioms as T g, except for the axiom A3. Show thatif T ; is not contradictory, then Ty
is not contradictory.

Comment . Inthe French version, Bourbaki de nesthepair(Xx,y)as{{x},{x,y}}and proves
(a) as Proposition 1 (thus Propositions in this section are numbered differently in the two edi-
tions). In the English version, there is a speci ¢ sign (that looks abitlike %) that de nes a pair,
and an axiom A3. Part (b) of the exercise is then: if the French version is not contradictory,
then the English version is neither.

Definition xpair (x y : Set) :=
doubleton (singleton x) (doubleton x (singleton y)).

Lemma exercise2 2 Xy z w:
(xpair x y = xpair zw) <> (x =z Ny = w).
Proof.
split; last by move=> [] -> ->.
move => eq.
have fp2: inc (singleton x) (xpair z w) by rewrite -eq /xpair; fprops.
have sp2: inc (doubleton x (singleton y)) (xpair z w).
by rewrite -eq /xpair; fprops.
have xz: x=z.
case /set2_P: fp2; first by apply: setl_inj.
by move=> sd; symmetry; apply: setl _eq; ue.
split=>//.
rewrite xz in sp2.
case /set2P:sp2 => hyp.
symmetry.
have syz: (singleton y = z) by apply: setl eq; ue.
have: (inc (doubleton z (singleton w)) (xpair x Y)).
by rewrite eq /xpair; fprops.
rewrite xz /xpair hyp; move/setl_P => zwz.
have: (singleton w = z) by apply: setl_eq; ue.
by rewrite - syz; apply: setl in;.
apply: setl_inj.
have sp3: (inc (singleton w) (doubleton z (singleton y))) by ue.
case /set2_P: sp3 => sp4; last by symmetry.
have sp5: (inc (singleton y) (doubleton z (singleton w))) by ue.
by case /set2_P: sp5; try ue.
Qed.

RR n°® 6999

134 José Grimm

7.3 Section 3

1. Showthattherelations x 2y, x %2y, x Ay} have no graph with respectto x and y.

Assume that r is a relation, and G is a set containing all related pairs. Then r has a graph,
namely the subset of all elements (x,y) of G that are related. We replace “has no graph” by
“there is no such G”. We say that r is “universal” ifany x is related to some vy.

(* Definition has_no_graph (r:relation):=
~(exists G, is_graph G A forall x y, r X y <->inc (J x y) G). *
Definition has_no_graph (r:relation):=
~(exists G, forall x y, r x y -> inc (J x y) G).
Definition is_universal (r:relation):=
forall x, exists y, r xy V ry x

Assume that r is a universal relation, and r(x,y) implies J(x,y) 2 X. Let D be the union of
the domain of range of X. The relation r(x,y) implies that both x and y are in D. Since r is
universal, every setis in D, absurd.

Lemma is_universal_pr r: is_universal r -> has_no_graph r.
Proof.

move=> u [X h].

case: (proj2 collectivizing_special).

exists ((domain X) \cup (range X)).

move: (u y) => [x [] /h jg]; apply /setU2_P; [left | right];ex_tac.
Qed.

The result is now trivial.

emma exercise3_1:
[N has_no_graph (fun x y => inc x vy),
has _no_graph (fun x y => sub x y) &
has_no_graph (fun x y => x = singleton y)].
Proof.
split; apply: is_universal_pr; move=> x;
[exists (singleton x) | exists x | exists (singleton x)] ; fprops.

Qed.

2. Let Gbe agraph. Show that the relation X¥2pr,Gis equivalentto X%2Gi LhGhXii .

Lemma exercise3_2 G X: sgraph G ->
(sub X (domain G) <->
sub X (direct_image (inverse_graph G) (direct_image G X))).
Proof.
move=>G X ¢gG.
split; move=> hyp t ts; move: (hyp _ ts).
move/(domainP gG)=> [y Jg]; apply/dirim_P;exists y.
apply/dirim_P; ex_tac.
by apply/igraph_pP.
move/dirim_P => [x _] /igraph_pP h; ex_tac.
Qed.

3. Let G, H be two graphs. Show that the relation pr,H %pr,Gis equivalent to
H%H +G 1 +G. Deduce that G%G=Gl 1+G.

Inria

Bourbaki: Theory of sets in Coq | (v6) 135

Lemma exercise3_3a G H: sgraph G -> sgraph H ->
(sub (domain H) (domain G) <->
sub H (H \cg ((inverse_graph G) \cg G))).
Proof.
move=> gG gH.
split => h t ts.
move: (gH _ ts) => Jt; rewrite - Jt in ts.
have: (inc (P t) (domain G)) by apply: h; ex_tac.
move /(domainP gG)=> [y JG]; apply /compg_P; split => //; ex_tac.
by apply /compg_pP; ex_tac; apply/igraph_pP.
move /(domainP gH): ts => [y JH].
move: (h _ JH) => /compg_pP [z /compg pP [u q] _]; ex_tac.
Qed.

Lemma exercise3_3b G: sgraph G ->
sub G (G \cg ((inverse_graph G) \cg G)).
Proof. move=> gG; apply/(exercise3_3a gG gG); fprops. Qed.

4. If Gisagraphshowthat ;+ G&AG=;/&; andthat Gi 1+G£; ifand onlyif GA;.

For the rst two relations, we need not G be a graph.

Lemma exercise3_4a G:
(G \cg emptyset = emptyset N\
emptyset \cg G = emptyset).

Proof.

split; apply /set0O_P => x /compg_P [].
by move => [y /in_setO0].

by move => [y _ /in_setQ].

Qed.

Lemma exercise3_4b G: sgraph G ->
((inverse_graph G) \cg G = emptyset <-> G = emptyset).
Proof.
move=> gG; split => h; last by rewrite h; apply: (projl (exercise3_4a)).
apply /set0_P => x xG; empty tacl (J (P x) (P Xx)).
move:(eq_ind_r (inc®~ G) xG (gG x xG)) => px.
by apply/compg_pP; exists (Q x) => //; apply /igraph_pP.
Qed.

5. Let A, Bbetwo sets, G a graph.
Show that (A£ B)+G /&G 'hAi£ Band G+(A£ B) £AE GHBi.

Comment . Note that G need not be a graph here.

Lemma exercise3 5 G A B:
((A \times B) \cg G = (inverse_image G A) \times B N\
G \cg (A \times B) = A \times (direct_image G B)).

Proof.

split; set_extens x.

- move /compg_P => [px [y yG /setXp_P [pa pb]]].
apply/setX_P;split => //; apply/iim_graph_P; ex_tac.

- move /setX P => [px /iim_graph P [y uA JG] QB].
apply /compg_P; split => //; ex_tac; fprops.

RR n°® 6999

136 José Grimm

- move /compg P => [px [y /setXp_P [pa pb pc]]].
apply /setX_P;split => //; apply/dirim_P; ex_tac.

- move /setX P => [px pxa /dirim_P [y ya yb]].
apply/compg_P; split => //; ex_tac; fprops.

Qed.

6. Foreach graph G let G'be the graph (pr;G£ pr,G)i G. Showthat (G 1)°&GYi 1, and that
G=(G 1Y%2¢§, (G 1)°+G %¢ 9, if A¥pr,G and B ¥pr,G. Show that G A(pr ;G)£ (pr,G) if and
onlyif G+(Gi 1)°+G £ ;.

Definition complement_graph G :=
((domain G) \times (range G)) -s G.

Definition commutes_at (f g: Set -> Set) x:= f (g X) = g (f x).

Lemma complement_graph_g G: sgraph (complement_graph G).
Proof. by move => t /setC_P [] /setX_P [ok] _. Qed.

Lemma exercise3_6a G: sgraph G -> commutes_at complement_graph inverse_graph G.
Proof.
move => gG.
have gc: sgraph (complement _graph G) by apply: complement_graph_g.
rewrite /commutes_at/complement_graph (igraph_range gG)(igraph_domain gG).
set_extens t.

move /setC_P => [/setX P [pt pa pb] pc].

apply figraphP; split => //; apply/ setC_P;split; first by fprops.

by move /igraph_pP; rewrite pt.
move /igraphP => [px /setC_P [/setXp_P [pa pb] pc]].
apply/setC_P; rewrite - px; split; [fprops | by move /igraph_pP].
Qed.

Lemma exercise3_6b G B: sgraph G -> sub (range G) B ->

sub (G \cg (complement_graph (inverse_graph G)))

(complement_graph (diagonal B)).

Proof.
move=> gG srB; rewrite exercise3_6a // => t.
move /compg_P => [pt [y /igraph_pP /setC_P [/setXp_P [pa pb] pc] pd]].
apply/setC_P; split; last by move /diagonal i P => [_ eq]; case pc; ue.
move:(@identity_sgraph B); rewrite - diagonal_is_identity => aux.
apply /setX_ i => /.

apply/(domainP aux); exists(P t); apply /diagonal_pi_P; fprops.
apply/(rangeP aux); exists(Q t);apply /diagonal_pi_P.
split => /[; apply: srB; ex_tac.
Qed.

Lemma exercise3_6¢c A G: sgraph G -> sub (domain G) A ->

sub ((complement_graph (inverse_graph G)) \cg G)

(complement_graph (diagonal A)).

Proof.
move=> gG sd.
rewrite (exercise3_6a gG) => t.
move /compg_P => [pt [y pa /igraph_pP /setC_P [/setXp_P [pb pc] pd]]]-
apply/setC_P; split; last by move /diagonal i P => [_ eq];case pd; ue.
move:(@identity_sgraph A); rewrite - diagonal_is_identity => aux.
apply /setX_ i => /.

Inria

Bourbaki: Theory of sets in Coq | (v6) 137

apply/(domainP aux); exists(P t); apply /diagonal_pi_P.
split => //; apply: sd; ex_tac.
apply/(rangeP aux); exists(Q t); apply /diagonal_pi_P; fprops.
Qed.

Lemma exercise3_6d G: sgraph G ->
(G = (domain G) \times (range G) <->
G \cg ((complement_graph (inverse_graph G)) \cg G)
= emptyset).
Proof.
move=> gG; rewrite (exercise3_6a gG).
set (K:= complement_graph G).
transitivity (K = emptyset).
rewrite /K /complement_graph; split.
move => <-; apply setC_v.
move => h; move:(empty_setC h) => aux; apply: extensionality => //.
apply: (sub_graph_setX gG).
split.
move=> ->; rewrite igraphO.
by move: (exercise3_4a G) => [pl p2]; rewrite p2 pl.
move=> ce; apply /set0 P => x xK.
move: (XxK); move /setC_P => [] /setX P [pa]

/(domainP gG) [u J1G] /(rangeP gG) [v J2G] _.
empty_tacl (J v u); apply /compg_pP; ex_tac; apply /compg_pP; ex_tac.
by apply/igraph_pP; rewrite pa.

Qed.

7. Agraph Gis functional if and only if for each set X we have GhGi 1hXii %2 X.

Lemma exercise3_7 G: sgraph G ->
(fgraph G <-> forall X, sub (direct_image G (inverse_image G X)) X)).
Proof.
move=>gG; split.
move=> fgG X x /dirim_P [y /iim_graph_P [u ux pug] pxg].
by rewrite (fgraph_pr fgG pxg pug).
move=> hyp; split =>// x y xG yG sP.
move:(gG _ xG) (gG _ yG)=> px py.
apply: pair_exten=>//; apply: setl_eq.
apply: (hyp (singleton (Q Y))).
apply/dirim_P; exists (P x); last by rewrite px.
by apply /iim_graph_P; exists (Q y); fprops; rewrite sP py.
Qed.

8. Let A, B be two sets, let j be a correspondence between A and B, and let j Obe a corre-
spondence between B and A. Show thatif j & (x)) £{x}forall x 2 Aand i (j Ay)) &£{y} for all
y 2 B, then j is a bijection of Aonto Band j °is the inverse mapping.

Comment . There is an abuse of notation here (see exercise 11). In some cases j (X) de-
notes j h{x}i and sometimes j (X) denotes j hXi. The proof is a bit longish. In the comments,
G and GPare the graphs.

Lemma exercise3_8 G G" correspondence G -> correspondence G' ->
source G = target G' -> source G' = target G ->
(forall x, inc x (source G) -> image_by fun G' (image_by fun G (singleton x))
= singleton x) ->

RR n°® 6999

138 José Grimm

(forall x, inc x (source G") -> image_by fun G (image_by fun G'(singleton x))
= singleton x) ->
[\ bijection G, bijection G' & G = inverse_fun G'].
Proof.
rewrite /image_by fun=> c¢G cG' sG sG' G'Gx GG'x.
have gG: sgraph (graph G) by fprops.
have gG" sgraph (graph G') by fprops.

If x 2 A then x is in the domain of G (since j (x)) is not empty). Same with G and G °ex-
changed.

have sGdgG: source G = domain (graph G).
apply: extensionality; last by fprops.
move=> X xs; move: (setl_1 x); rewrite - (G'GX _ Xs).
move /dirim_P => [y] /dirim_P [t /setl P -> aa _]; ex_tac.
have sGdgG'": source G' = domain (graph G").
apply: extensionality; last by fprops.
move=> X Xxs; move: (setl_1 x); rewrite - (GG'X _ XS).
move /dirim_P => [y] /dirim_P [t /setl P -> aa _]; ex tac.

We show (x,y) 2 G and (y, z) 2 Glimplies x Z&z; same with G and G °exchanged.

have JGG"forall x y z, inc (J x y)(graph G) -> inc (J y z)(graph G") -> x = z.
move=> X y z Jxy Jyz.
have xG: inc x (source G) by rewrite sGdgG; ex_tac.
symmetry; apply: setl_eq.
rewrite - (G'Gx _ xG); apply /dirim_P; ex_tac; apply /dirim_P; ex_tac.
fprops.

have JG'G:forall x y z, inc (J x y)(graph G") -> inc (J y z)(graph G) -> x = z.

move=> x y z Jxy Jyz.

have xG: inc x (source G') by rewrite sGdgG'; ex_tac.

symmetry; apply: setl eq.

rewrite - (GG'x _ xG); apply /dirim_P; ex_tac; apply /dirim_P; ex_tac.
fprops.

We show: if x 2 Athereis a y such that (x,y) 2 G and (y, x) 2 G°

have xGy: (forall x, inc x (source G) -> exists2 vy,
inc (J x y) (graph G) & inc (J y x) (graph G").
move=> X xsG; move: (setl_1 x).
rewrite - (G'Gx _ xsG); move /dirim_P => [y /dirim_P [z /setl_P -> pb pc]].
ex_tac.
have xG'y: (forall x, inc x (source G') -> exists2 v,
inc (J X y) (graph G) & inc (J y x) (graph G)).
move=> X xsG; move: (setl_1 x).
rewrite - (GG'x _ xsG); move /dirim_P => [y /dirim_P [z /setl_P -> pb pc]].
ex_tac.

We show (x,y) 2 G and (x,z) 2 G implies y /z.

have fgG: fgraph (graph G).
split=>//; move=> x y xG yG Pxy.
have px: pairp x by apply: gG.
have py: pairp y by apply: gG.
apply: pair_extensionality =>//.

Inria

Bourbaki: Theory of sets in Coq | (v6) 139

rewrite - px in xG.
rewrite - py -Pxy in yG.
have Pxs: inc (P X) (source G) by rewrite sGdgG; ex_tac.
move: (XGy _ Pxs) => [z _ J2q].
rewrite - (JG'G _ _ _ J2g xG).
by rewrite - (JG'G _ _ _ J2g yG).
have fgG" fgraph (graph G).
split=>//; move=> x y xG yG Pxy.
have px: pairp x by apply: gG'.
have py: pairp y by apply: gG'
apply: pair_extensionality =>//.
rewrite - px in xG.
rewrite - py -Pxy in yG.
have Pxs: inc (P x) (source G') by rewrite sGdgG'; ex_tac.
move: (XG'y _ Pxs) => [z _ J2q].
rewrite - (JGG' _ _ _ J2g xG).
by rewrite - (JGG' _ _ _ J2g yG).

We show (x,y) 2 G and (y,x) 2 Gare equivalent.

have fg: function G by [].
have fg" function G' by [].
have GiG: (graph G = inverse_graph(graph G).
set_extens x xs.
have px: pairp x by apply: gG.
rewrite - px in xs |- *; apply/igraph_pP.
have Ps: inc (P x) (source G) by rewrite sGdgG; ex_tac.
move: (xGy _ Ps)=> [y J1 J2].
by rewrite -(JG'G _ _ _ J2 xs).
have gi: (sgraph (inverse_graph (graph G')) by fprops.
have px: pairp x by apply: gi.
move: Xs; rewrite - px; ;movel/igraph_pP => xs; rewrite -pX.
have Ps: inc (P x) (source G) .
by rewrite sG; apply: corresp_sub_range=>//; ex_tac.
move: (XGy _ Ps)=> [y J1 J2].
by aw;rewrite (JG'G _ _ _ xs Jl).
have GiG2: (G = inverse_fun G').
rewrite /inverse_fun - sG sG' -GiG.
by symmetry; apply: corresp_recovl.

Bijectivity of j is easy.

have bG: bijection G.
split.
split=>//; move=> x y xs ys sW.
move: (Vf_pr3 fg xs) => HGx.
move: (Vf_pr3 fg ys) => HGy; rewrite - sW in HGy.
have Ws: inc (Vf G x) (source G') by rewrite sG'; fprops.
move: (XG'y _ Ws) => [z J1 J2].
by rewrite (JGG' _ _ _ HGx J1) (JGG' _ _ _ HGy Jl).
apply: surjective_pr5 =>// x.
rewrite - sG' => xs.
move: (xG'y _ xs) => [z J1 J2].
rewrite /related; ex tac; apply: (plgraph_source fg J2).
have GiG3: G' = inverse_fun G by rewrite GiG2 ifun_involutive.
by split => //; rewrite GiG3; apply: inverse_bij_fb.
Qed.

RR n° 6999

140 José Grimm

9. LetA, B, C,D besets, f amapping of Ainto B, g a mapping of Binto C, h a mapping of
Cinto D.If g£f and h g are bijections, show that all of f, g, h are bijections.

Lemma exercise3 9 f g h:
function f -> function g -> function h->
source g = target f -> source h = target g ->
bijection (g \co f) -> bijection (h \co g) ->
[\ bijection f, bijection g & bijection h].
Proof.
move=> ff fg fh sgtf shtg bgf bhg.
have cgf : g \coP f by [].
have chg : h \coP g by [].
have ig: injection g.
by move: bhg=>[ia sa]; apply: (right compose_fi chg ia).
have sg: surjection g.
by move: bgf=>[ia sa]; apply: (left_compose_fs cgf sa).
have bg: bijection g by split.
split => //.
apply: (right_compose_fb cgf bgf bg).
apply: (left_compose_fb chg bhg bg).
Qed.

10. Let A, B, Chesets,f a mapping of Ainto B, g a mapping of Binto C, h a mapping of C
into A. Show that if two of the three mappings h+g+f,g*f +h, f +h +g are surjections and
the third is an injection, then f, g, h are all bijections.

The French version claims that the same conclusion holds if two of the three mappings
are injections and the third is a surjection. We assume here h+g=f injective, g+f +h surjective
and f +h £g injective or surjective. Other cases are equivalent, by renaming variables.

Lemma exercise3_10 f g h:
function f -> function g -> function h->
source g = target f -> source h = target g -> source f = target h ->
injection (h \co (g \co f)) ->
surjection (g \co (f \co h)) ->
(injection (f \co (h \co Q))
\/ surjection (f \co (h \co @))) ->
[\ bijection f, bijection g & bijection h].
Proof.
move=> ff fg fh sgtf shtg sfth ihgf sgfh is_fgh.
have cfh: f \coP h by [].
have chg: h \coP g by [].
have cgf: g \coP f by [].
rewrite compfA // in ihgf.
have fhg: function (h \co g) by fct tac.
have chgf: (h \co g) \coP f by hnf; aw.
move: (right_compose_fi chgf ihgf) => inf.
have ffh: function (f \co h) by fct_tac.
have cgfh: g \coP (f \co h) by hnf; aw.
move: (left_ compose fs cgfh sgfh) => sg.

In both cases we know that f isinjective and g surjective. If f thz+g isinjective, we deduce
g injective; but surjectivity of g saysf xh injective; hence f is surjective. Injectivity of g in
the second relation says f +h surjective. Thus f, g and f +h are injective and surjective; the
result follows.

Inria

Bourbaki: Theory of sets in Coq | (v6) 141

case is_fgh.
rewrite compfA// => ifhg.
have cfhg: (f \co h) \coP g by hnf; aw.
move: (right_compose_fi cfhg ifthg) => ig.
move: (left_compose_fs2 cgfh sgfth ig)=> sfh.
move: (left_ compose fs cfh sfh) =>sf.
move: (left_compose_fi2 cfhg ifhg sg) => ifh.
have bfh: (bijection (f \co h)) by [].
have bf: (bijection f) by [].
have bg: (bijection g) by [].
move: (right compose_fb cfh bfh bf).
done.

The second case is similar.

move=> sfhg.

have cfhg: (f \coP (h \co g)) by hnf; aw.
move: (left_compose fs cfhg sfhg) => sf.
have bf: (bijection f) by [].

move: (left_ compose fs2 cfhg sfhg inf) => shg.
move:(left_compose_fi2 chgf ihgf sf) => ihg.
move: (right_compose_fi chg ihg) => ig.
have bg: (bijection g) by [].

have bhg: (bijection (h \co g)) by [].

move: (left_ compose fb chg bhg bg).

done.

Qed.

11. *Find the error in the following argument: let N denote the set of all natural numbers
and let A denote the set of all integers n E 2 for which there exists three strictly positive inte-
gersx, y, z suchthat x" Ay" /£z". Then the set Ais not empty (in other words, “Fermat's last
theorem” is false). For let B /{A} and C A{N}; B and C are sets consisting of a single element,
hence there is a bijection f of B onto C. We have f (A) £N; if A were empty we would have
N 4&f (;) £ ; whichis absurd.*

We have f h;i ££; and f(;) £N. Writing the rstrelationas f(;) /& ; creates an ambigu-
ity, but has not as consequence that ; isequalto N.

7.4 Section4

1. Let G be a graph. Show that the following three propositions are equivalent: (a) G is
a functional graph, (b) if X, Y are any two sets, then Gi }(X\ Y) &G }(X)\ G X(Y). (c) The
relation X\ Y& ; implies Gi 1(X)\ G 1(Y) £ ;.

Lemma exercise4_la g:. sgraph g ->
(functional_graph g <-> {morph inverse_image g : x y / x \cap y}).
Proof.

move=> gg.
have gig: sgraph (inverse_graph g) by fprops.
split.

move=> fgg x y; set_extens t.
move fiim_graph_P => [u []] /setl2_P [ux uy] jg.

RR n°® 6999

142 José Grimm

apply /setl2_P;split;apply /iim_graph_P; ex_tac.
move /setl2_P => [/iim_graph_P [u ux ua]/im_graph_P [v vx va]].
rewrite -(fgg _ _ _ ua va) in vx.
apply /iim_graph_P; exists u; fprops.
move=> hyp X y y' gxy gxy"
move: (hyp (singleton y)(singleton y")).
set u:= _ \cap _ => hypl.
have:inc x (inverse_image g u).
rewrite /u hypl;apply: setl2_i; apply /iim_graph_P.
exists y; fprops.
exists y'; fprops.
by move /iim_graph P => [t /setl2_P [/setl P <- /setl P <.
Qed.

Lemma exercise4_1b g: sgraph g ->
(functional_graph g <-> (forall x y, disjoint x y ->
disjoint (inverse_image g x) (inverse_image g V))).
Proof.
rewrite /disjoint;move=> gg; split.
move /(exercise4_la gg) => h x y ie; rewrite /disjoint -h ie.
by rewrite /inverse_image dirim_setO.
move=> hyp X y y' gxy gxy"
have gig: sgraph (inverse_graph g) by fprops.
case (emptyset_dichot ((singleton y) \cap (singleton y")).
move=>aux; move:(hyp _ _ aux).
set vi= _ \cap _.
have xv: (inc x v).
rewrite /v; apply: setl2_i; apply /iim_graph_P; ex_tac.
by move => ve; move: xv; rewrite ve => /in_set0.
by move=> [z /setl2_P [/setl_P -> /setl P ->]].
Qed.

2. Let Gbe agraph. Show that for each set X we have G(X) Apr,(G\ (XE£ pr,G)) and
G(X) A£G(X\ pr,G).

Comment . There is no need to assume that G is a graph.

Lemma exercise4_2a g x:
direct_image g x = range (g \cap (x \times (range Q))).

Proof.

set_extens vy.
move /dirim_P => [a ax pg]; apply/funl_P; exists (J a y); aw.
apply /setl2_P; split => //; apply:setXp_i => //; ex_tac.

move /funl_P => [a /setl2_P [pg /setX P [pa pb pc]] ->].

by apply/dirim_P; ex_tac; rewrite pa.

Qed.

Lemma exercise4_2b g x:
direct_image g x = direct_image g (x \cap (domain g)).
Proof.
set_extens t; move /dirim_P => [y ys Jg]; apply/dirim_P.
ex_tac; apply /setl2_P; split=> //; ex_tac.
move /setl2_P: ys => [pa pb]; ex_tac.

Qed.

Inria

Bourbaki: Theory of sets in Coq | (v6) 143

3. LetX,Y,Y®Zbe four sets. Show that (Y°£ Z)+(X£ Y)&; if Y\ YO/ ; and that
(YOE Z)+(XE Y)AEXE Zif Y\ YO6/:

Lemma exercise4_3a x y y' z: disjoint y y' ->
(y' \times z) \cg (x \times y) = emptyset.
Proof.
rewrite /disjoint; move=> ie; apply /set0_P.
move=> t => /compg P [_ [u /setXp_P [_ uy] /setXp P [uy' 1]l
by empty_tacl u.
Qed.

Lemma exercise4_3b x y y' z: nonempty(y \cap y') ->
(y' \times z) \cg (x \times y) = x \times z.
Proof.
move=> [t] /setl2_P [ty ty.
set_extens u.
move /compg_P => [pu [v /setXp_P [pa _] /setXp_P [_ pb]]l.
by apply:setX _i.
move => /setX P [pu Px Qy]; apply/compg_P; split => //; exists t; fprops.
Qed.

S S
4. Let(Gqep beafamily ofgrf?phs. Showtha]tfor everyset Xwehave(g GphXi/E ¢ GfXi,
and that for every object x, (¢ Gph{x}i £ ¢ Gf{x}i. Give an example of two graphs G, H
and a set X such that (G\ H)hXi 6A&hXi\ HhXi.

We have already shown that G 7! Ghxi is a morphism for the union of two sets. We show
there that it is a morphism in the general case. We introduce a de nition.

We have to show that (9y 2 X)(9i)(x,y) 2 G; is the same as (9i)(9y 2 X)(x,y) 2 G;.

Definition graph_morph op ui g :=
op (ui g) = ui (Lg (domain g) (fun i => op (Vg g i))).

Lemma exercise4_4a g x: graph_morph (direct_image”~x) unionb g.
Proof.
set_extens vy.
move => /dirim_P [a ax /setUb_P [u ud JVv]].
apply: (@setUb_i _ u); bw; apply /dirim_P; ex_tac.
move /setUb_P => [z]; rewrite Lg_domain => zd; bw.
move /dirim_P => [u ux Jv]; apply /dirim_P; ex_tac; union_tac.

Qed.

We have to show that (9y 2 X)(8i)(x,y) 2 G; is the same as (8i)(9y 2 X)(x,y) 2 Gj. We
cannot exchange quanti ers. However, if X is a singleton{ u}, y 2 X is equivalentto y Au, and
this commutes.

Lemma exercise4_4b g x: singletonp x ->
graph_morph (direct_image”~x) intersectionb g.
Proof.
move=> [y ->]; set_extens t.
move => /dirim_P [a /setl P ->].
case (emptyset_dichot g) => gne.
by rewrite gne setlb_0 => /in_setO.
move => pi; apply: setlb_i.
move /domain_setOP: gne => [u udg].
pose ff i := direct_image (Vg g i) (singleton vy).

RR n°® 6999

144 José Grimm

exists (J u (ff u)); apply /funl_P; ex_tac.

bw; move => i idg; bw; apply/dirim_P; exists y; fprops.

exact (setlb_hi pi idg).
set f:=Lg _ _.
have dfdf: domain f = domain g by rewrite /f; bw.
case (emptyset_dichot g) => gne.

by rewrite /f gne domain_setO /Lg funl_setO setlb_0 => /in_set0.
move => ti; apply /dirim_P; exists y; first by fprops.
apply/(setlb_P gne) => i idg; move: (idg); rewrite -dfdf=> idf.
by move: (setlb_hi ti idf); rewrite /f; bw; move /dirim_P => [u /setl P ->].
Qed.

Let us turn now to the example. We wantto nd X, G and H such that p(X) 64 (X). We
have p (X) &p (X9 and q(X) £q (X% where XCis the intersection of X and the domain of G or H.
We know p (X) ZAq(X) if X is a singleton. Thus X, G and H must have at least two elements. We
give here the minimal solution: X has two elements, G is the identity in X, and H permutes
the elements.

Lemma exercise4_4c: exists z, not {morph (direct_image "~z): x y / x \cap vy}
Proof.
set (x:=TPa); set (y:= TPb); set z := (doubleton x vy).
exists z.
set (G:= doubleton(J x x)(J y y)); set (H:= doubleton(d x y)(J y X)).
move => h; move: {h} (h G H).
have ->: direct_image G z = z.
set_extens u.
move=> /dirim_P [v vz /set2_P] [] h; rewrite (pr2_def h) /z; fprops.
case /set2 P => h; apply /dirim_P; exists u; rewrite h /z /G; fprops.
have -> :direct_image H z = z.
set_extens u.
move=> /dirim_P [v vz /set2_P] [] h; rewrite (pr2_def h) /z; fprops.
case /set2_P => ->; apply /dirim_P; [exists y | exists X];
rewrite /H;fprops.
rewrite setl2_id => bad.
move: (set2_1 x y); rewrite -/z -bad; move/dirim_P => [t _ /setl2_P[pa]].
have : P Jt x) = Q (J t x) by case/set2_P: pa => ->; aw.
aw => ->; case/set2_P => h; [move: (pr2_def h) | move: (prl_def h)]; fprops.

Qed.

5. Let (Gyp be afamily of graphs and let H be a graph. Show that

([GTQiHﬁE[(GgtH) and Hi([GWE[(H £Gy).
Rl I I Pl

Lemma exercise4 5 G H:
graph_morph (composeg ”~~H) unionb G
N\ graph_morph (composeg H) unionb G.
Proof.
split.
set_extens x.
move /compg_P => [px [y ph/setUb_P [z zd JV]]].
apply/setUb_P; bw; ex_tac; bw; apply /compg_P;split => //; ex_tac.
move /setUb_P; bw; move => [y ydg]; bw; move /compg_P => [px [t pa pb]].
apply /compg_P;split=> //;ex_tac; union_tac.

Inria

Bourbaki: Theory of sets in Coq | (v6) 145

set_extens Xx.

move /compg_P => [px [y /setUb_P [z zd JV] ph]].

apply/setUb_P; bw; ex_tac; bw; apply /compg_P;split => //; ex_tac.
move /setUb_P; bw; move => [y ydg]; bw; move /compg P => [px [t pa pb]].
apply /compg_P;split => //;ex_tac; union_tac.

Qed.

6. Agraph Gis functional if and only if for each pair of graphs H, Hwe have

(H\ HY+GAH+G)\ (H*+G).

Note that (H \ H)+G%(H +G)\ (H°+G) s true for any graphs.

Lemma exercise4 6 G: sgraph G ->
(fgraph G <->
{when sgraph &, {morph (composeg "~G) : H H' / H \cap H}}).

Proof.
move => gG; split.
move=> fG H H' _ ; set extens Xx.

move /compg_P => [px [y J1 /setl2_P [J2 J3]]].

apply: setl2_i; apply /compg_P; split => //;ex_tac.
move /setl2_P => [] /compg_P [px [y J1 J2 /compg_P [_ [y' J1'" 327
rewrite (fgraph_pr fG J1 J1") in J2.
apply/compg_P; split => //; ex_tac; fprops.

Converse. If (x,y) 2 G and (x,yY 2 G we consider the mappings y 7! x and y°7! x. Then (x,x)
isinH +G and H%+G. Thus H\ H%s nonempty.

move=> hyp; split=>// x y xG yG Pxy.
set (H:= singleton(J (Q x) (P x))).
set (H":= singleton(dJ (Q y) (P y))).
have gh: sgraph H by move=> t /setl_P ->; fprops.
have gh": sgraph H' by move=> t /setl_P->; fprops.
move: (gG _ xG)(gG _ yG)=> xp yp.
rewrite - xp in xG.
rewrite - yp in yG.
apply: pair_exten=>//.
have pl: inc (3 (P X)(P x)) (H \cg G).
apply /compg_P; split;fprops; aw;ex_tac; rewrite /H; fprops.
have p2: inc (J (P y)(P y)) (H \cg G).
apply /compg_P; split;fprops; aw;ex_tac; rewrite /H'; fprops.
have p3: (inc (3 (P X)(P X)) ((H \cap H") \cg G)).
by rewrite hyp//; apply: setl2_i => //;rewrite Pxy //.
move: p3; move/compg_P => [_ [z _]]; aw.
move /setl2_P => [] /setl_P rl1 /setl P r2.
by rewrite -(prl_def rl) -(prl_def r2).
Qed.

Notre that this is also true:

Lemma exercise4 _6bis G: sgraph G ->
(fgraph G <-> {morph (composeg"~G) : H H' / H \cap H?).

RR n°® 6999

146 José Grimm

7. LetG,H,K be three graphs. Prove the relation (H+G)\ K% (H\ (K+Gi 1)+(G\ (Hi 1+K)).

Lemma exercise4d 7 G H K:
sub ((H \cg G) \cap K)
((H \cap (K \cg (inverse_graph G)))
\cg (G \cap ((inverse_graph H) \cg K))).
Proof.
move=> t /setl2_P [] /compg P [tp [y JG JH]] tK.
apply /compg_P;split => //;rewrite - tp in tK.
by exists y; apply : setl2_i => //; apply/compg_P;
split;fprops; aw; ex_tac; apply /igraph_pP.
Qed.

8. LetR A(Xgq and S A(Y.). 2k be two coverings of a set E. (a) Show thatif R and S are
partitions of Eandif R is nerthan S,thenforevery - 2 Kthere exists 2 | such that Xg%2Y. .
(b) Give an example of two coverings R and S suchthat R is nerthan S but such that the
property stated in (a) is not satis ed. (c) Give an example of two partitions R and S such that
for every - 2 K there exists 12 | such that Xq%2Y., but suchthat R isnotare nementof S.

The French version does not assume that R is a partition. We must however assume
Y. 6;

Lemma exercise4 8a r s X:
covering r x -> covering s x ->
partition_ w_fam s x -> coarser cg s r ->
nonempty_fam s ->
forall k, inc k (domain s) ->
exists2 i, inc i (domain r) & sub (Vg r i) (Vg s k).
Proof.
move=> [fgr col] [fgs co2] [fgL md usx] [_ _ co] alne k kds.
move: (alne _ kds)=> [y ysk].
have yx: inc y x by rewrite -usx;apply: (@setUb_i _ k);bw.
have yu: (inc y (unionb r)) by apply: col.
move: (setUf_hi yu)=> [z zdr yrz].
move: (co _ zdr)=> [i ids rsi].
have yri: inc y (Vg s i) by apply: rsi.
move: md; rewrite /mutually_disjoint; bw=> aux; case (aux _ _ kds ids).
by move=> ->; ex_tac.
move=> h; red in h.
by empty tacl y; bw; aw; split.
Qed.

We consider a covering R, and take for S the union of R and another set. Then Ris ner
than S.

Hint Rewrite variant_d variant_V_a variant_ V_b: bw.

Lemma exercise4 8b (a:= CO0) (b:= C1)
(x:= doubleton a b)

(r:= Lg (singleton a) (fun _ => X))
(s:= variantL a b x (singleton a)) :
[\ covering r x, covering s X,

coarser_cg s f,
nonempty fam s &

Inria

Bourbaki: Theory of sets in Coq | (v6) 147

~ (forall k, inc k (domain s) ->
exists i, inc i (domain r) A sub (Vg r i) (Vg s k))].

Proof.
have ba: b<> a by rewrite /a/b; apply: TP_nel.
rewrite /r/s/x;split.
- split; fprops; move=> t tx; apply: (@setUb_i _ a); fprops; bw; fprops.
- split; fprops; move=> y yx;apply: (@setUb_i _ a); fprops; bw; fprops.
- split; [fprops | fprops | bwl].

move=> t /setl P ->; exists a; bw;fprops.
- move=> k; bw; case /set2_P=> ->; bw; [apply: set2_ne | apply: setl_ne].
- have bd: (inc b (doubleton a b)) by fprops.

bw; move=> h; move: (h _ bd)=> [i [/setl_P ->]]; bw; fprops => xa.

by move: (xa _ bd) => /setl P.
Qed.

Second counter example. The mapping - 7! fis injective. If | and K have the same num-
ber of elements, both partitions are equivalent. If K has a single element, then R is ner than
S. Thuswe need S; and Sy, R1 251, Ry ¥2S; and R3 that is neitherin S 1 norin S, thus has an
elementin S 1 and another one in S ,. Thus E has at least four elements; in the initial version
we used the following de nitions:

Inductive four_points : Set := | fpa | fpb | fpc | fpd.
Inductive three_points : Set := | tpa | tpb | tpc.

We use here the ordinals zero, one, two and three.

Lemma exercise4 8c
(x:= C4)
(r= (Lg C3
(fun i=> Yo (i = CO0) (singleton CO0)
(Yo (i = C2) (singleton C1) (doubleton C2 C3)))))
(s:= variantL CO C1 (doubleton CO C2) (doubleton C1 C3)):
[\ partition_w_fam s X,
partition_w_fam r x,
(forall k, inc k (domain s) ->
exists2 i, inc i (domain r) & sub (Vg r i) (Vg s k)) &
~(coarser_cg s).

We prove some obvious properties like S 5\ S, A& ;.

Proof.
move:C2_neC01 => [nl n2].
move:C3_neC012 => [n3 n4 n5].
have nba: C1 <> CO by fprops.
have sab: (disjoint (Vg s C0) (Vg s C1)).
rewrite /s; bw; apply: disjoint_pr=>u udl ud2.
case /set2_P: udl=> h; case /set2 P: ud2; rewrite h; auto.
have ra: inc CO C3 by apply /C3_P; in_TP4.
have rb: inc C1 C3 by apply /C3_P; in_TP4.
have rc: inc C2 C3 by apply /C3_P; in_TP4.
have dab: disjoint (Vg r C0) (Vg r C1).
rewrite /r; bw; YtacO; YtacO; YtacO; YtacO.
apply: disjoint_pr=> u /setl P -> /set2_P; case; auto.
have dac: disjoint (Vg r CO) (Vg r C2).
rewrite /r; bw; YtacO; YtacO; YtacO; YtacO.

RR n°® 6999

148 José Grimm

apply: disjoint_pr=> u /setl P -> /setl P; auto.
have dcb: disjoint (Vg r C2) (Vg r C1).

rewrite /r; bw; YtacO; YtacO; YtacO; YtacO.

apply: disjoint_pr=> u /setl_P -> /set2_P; case; auto.
split.

The rststepisto prove that S is a partition. Ithastwo elements S 5 A{a,c}and Sy, A{b,d}.
For each x, thereisa v suchthat x 2 S,. Itis respectively a, b, a and b.

(* S partition *)
rewrite /s;split; fprops.
rewrite /variantL;red; bw; move=> i j ids jds.
case /set2_P: ids => ->; case /set2_P: jds =>->; auto.
by right; apply:disjoint_S.

set_extens y => ys.

case (setUb_hi ys); bw; move=> z zd.

case /set2_P: zd => ->; bw=> yd; case /set2_P: yd => ->; apply/C4_P;in_TP4.
case /C4_P: ys; move => ->,

by apply :(@setUb_i _ CO);bw; fprops.

by apply :(@setUb_i _ C1);bw; fprops.

by apply :(@setUb_i _ CO);bw; fprops.

by apply :(@setUb_i _ C1);bw; fprops.

We prove now that R is a partition. Since R has three elements itis a bit longer (we must show
that 6 pairs of sets are disjoint). We have R 5 A{a} and Ry, A{c,d}, R A{b}. For each x, there
isav suchthat x 2 Ry. Itis respectively a, c,b and b.

(* R partition *)
split; first by rewrite /r; fprops.
red; rewrite {1 2} /r; bw; move=> i j idr jdr.
case /C3_P:idr => ->;case /C3_P:jdr;try move => ->; auto;
try case => ->; auto;
by right; apply:disjoint_S.
set_extens t => ts.
move: (setUb_hi ts); rewrite /r;bw; move => [y ydr]; bw.
case /C3_P:ydr => ->; YtacO; YtacO;
try move /setl P ->; try case/set2 P => ->; apply /C4_P;in_TP4.
rewrite /r; case /C4_P: ts;
[set v:=CO | setv:=C2|setv:i=Cl|setv:=Cl]
move => ->; apply: (@setUb_i _ v); bw; YtacO; YtacO; fprops.

We show that for all - 2 K there exists 12 | such that X ¢%2Y. . Thisis Ry %2S; and R¢ ¥2Sy,. After
that, we show that R , is not a subset of any S

(* property *)
rewrite /s/r; bw;move => k kds; case /set2 P: kds =>->.
exists CO => //; bw; YtacO; YtacO => t /setl P ->; fprops.
exists C2 => //; bw; YtacO; YtacO => t /setl P ->; fprops.
(* not refinement *)
move=> [_ _], rewrite {1}/r;bw => cc.
move: (cc _ rb) => [i]; rewrite /s; bw=> ids.
rewrite /r; bw; YtacO; YtacO.
case /set2 P: ids=> ->; bw => h.
move: (h _ (set2_2 C2 C3)) => /set2_P; case; auto.
move: (h _ (set2_1 C2 C3)) => /set2 P; case; auto.

Qed.

Inria

Bourbaki: Theory of sets in Coq | (v6) 149

7.5 Section5

* Montrer que si X, Y sont deux ensembles tels que P (X) %P (Y), on a X 4Y.

This exercise appears only in the French version. The converse is true, so that we show
PX)%P(Y)() Xw%Y.

Proof.

move=> sxy z zX.

have p2: sub (singleton z) vy.

by apply /setP_P; apply: sxy; apply /setP_P =>t /setl P ->.

apply: (p2 z); fprops.

Qed.

Lemma powerset_mono A B: sub A B -> sub (powerset A)(powerset B).
Proof.

move=> sAB t /setP_P ta; apply/setP_P; apply:(sub_trans ta SAB).

Qed.

* Soient Eun ensemble f une application de P (E) dans lui-méme telle que larelation X2Y
entraine f (X) %2 f (Y). Soit V l'intersection des ensembles Z%;E tels que f (Z) ¥2Z et soit W la
réunion des ensembles Z %2 E tels que Z % f (Z). Montrer que f (V) £V et W AT (W) et que
pour tout ensemble Z¥%:Etelque f(Z) £AZonaV ¥%ZY%W.

This exercise appears only in the French version. We prove (in the second part of this
report) the following theorem of Tarski: let F be a complete lattice,and f :F! Fanincreasing
function. Then the set of xpoints of f is a complete lattice. This exercise considers the case
where F is the powerset of E (ordered by inclusion), and shows that f has aleastand a greatest

xpoint, namely V, the intersection of the sets Z %E for which f (Z) %2Z and W, the union of
the sets Z%E such that Z %2 f (2).

Lemma exercise5 f2 f x v w:
function f -> source f = (powerset x) -> target f = powerset x ->
(forall a b, inc a (powerset x) -> inc b (powerset x) -> sub a b
-=> sub (Vf f a) (Vf f b)) ->
v = intersection(Zo (powerset x) (fun z=> sub (Vf f z) z)) ->
w = union(Zo (powerset x) (fun z=> sub z (Vf f 2))) ->
[NVEfv=v VEfw=w& (forall z, sub z x > Vffz=12z->
(sub v z N\ sub z w))].
Proof.
move=> ff sf tf fprop vd wd.
set (g:= (Zo (powerset x) (fun z => sub (Vf f z) 2))).
have xpx: inc x (powerset x) by apply:setP_Ti.
have xiqg: inc x g.
rewrite /q; apply: Zo_i=>//.
by apply: /setP_P; rewrite -tf; apply: Vf_target =>//; rewrite sf.
have neq:nonempty g by exists x.
set (p:= (Zo (powerset x) (fun z => sub z (Vf f 2)))).
have fzv:forall z, sub z x -> Vf fz =z -> sub v z
move => z zx Wz.
have zq:inc z g by apply: Zo_i; [by apply /setP_P | rewrite Wz; fprops].
by rewrite vd; apply: setl_s1.
have fzw:forall z, sub z x -> Vf f z = z -> sub z w.
move => z zx Wz.
have zp: inc z p by apply: Zo_i; [by apply /setP_P | rewrite Wz; fprops].
by rewrite wd; apply: setU_s1.

RR n° 6999

150 José Grimm

have qw: forall z, inc z g -> inc (Vf f 2) q.
move=> z [Zo P [] /setP_P zx Wzz.
have aux: sub (Vf f z) x by apply: (@sub_trans z).
by apply: Zo_i; [apply/setP_P | apply: fprop => //; apply/setP_P].
have pW: forall z, inc z p -> inc (Vf f z) p.
move=> z [Zo P [] /setP_P zx Wzz.
have aux: inc (Vf f z) (powerset Xx).
by rewrite -tf; apply: Vf_target=>//;rewrite sf; apply /setP_P.
by apply: Zo_i => /I; apply: fprop => //; apply/setP_P.
have vp: inc v (powerset x) by apply /setP_P; rewrite vd; apply: setl_sl.
have wp: inc w (powerset Xx).
by apply /setP_P; rewrite wd; apply: setU s2 => vy /Zo P []/setP_P.
have pv:sub (Vf f v) v.
move=> t tW; rewrite vd; apply: setl_i=>// y /Zo_P [yp sW].
have vy: sub v y by rewrite vd; apply: setl_s1; apply: Zo_i=>//.
by apply: sW;apply: (fprop _ _ vp yp vy).
have pw:sub w (Vf f w).
move=> t; rewrite {1} wd=> /setU P [y ty] /Zo_P [yp yW].
have tw: (sub y w) by rewrite wd;apply: setU_s1; apply: Zo_i=>//.
by move: (fprop _ _ yp wp tw); apply; apply: yw.
split.
apply: extensionality=>//.
have vq: (inc v q) by rewrite /qg;apply: Zo_i.
by move: (W _ vqg)=> aux; rewrite {1} vd;apply: setl_s1.
apply: extensionality=>//.
have iwp: inc w p by rewrite /p; apply: Zo_i.
by move: (pW _ iwp) => aux; rewrite {2} wd;apply: setU_s1.
move=> z zw wz; split; fprops.

Qed.

1. Let Xy %e a familP/ of sets. Show thatif (Yye is a family of sets such that Yq¥2Xgfor
eachf21then g Yi £ i pri(Yy.

Lemma exercise5 1 | x y:

(forall i, inc i | -> sub (y i) (X i)) -> nonempty | ->

productf | y =

intersectionf | (fun i=> inv_image_by fun (pr_i (Lg | x) i) (y i)).
Proof.

move=> syxi nel.
have fgL: fgraph (Lg | x) by fprops.
have fpj: forall j, inc j I->function (pr_i (Lg | Xx) j).
move=> | jl; apply: pri_f=>//;bw.
set_extens t.
move /setXf P=> [fgt dt iVy]; apply: setlf_i=>//.
move=> | jl; apply /iim_graph_P.
exists (Vg t j); first by apply: iVy.
have jd: inc j (domain (Lg | x)) by bw.
have tp:(inc t (productb (Lg | x))).
by apply/setXb_P; split; bw => i il; bw; apply: syxi=>//; apply: iVy.
by rewrite -(pri_V fgL jd tp); Wtac; rewrite /pr_i If_source.
have rl: inc (rep 1) | by apply: rep_i.
move => h; move:(setlf_hi h rl) => /iim_graph_P [u uy Jg].
move: (plgraph_source (fpj _ rl) Jg).
rewrite /pr_i;aw; move /setXf_P=>[fgt dt iVV].
apply/setxXf_P;split => // i idt.
move: (setlf_hi h idt) => fiim_graph_P [v vi Jgv].

Inria

Bourbaki: Theory of sets in Coq | (v6) 151

move: (VI _pr (fpj _ idt) Jgv); rewrite pri_V =>//; bw.
by move=> <-.
by apply/setXb_P; split; bw => k ki; bw; apply: iVV.

2. Let A Bbe two sets. For each subset G of A£ B let G be the mapping x 7! Ghx}i of Ainto
P (B). Show that the mapping G 7! Gis a bijection from P (A£ B)onto (P (B))".

Note that G isin F (A;P (B)). The French edition says: let G be the graph of the mapping
etc, so that G is in (P (B))".

Lemma exercise5_2 a b:
bijection (Lf(fun g => Lg a (fun x => direct_image g (singleton x)))
(powerset (a \times b)) (gfunctions a (powerset b))).
Proof.
set tilde .= L _ .
apply: If_bijective.

We rst prove that the mapping G 7! G is a function.

move=> c /setP_P cp.
set faux:=(Lf (fun x=> direct_image c (singleton x)) a (powerset b)).
suff: (inc (graph faux) (gfunctions (source faux) (target faux))).
by rewrite /faux /Lf; aw.
apply: gfun_set_i ;apply: If_function => t ta; apply/setP_P => u.
by move /dirim_P => [x _ pb]; move/setXp_P: (cp _ pb) => [].

We prove that the mapping is injective.

move /setP_P => up /setP_P => vp fxy.
set_extens x => xs.
move /setX_P: (up _ xs) => [px Px Qx].
have: inc (Q x) (Vg fy (P x)).
by rewrite -fxy /fx; bw; apply/dirim_P; ex_tac; rewrite px.
by rewrite /fy; bw; move/dirim_P=> [w /setl_P ->]; rewrite px.
move /setX_P: (vp _ xs) => [px Px Qx].
have: inc (Q x) (Vg fx (P x)).
by rewrite fxy /fy; bw; apply/dirim_P; ex_tac; rewrite px.
by rewrite /fx; bw; move/dirim_P=> [w /setl P ->]; rewrite px.

We prove that the mapping is surjective.

move=> y ys; move: (gfun_set_hi ys)=> [f [fs sf tg of]].
set (g:=Zo (a \times b) (fun z => inc (Q z) (Vg y (P 2)))).
have gp: inc g (powerset (a \times b)) by apply/setP_P;apply: Zo_S.
rewrite -gf; ex_tac; apply: fgraph_exten; fprops.
bw; aw.
red; rewrite - (proj33 fs) sf => x xa; bw;rewrite ¢f;set extens u.
move=> h; apply/dirim_P; exists x; first by fprops.
apply: Zo_i; aw; apply: setXp_i => //.
rewrite - sf in xa; move: (Vf_target fs xa).
by rewrite tg /Vf gf;, move/setP_P; apply.
move /dirim_P => [v /setl P ->] /Zo P []; aw.

RR n°® 6999

152 José Grimm

g. *Let (Xi)1.i. n_Ibe a nite family of sets. For each subset H of the index set [1,n] let Py £
i2n Xi and Qu /£ jon X . Let Fy be the set of subsets of [1,n] which have k elements. Show
that [

\
Qu¥% Pyifk- (nA1)2
H2Fy H2Fy

and that

\
[Qn %2 Pyifk, (nA1)2. o
H2Fy H2Fy

See part two of this report of an answer.

7.6 Section6

1. For a graph G to be the graph of an equivalence relation on a set E, it is necessary and
suf cientthat pr,G £E, pr,G &£E, GG 1+G A£G and ¢ g %G (¢ g being the diagonal of E).

Comment. The condition pr ,G ZAE was missing in the English version [Z]! It is necessary:
consider the graph with two elements (a,a) and (b, a).

Lemma exercise6_1 x g: sgraph g ->
((equivalence g N substrate g = x) <->
[A domain g = x, range g = X,

g \cg ((inverse_graph g) \cg g) = g &
sub (diagonal x) g]).

Proof.

move=> gg; split.

move=> [eg sg]; split => //.

- by rewrite (domain_sr eg).

- rewrite - sg /substrate; set _extens t => ts; first by fprops.
case /setU2_P:ts => // /(domainP gg) [y Jh]; apply/(rangeP gg).
exists y; equiv_tac.

- set_extens vy.

move /compg_P => [py [z /compg_pP [u pa /igraph_pP pb pc]]].
have J4: inc (J u z) g by equiv_tac.
have J5: inc (J (P y) z) g by equiv_tac.
have: inc (3 (P y) (Q y)) g by equiv_tac.
by rewrite py.
move=> yg.
have py: pairp y by apply: gg.
have yv:J (Py) (Qy) =y by aw.
rewrite - py; apply /compg_pP; exists (P y); last by ue.
apply /compg_pP; exists (Q y); [| apply/igraph_pP]; ue.

- move => t /diagonal_i P [pt Pt PQt].

by rewrite -pt -PQt; rewrite - sg in Pt; equiv_tac.

Now the converse

move=> [dg [rg [cg si]]].
have sg: (substrate g = x) by rewrite /substrate dg rg; apply: setU2_id.
split=>//.
have p1: forall u, inc u x -> inc (J u u) g.
by move=> u ux; apply: si; apply /diagonal_pi_P.
have p2: symmetricp g.

Inria

Bourbaki: Theory of sets in Coq | (v6) 153

move=> a b ab; red in ab.
have Jag: (inc (J a a) g) by apply: pl; rewrite -dg; aw; ex tac.
have Jbg: (inc (J b b) g) by apply: pl; rewrite -rg; aw; ex_tac.
red; rewrite -cg; apply /compg_pP; ex_tac; apply /compg_pP; ex_tac.
by apply /igraph_pP.
have p3: transitivep g.
move=> a b ¢ ab bc; rewrite -cg; apply /compg_pP.
exists a => //; apply /compg_pP; exists b => //.
by apply: pl; rewrite - sg; substr_tac.
by apply/igraph_pP; apply (proj2 p2).
by apply:symmetric_transitive_equivalence.

Qed.

2. If Gis a graph such that G+Gi 1 +G /G show that G 1 +G and G+Gi ! are graphs of
equivalences on prG and pr,G respectively.

We rst compute the substrate of the relations.

Lemma exercise6_2 g: sgraph g ->
compose_graph g (compose_graph (inverse_graph g) g) = g ->
[\ equivalence ((inverse_graph g) \cg),
substrate ((inverse_graph g) \cg g) = domain g ,
equivalence (g \cg (inverse_graph g)) &
substrate (g \cg (inverse_graph g)) = range g].
Proof.
move=> gg cg.
have gig:sgraph (inverse_graph g) by apply: igraph_graph.
have gcigg:sgraph ((inverse_graph g) \cg g) by apply: compg_graph.
have gcgig: sgraph (g \cg (inverse_graph g)) by apply: compg_graph.
have t3:forall x y z t, related g x y -> related g zy -> related g z t ->
related g x t.
move=> X y z t Xy zy zt; red; rewrite -cg; apply/compg_pP.
by exists z=>//;apply/compg_pP;exists y => //;apply /igraph_pP.
have sl: substrate ((inverse_graph g) \cg g) = domain g.
set_extens x.
case /(substrate_P gcigg) => [] [y /compg_pP [z J1] /igraph_pP J2];
figraph_pP J2; ex tac.
move/(domainP gg) => [y Jg].
have Jxx: (inc (J x x) ((inverse_graph g) \cg g)).
by apply/compg_pP; ex_tac; apply /igraph_pP.
apply: (argl_sr Jxx).
have s2:substrate (g \cg (inverse graph g)) = range g.
set_extens X.
case/(substrate_P gcgig)=> []ly /compg_pP [z /igraph_pP J1 J2]];
ex_tac.
move/(rangeP gg) => [y Jgl.
have Jxx: (inc (J x X) (g \cg (inverse_graph @))).
by apply/compg_pP; ex_tac; apply /igraph_pP.
apply: (argl_sr Jxx).

We apply proposition 1. j isan equivalenceif j & *and i +j /4&; . If | isthe composition
of Gand Gi L inany order, the relation is true. The second is a consequence of the assumption

and associativity of composition.

split => //; rewrite equivalence_pr; split;
try rewrite compg_inverse igraph_involutive //.

RR n°® 6999

154 José Grimm

by rewrite - compgA cg.
by rewrite compgA in cg; by rewrite compgA cg.

Qed.

3. LetEbeaset,Aasubsetof E, and Rthe equivalence relation associated with the mapping
X 7! X\ Aof P(E)into P (E). Show that there exists a bijection from P (A) onto the quotient
setP (E)/R.

If » is the equivalence associated, then B and B Yare related if they have the same inter-
section with A. If u 2 A, we can consider the set of all B whose intersection with Ais u as a
class. This is our bijection (called canonical in the French edition). Note: Since intersection
is commutative, we use here X 7! A\ X.

Definition intersection_with x a :=
Lf(intersection2 a) (powerset Xx)(powerset X).
Definition intersection_with_canon x a :=
Lf (fun b => Zo(powerset x)(fun c=> ¢ = a \cap ¢))
(powerset a)(quotient (equivalence_associated (intersection_with x a))).

We start with some preliminaries.

Lemma exercise6_3 a x:
sub a x -> bijection (intersection_with_canon x a).
Proof.
move=> ax.
have ta: If _axiom (intersection2 a) (powerset x) (powerset X).
move=> y /setP_P ay; apply /setP_i; apply: sub_trans ay ;apply: subsetl2r.
have fai: function (intersection_with x a) by apply: If_function.
set r:= equivalence_associated (intersection_with x a).
have er: equivalence r by apply: graph_ea_equivalence.
have aux: forall y, sub y a ->y = a \cap y by move => y; move/setl2id_Pr.
have rr: forall u v, related r u v <->
[N inc u (powerset x), inc v (powerset x) & a \cap u = a \cap v].
move => u v; split.
move/(ea_relatedP fai); rewrite If_source; move => [pa pb].
by rewrite /intersection_with; aw.
move => [pa pb pc]; apply/(ea_relatedP fai).
by rewrite /intersection_with; aw.

We show that we have a function.

apply: bl_bijective.
move=> y /setP_P=> ya;set w:= Zo _ _
have new: nonempty w.
exists y;apply: Zo_i; [apply/setP_P; apply: (sub_trans ya ax) | auto].
have swp: sub w (powerset x) by apply: Zo_S.
have rp: inc (rep w) (powerset x) by apply: swp;apply: rep_i.
apply /(setQ_P er); split => //.
move: rp;rewrite graph_ea_substrate /intersection_with; aw.
have ira: (a \cap (rep w) =).
have: (inc (rep w) w) by apply: rep_i.
by move /Zo_hi => ->.
set_extens z.
move => zw; apply /(class_P er); apply /rr;split => //; first by apply: swp.
by rewrite ira; move /Zo P: zw => [].
by movel/(class P er)/rr => [pa pb pc]; apply: Zo_i => //; rewrite -pc ira.

Inria

Bourbaki: Theory of sets in Coq | (v6) 155

We prove injectivity.

move=> u Vv /setP_P ua /setP_P va; set fs:== Zo _ _ => eql.

have iua: u = a \cap u by apply: aux.

have: inc u fs by apply: Zo_i => /I; apply/setP_P; apply:(sub_trans ua ax).
by rewrite eql; move/ Zo_hi => ->,

We prove now the surjectivity.

move=> y /(setQ_P er) cy.
have ip: inc (a \cap (rep y)) (powerset a) by apply/setP_P; apply subsetl2l.
move: (graph_ea_substrate fai); rewrite -/r If _source => sr2.
ex_tac; symmetry;set_extens t.
move /Zo_P => []; move /setP_P => pd pe.
apply: (rel_in_class2 er cy); apply/rr;split => //; last by apply /setP_P.
rewrite - sr2; exact (projl cy).
move => ty; apply /Zo_i; first by rewrite - sr2; apply: (sub_class_sr er cy ty).
by move: (rel_in_class er cy ty) => /rr [_].

Qed.

4. Let Gbe the graph of an equivalence on a set E. Show thatif Aisagraph suchthat A%G
and pr,A /E (resp. pr,A &AE) then G+A &G (resp. A+G /&G); furthermore, if B is any graph,
we have (G\ B)tAZAG\ (B+A) (resp Ax(G\ B) £G\ (AxB)).

Lemma exercise6_4 g a b x:
let coom FGb:=F (Gb)=G(FDb)in
equivalence g -> sgraph a -> sgraph b -> substrate g = x -> sub a g ->
[A (domain a = x -> g \cg a = @),
(range a = x -> a \cg g = Q),
(domain a = x -> comm (composeg”~a) (intersection2 g) b) &
(range a = x -> comm (composeg a) (intersection2 g) b)].
Proof.
move=> comp inter eg ga gb sg ag.
have gg: sgraph g by fprops.
split
move=> ax; set_extens Y.
move /compg_P=> [py [z Jla J2q]].
move: (ag _ Jla) => Jlg.
rewrite - py; equiv_tac.
move=> yg; move: (99 _ yg)=> py; apply/compg_P.
split =>/1.
have : (inc (P y) (domain a)) by rewrite ax - sg; substr_tac.
move/(domainP ga)=> [z Ja]; exists z =>//.
move: (ag _ Ja)=> Jg.
have J2g:inc (J z (P y)) g by equiv_tac.
rewrite - py in yg; equiv_tac.

Second claim.

move=> ax; rewrite /comp; set_extens .

move /compg_P => [py [z J1g J2a]].

move: (ag _ J2a) => J2g.

rewrite - py; equiv_tac.
move=> yg; move: (g9 _ yg)=> py; apply/compg_P =>//.
have : (inc (Q y) (range a)) by rewrite ax - sg; substr_tac.

RR n°® 6999

156 José Grimm

move/(rangeP ga); move=> [z Ja]; split => //;exists z =>//.
move: (ag _ Ja)=> Jg.

have J2g:inc (J (Q y) z) g by equiv_tac.

rewrite - py in yg; equiv_tac.

Third claim.

move=> ax; set_extens y.
move /compg_P => [py [z Jla/setl2_P [J2g J3b]]]; apply/seti2_i.
move: (ag _ Jla) => Jlg; rewrite - py; equiv_tac.
apply/compg_P;split=>//;exists z=>/l.

move=> /setl2_P [yg] /compg P [py [z Jla J2b]].

apply/compg_P; split => //; exists z => //; apply:setl2_i => //.

move: (ag _ Jla)=> Jg.

have J2g:inc (J z (P y)) g by equiv_tac.

rewrite - py in yg; equiv_tac.

Last claim.

move=> ax; set_extens vy.
move /compg_P => [py [z /setl2_P [J2g J3b] J1a]]; apply/setl2_i.
move: (ag _ Jla) => Jlg; rewrite - py; equiv_tac.
apply/compg_P;split=>//;exists z =>//.

move=> /setl2_P [yg] /compg_P [py [z Jla J2Db]].

apply/compg_P; split => //; exists z => //; apply:setl2_i => //.

move: (ag _ J2b)=> Jg.

have J2g:inc (J (Q y) z) g by equiv_tac.

rewrite - py in yg; equiv_tac.

Qed.

5. Show that every intersection of graphs of equivalences on aset E s the graph of an equiv-
alence on E. Give an example of two equivalences on a set E such that the union of their
graphs is not the graph of an equivalence on E.

We have already shown the rst property. Let's show that the union of two symmetric
relations is symmetric.

Lemma symmetric_union a b: symmetricp a -> symmetricp b ->
symmetricp (a \cup b).

Proof.

by move=> sa sb x y; case /setU2_P=> h; apply/setU2_P;
[left; apply: sa | right; apply: sb].

Qed.

We show here that if G »2E£ E, then the substrate of G [¢gisE.

Lemma substrate_union_diag: x g:

sub g (coarse x) -> substrate (g \cup (identity g x)) = x.
Proof.
move=> gc.
have gg: sgraph g by move=> t tg; move: (gc _ tg) => /setX_P [].
have gu: sgraph (g \cup (diagonal x)).

by move=> t; case /setU2_P; [auto | move/diagonal_i_P => []].
set_extens vy.

case /(substrate P gu) => [] [z] /setU2_P [].

Inria

Bourbaki: Theory of sets in Coq | (v6)

157

- by move => h; move: (gc _ h); move /setXp_P=> [].
- by move/diagonal_pi_P => [].
- by move => h; move: (gc _ h); move /setXp_P=> [].
- by move/diagonal_pi_ P => [h <-].
move=> yx.
have aux: inc (J y y) (g \cup (diagonal x)).
by apply: setU2_2; apply /diagonal_pi_P; split.
substr_tac.

Qed.

If aand b are in E, we can consider ¢g[{(a,b),(b,a)}. Its substrate is E.

Definition special_equivalence a b x :=
(doubleton (J a b) (J b a)) \cup (diagonal x).

Lemma substrate_special_equivalence a b x:
inc a x -> inc b x -> substrate(special_equivalence a b x) = x.
Proof.
move=> ax bx; rewrite/ special_equivalence.
apply: substrate_union_diag.
by move=> t /set2_P => [][] ->; apply/setXp_i.
Qed.

We show that this is an equivalence.

Lemma special_equivalence_ea a b x:

inc a x -> inc b x -> equivalence(special_equivalence a b x).
Proof.
move=> ax bx.
have gs: sgraph (special_equivalence a b x).

move=> t; move/setU2_P; case; first by case/set2_ P => ->; fprops.

by move /diagonal i P => [].
have pair_ symm: foralabcd,Jab=Jcd->Jba=Jdc

move=> u v u' V' eql.

apply: pair_exten; fprops; aw.

apply: (pr2_def eq]l).

apply: (prl_def eql).
apply: symmetric_transitive_equivalence => //.

move=> u v h; case/setU2_P: (h).

case /set2_P => ww; apply/setU2_P; left;
rewrite (prl_def ww)(pr2_def ww); fprops.

by move => /diagonal_pi_P [_ uv]; move: h;rewrite uv.
move=> u v w ra rb.
case /setU2_P: (ra); last by move => /diagonal_pi P [->].
case /setU2_P: (rb); last by move => /diagonal pi P [<-].
move => hl h2; apply/setU2_P.
case /set2_P: hl => hl11; rewrite (pr2_def hll);

case /set2_P: h2 => h22; rewrite (prl_def h22).
- left; fprops.
- by right; apply /diagonal_pi_P.
- by right; apply /diagonal_pi_P.
- left; fprops.
Qed.

If we have two such equivalences with (a,b) and (a,c), transitivity of the union would
imply that b and c are related in one of the two graphs. If all three elements are distinct this

is not possible.

RR n° 6999

158 José Grimm

Lemma exercise6_5
(x == C3)
(g1:= special_equivalence CO C1 x)
(g2:= special_equivalence CO C2 x):
[A equivalence gl, equivalence g2, substrate gl = X,
substrate g2 = x & ~ (equivalence (gl \cup g2))].
Proof.
split.
apply: special_equivalence_ea; apply /C3_P; in_TP4.
apply: special_equivalence_ea; apply /C3_P; in_TP4.
rewrite substrate special_equivalence //; apply /C3_P; in_TP4.
rewrite substrate_special_equivalence //; apply /C3_P; in_TP4.
move=> bad.
have pl: (related (g1 \cup g2) C1 CO0).
apply /setU2_P; left;apply/setU2_P; left; fprops.
have p2: (related (g1 \cup g2) CO C2).
apply /setU2_P; right;apply/setU2_P; left; fprops.
have :(related (g1 \cup g2) C1 C2) by equiv_tac.
move: C2_neCO01 => [nl n2].
case /setU2_P; case/setU2_P.
by casel/set2_P=> eq2; move: (pr2_def eq2); auto.
by move /diagonal_pi P => [_]; auto.
by case/set2 P=> eq2; move: (prl_def eq2); fprops.
by move /diagonal_pi_ P => [_]; auto.
Qed.

6. LetG, H bethe graphs of two equivalenceson E. Then GzH is the graph of an equivalence
on Eifand only if GxH /£H +G. The graph GxH is then the intersection of all the graphs of
equivalences on E wich contain both Gand H.

We show that if G +H is an equivalence then G +H AH +G. This uses symmetry.

Lemma exercise6 _6a G H:
equivalence G -> equivalence H ->
(equivalence (G \cg H) <> (G \cg H = H \cg G)).
Proof.
move=> eG eH.
set (K:i= G \cg H).
split.
move => eK.
have aux: forall a b, inc (J a b) K ->inc (J b a) K
by move => a b h;equiv_tac.
set_extens x => xK.
have px: (pairp x) by apply: (@compg_graph G H).
move: xK ; rewrite - px => h; move : (aux _ _ h).
move /compg_pP=> [y JH JG]; apply/compg_pP; exists y => //; equiv_tac.
move: XK =>/compg_P [px [y JG JH]].
rewrite - px; apply: aux; apply/compg_pP;exists y => //; equiv_tac.

Converse. We use Proposition 1 that says thatan equivalence satises | & tand i +i &j .

move=> eq.

move: eG eH; rewrite ! equivalence_pr.
move=> [GG iG] [HH iH]; split.

rewrite {2} /K compgA eq.

rewrite - (compgA H G G) GG - compgA.

Inria

Bourbaki: Theory of sets in Coq | (v6) 159

by rewrite -/K eq compgA HH.
by rewrite {2}/K compg_inverse -iH -iG.
Qed.

We show here that if G and H are equivalences on E, then the substrate of G +His E.

Lemma exercise6 6b G H:
equivalence G -> equivalence H -> substrate G = substrate H ->
substrate (G \cg H) = substrate G.
Proof.
move=> eG eH sG.
set_extens X.
have xx:sgraph (G \cg H) by fprops.
case /setU2_P; [move /(domainP xx) | move /(rangeP xx)];
move => [z] /compg_pP [t ta tb]; [rewrite sG |] ; substr_tac.
move=> xsG.
have p3: related (G \cg H) x x.
apply/compg_pP; exists x;equiv_tac => //; ue.
substr_tac.

Qed.

We prove that the composition is the smallest equivalence that contains G and H.

Lemma exercise6 _6¢ G H:
equivalence G -> equivalence H -> substrate G = substrate H ->
[N sub G (G \cg H), sub H (G \cg H)
& forall W, equivalence W -> sub G W -> sub H W ->
sub (G \cg H) WI].
Proof.
move=> eG eH sG.
have gg: sgraph G by fprops.
have gh: sgraph H by fprops.
have gc: sgraph (G \cg H) by apply: compg_graph.
ee.
- move=>y yG.
move: (gg _ YG) => py.
rewrite - py in yG.
apply/ compg_P;split=>//;exists (P y)=>//; equiv_tac=>//.
rewrite - sG; substr_tac.
- move=> Yy yH.
move: (gh _ yH) => py.
rewrite - py in yH.
apply/compg_P; split=>//;exists (Q y)=>//; equiv_tac=>//.
rewrite sG; substr_tac.
- move=> w ew gW hWw t.
move /compg_P=> [tp [y JH JG]].
move: (gW _ JG) (hw _ JH)=> J1G J2G.
have: inc (J (P t) (Q t)) w by equiv_tac.
by rewrite tp.
Qed.

We know that the domain of an equivalence is the substrate. We show here that the same
is true for the domain.

Lemma range_is_substrate g:
equivalence g -> range g = substrate g.

RR n° 6999

160 José Grimm

Proof.
move=> eg; rewrite /substrate; set extens x.
move => pa; fprops.
move:(eg) => [fgg _ _ _].
case /setU2_P => //. move /(domainP fgg)=> [y Jg].
apply/(rangeP fgg); exists y; equiv_tac.
Qed.

If G is an equivalence on E then G %2E£ E.

Lemma sub_coarse g:
equivalence g -> sub g (coarse (substrate Q)).
Proof.
move=> eg;move:(eg) => [fgg _ _ _].
move: (sub_graph_setX fgg).
by rewrite range_is_substrate // domain_sr.

Qed.

The set of all graphs of equivalences on E is a subset of P (E£ E), according to the two
previous lemmas. We can consider the intersection of all these equivalences that contain G
or H (there is at least one, the coarsest equivalence). The intersection is the smallest.

Lemma exercise6 _6d G H:
equivalence G -> equivalence H -> substrate G = substrate H ->
G\cgH=H\\Xh G ->
(G \cg H) = intersection(Zo (powerset (coarse (substrate G)))
(fun W => [\ equivalence W, sub G W & sub H W])).
Proof.
move=> eG eH sG cGH.
set (E:= substrate G).
have sGE: sub G (coarse E) by rewrite /E; apply: sub_coarse.
have sHE: sub H (coarse E) by rewrite /E sG; apply: sub_coarse.
move: (exercise6_6¢c eG eH sG)=> [sGc sHc lew].
set_extens t => ts.
apply: setl_i.
exists (coarse E); apply: Zo_i; first by apply: setP_Ti.
split=> //;,apply: coarse_equivalence.
by move=>y /Zo_P [_ [ey gy hy]]; apply: (lew _ ey gy hy).
move: cGH;rewrite - exercise6_6a // => cGH.
apply: (setl_hi (y:=(G \cg H)) ts); apply: Zo_i; last by done.
apply /setP_P;rewrite /E - (exercise6_6b eG eH sG); apply: sub_coarse=>//.
Qed.

7. LetGg, Gy, Ho, Hy bethe graphs of four equivalences onaset Esuchthat Gi\ Ho £Go\ H;
and Gy +Hy A£Gp+H1. Foreach x 2 E, let Ry (resp. Sp) be the relation induced on Gy (x) (resp.
H1(x)) by the equivalence relation (x,y) 2 Gg (resp. (X,y) 2 Hg). Show that there exists a
bijection of the quotient set G;1(X)/R onto the quotient set H1(x)/Sq. (if A £G1(x)\ H1(X),
show that both quotient sets are in one-to-one correspondence with the quotient set of Aby
the equivalence relation induced by Rg on A, this relation is equivalent to that induced by Sp
on A).

This exercice is missing in the French edition. We think that the exercise is wrong, but do
not have a counterexample.

Remark exercise6_ 7 GO G1 HO H1 E x:

Inria

Bourbaki: Theory of sets in Coq | (v6) 161

equivalence GO -> substrate GO = E ->
equivalence HO -> substrate HO = E ->
equivalence G1 -> substrate G1 = E ->
equivalence H1 -> substrate H1 = E ->

G1 \cap HO = GO \cap H1 ->
G1 \cg HO = GO \cg H1 ->
inc x E -> (
let G1x := direct_image G1 (singleton Xx) in
let H1x := direct_image H1 (singleton x) in
let RO := induced_relation GO G1x in
let SO := induced_relation HO H1x in
equipotent (quotient RO) (quotient SO0)).
Proof.
Abort.

8. LetE, Fbetwo sets, let Rbe an equivalence relationon F, andlet f be amapping of Einto
F. If Sis the equivalence relation which is the inverse image of Runder f, and if A A&f hEi,
de ne a canonical bijection of E/S onto A/R,.

The rstthing to do isto show thatS and R are equivalence relations.

Lemma exercise6_8 f r:

equivalence r -> function f -> target f = substrate r ->

(exists g, bijection_prop g (quotient (inv_image_relation f r))

(quotient (induced_relation r (image_of fun f)))).

Proof.
move => er ff tf.
set (s := inv_image_relation f r).
set (A:= (image_of fun f)).
set (Ra := induced_relation r A).
have ia: (iirel_axioms f r) by red; intuition.
have rf: A = range (graph f). Check f_range_graph.

rewrite /A/image_of fun -image_by fun_source // image_by fun.
have es:equivalence s by rewrite /s; apply: iirel_relation.
have iA: induced_rel_axioms r A.

by split => //; rewrite -tf rf; apply: corresp_sub_range; move: ff=> [h _].
have eR: equivalence Ra by rewrite /Ra;apply: induced_rel_equivalence.

Let's quote the properties of iirel_classP and induced_rel_classP : If X is a class
modulo R then fi1hXi is a class modulo S (if nonempty) and conversely. Classes for R a are
nonempty sets of the form A \ X where X is a class for R. If a is a class for S we take X such that
a /&f i 1hXi, and consider b A\ X. This gives our function. We can do the reverse operation.

We denote by f1(a,X) the property a Z£fi 1hXi,a\ A6/ and X 2 F/R. We denote by f,(a)
a class that satis es this property, from which we deduce f3(a) a class for Ra.

set (fl:= fun x y => [N classp r vy,
nonempty (y \cap A) & x = inv_image_by fun f y]).

have gsp:forall x, inc x (quotient s) -> exists y, f1 x v.

by move=> x /(setQ_P es); move /(iirel_classP ia); rewrite -rf.
set (f2:= fun x => choose (fun y => f1 x y)).
have f2p: (forall x, inc x (quotient s) -> f1 x (f2 x)).

move=> X xq; rewrite /f2;apply: choose_pr; apply: (qsp _ xq).
set (f3:= fun x => (f2 x) \cap A).
have f3p: (forall x, inc x (quotient s) -> inc (f3 x) (quotient Ra)).

move=> X xs; rewrite /Ra; move: (f2p _ xs) => [pa pb pc].

RR n°® 6999

162 José Grimm

apply/(setQ_P eR); apply/(induced_rel_classP iA).
by exists (f2 x).

It is now obvious to nd a function from E/S to AIR .

set (g:= Lf f3 (quotient s) (quotient Ra)).
have sgf: sgraph (graph f) by fprops.
exists g; rewrite /g;split; aw; apply: If bijective =>//.

Our function is injective. Let X /Ef,(a) and X°&£f,(a%. From g(a) £g(a% we get f3(a) £
f3(@9, namely X\ AZEXA A. This is a nonempty set, it constains an element of the form ~ f (z).
We have a &£f i 1hXi and a®/fi hXi® These two classes have a common element z, hence
are equal.

move => u Vv uq vqg; rewrite /f3 => ii.
move: (f2p _ uq)(f2p _ vq); rewrite /f1; move=> [cfu niu uv][cfv niv wv].
move: niv=> [y] /setl2_P [y2v yiA].
have y2u: inc y (f2 u).

apply: (@setl2_1 (f2 u) A);rewrite ii; fprops.
have : inc y (range (graph f)) by rewrite -rf.
move /(rangeP sgf)=> [x Jg].
have xb: (inc x v) by rewrite vv; apply/iim_graph_P;ex_tac.
have xu:(inc x u) by rewrite uv; apply/iim_graph_P; ex_tac.
move : ug vq; move/(setQ_P es) => cl /(setQ_P es) => c2.
case (class_dichot es cl1 c2) => // dj; red in d;.
by empty tacl x; apply: intersection2_inc.

Surjectivity is easy. Take y 2 A/R a. There is some x 2 F/R such that y A\ A and we want
to nd u 2 E/S such that g(u) £x\ A, u £fihi. Dene u &filhi. The construction of
g uses the axiom of choice, so that we must show uniqueness, namely x Af,(u). Thisis a
consequence of the fact these two classes have a common element.

move=> y; move /(setQ_P eR) /(induced_rel_classP iA)=> [x [cx nex yi]].
set (u:= inv_image_by fun f x).
have ug: inc u (quotient s).
by apply/ (setQ_P es) /(iirel_classP ia); exists x; rewrite -rf.
ex_tac.
rewrite /f3 yi.
move:(f2p _ uq); rewrite /f1; move=> [cf2 ni ui].
move: nex=> [t] /setl2_P [tx].
rewrite {1} rf ; move/ (rangeP sgf)=> [z Jg].
have: inc z u by apply/iim_graph_P; ex_tac.
rewrite {1} ui; move/iim_graph P => [t' t'2u JgT.
have tt: t = t' by move: (Vf_pr ff Jg) (Vf _pr ff Jg) => <-.
suff: 2 u = x by move=>->.
case(class_dichot er cf2 cx)=> // di; red in di.
empty_tacl t; apply setl2_i =>//; ue.
Qed.

9. Let F, G be two sets, let R be an equivalence relation of F, let p be the canonical map-
ping of Fonto F/R and let f be a surjection of G onto F/R. Show that there exists a set E, a
surjection g of Eonto Fand a surjection h of Eonto G suchthat p+g Af th.

The set E is the disjoint union of F and G, we writeitasE 5[Ep.

Inria

Bourbaki: Theory of sets in Coq | (v6) 163

Lemma exercise6 9 F G p fr:
equivalence r -> F = substrate r -> p = canon_proj r ->
surjection f -> source f = G -> target f = quotient r ->
exists E g h,
[\ surjection_prop g E F, surjection_prop h E G & p \co g = f \co h].
Proof.
move=> er sr xr sjf sf tf.
have ff: function f by fct_tac.
set (a:= CO0); set (b:= C1).
have ba: b <> a by rewrite /a /b; apply: two_points_distinctb.
set Ea:= F \times (singleton a).
set Eb:= G \times (singleton b).
set E:= Ea \cup Eb.
have gE: sgraph E by move => T /setU2_P; case; move /setX P => [ok _].
have xep: forall x, inc x E -> (Q x =a V Q x = h).
by move=> x /setU2_P; case; move /setX P => [_ _] /setl _P; auto.
have xgp:forall x, inc x G -> inc (Vf f x) (quotient r).
move=> X xg; rewrite - tf,apply: Vf_target => //; ue.
have xgpl:forall x, inc x G -> inc (rep (Vf f x)) F.
move=> X XG; rewrite sr;fprops.

We consider the function g; it is the identity on E 4 if we identify E 5 with F, so that the
image is F. Let x 2 Ep; we can identify E ,, with G, hence assume x 2 G so that f (x) 2 F/R.
We de ne g(x) to be a representative of the class of f (x). This is an element of F. We have

p(g(x)) A&f (x).

set (gz :=fun z=> Yo (Q z = a) (P 2) (rep (Vf f (P 2)))).
have gzP:forall z, inc z Ea -> gz z = P z.
move=> z /setX P [_] /setl P h; rewrite /gz Y_true /.
have gzp" forall z, inc z Ea -> inc (gz z) F.
by move=> z zEa; rewrite gzP//; move /setX_P : zEa => [_ ok _].
have gzQ:forall z, inc z Eb -> gz z = rep (Vf f (P 2)).
move=> z/setX_P [_ _] /setl P => h; rewrite /gz Y_false //; ue.
have gzq“forall z, inc z Eb -> inc (gz z) F.
by move=> z zE; rewrite gzQ //; apply: xgpl, move /setX P : zE =>[_ ok _].
have tag:lf axiom gz E F.
move=> t; case /setU2_P; [apply: gzp'| apply: gzql.
set (g:= Lf gz E F).
have sj: surjection g.
rewrite /g;apply: If_surjective =>//; move=>y yF.
have pl: inc (J y a) Ea by rewrite /Ea; fprops.
have p2: inc (J y a) E by rewrite /E; aw; intuition.
by ex_tac; rewrite gzP; aw.
have gp: forall x, inc x Eb -> Vf (canon_proj r) (gz x) = Vf f (P Xx).
move=> x XxEb.
have gzs: inc (gz x) (substrate r) by rewrite - sr; apply: gzq'.
have xE: inc x E by move: xEb; rewrite /E;aw; intuition.
aw;rewrite gzQ //; apply: class_rep=>//; apply: xgp.
by move /setX_P : xEb => [ok _].

We de ne now h similarly.
set (ha:= fun x => rep (inv_image_by fun f(singleton(Vf (canon_proj r)x)))).
have haF:forall x, inc x F ->

ha x = rep (inv_image_by fun f (singleton (class r x))).
move=> x xF; rewrite /ha; aw; ue.

RR n° 6999

164 José Grimm

have haF"forall x, inc x F ->
sub (inv_image_by fun f (singleton(class r x))) G.
move=> x xF t /fiim_graph_P [u _ jg]; rewrite - sf; Wtac.
have haF": forall x, inc x F ->
inc (ha x) (inv_image_by fun f (singleton (class r x))).
move => x xF; rewrite haF //; apply: rep_i.
have ct: inc (class r x) (target f) by rewrite tf; rewrite sr in xF; fprops.
move:((proj2 sjf) _ ct)=> [u us]; move => <-.
exists u; apply /iim_graph_P; ex_tac; apply: Vf_pr3=>//.
have haG: forall x, inc x F -> inc (ha x) G.
by move=> x xF; apply: (haF' _ xF); apply: haF" =>//.
set(hz:= fun z=> Yo (Q z = a) (ha (P 2)) (P 2)).
have hzG: forall z, inc z E -> inc (hz z) G.
rewrite /hz;move=> z /setU2_P [] /setX_P [_ pa] /setl_P ->; YtacO => //.
by apply: haG.
set(h:=Lf hz E G).
have sh: surjection h.
rewrite /h;apply: If_surjective=>//.
move=> y yG.
have JEb:inc (J y b) Eb by rewrite /Eb;aw; fprops.
have JE: (inc (J y b) E) by rewrite /E; aw; intuition.
by ex_tac; rewrite /hz; aw; rewrite Y_false //.
have WWh: forall x, inc x Ea -> Vf f (hz x) = Vf (canon_proj r) (P x).
move=> x XEa.
have xE: inc x E by rewrite /E; aw; intuition.
have Ps: inc (P x) (substrate r) by rewrite - sr -gzP//; apply: gzp'
rewrite/h /hz; aw.
move /setX_P: xEa=> [px PF] /setl P ->; YtacO.
move /iim_graph_P: (haF" _ PF) => [u] /setl P <- Jg; Wtac.

We are now ready to prove the main result.

exists E; exists g; exists h; rewrite /surjection_prop/g/h;aw;split => /.
have cpg: p \coP g.

split; first by rewrite xr;apply: canon_proj_f.

by fct tac.

rewrite xr /g; aw; ue.
have cfh: composable f h by split => //; try fct_tac; rewrite /h; aw.
have sg: source g = source h by rewrite /g/h; aw.
have tp: target p = target f by rewrite xr; aw.
move: sj => [fg _].
apply: function_exten; try fct_tac; aw.

The non-obvious pointis to show p(g(x)) Zf (h(x)).

move=> X XE /=; aw.

move /setU2_P: (XE) => [] xE'.
have Ps: inc (P x) (substrate r) by rewrite - sr -gzP //; apply: gzp'.
rewrite WWh // /g; aw; rewrite gzP // xr; aw.

rewrite xr gp /h /hz; aw =>//; rewrite Y_false //.

by move /setX_P: xE'=> [_] /setl P ->.

Qed.

10. (a) if Rax,yais any relation, then “ Réx,yaand Ray,xd is a symmetric relation. Under
what condition is it re exive onaset E?

Inria

Bourbaki: Theory of sets in Coq | (v6) 165

*(b) Let R&x, y&be are exive and symmetric relationonaset E. Let S&x, yabe the relation
“There exists an integer n E 0 and a sequence (Xj)o. i. n of elements of E such that xq X,
Xn ZEy and for each index i suchthat 0- i Cn, R&x;,xj21&. Show that Sax,yais an equiva-
lence relation on E and that its graph is the smallest of all graphs of equivalences on E which
contain the graph of R. The equivalence classes with respect to S are called the connected
components of E with respectto the relation R.

(c) Let F be the set of subsets A of E such that for each pair of elements (y,z) such that
y2Aand z2 Ej A we have “ not Ray,z&. For each x 2 E show that the intersection of the
setsA2 F such that x 2 Ais the connected component of x with respect to the relation R.*

Part a is trivial.

Lemma setl pr2: forall a X, inc a X -> small_set X -> X = singleton a.
Proof.

by move => w W tX sX; apply (setl_pr tX) => u zX; exact: (sX _ _ zX tX).
Qed.

Section Exercice6_10.

Lemma Exercise6_10_a (r:relation):
symmetric_ r (fun xy =>rxy NAry Xx).

Proof. by move=> x y; case. Qed.

Lemma exercise6_10_b r E:
reflexive_re r E -> reflexive_re (fun xy =>rxy NANryx) E.
Proof. move => rr y; split; [by move/rr | by case; move /rr]. Qed.

We consider now a context in which R is re exive and symmetric on E.

Variables (R:relation) (E:Set).
Hypotheses (Al: reflexive_re R E)(A2: symmetric_r R)
(A3: forall x y, R x y -> inc x E).

De ning the relation S is easy.

Inductive chain:Type :=

chain_pair: Set -> Set -> chain

| chain_next: Set> -> chain -> chain.
Fixpoint chain_head x :=

match x with chain_pair u _ => u | chain_next u _ => u end.
Fixpoint chain_tail x :=

match x with chain_pair _ u => u | chain_next _ u => chain_tail u end.
Fixpoint chained_r x :=

match x with chain_pair u v => R u v

| chain_next u v => R u (chain_head v) N\ chained r v

end.
Definition relS x y := exists c:chain,

[N chained_r ¢, chain_head ¢ = x & chain_tail ¢ = y].

For the transitivity, we need to concatenate lists.
Fixpoint concat_chain x y : chain :=

match x with chain_pair u _ => chain_next u y
| chain_next u v => chain_next u (concat_chain (x:=v) y) end.

RR n°® 6999

166 José Grimm

Lemma head_concat x v:
chain_head (concat_chain x y) = chain_head x.
Proof. by case x. Qed.

Lemma tail_concat x y:
chain_tail (concat_chain x y) = chain_tail vy.
Proof. by elim x. Qed.

Lemma chained_concat x y:
chained_r x -> chained_r y -> chain_tail x = chain_head y ->
chained_r (concat_chain x vy).

Proof.

move=> cx cy txhy;elim: x cx txhy => [a b cp ct| a ¢ r cp ct].
split=>//; by rewrite -ct //.

by move: cp => [pa pb];split; [rewrite head_concat | apply: r].

Qed.

Lemma transitiveS y x z: relS x y -> relS 'y z -> relS x z.
Proof.
move=> [c [cc hcx tey]][c' [cc' hey tczZ]].
exists (concat_chain ¢ c"); split => //.
apply: chained_concat=>//; ue.
by rewrite head_concat.
by rewrite tail_concat.

Qed.

For the symmetry, we need to reverse the list. One way to reverse the list L is to start with
an empty list L © and recursively add the head of L to the head of L © as long as L is not empty.
In this case, L and L ®have at least two elements, this gives some special cases to deal with.

Fixpoint reconc_chain (x y:chain) :chain:=
match x with chain_pair u v => chain_next v (chain_next u vy)
| chain_next u v => reconc_chain v (chain_next u y) end.

Lemma tail_reconc x y: chain_tail (reconc_chain x y) = chain_tail y.
Proof. by move: x y; elim=>[a by | a c 1] // y; by rewrite r. Qed.
Lemma head_reconc x y: chain_head (reconc_chain x y) = chain_tail x.
Proof. by move: x y; elim =>[a by | a c r] // y; by rewrite r. Qed.
Lemma chained_reconc x y: chained_r x -> chained r y ->

R (chain_head y) (chain_head x) -> chained_r (reconc_chain x vy).
Proof.
move: X y; elim =>[a by c cy | P c r]=>//=; auto.
move=> y [rPh cc] cy RhyP; apply: r=>//; split => //; apply: A2.
Qed.

We de ne now the reverse.

Fixpoint chain_reverse x:=
match x with chain_pair u v => chain_pair v u
| chain_next u v =>
match v with chain_pair u' v' => chain_next v' (chain_pair u' u)
| chain_next u' v' => reconc_chain v' (chain_pair u' u)
end end.

Lemma head_reverse x: chain_head (chain_reverse x) = chain_tail x.
Proof. elim x =>// y;elim =>// P ¢ h hl /= apply: head_reconc. Qed.

Inria

Bourbaki: Theory of sets in Coq | (v6) 167

Lemma tail_reverse x: chain_tail (chain_reverse x) = chain_head x.
Proof. elim x =>// y;elim =>// P ¢ h hl /=; apply: tail_reconc. Qed.

Lemma chained_reverse x: chained_r x -> chained_r (chain_reverse x).
Proof.

elim x; first by move=> a b; simpl; auto.

move=> a; elim; first by move => b c; simpl; intuition.

move=> b ¢ hr hrl /= [Rab [Rbc cc]].

apply: chained_reconc=>//; simpl; auto.

Qed.

Lemma symmetricS x y: relS x y -> relS y x.
Proof.
move=> [c [cc hcx tey]].
exists (chain_reverse c); split.
apply: chained_reverse =>//.
rewrite head_reverse //.
rewrite tail_reverse //.

Qed.

We make use of A3 for the rst time here. It says thatif x isrelatedby S, itisin E. Asa
consequence our relation is an equivalence relation and its graph is an equivalence on E.

Lemma equivalenceS: equivalence_re relS E.
Proof.

split; first by split; red; [apply: symmetricS | apply: transitiveS].
move=> Xx; split.
by move=> xE; exists (chain_pair x X);split => //; apply /Al.
move=> [c [cc hcx _]l.
elim: ccc hex =>[a b | ac _]/=h < [I[move: h=> [h _]]; apply: (A3 h).
Qed.

Definition Sgraph := graph_on relS E.

Lemma equivalence_Sgraph: equivalence Sgraph.

Proof.

apply equivalence_from_rel; split; [apply: symmetricS | apply: transitiveS].

Qed.

Lemma substrate_Sgraph: substrate Sgraph = E.
Proof.

apply: graph_on_sr => x XE.

by exists (chain_pair x X); split => //; apply/ Al.
Qed.

We can now show that this is the smallest relation. If r is an equivalence implied by R,
the transitivity says that two elements (in particular head and tail) ofa chained_r chain are
related by r.

Lemma S_is_smallest r: equivalence r ->
(forall x y, R x y ->inc (J x y) r) -> sub Sgraph r.

Proof.

move => r er pr p.

have aux:(forall w, chained r w -> inc (J (chain_head w) (chain_tail w)) r).
elim => [a b | a ¢ h [aux cc]] //=; first by apply: pr.

RR n°® 6999

168 José Grimm

move: (h cc)(pr _ _ aux) => rl r2; equiv_tac.
move /Zo P => [pp [c [cc [hex htx]]]].
have <-: (3 (P p)(Q p) = p) by move/setX_P: pp => [pp _].
by rewrite -hcx -htx ; apply: aux.

Qed.

We de ne here the set F and some set C(x). We have to show that this is the class of x
for S.

Definition setF:= Zo (powerset E)(fun A => forall y z, inc y A ->
inc z (E -s A) -> not (Ry 2).
Definition connected_comp x := intersection(Zo setF (fun A => inc x A)).

We rst rewrite the condition on F, then prove that every element of F is stable by S,
hence contains equivalence classes. Each equivalence classisin F. The resultis then obvious.

Lemma setF_pr A a b:
inc A setF ->incaA->Rab->incbA
Proof.
move /Zo_P => [] /setP_P AE Ap aA Rab.
case (inc_or_not b A)=> /I nba.
have bc: inc b (E -s A) by apply:setC_i =>//; apply: (A3 (A2 Rab)).
by case (Ap _ _ aA bc).
Qed.

Lemma setF _pr2 A a b:
inc A setF ->incaA->relSab->incb A
Proof.
move=> As aA [c [cc hex <.
rewrite - hcx in aA; clear hex.
elim: ¢ cc aA.
move=> u Vv /= Ruv UA; apply: (setF_pr As uA Ruv).
move=> u ¢ h /= [uh cc] uA.
apply: h=>//;apply: (setF_pr As uA uh).
Qed.

Lemma setF_pr3 A a: inc A setF -> inc a A -> sub (class Sgraph a) A.
Proof.

move=> As aA t /(class_P equivalence_Sgraph) /(graph_on_P2 equivalenceS).
apply: (setF_pr2 As aA).

Qed.

Lemma setF _pr4 a: inc a E -> inc (class Sgraph a) setF.
Proof.
move=> aE; rewrite /setF.
move: equivalence_Sgraph => el.
move: equivalenceS => e2.
apply: Zo_i.
apply/setP_P; rewrite - substrate_Sgraph; apply: (sub_class_substrate el).
move=> y z ya /setC_P [zE nzc]; dneg yz; apply/(class_P el).
suff: related Sgraph z a by move=> aux; equiv_tac.
have : related Sgraph y a by move/(class_P el):ya=> h; equiv_tac.
move /(graph_on_P2 e2) => ra; apply/(graph_on_P2 e2); apply: transitiveS ra.
by exists (chain_pair z y); split => //; apply A2.
Qed.

Inria

Bourbaki: Theory of sets in Coq | (v6) 169

Lemma connected _comp_class x: inc x E ->
class Sgraph x = connected_comp X.
Proof.
move=> XE;set_extens t; rewrite /connected_comp.
move=> tc;apply: setl_i.
exists E; apply: Zo_i =>//; rewrite /setF; apply: Zo_i.
aw; applt: setP_Ti.
by move=>y z yE /setC_P [];
move=> y /Zo_P [yS xy];apply: ((setF_pr3 yS xy) _ tc).
move: equivalence_Sgraph => eq.
have cx:(inc (class Sgraph x) (Zo setF (fun A => inc x A))).
apply: Zo_i; first by apply: setF_pr4.
apply/(class_P eq); rewrite - substrate_Sgraph in XE; equiv_tac.
move=> h;apply: (setl_hi h cx).

Qed.

11. (a)lLetRax,yéabe are exive and symmetric relationonaset E. Ris said to be intransitive
of order 1 if for any four distinct elements X, y, z, t of E, the relations Rax,yd Rax,z3 Rax,t4
Réy,zaand Ray, taimply Raz,t& AsubsetAof Eis said to be stable with respect to the relation
Rif R&x,ydaforall x and yin A. If a and b are two distinct elements of E such that R8a,b&show
that the set C(a,b) of elements x 2 E such that R8a,x&and Réb, x&is stable and that C(x,y) £
C(a,b) for each pair of distinct elements x, y of C(a,b). The sets C(a,b) (for each ordered
pair (a,b) such that Réa,bd and the connected components (Exercise 10) with respectto R
which consist of a single element are called the constituents of E with respect to the relation
R. Show that the intersection of two distinct constituents of ~ E contains at most one element
and thatif A, B, C are three mutually distinct constituents at least one of the sets A\ B, B\ C,
C\ Aisempty.

(b) Conversely, let (X) 2. be a covering of a set E consisting of non-empty subsets of E
having the following properties: (1) if , and * are two distinct indices, X \ X. contains at
most one element; (2) if ,,*,° are three distinct letters, then at least one of the three sets
X\ X, Xa\ Xo, Xe\ X is empty. Let Rax,yabe the relation “There exists , 2 L such that
x2X andy2X " showthat Risre exive on E, symmetric and intransitive of order 1, and
thatthe X are the constituents of E with respectto R.

(c) * Similarly, a relation R&x,yawhich is re exive and symmetric on E is said to be in-
transitive of order nj 3if, for every family (X;)1.i. n Of distinct elements of E, the relations
Réx;, x;j afor each pair (i,j) 640 1,n)imply Raxn; 1,Xxpa Generalize the results of (a) and (b)
to intransitive relations of any order. Show that a relation which is intransitive of order pis
also intransitive of order q forall q E p.*

This is a follow-up to the previous exercise. We still assume that R is re exive and sym-
metric on E (i.e., A1, A2 and A3 are assumed). We give a short de nition and show that it is
equivalent to the long one.

Definition intransitivel := forall x y z t,
XxX<>y-> Rxy>Rxz->Rxt->Ryz>Ryt>Rzt

Lemma intransitivelpr :
let intransitive_alt:= forall x y z t,
X<>Yy >X<>Z>X<>t>y<>z>y<>t>z<>t->
inc XxXE->incyE->inczE->inctE ->
RXy>Rxz->Rxt->Ryz->Ryt->Rztin
intransitivel <-> intransitive_alt.

RR n°® 6999

170 José Grimm

Proof.
rewrite /intransitivel; split.
move=> h xyzt HO _ _ H10 H11 H12 H13 H14.

apply: (h x y z t HO H10 H11 H12 H13 H14).

move=> h x y z t nxy xy xz xt yz yt.

move: (A3 xy) (A3 yz)(A3 (A2 xz))(A3 (A2 yt)) => xE yE sE tE.
case (equal_or_not x z) => nxz; first by ue.

case (equal_or_not x t) => nxt; first by apply: A2; ue.

case (equal_or_not y z) => nyz; first by ue.

case (equal_or_not y t) => nyt; first by apply: A2; ue.

case (equal_or_not z t)=> nzt; first by rewrite nzt -Al.

apply: (h xy z t) =>/.

Qed.

We now de ne and study C(a,b).

Definition stableR A:= forall a b, inc a A ->inc b A -> R a b.
Definition Cab a b:= Zo E (fun x => R a x A R b x).

Lemma Cab_stable a b: a<> b -> R a b -> intransitivel ->
stableR (Cab a b).
Proof.
move=> nab Rab il; rewrite /Cab=> u v.
move /Zo_P=> [[r1 r2]] /Zo_P [_ [r3 r4]]; apply: (i1 a b u v) =>//.
Qed.

Lemma Cab trans a b x y: a<> b -> R a b -> intransitivel ->
X<>Yy ->inc X (Cab a b) -> inc y (Cab a b) -> (Cab a b)= (Cab x y).
Proof.
move=> nab rab i1 nxy /Zo_P [xE [rl r2]] /Zo_P [yE [r3 r4]].
set_extens t; move /Zo_P=> [tE [r5 r6]]; apply/Zo_i => /I; split.
- apply: (il ab xt) =>/.
- apply: (il a by t) =>//; apply: A2.
- apply: (il x y a t) =>//; first apply: (il a b x y)=>//; apply: A2=> /.
- apply: (il x y b t) =>//; first apply: (il a b x y)=>//; apply: A2=> //.
Qed.

A constituent is either a C or a connected component that has a single element. Lets
characterize these. The non-trivial point here is to show that, if ~ x is related to no other ele-
ment than itself by R, the same is true for S. Hence, consider a chain from x to y. By sym-
metry, we have a chain from y to x for which we can use induction (if y » x, then x /&£y by
symmetry of R and equality; if y » z and z is chained to x, we get z /x by induction, hence
y » x and we proceed as above).

Lemma singleton_component A: sub A E ->
((inc A (quotient Sgraph) A singletonp A) <->
(exists2 a, A = singleton a & forall b, R a b -> a = b)).

Proof.

move=> AE.

move: equivalence_Sgraph => el.

move: equivalenceS => e2.

split.
move=> [Asq [x Asx]]; exists x => //.
move=> b Rb.
have : related Sgraph x b.

Inria

Bourbaki: Theory of sets in Coq | (v6) 171

by apply/(graph_on_P2 e2); exists (chain_pair x b).
move /(in_class_relatedP el) => [y [cy xyl]].
have <- : A = y.
move: Asq => /(setQ_P el) => cA; case (class_dichot el cy cA)=> /I
move=> dy; red in dy; empty_tacl x; apply:setl2_i => //.
rewrite Asx; fprops.
by rewrite Asx; move /setl P.
move=> [x As Ap]; rewrite As; split; last by exists x.
have xse: inc x (substrate Sgraph).
rewrite substrate_Sgraph; apply: AE; rewrite As; fprops.
have Aq: forall b, R b x -> b = x.
by move => b ba; rewrite (Ap b) //; apply: A2.
suff: (class Sgraph x = singleton x).
move => <-; apply /(setQ_P el); apply: (class_class el xse).
apply: setl_pr; first by apply /(class_P el); equiv_tac.
move => w; move /(class_P el) => aux.
have : (related Sgraph w x) by equiv_tac.
move /(graph_on_P2 e2) => [c [cc <-]].
elim: ¢ cc.
by move=> u v /= uv vx; rewrite vx in uv; apply: Ag.
by move=> p ¢ hl /= [Rp cc] tc; apply: Aq; rewrite - (hl cc tc).
Qed.

The intersection of two distinct constituents has at least one element. This is obvious if
the constituents are singletons. Consider C(a,b) and C(a®hb%. Assume that they contain u
and v. If these elements are distinct then C(a,b) £C(u,v) £C(a°b9.

Definition is_constituant A :=
(exists a, [\ A = singleton a, inc a E & forall b, Ra b ->a="hb])V
(exists a b, [N A =Cab a b, a<> b & R a b]).

Lemma constituant_inter2 A B:

is_constituant A -> is_constituant B -> intransitivel ->

A = B V small_set (A \cap B).
Proof.
move=> cA cB il.
case (equal_or_not A B); first (by auto); move => AB;right; move=> u v.
case CA.

move=>[a [Aa aE ap]]; rewrite Aa.

by move/setl2_ P => [/setl P ->] /setl2_ P [/setl P ->].
case cB.

move=>[c [Ac cE cp]] _; rewrite Ac.

by move/setl2_ P => [/setl P ->] /setl2_P [_ /setl P ->].
move=> [a [b [Aab nab Rab]]] [@' [b' [Aab' nab' Rab]].
case (equal_or_not u v)=>// nuv.
rewrite Aab Aab';move => /setl2_P [uA uB] /setl2_P [vA vB].
case AB; rewrite Aab' Aab.
rewrite (Cab_trans nab Rab i1 nuv uB vB).
by rewrite (Cab_trans nab' Rab' il nuv uA VA).

Qed.

Consider now the intersection of three constituents A, B and C. In the proof, we rst
eliminate the case where some of these sets are identical. Then the intersections are small
sets (a singleton or empty). Bourbaki asks to show that at least one intersection is empty.
The French edition of Bourbaki adds a last case: ou les trois ensembles sont identiques which
reads: the three intersections are identical, since this case can happen.

RR n°® 6999

172 José Grimm

Lemma constitutant_inter3 A B C:
is_constituant A -> is_constituant B -> is_constituant C -> intransitivel ->
A=BVA=CVB=CV A\cap B = emptyset
VV A \cap C = emptyset V B \cap C = emptyset
V(Alcap B=A\cap C NB\cap C = A \cap C).
Proof.
move=> cA cB cC il.
case (equal_or_not A B); [by leftl move=> nAB; right].
case (equal_or_not A C); [by leftf move=> nAC; right].
case (equal_or_not B C); [by leftf move=> nBC; right].
have ssAB: small_set (A \cap B).
case (constituant_inter2 cA cB il) =>//.
have ssAC: small_set (A \cap C).
case (constituant_inter2 cA cC il) =>//.
have ssBC: small_set (B \cap C).
case (constituant_inter2 cB cC il1) =>//.

If Ais acomponent{ x}and if x 2 C(a,b) then x is related to at least two distinct elements,
absurd. Thus, the case wheer one set is a singleton is easy.

case: CA.
move=> [a [Aa aE ap]]; case cB.
move=> [b [Bb bE bp]].
left; apply: disjoint_pr=> u ua ub; case nAB.
by move: ua ub;rewrite Aa Bb; move /setl P => -> /setl P ->.
move => [bl [b2 [Bbb [nbb Rbb]]]].
left; apply: disjoint_pr => u; rewrite Aa Bbb; move /setl P => ->,
move/Zo_hi=> [R1 R2]; case nbb.
by rewrite -(ap _ (A2 R1)) (ap _ (A2 R2)).
move => [al [a2 [Aaa naa Raad]]].
case: cB.
move=> [b [Bb bE bp]]; case cC.
move=> [c [Cc [cE cpl]]].
right;right;left; apply: disjoint_pr=> u; rewrite Bb Cc; move /setl P=> ->.
by move/setl P=> bc; case nBC;rewrite Bb Cc bc.
move => [cl [c2 [Ccc ncc Rec]l.
right; right;left; apply: disjoint_pr => u; rewrite Bb Ccc; move/setl_P=> ->.
by move /Zo_hi=> [R1 R2]; case ncc; rewrite -(bp _ (A2 R1))(bp _ (A2 R2)).
move => [bl [b2 [Bbb nbb Rbb]]].
case: cC.
move=> [c [Cc [cE cp]]].
right;left;apply: disjoint_pr => u uA uC; move: uC uA; rewrite Aaa Cc.
move /setl_P=> -> /Zo_hi [R1 R2]; case naa.
by rewrite -(cp _ (A2 R1)) (cp _ (A2 R2)).
move => [cl [c2 [Ccc ncc Rec]]].

We assume A/AC(ay,ap), B £C(b1,by) and C A£C(cy,c2). Then either all intersections are
empty, orthereis c2 A\ B,b2 A\ Canda?2B\ C. We get A\ B A{c} since the intersection is
a small set. We have three such relations. We have to show a 4Ab Ac. Note that one equality
implies the other. Our resultis true if ¢ 2 C (since the ¢ 2 A\ C A{b}. Itis also true if a /b
(sincethen a2 A\ B A{c}).

case (emptyset_dichot (A \cap B));[by left | move=> [c ci]; right].
case (emptyset_dichot (A \cap C));[by left | move=> [b bi]; right].
case (emptyset_dichot (B \cap C));[by left | move=> [a ai]; right].
have iAB: A \cap B = singleton c by apply: setl_pr2.

Inria

Bourbaki: Theory of sets in Coq | (v6)

173

have iAC: A \cap C = singleton b by apply: setl pr2.

have iBC: B \cap C

singleton a by apply: setl pr2.

rewrite iAB iAC iBC.

suff: (inc ¢ C).
move=> cC.

have cAC: inc ¢ (A \cap C) by move/setl2_P: ci => []; fprops.
have cBC: inc ¢ (B \cap C) by move/setl2_P: ci => []; fprops.
by rewrite (sSAC _ _ bi cAC) (ssBC _ _ ai cBC).

case (equal_or_not a b).

move=> ab.

have: inc a (A \cap B).

apply setl2_i; [by rewrite ab;apply: (setl2_1 bi) | apply: (setl2_1 ai)].

rewrite iAB; move /setl P => <-; apply: (setl2_2 ai).

move=> nab.

The element c is related to a; and a,. This makes 12 relations. We obtain three more

relations by intransitivity: elements

related to c; and c¢,. Thissaysc2 C

move: ai bi ci => /setl2_P [aB aC] /setl2_P [bA bC] /setl2_P [cA cB].
move: cA cB bA bC aB aC; rewrite Aaa Bbb Ccc.

move => /Zo_P [cE [Ralc Ra2c]] /Zo_hi [Rblc Rb2c].

move => /Zo_hi [Ralb Ra2b] /Zo_hi [Rclb Rc2b].

move => /Zo_hi [Rbla Rb2a] /Zo_hi [Rcla Rc2a].

move: (i1 _
move: (i1 _ _ _
move: (i1 _
move: (i1 _ _ _
move: (i1 _
by apply: Zo_i.
Qed.

End Exercice6_10.

We consider now part b. Given an assumption on X and E we de ne arelation R.

ncc Rcc Rcla Rclb Rc2a Rc2b) => Rab.

_ nbb Rbb Rbla Rblc Rb2a Rb2c) => Rac.

naa Raa Ralb Ralc Ra2b Ra2c) => Rbc.

_ nab Rab (A2 Rcla) Rac (A2 Rclb) Rbc) => Rclc.
nab Rab (A2 Rc2a) Rac (A2 Rc2b) Rbc) => Rc2c.

Definition exercise6_11b_assumption X E:=

[A union X = E,

(forall A, inc A X -> nonempty A),

(forall A B, inc A X ->inc B X -> A =B V small_set (A \cap B)) &

(forall AB C, inc AX ->inc B X ->inc C X ->
(A=BVA=CVB=CV A\cap B = emptyset
\V A \cap C = emptyset
VV B \cap C = emptyset

\V/ (A \cap B

Definition exercise6_11b rel X x y := exists A, [A inc A X, inc x A & inc y A].

=A\lap CAN A\cap B = B \cap Q)))].

We start with trivial facts.

Lemma exercise6_11bl E X:

exercise6_11b_assumption X E -> reflexive_re (exercise6_11b rel X) E.

Proof.

move=> [h _] x; rewrite /exercise6_11b rel -h;split.
move => XE; move: (setU_hi xE)=> [y ye xy];ex_tac.
move=> [y [yX xy _]I; apply: (setU_i xy yX).

RR n°® 6999

a, b and c are related. If a 64 we also deduce that c is

174 José Grimm

Qed.

Lemma exercise6_11b2 X:

symmetric_r (exercise6_11b_rel X).
Proof.
move=> E vy; rewrite /exercise6_11b rel.
by move=>[A [Ax XA yA]]; exists A.
Qed.

Let's show intransitivity. We assume the four points distinct. We have 5 relations, thus 5
sets. Denote by Ayy the set containing x and y. The element zisin Ay, andin A y,. while the
element t isin Ay; andin Ay;. If one set of the rst list is the same as one set of the second
list, the result is true. Otherwise, this gives four inequalities. Each one says that a set is a
singleton. Obviously A y,\ Ay A{x}and Ay,\ Ayt Ay}

We have x 2 xg\ X1\ X2, ¥ 2Xp\ X3\ X4,22x1\ Xgandt 2 x,\ x4. We must show that z
and t are in a common set. If one of X1,X3is one of X5, X4, the result is obvious. We hence get
four inequalities between sets. We know that A 6/B implies that the intersection is empty or
a singleton. Hence we get x1\ X2 ZA{x}and x3\ x4 Ay}

Lemma exercise6_11b3 E X: exercise6_11b_assumption X E ->
let R := exercise6_11b rel X in
forall x vy zt,
X<>yYy > X<>PZ >X<>t>y<>z>y<>t>z<>t->
Rxy>Rxz->Rxt->Ryz>Ryt->Rzt
Proof.
move=> [uX alne i2 i3] R x y z t nxy nxz nxt nyz nyt nzt
XY [XYX xXY yXY]] [XZ [XZX xXZ zXZ]] [XT [XTX xXT tXT]]
[YZ [YZX yYZ zYZ]] [YT [YTX yYT tYT]].
case (equal_or_not XZ XT) => XZXT, first by exists XT; split => //; ue.
case (equal_or_not XZ YT) => XZYT, first by exists XZ; split => //; ue.
case (equal_or_not YZ XT) => YZXT,; first by exists XT; split => //; ue.
case (equal_or_not YZ YT) => YZYT, first by exists YT, split => //; ue.
have iIXZXT: (XZ \cap XT = singleton Xx).
apply: setl_pr2;first by fprops.
case (i2 _ _ XZX XTX) =>h; [contradiction | done].
have iYZYT: (YZ \cap YT = singleton vy).
apply: setl pr2;first by fprops.
case (i2 _ _ YZX YTX) =>h; [contradiction | done].

We assume Ay Ay, and study the consequences. We get Ay Ay, since y and z are
two distinct elements in both sets. The case A yy /Ay is trivial. Consider A x; /EAyy; if this is
true, we have Ayy /EAy; since x and y are in both sets; the result is trivial. In the other case,
we have three distinct sets A yy /EAy; EAy;, Axt and Ay¢. The intersections of two of them are
nonempty. Since these intersections contain distinct elements X, vy, t, the sets must be the
same and the result is trivial.

case (equal_or_not XY XZ)=> XYXZ.
have XYYZ: XY= YZ.
have yplinc y (XY \cap YZ) by fprops.
have zplinc z (XY \cap YZ) by rewrite XYXZ; fprops.
case (i2 _ _ XYX YzZX) =>// h; case nyz;apply: (h _ _ ypl zpl).
case (equal_or_not XY YT)=> XYYT; first by exists XY; aw; split => //; ue.
case (equal_or_not XT YT) => XTYT.
have xp: inc x (XY \cap YT) by aw; ue.

Inria

Bourbaki: Theory of sets in Coq | (v6)

175

have yp: inc y (XY \cap YT) by aw; ue.
case (i2 _ _ XYX YTX) =>h; first by contradiction.
elim nxy;apply: (h _ _ xp yp).

case (i3 _ _ _ XYX XTX YTX); first by move=> h;exists XY; split => //; ue.

case; first by move=> h.

case; first by move=> h.

case; first by move=> h;empty_tacl x; aw; intuition.

case; first by rewrite XYYZ; move=> h; empty_tacl y; aw; intuition.
case; first by move=> h; empty_tacl t; aw; intuition.

move=> [rl r2].

have : inc t (XT \cap YT) by aw; intuition.

by rewrite -r2 XYYZ;move /setl2_P=> [tp _]; exists YZ.

We consider now the case Ayy 6/By,. The intersection of these sets is then { x}. Itimplies

Ax; 64y, for otherwise y would be in A xy\ Ay,. Thus Ay, \ Ay, A{z}.

have iIXYXZ: (XY \cap XZ = singleton Xx).
apply: setl pr2; fprops; case (i2 _ _ XYX XZX) => /I.
case (equal_or_not XZ YZ)=> XZYZ.
have : inc y (singleton x) by rewrite - iXYXZ; aw;intuition; ue.
move/setl_P => h; elim nxy =>//.
have iIXZYZ: (XZ \cap YZ = singleton 2z).
apply: setl pr2; fprops; case (i2 _ _ XZX YzZX) => /I

Now we compare A xy and Ay¢. Assume rst equality. We proceed as above.

case (equal_or_not XY YT)=> XYYT.
have XYXY: (XY = XT).
have xp: inc x (XY \cap XT) by fprops.
have tp: inc t (XY \cap XT) by rewrite XYYT; fprops.
case (i2 _ _ XYX XTX) =>// h; elim nxt;apply: (h _ _ xp tp).

case (equal_or_not XY YZ)=> XYYZ; first by exists XY; aw;split => //; ue.
case (i3 _ _ _ XYX XZX YzX); first by move=> h;exists XY; intuition; ue.

case; first by move=> h.

case; first by move=> h.

case; first by move=> h;empty_tacl x; aw.

case; first by move=> h; empty tacl y; aw.

case; first by move=> h; empty_tacl z; aw.

move=> [rl r2].

have : inc z (XZ \cap YZ) by aw; intuition.

rewrite -r2 XYYT;move /setl2_P=> [tp _]; exists YT; by aw.

Here Axy 6AByt. The intersection is { y}. From this we get A ;s \ Ay¢ Z{t}. (same as proof

as above).

have iIXYYT: (XY \cap YT = singleton vy).
apply: setl pr2; fprops; case (i2 _ _ XYX YTX) => //.
case (equal_or_not XT YT)=> XTYT.
have : inc x (singleton y) by rewrite -iIXYYT,; aw;intuition; ue.
move/setl P => h; elim nxy =>//.
have iIXTYT: (XT \cap YT = singleton t).
apply:setl _pr2;fprops:case (i2 _ _ XTX YTX) => /I

One can prove Ay, \ Ayt A\ Ay, A butthis relation is helpless. The only remaining
pairs of sets are (Axy, Axt) and (Ayy, Axt). The case Ay At Ay, is trivially excluded. The

cases Ay 6y and Ayy 6/By, are easy.

RR n° 6999

176 José Grimm

case (equal_or_not XY XT)=> XYXT.
case (equal_or _not XY YZ)=> XYYZ; first by elim YZXT; ue.
case (i3 _ _ _ XYX XZX YZX); first by move=> h.
case; first by move=> h.
case; first by move=> h.
case; first by move=> h;empty tacl x; aw.
case; first by move=> h;empty_tacl y; aw.
case; first by move=> h;empty_tacl z; aw.
rewrite iIXYXZ iXZYZ; move=> [_ sxz].
by elim nxz; apply: setl_inj.
case (i3 _ _ _ XYX XTX YTX); first by move=> h.
case; first by move=> h.
case; first by move=> h.
case; first by move=> h;empty tacl x; aw.
case; first by move=> h;empty tacl y; aw.
case; first by move=> h;empty_tacl t; aw.
rewrite iIXYYT iXTYT; move=> [sy st].
rewrite sy in st; by elim nyt; apply: setl_inj.

Qed.

We show now that the elements of X are the constituents. Let pj(u) the property that u
has the form C(a,b), p2(u) the property that u is a connected component formed of a single
element. If u satis es these conditions, then u 2 X. We are asked to show the converse.
Assume that u 2 X; if it has at least two elements, it satises p1. Assume that it has a single
element x. Assume that there is no other set v containing x;then p» istrue. Assume now that
there is another set v containing x;then p; and p» are false. (Example: E has two elements a
and b, X has two elements {a,b} and {a}). The assumptions on X say: if v and v°are two sets
containing X, then the intersection is a singleton. Denote by p3(u) this condition. It does not
imply u 2 X.

Thus we prove the following.

Lemma exercise6_11b4 E X
(R := exercise6_11b_rel X)
(P1 := fun u => (exists a b, [\ a<> b, Rab & u =
Zo E (fun x => R a x A R b X)]))
(p2:= fun u => (exists x, [\ u = singleton x, inc X E &
forall y, incy E->R xy ->x =Y])
(p3:= fun u => (exists v, [A inc v X, u <> v, sub u v & singletonp ul)):
exercise6_11b_assumption X E ->
[N (forall u, incu X ->pluV p2uV p3u),
(forall u, p1 u -> inc u X) & (forall u, p2 u -> inc u X)].

We show here that singletons satisfy po or ps.

Proof.
move => E X [uXE alne i2 i3] R pl p2 p3; split.
move=> u uX.
case (p_or_not_p (singletonp u)) => su.
right; case (p_or_not p (p3 u)) => p3u; first by intuition.
left; move: (su) => [x sx].
rewrite sx; exists x; split => //.
rewrite -uxXg; apply: (@setU_i _ u) =>//; rewrite sx; fprops.
move=> y yE Rxy; case (equal_or_not x y) =>//.
move=> xy; move: Rxy=> [A [AX XA yA]].
case p3u; exists A; split =>//.

Inria

Bourbaki: Theory of sets in Coq | (v6) 177

by dneg uA; move: yA; rewrite -uA sx;move /setl P.
by move=> t; rewrite sx; move/setl P => ->.

Our set u is not empty, hence has an element y. We show here that if it has another
element x, then pi(u) is satised. If Xg is related to x and y, there exists two sets x; that
contains y and Xg, and x» that contains x and xg. We want to show xg 2 u. This is clear if
X1 /EU or X A£u. Assume these two pairs distinct. If xq1 /EX», the intersection x1\ u is a
singleton, containing x and y, absurd. We can then use property (2).

constructor 1; red.
move: (alne _ uX) => [y yu]; exists y.
case (p_or_not p (exists2 v, inc v u & v <> y)).
move=> [x xu Xxy]; exists x; split; [auto | by exists u |].
set_extensl w.
move=> wu; apply: Zo_i.
rewrite - UXE; apply: (@setU_i _ u) =>//.
split;exists u; split => //.
move /Zo P=> [wE [[A [AX XA yA]] [A" [AX' xA" yATIIl
case (equal_or_not A u)=> Au; first by rewrite -Au.
case (equal_or_not A' u)=> Au'; first by rewrite -Au'.
have xi: (inc x (u \cap A")) by aw.
have vyi: (inc y (u \cap A)) by aw.
case (equal_or_not A A") => AA'"
case (i2 _ _ uX AX)=> aux.
by elim Au'; rewrite -AA" aux.
rewrite -AA" in Xxi.
by elim xy; apply:(aux _ _ xi yi).
move: (i3 _ _ _ AX AX' uX).
case =>/[; case =>//; case =>//.
case; first by move=> h; empty_tacl w; aw.
case; first by move=> h; empty_tacl y; aw.
case; first by move=> h; empty _tacl x; aw.
move=> [h1l h2].
rewrite setl2_C -h2 in xi.
rewrite setl2_C -hl in vyi.
case (i2 _ _ AX AX")=>// aux.
elim xy; by apply: (aux _ _ Xxi yi).

To nish, we must show that a nonempty set that is not a singleton has at least two ele-
ments.

move=> h;elim su; exists y; apply: setl prl; first by ex_tac.
move => w wu;case (equal_or_not w y) =>// wy; by elim h; ex_tac.

We show here that p1(u) implies u 2 X. Consider x and Xxg two distinct elements, and
u AC(x,Xgp). The two elements x and xg are related, this means that they are in a set x;. We
have u /EXx;. The proof is the same as above.

(* last case *)
move=> u [a [b [nab [A [AX [aA bA]]] uZ]]].
suff: (u = A) by move=> ->.
rewrite uZ; set_extens t.
move /Zo_P=> [tE [[A' [AX' [aA" bAT]] [A" [AX" [aA" bA"]]].
case (equal_or_not A A")=> AA"; first by ue.
case (equal_or_not A A)=> AA'; first by ue.

RR n°® 6999

178 José Grimm

have aAA: inc a (A \cap A") by fprops.
have bAA: inc b (A \cap A") by fprops.
case (equal_or_not A" A") => aux.
case (i2 _ _ AX AX)=> /] ss.
rewrite -aux in bAA; elim nab; apply: (ss _ _ aAA bAA).
case (i3 _ _ _ AX AX' AX") =>/I; case =>/[; case =>//.
case; first by move=> h; empty_tacl a; aw.
case; first by move=> h; empty_tacl b; aw.
case; first by move=> h; empty_tacl t; aw.
move=> [h1l h2]. rewrite - hl in bAA.
case (i2 _ _ AX AX)=>/I ss.
elim nab; by apply: (ss _ _ aAA bAA).
move=> tA; apply: Zo_i.
rewrite -uXE;apply: (@setU_i _ A)=>//.
by split;exists A.

We show that p2(u) implies u 2 X.

move=> u [v [uv VE su]].
move: vE;rewrite -uXE; move/setU_P=> [y vy yX].
suff: u = y by move=> ->
rewrite uv; symmetry; apply:setl pr => // t tv.
symmetry;apply: su.

rewrite -uxE;apply: (@setU_i _ y) =>//.
by exists v.

Part c. We do not know how to generalize. The last claim is obvious. Assume R intran-
sitive of order pj 3, let g E p and consider q distinct elements, which are related (with the
exception of xq; 1 and xq; discard the g p rst elements. The missing relation is true by
intransitivity.

Inria

Bourbaki: Theory of sets in Coq | (v6) 179

Chapter 8

Summary

8.1 The axioms

We give here the list of all axiom schemes.
Si:IfAisarelationin T ,therelation (Aor A) /) Aisanaxiomof T .
S2: IfAand B are relationsin T , the relation A) (Aor B)isanaxiomof T .
S3:IfAand B are relationsin T , the relation (Aor B) /A (Bor A)isanaxiomof T .
S4: IfA, B, and C are relationsin T , therelation (A A B) /A ((CorA) A (CorB))isan
axiomof T .
Sh5: IfRisarelationin T ,if Tisatermin T , and if x a letter, then the relation (Tjx)R 4
(9x)R is an axiom.
S6: Letx be aletter,let T and U betermsin T , and let R&&arelationin T ;then the relation
(TAU) A (RaTa() RaJisanaxiom.
S7: IfRand Sare relationsin T , and if x is a letter, then the relation ((8x)(R () S)) A
(ex(R) Aéx(9)) is an axiom.
S8: LetR be arelation, let x and y be distinct letters, and let X and Y be letters distinct from
x and y which do not appear in R. Then the relation

BY)9X)(BX)(R A) (x2X)) A) (8Y)Collx((9y)((y2Y)and R))

is an axiom.

The French edition has only four axioms since A3 is a theorem.
Al. Bx)(BY)(x 2y and y ¥2x) A) (X AY)).
A2. (8x)(8y)Coll,(z Ax or z /&Y).

A3. 8x)(8x9(8Y)(BYI(x,y) Ax°y)) A (x Axand y £y9)
A4. (8 X)Colly(Y ¥2X).
A5. There exists an in nite set.

8.2 The Zermelo Fraenkel Theory

An alternative to the Bourbaki theory is the Zermelo Fraenkel theory. It has the usual
interpretation of the quantiers 8 and 9, but not the symbol ¢, thus is missing a choice func-
tion. With the notations of [5] the axioms are

B1.8x8y[8z(z2x () z2y) A x/AEy](Axiom of extent, Al).
BO.8x8y9z8t[t2z () (t Ax ort A&y)] (Axiom of the pair, A2).

RR n°® 6999

180 José Grimm

B2.8x9y8z[z2y () 9 t(t 2x and z2t)] (Axiom of the union).
B3.8x9y8z[z2y () zY2x] (Axiom of the set of subsets, A4).

B4.9x9y[8z(z6%)and y2x and 8u[bu2x A) 9v[v2xand8t(t2v () tAuort2u)]]
(Axiom of in nity).

SS.8x1...8xk{8x8Y8YIE(X,Y,X1,...,xx) and E(x,y° x1,...,.xx) A y Ay A 8 tows8v[v 2
w ()9 ufu2tandE(u,v,X1,...,X)]} (Scheme of Replacement).

SC.8X%1...8xk8x9y8z[z2y () (z2x and A(z,X1,...,X))] (Scheme of comprehension).

AC.8a{[8x(x2a A x6/A&)and8x8y(x2aandy2a A xALyorx\yLE;)] A
98x9u(x2a A b\ x Au})} (Axiom of choice).

AR 8X[X 64 ; A 9y(y2x and y\ x A ;)] (Axiom of foundation).

Comments. The Zermelo-Fraenkel theory consists in axioms B1, B2, B3, B4, and scheme
SS. From SS, one can deduce SC and BO. The Zermelo theory consists in B1, BO, B2, B3, B4
and SC. It is a weaker theory. Axiom AF is independent of all other axioms, it excludes some
weird sets; it is useful in modeling.

Scheme SS depends on a relation E that takes at least two arguments. Fix all parameters
but the rst two ones. Assume that E(x,y) is functional in vy (i.e., if E(x,y) Z£E(x,y9% implies
y £yY. Rewrite E(x,y) as 'y &f (x). The scheme says that for all t, there is a w containing
those v of the form v Af (u) for some u 2t. Scheme SC says that for every relation A(z) (that
may depend on other parameters), and for every set x there is a set w containing those v 2 x
that satisfy A.

Consider now axiom B4. The parameter y has to be zero (a.k.a the empty set), and v has
tobe u[{u}. Denote this by S(u). Now B4 says: there exists a setx, containing zero, and such
that u2x A) S()2 x. In part two of this report, we shall de ne pseudo-ordinals. Then the
set of nite pseudo-ordinals (which is also the set of nite cardinals with the de nition of [5])
is the smallest set satisfying B4. Thus B4 is equivalent to the existence of this set. This axiom
is equivalent to A5 (remember that it asserts existence of an in nite set, where “in nite” is a
very complicated expression, since it depends on the addition of cardinals, see part two of
this report).

Consider now axiom AC. It says that for every set a, if a is formed of non-empty, mutually
disjoint sets, there exists a set b that meets each element of a exactly once. Denote by f (x)
the unique element of the intersection of x and b. Then (informally) f is a function such that
f (x) 2 x. More formally, the axiom is equivalent to: for every set A, there exists a function
f:P(A)j;! Asuchthat f(x)2 x. Itis also equivalent to say that a product of non-empty
sets is non-empty; it is also equivalent to Zermelo's Theorem (every set can be well-ordered,
see part 2). We shall use Zermelo's Theorem in order to show that cardinals are well-ordered.

A consequence of this fact is the Cantor-Bernstein theorem: if there is an injection from A
into B and an injection of B into A, then there is a bijection of A onto B. But this result is
independent of AC.

8.3 Changes from previous versions

We show some de nitions and theorems, there were either removed or changed, with
some explanations. For more details, see the previous version of this document.

Inria

Bourbaki: Theory of sets in Coq | (v6) 181

The choice function. Let x be aset, p(x) a property. Let Q(p,x) be the property that, if there
is a sety such that p(y), then p(x) is true, and if there is no such vy, then x is the emptyset.
We have two lemmas that say that, if we know that there exists y such p(y) (resp., if we know
the converse), then Q(p,x) is equivalentto p(x) (resp. x &£ ;). In both cases, there exists x
such that Q(p,x) is true. By the excluded middle law, one of these two cases must be true.
This allows us to de ne the choice function, using an inhabitant of the type of sets (in the

de nitions of Carlos Simpson below, E is Type, the type of sets, EP is E Prop, and Prop is
an inhabitant of E).

Definition refined_pr (p:EP) (X:E) :
(ex p -> p x) & ~(ex p) -> X

emptyset.

Lemma refined_pr_if : forall p x, ex p -> refined_pr p x = p x.

Lemma refined_pr_not : forall p x, ~(ex p) -> refined_pr p x = (x = emptyset).
Lemma exists_refined_pr : forall p, ex (refined_pr p).

Definition choose' := fun X : EP => chooseT X (nonemptyT intro Prop).
Definition choose (p:EP) := choose' (refined_pr p).

Reasoning by cases. Let P be a proposition. The expression “(P ~ A)_ (: P~ B)” can be
written in Cog as " IF P then A else B' Consider now two sets a and b, and the relation
IF P then x=a else x=b'as a property f(x) (for xed P, a and b). If f(x) holds, then
either x /Aa, or x /b. Assume a 64. Then f(a) is equivalent to P and f (b) is equivalent
to : P. By the excluded middle law, one of P or : P holds, so that exactly one of f(a) or f (b)
holds. This means that we can apply the axiom of choice, and we get a function Y, that maps
the predicate P to one of a or b. Inthe code that follows, a depend on a proof p of P and b on
a proof g of : P. The proof irrelevance axiom then shows that the result depends only on the
truth value of P.

Axiom proof_irrelevance : forall (P : Prop) (g p : P), p = q.
Definition by _cases (T : Type) (P : Prop) (@ : P ->T) (b:~P ->T) :=
chooseT (fun x : T => (forall p : P, a p = x)
& (forall g : ~ P, b g = X))
(by_cases_nonempty a b).
Lemma by cases if :
forall (T : Type) (P : Prop) @: P >T)(b:~P ->T) (p: P),
by cases a b = a p.
Lemma by _cases_if not :
forall (T : Type) P : Prop) @: P >T)(b:~P ->T)(q:~ P),
by cases a b = b q.

A variant of Y where the arguments are of type A instead of being a set.

Definition Yt (A:Type): Prop -> (A->A->A).=
fun P x y => by cases (fun _ : P => x) (fun _ : ~ P =>y).

Lemma Yt_if_rw : forall (A:Type)(P : Prop) (hyp : P) (x:A) v,
YtP xy=x

Lemma Yt_if not rw : forall (A:Type) (P : Prop) (hyp : ~ P) x (y:A),
YtP Xy =y.

The intersection of a family of sets f (z) over listhe setof all x 2 E, such that, forall z21,
x 2 f(z). If I is non-empty, we choose for E some f (zp), in the other case, the intersection is
the empty set. In the current implementation E is the union of the family, and the de nition
is much simpler.

RR n°® 6999

182 José Grimm

Definition intersectiont (In:Set)(f : In->Set):=
by cases(fun H:nonemptyT In =>
Zo (f (chooseT_any H)) (fun y => forall z : In, inc y (f 2)))
(fun _:~ nonemptyT In => emptyset).

Pairs. The de nition of an orderded pair in the English Edition of Bourbaki, [2], i$_Essen-
tially that of the 1956 French Edition. Here the existence of an “ordered pair” is postulated.

It is denoted as % xy, and later on as (X,y). The “axiom of the ordered pair” states that if
(x,y) £(x°y9, then x £x°and y £y°. The unique quantity x (de ned by the Axiom of Choice)
such that z /(x,y) is called the “ rst projection’, and denoted pr ;z. The unique quantity vy
such that z A(x,y) is called the “second projection” and denoted pr ,z. Thus z A(pr,z,pr,z)
is equivalentto “ z is an ordered pair”.

Note that pr ;; and pr,; , are two well-de ned sets, but whether ; is an ordered set or
not is undecidable. Thus ; & (pr4; ,pr,;) could be true or false.

Parameter J : Set -> Set -> Set.

Axiom axiom_of _pair : forall x y X' y' : Set,
Ixy=JIxy)>x=x &y =Y.

Definition P (u : Set) :=

choose (fun x : Set => ex (funy : Set => u = J x y)).
Definition Q (u : Set) :=
choose (fun y : Set => ex (fun x : Set => u = J x y)).

It is possible to de ne pairs without using an axiom. Essentially (X,y) is a doubleton
{a,b}. If we take a A{{x}} and b &{; ,{y}}, we get the de nition proposed by Wiener in 1914,
The implementation of C. Simpson used a ZA{x}. Note that a has one element while b has
two elements, so that (x,y) is a set with two distinct elements.

Definition pair_first (x y:Set):= singleton x.
Definition pair_second (x y:Set):= doubleton emptyset (singleton y).

Definition pair (x y : Set) :=
doubleton (pair_first x y) (pair_second X).

Lemma pair_distinct x y:
pair_second x y <> pair_first x vy.

The Kuratowski de nition of a pair (x,y) is z A{a, b}, \A{here a A{x}and b /E{)g }. This
one is used in the French version of Bourbaki [3]. hav z AEa\ b A{x}so that Z /EX.
We have z Aa[b A{x,y}. The complementof zin ~zis either empty (in case x Ay) or
{y} (otherwise). This allows us to compute y from z.

In the current version, a,odifferent method is used. Considerthe setofall tin S z such that
(prqz,t) £ z.Recallthat z A{x,y}, and pr,z /x. So we consider the set E of all t, equal to
x or y, such that { x,t} £{x,y}. Obviously y 2 E. Ift 2 E, we have either t /Ex or t Ay, butin
the rstcase x &£y. ThusE A{y}and E A&y.

Definition kpair x y := doubleton (singleton x) (doubleton x vy).
Definition kprl x := union (intersection Xx).

Definition kpr2 x := let a := complement (union x) (intersection x) in
Yo (a = emptyset) (kprl x) (union a).

Inria

Bourbaki: Theory of sets in Coq | (v6) 183

Cartesian Product. Assume that a is a set, and f of type Set! Set is a function. One can
consider the property: the pair (x,y) satises x2aand y 2 f (x).

Definition in_record a f (x : Set) :=
is_pair x & inc (P x) a & inc (Q x) (f (P x)).

Record Cartesian_record a f : Set :=
{Cartesian_first : a; Cartesian_second : f (Ro Cartesian_first)}.

Definition recordMap a f (i : Cartesian_record a f) :=
J (Ro (Cartesian_first i)) (Ro (Cartesian_second i)).

Lemma in_record_ex : forall a f (x : Set),
in_record a f x -> exists i : Cartesian_record a f, recordMap i = x.

Lemma in_record_bounded : forall a f, Bounded.axioms (in_record a f).

There is a set containing all pairs (x,y) that satisfy x 2a and y 2 f (x).
Definition record a f := Bounded.create (in_record a f).

Lemma record_in : forall a f x, inc x (record a f) -> in_record a f x.
Lemma record_pr : forall a f x,

inc x (record a f) -> (is_pair x & inc (P x) a & inc (Q x) (f (P x))).
Lemma record_inc : forall a f X, in_record a f x -> inc x (record a f).
Lemma record_pair_pr : forall a f x v,

inc (J X y) (record a f) -> (inc x a & inc y (f x)).

Lemma record_pair_inc : forall a f x vy,

inc x a->incy (f x) ->inc (J xy) (record a f).

A product is just a record where the function f is constant.

Definition product (a b : Set) := record a (fun x : Set => b).

Module Basic Realization. The following two axioms imply that R n is the n-th ordinal (in
the von Neumann sense) for each natural number n. ThusROA;, R1A{; }, R2A{; .{{ }}
and so on.

Axiom nat_realization_O : forall x : Set, ~ inc x (Ro 0).
Axiom nat_realization_S :
forall (n : nat) (x : Set),
inc x (Ro (S n)) = (inc x (Ro n) V x = Ro n).
Lemma nat_zero_emptyset : Ro 0 = emptyset.
Lemma R_one_singleton_emptyset : Ro 1 = singleton emptyset.

In the framework of Simpson, any type was a set. So, he postulatedthat R x /x, whenever
X is a proposition, and that R p 4 ; for any proof p of true (note that this proof is unique).

Axiom prop_realization : forall x : Prop, Ro x = x.
Axiom true_proof_realization_empty : forall t : True, Ro t = Ro 0.

By extensionality, False is; and True is {R I}, where | is a proof of True. The previous

axiom then says that True is{; }. By the excluded middle law, any proposition is true or false,
so that Prop has exactly two elements, and is R 2.

RR n°® 6999

184 José Grimm

Lemma false_emptyset : emptyset = False.

Lemma R_false_emptyset : Ro False = emptyset.

Lemma true_proof emptyset : forall t : True, Ro t = emptyset.
Lemma true_singleton_emptyset : singleton emptyset = True.
Lemma R_true_singleton_emptyset : Ro True = singleton emptyset.

Lemma R_two_prop : Ro 2 = Prop.

Correspondences. Ina rstimplementation, a correspondence was a set, more precisely, a
functional graph on a set with three elements, Source, Target and Graph.

Definition create x y g:=
denote Source x (denote Target y (denote Graph g stop)).
Definition like (a:E) := a = create(sourceC a) (targetC a)(graphC a).
Definition correspondence m:=
like m & is_graph (graph m) & sub (domain (graph m)) (source m)
& sub (range (graph m)) (target m).

Later on, a correspondence was a record; we had conversion functions between corre-
spondences and triples, and an axiom of choice for correspondences.

Record correspondenceC:Type =
corresp{ source:Set; target:Set; graph :Set }.
Definition corr_value (x:correspondenceC):=
J(graph x) (J (source x) (target Xx)).
Definition inv_corr_value z := corresp(P (Q z)) (Q (Q 2)) (P 2).

Definition choosef (p:correspondenceC -> Prop) :=
chooseT (fun u=> (ex p -> p u) & ~(ex p) -> u = identity_fun emptyset)
(nonemptyT_intro (corresp emptyset emptyset emptyset)).

Lemma choosef _pr : forall p, (ex p) -> p (choosef p).

For Bourbaki, an equivalence on a setE is a correspondence whose source and target
are both equal to E, and whose graph F is such that the relation (x,y) 2 F is an equivalence
relation on E. Note: the correspondence is uniquely de ned by F, since E is the substrate of
F; conversely, given an equivalence F on E, the domain and range of Fis E, thus F “2E£ E, and
(E,E,F) is a correspondence.

Definition equivalence_cor r:=

source r = target r &

equivalence (graph r) & source r = (substrate (graph r)).
Definition graph_to_eq_cor g := corresp (domain g)(domain g) g.

8.4 Tactics

We have two data bases for autorewrite and one for auto.

Ltac aw := autorewrite with aw; ftrivial.
Ltac bw := autorewrite with bw; trivial.
Ltac fprops := auto with fprops.

Inria

Bourbaki: Theory of sets in Coq | (v6) 185

This tactic ex_middle u solves the current goal by assuming in u that it is false. The
tactic dneg usolves a goal of the form : B, assuming that there is an assumption : A; it puts
u : B as assumption, and ask to prove A.

Ltac ex_middle u := match goal with
|- ?p => case (p_or_not_p p) ; [done | move => u]

end.

Ltac dneg u := match goal with
H:~_1| ~ _ =>move => u; apply:H

end.

The tactic set_extens v solves a goal of the form a /b by application of the axiom of
extent for sets. It generates two subgoals: v2a A v2bandv2b & v2a.

Ltac set_extens v:= apply: extensionality=> v.

This tactic tries to nd an equality that solves the goal via fprops .

Ltac ue :=
match goal with
| H:i?a = ?b |- _ => solve [rewrite H ; fprops | rewrite - H ; fprops]
end.

The tactic empty_tacl x assumes thatthere an assumption a 4 ;,or ; /£ a, and consid-
ers the goal x 2 a. The tactic empty_tac2 x assumes that there an assumption that says a
and b are disjoint; and considers x 2 a and x 2 b. The tactic eq_dichot v assumes that the
goal is a ZEb _ C. It asks to prove C assuming that v is a 64. The tactic mdi_tac assumes
moreover that C says that two sets are disjoint; it replaces C by the property that no element
is in both sets.

Ltac empty tac v := apply /setO_P => v.
Ltac empty _tacO :=
match goal with
| H:inc _ emptyset |- _ => case (in_set_ 0 H)
end.
Ltac empty _tacl u :=
case (in_set 0 (x:= u));
match goal with

H: ?x = emptyset |- _ => rewrite - H
| H: emptyset = ?x |- _ => rewrite H end ;
fprops.
Ltac empty tac2 u :=
match goal with H: disjoint ?x ?y |- _ =>
case: (in_set_0 (x:= u)); rewrite - H; apply: setl2_i =>//

end.
Ltac eq_dichot v:i= match goal with |- ?a = ?b V _

=> case (equal_or_not a b); first (by left); move=> v; right end.
Ltac mdi_tac v:i= eq_dichot v; apply: disjoint_pr.

The following tactics can be used in case where the goal contains Yo P a b The rst
one generates two subgogals, where P is respectively true or false. The second tries to guess
a proof of P or not P.

Ltac Ytac eq:=

RR n°® 6999

186 José Grimm

match goal with
| |- context [Yo ?p _] =>
case: (p_or_not_p p) => eq;
[rewrite (Y_true eq) | rewrite (Y_false eq)]
end.

Ltac YtacO := match goal with

| h: ?p |- context [Yo ?p _ _] => rewrite (Y_true h)
| h: (~ ?p) |- context [Yo ?p _ _] => rewrite (Y_false h)
| h: ?j <> ?i |- context [Yo (?i = 7)) _ _]
=> rewrite (Y_false (sym_not_equal h))
- context [Yo (?i = ?i) _] => rewrite (Y_true (refl_equal i))
- context [Yo (CO = C1) _] => rewrite (Y_false TP_ne)

I
I
|- context [Yo (C1 = CO) _ _] => rewrite (Y_false TP_nel)
|- context [Yo ?p ?x ?x] => rewrite (Y_same p Xx)

This tactic solves a goal of theform A _B_CorA_B_ C_ D, whenone of A, B, C or D
holds.

Ltac in_TP4:= solve [by constructor 1 | by constructor 2 |
by constructor 3 | by constructor 4].

This solves goals of the form 9x,P, or 9x,P” Q. One of P or Q couldbe x 2 Y, or (x,a)2Y.

Ltac ex tac:=
match goal with
| Hiinc (J ?x ?y) ?z |- exists x, inc (J X ?y) ?z
=> exists X ; assumption
| Hinc (J ?x ?y) ?z |- exists y, inc (3 ?x y) ?z
=> exists y ; assumption
| Hiinc (3 2x ?y) ?z |- ex2 _ (fun t =>inc (J t ?y) ?2)
=> exists x ; trivial
| Hiinc (3 ?2x ?y) ?z |- ex2 _ (fun t => inc (J ?x t) ?2)
=> exists y ; trivial
| Hinc (3 ?x ?y) ?z |- ex2 (fun t =>inc (3 t ?y) ?z) _
=> exists x ; trivial
| Hiinc (3 ?2x ?y) ?z |- ex2 (fun t => inc (J ?x t) ?z) _
=> exists y ; trivial
| Hinc ?x ?y |- ex2 (fun t=> inc t ?y) _
=> exists x ; fprops
| Hiinc ?x ?y |- ex2 _ (fun t => inc t ?y)
=> exists x ; fprops
| Hiinc ?x ?y |- exists x, [N inc x ?y, _ & _]
=> exists x; split => //
| |- ex2 (fun t => inc t (singleton ?y)) _
=> exists y ; fprops
| H:inc (J ?x ?y) ?g |- inc ?x (domain ?Q)
=> exact: (domain_i H)
| H:inc (3 ?x ?y) ?g |- inc ?y (range ?Q)
=> exact: (range_i H)
| H:inc ?x ?y |- nonempty ?y
=> exists x;assumption
| |- exists y, inc (3 (P ?x) y) _
=> exists (Q x) ; aw
| |- exists y, inc 3y (Q ?X)) _

Inria

Bourbaki: Theory of sets in Coq | (v6) 187

=> exists (P x) ; aw
end.

This solves a goal related to a graph of a function.

Ltac Wtac :=
match goal with
| |- inc (3 ?x (Vf ?f ?x)) (graph ?f) => apply: Vf _pr3 ; fprops
| hinc (3 ?x ?y) (graph ?f) |- Vf ?2f ?2x = ?y
=> symmetry; apply: Vf_pr ; fprops
| hiinc (3 ?x ?y) (graph ?f) |- ?y = Vf ?2f ?2x => apply: Vf_pr ; fprops
| |- inc (Vf ?f _) (range (graph ?f)) => apply: inc_Vf range_g ; fprops
| hl: function ?f, h2: inc ?x (source ?f) |- inc (Vf ?f ?x) (target ?f)
=> apply: (inc_Vf _target hl h2)
| h2:target ?f = ?y |- inc (Vf ?2f ?2X) ?y
=> rewrite - h2; Wtac
| h2: ?y = target ?f |- inc (Vf ?f ?2x) ?y
=> rewrite h2; Wtac
| hl: inc ?x ?y, h2: ?y = source ?f |- inc (Vf ?f ?x) (target ?f)
=> rewrite h2 in hl; Wtac
| hl: inc ?x ?y, h2: source ?f = ?y |- inc (Vf ?f ?x) (target ?f)
=> rewrite - h2 in hl; Wtac
| |- inc (Vf 2f) (target ?f)
=> apply: (inc_Vf_target); fprops
| Ha:function ?X1, Hb: inc (J _ ?X2) (graph ?X1)
[- inc ?X2 (target ?X1)
=> apply: (inc_pr2graph_target Ha Hb)
| Ha:function ?X1, Hb: inc (J ?X2 _) (graph ?X1)
[- inc ?X2 (source ?X1)
=> apply: (inc_prlgraph_source Ha Hb)
| Ha:function ?X1, Hb: inc ?X2 (graph ?X1)
[- inc (P ?X2) (source ?X1)
=> apply: (inc_prilgraph_sourcel Ha Hb)
| Ha:function ?X1, Hb: inc ?X2 (graph ?X1)
[- inc (Q ?X2) (target ?X1)
=> apply: (inc_pr2graph_targetl Ha Hb)
end.

The next tactic solves a goal of the form: f is a function.

Ltac fct tac =
match goal with
| H:bijection ?X1 |- function ?X1 => exact (bij_function H)
| H:injection ?X1 |- function ?X1 => exact (inj_function H)
| H:surjection ?X1 |- function ?X1 => exact (surj_function H)
| H:function ?X1 |- correspondence ?X1 =>
by case H
| H:function ?g |- sub (range (graph ?g)) (target ?g)
=> apply: (f_range_graph H)
| H:composable ?X1 _ |- function ?X1 => destruct H as [H _]; exact H
| H:composable ~ ?X1 |- function ?X1 => destruct H as [[H _]]; exact H
| H:composable ?f ?g |- function (compose ?f ?g) =>
apply: (fcomp_f H)
| H:function ?f |- function (compose ?f ?g) =>
apply: fcomp_f; apply: conj=>//; apply: conj
| H:function ?g |- function (compose ?f ?g) =>

RR n°® 6999

188 José Grimm

apply: fcomp_f; apply: conj; last apply: conj=>//
| Ha:function ?f, Hb:function ?g |- ?f = ?g =>
apply: function_exten
end.

S
This tactic solves goals of the form x 2 5, X;, by guessing the value of i.

Ltac union_tac:=
match goal with

| Hiinc ?x (?f ?y) |- inc ?x (uniont 2f)
=> apply: (setUt_i H)

| Ha : inc ?i (domain ?g), Hb : inc ?x (Vg ?i ?g) |- inc ?x (unionb ?Qg)
=> apply: (setUb_i Ha Hb)

| Ha :inc ?x ?y, Hb : inc ?y ?a |- inc ?x (union ?a)
=> apply: (setU_i Ha Hb)

| Ha :inc ?y ?i, Hb : inc ?x (?f ?y) |- inc ?x (unionf ?i ?f)
=> apply: (setUf_i _ Ha Hb)

| Ha :inc ?y ?i |- inc ?x (unionf ?i ?f)
=> apply: (setUf_i Ha); fprops

| Hb :inc ?x (?f ?y) |- inc ?x (unionf ?i ?f)
=> apply: (setUf_i _ Hb); fprops

| Ha : inc ?i (domain ?g) |- inc ?x (unionb ?g)
=> apply: (setUb_i Ha); fprops

| Hb :inc ?x (Vg ?i ?g) |- inc ?x (unionb ?g)
=> apply: (setUb_i _ Hb); fprops

| Hb :inc ?z ?X |- inc ?x (union ?X)
=> apply: (setU_i _ Hb); fprops

| Ha :inc ?x ?z |- inc ?x (union ?X)
=> apply: (setU_i Ha); fprops

end.

This helps solving goals that depends on the substrate of a relation.

Ltac substr tac :=
match goal with
| Hiinc ?x ?r |- inc (P ?x) (substrate ?r)
=> apply: (inc_prl_sr H)
| Hiinc ?x ?r |- inc (Q ?X) (substrate ?r)
=> apply: (inc_pr2_sr H)
| Hrelated ?r ?x _ |- inc ?x (substrate ?r)
=> apply: (inc_argl _sr H)
| Hirelated ?r _ ?y |- inc ?y (substrate ?r)
=> apply: (inc_arg2_sr H)
| Hinc(@ ?x _) ?r|- inc ?x (substrate ?r)
=> apply: (inc_argl_sr H)
| H: inc (3 _ ?y) ?r |- inc ?y (substrate ?r)
=> apply: (inc_arg2_sr H)
end.

This tatics exploits the properties of an equivalence relation.

Ltac equiv_tac:=
match goal with
| H: equivalence ?r, H1: inc ?u (substrate ?r) |- related ?r ?u ?u
=> apply: (reflexivity e H H1)
| H: equivalence ?r |- inc (J ?u ?u) ?r

Inria

Bourbaki: Theory of sets in Coq | (v6) 189

=> apply: reflexivity e

| H:equivalence ?r, Hl:related ?r ?2u ?v |- related ?r ?v ?u
=> apply: (symmetricity_e H H1)

| H:equivalence ?r, H1: inc (J ?u ?v) ?r |- inc (J ?v ?u) ?r
=> apply: (symmetricity_e H H1)

| H:equivalence ?r, Hl:related ?r ?2u ?v, H2: related ?r ?v ?w
|- related ?r ?u ?w
=> apply: (transitivity_ e H H1 H2)

| H:equivalence ?r, Hl:related ?r ?v ?u, H2: related ?r ?v ?w
|- related ?r ?u ?w
=> apply: (transitivity_ e H (symmetricity e H H1) H2)

| H: equivalence ?r, H1: inc (J ?u ?v) ?r, H2: inc (J ?v ?w) ?r |-
inc (J ?u ?w) ?r
=> apply: (transitivity e H H1 H2)

end.

Other tactics.

Ltac try_Ivariant u:=

move:u;move/ two_pointsP; case => ->; bw.
Ltac eqtrans u:= apply equipotentT with u; fprops.
Ltac egsym:= apply: equipotentS.

8.5 Listof Theorems

We give here the list of all theorems, propositions, lemmas, corollaries, together
with the Cog names, a page reference, and the statement (we use French quotes
for exact citations).

Section one

Proposition 1 (sub_refl) «x %2x », [23].

Proposition 2 (sub_trans) « (x Y2y and y ¥%2z) &) (xY2z)», [23].

Theorem 1 « The relation (8 x)(x 6) is functional in X. » This theorem asserts exis-
tence and uniqueness of the empty set, [23]]

Section 2

Theorem 1 asserts existence of the product X £ Y of two sets, [B5].

Proposition 1 (setX_SI and variants) « If A B%are non-empty sets, the relation A °£
BY%AE Bis equivalent to “A %%A and BY%B” », [35].

Proposition 2 (setX_0 and variants) « Let A and B be two sets. The relation A £ B &£ ;
is equivalentto “A A ; or B &£ ;" »,

Section 3

Proposition 1 (range_domain_exists) asserts existence and uniqueness of the range
and domain of a graph, [43]]

Proposition 2 (dir_im_S) « Let G be agraph and let X, Y be two sets; then the relation
X¥2Y implies G hXi Y2 GhYi », [45)].

RR n°® 6999

190 José Grimm

Corollary (dir_im_domain).

Proposition 3 (compg_inverse) « Let G, G’be two graphs. The inverse of G %G is then
iGliiGlo», 47].

Proposition 4 (compgAis associativity of composition of graphs, [4'@]

Proposition 5 (compg_imaggsays (C°+G)hAi £GHGhAii , [47].

Proposition 6 (compf_f) says « Iff is a mapping of Ainto B and g is a mapping of B
into C, then g+f is amapping of Ainto C », [$9]|

Proposition 7 (bijective_inv_function and inv_function_bijective) says
i1
« Let f be a mapping of A into B. Then f is a function if and only if f is bi-
jective », [65].

Proposition 8 (inj_if_exists_left_inv , and variants) says under which condi-
tions a function has a left or right inverse, [6§]. |

Corollary (bijective_from_compose).

Theorem 1 (inj_compose) and variants) studies the relationship between injectivity,
surjectivity and composition, [69]. |

Proposition 9 (exists_left composable and variants) explains when a function
can be factored through another one, [7[1].]

Section 4

Proposition 1 (setUt_rewrite , setlt_rewrite and variants) says thatif f :K! |
is a function, (X g a family of sets, then the union and the intersection of the
family is the union and the intersection of X ¢(.) overK, .

Proposition 2 (setUf_A and setlf_A) states associativity of union and intersection,
&

32|.
Proposition 3 %dirim_setUt and d_irim_setlt) says that if | is a correspondence,
:) T, . .
ih" XgZ& iMXjandih X% hXq,[B2).

Proposition 4 (iim_fun_setlt) says that equality holds for the inverse image of in-
tersection by a function [82]]

Corollary (inj_image_setlt).

Proposition 5 (setCUf2 and setCIf2) studies the complementary of unions and in-
tersections, [B2].

Proposition 6 (iim_fun_C) studies the inverse image of the complementary, [88].]
Corollary (inj_image_C).

Proposition 7 (agrees_on_covering and extension_covering) says that if Xqis a
covering of E, then two functions that agree on each X qagree on E, and a function
de ned on each X gcan be extended to E if the obvious compatibility conditions

hold, [B5].

Proposition 8 (extension_partition) says that if (Xy)yis a partition of X and g2
F (Xq T), then there exists aunique f 2 F (X,T) that extends every fq, [88].

Proposition 9 (disjoint_union_lemma) asserts existence of the disjoint union, [88]]
Proposition 10 (disjoint_union_pr) relates sum and union, [§9]]

Inria

Bourbaki: Theory of sets in Coq | (v6) 191

Section 5

Proposition 1 (etp_fs and etp_fi) says: if f is surjective (resp. injective), then its
extension to the set of sets is surjective (resp. injective), [9L].]

Proposition 2 (¢3f_fi and c3f fs) states under which conditions f 7! v+f +u is
injective or surjective, [93]]

Corollary (c3f_fb).

Proposition 3 (fpfa_fb and spfa_fb)saysthatF (BEC;A),F (B;F (C;A)andF (C;F (B;A))
are canonically isomorphic, [9

Proposition 4 (pc_fb) says: Ginn a family Xqand a bijection f, the product QXﬂis
isomorphic to the product X9 .

Proposit.ions 6 an_d 5(extension_pseté and. pri_fs)if)_(«"is nonemp8 for 163, then
pr;is surjective from the product ¢ Xginto the partial product Wxﬂ.

Corollary 1 (pri_fs).

Corollary 2 (nonempty_product and variants).

Corollary 3 (setXb_monotonel, setXb _monotone2.

Proposition 7 (pam_fh) states associativity of the product, [100]]

Proposition 8 (distrib_union_inter and distrib_inter_union) states distribu-
tivity of union over intersection and intersection over union, [101].]

Corollary (distrib_union2_inter and distrib_inter2_union).

Proposition 9 (distrib_prod_union and distrib_prod_intersection) states dis-
tributivity of product over union and intersection, [101]. |

Corollary 1 (partition_product).
Corollary 2 (distrib_prod2_union and distrib_prod2_intersection).

Proposition 10 (distrib_inter_prod and distrib_prod_intersection) says that
the intersection of a product is the product of the intersection, [107]. |

Corollary (distrib_prod_inter2_prod and distrib_inter_prod_inter).
Proposition 11 says that composition of extensions is extension of compositions.
Corollary (injective_ext_map_prod and injective_ext_map_prod).

Section 6

Proposition 1 (equivalence_cor_pr) says: « A correspendencej between X and X
is an equivalence on X if and only if it satis es the following conditions: (a) X is
the domainof i;(b) i A& 1% (c)i i A », [111].

Criterion C55 (related_e_rw) characterizes the canonical projection, [1[L3].]

Criterion C56 (rel_on_quo_pr) « Let Réx, x%ibe an equivalence relation on a set E
and let P &x&be a relation that does not contain the letter x%and is compatible
(with respect to x) with the equivalence relation R &x,x% Then, if t does not
appear in P &4 the relation “ t 2 E/R and (9x)(x 2 t and P&x&)" is equivalent to
the relation “ t 2 E/R and (8x)(x 2t and P&x&)” ». [116].

Criterion C57 (exists_unique_fun_on_quotient) « Let R be an equivalence rela-
tion on a set E, and let g be the canonical mapping of E onto E/R. Then a map-
ping f of E into F is compatible with R is and only if f can be put in the form
h +g, where h is a mapping of E/R into F. The mapping h is uniquely de ned by
f;if f isany section of g, we have h A&f +s. »[119]

RR n°® 6999

192 José Grimm

8.6 Notations and De nitions

In many cases we indicate the page on which an object is de ned.

Symbols
X y is often replaced by “and”. The C 0qQ equivalentis N .
X _y is often replaced by “or”. The C 0Q equivalentis V .
. x is often replaced by “not”. The C 0Q equivalentis ~.
& is a dummy variable for Bourbaki, [8]]

Réxais a Bourbaki notation, meaning that R is a relation that may depend on x. IfR s
arelation that depends on vy, itisalso (Xjy)R.

éx (R) is a Bourbaki notation, it is the generic element satisfying R ax4, .

X A) yisrepresentedin CoQbyx -> vy.

x 7! yisrepresented in CoQ by fun x =>vy.

x ! yisa CoqQ notation meaning the type of functions fromtype x to type .

X /By is equality. Was used as synonymto ()

(ajb)c is a Bourbaki notation, meaning the relation obtained by replacing b by ain c,
[9].

X :y is a CoQ notation meaning that x is of type v.

f (x) is the value of the function f at point x, parentheses are sometimes omitted.

f hxi is the value of f onthe set x, see fun_image, image_by_graph, image_by_fun.
i1
f hxi, see inverse_image.

(8x)P and forall x, p are similar constructions, [14]]
(9x)P and exists x, p are similar constructions, [14]]
(9'X)P means exists_unique .

x 2y (is element of): seeinc.

X Y2y (is subset of): see sub.

; (empty set): see emptyset.

{x,R} (set of x such that R): see Zo.

{x}, {X,y}: see singleton or doubleton.

aj b,a\b, Ua: see complement.

a -sl b:isthe setformed of a by removing element b.
a +sl bristhe setformed of a by adding element b.
gx, y{ (ordered pair): see J.

X, Xq See union.
]
a[b,a\ b,\cup,\cap, see union2, intersection2.

a =1g ha =1f b, see same_Vgand same_Vf.
x \cf y ,x \cg y,x \co y, composition of x and y, see composef, composeg, com-
pose.

X \cfP y ,x \coP vy, saysthatx and y can be composed. See composablef, compos-
able.

f+g, f \co g, f \cf g, f \cg g, see compose, composef, composeg.

Inria

Bourbaki: Theory of sets in Coq | (v6) 193

A£ B,a \times b ,u£f v, RE R® see product, ext_to_prod, prod_of_relation.
x \EQ Yy, see equipotent.
¢ A, see diagonal.

IG1 see inverse_graph, inverse_fun or inverseC.

x 7V y or x! vy isthe function that maps x to vy, for instance x 7! sin(x) (source and
target are implicit).

x! T (x2A,T 2C), is the function with source A, target C that maps x to T, [57].

(fx)x2a isashorthand for x! f(x)(x 2 A); see above, the pieceT 2 C is implicit.

f,see extension_to_parts.

FE, see gfunctions.

F (E;F) see functions.

©(E,F) see sub_functions.

fy, fy sometimes denotes the mappings y 7! f ((x,y)) or x 7! f((x,y)), implemented as

first_partial_fun , second_partial_fun , [03].
f , sometimes denotes the mappings x 7! fyory 7! fy. Implemented as first_partial_function
second_partial_function , [03].

f 7! f, implemented as first_partial_ map , second_partial_map , is a bijection
from F (BE C;A)into F (B;F (C;A)or F (C;F (B;A)), [B3].

Xgqsee productt.
I
(Xppi denotes an element of a product indexed by .

x» y is sometimes used instead of r (x,y) or (x,y) 2, especially when r is the graph of
an equivalence relation.

ge(»), the graph of » on E, see graph_on.

» ¢ may denote eq_rel_associated f

X, may denote the equivalence class of X, see class.

X may denote a representative of the equivalence class x.
E/ », E/IR, see quotient.

R/S see quotient_of relations.

X; sometimes means f i 1hf hXii , see inverse_direct_value.
Ra see induced_relation.

1 is not de ned. We use it as a paragraph separator.

Letters
B : see Bo.
Cc(a,b), Ct(p,q), C (p): see by_cases, chooseT and choose.
Cyya stands for constant_function x y a , itis the constant function from x to y

with value a, [B3].

Crx may denote the equivalence class of x for R, see class.

CollyR says that R is collectivizing in X, [17].

E, see Set.

Ex (R) appears in the English version where { x,R}is used in the French version; see Zo.
I A, See identity.

Ixy see inclusionC, canonical_injection.

L xf,L f,L agf (creating functions): see Lf, Lg, acreate.

RR n°® 6999

194 José Grimm

M f,M af (inverse of L), see bcreatel and bcreate.
P (x), see powerset.

pryz, pryz, prqf, pryf (projections), see P, Q, pr_i, pr_j.
R x see Ro.

Rab f , see restriction, [67].

V (X, f), Vi x (value of a function), see Vg.

W x (value of a function): see Vf.

Y (Px,y) see Yo.

Z (x,P) see Zo.

Words
acreate f ,L f,isthe correspondence associated to the C oQ function f, [B1].

agrees_on x f f ,agreeC x f f isthe property thatforall a2 x, f(a)and fYa)
are de ned and equal, [54]]

alls X p meansthat p(x) holds if x 2 X, [21].

allf G p meansthat p(x) holds if x is in the range of the functional graph G, [39]. |

antisymmetricp r says that the graph r is antisymmetric, [108]]

becreate f A B, M agf,isakind ofinverse of L , [51].

bcreatel f ,M f,isakind of inverse of L , [B1].

bijection f , bijectiveC f , meansthat f is a bijection, [§0]]

Bo B, isaninverse of R, [24].

by cases a b, Cc(a,b), de nes an object by applying a if P is true, and b if P is false
(not used anymore).

canonical_injection x y Iy, istheinclusionmapon x %2y, [64].

canon_proj r , is the mapping x 7! X from E onto E/R, the quotient setof r, [113].

class r x isthe class of x for the equivalence relation r, [111].

classp r x saysthat x is an equivalence class for r,

choose p, C(p), is some x such that p(x) is true, the empty setifno x satis es p, [24].

chooseT p qC+(p,q), is our basic axiom of choice, [42]]

coarse X is x £ x, [LIQ].

coarser_cs | J ,coarser_cg f g , two de nitions that say forall j 2 Jthereisi 21
suchthat j %i orforall j thereis i suchthat gj %f;, [84].

compatible_with_equiv_p p r meansthat p(x)and x> y implies p(y), .

compatible_with_equiv f r meansthat x % y is equivalentto f (x) &£f (y), .

compatible_with_equivs f r r' means that x» y is equivalent to f(x)§>0f (y),.

complement a haj b,a\b, b, isthe set of element of a notin b,.

composable f g, f \cfP g , is the condition on functions f and g for f +g to be a
function, [49]

composableC f g, is composable for correspondences, [47]|

composablef f g ,f \cfP g ,is composable for functional graphs, [4P].|

compose f gf \co g , f +g, isthe composition of two functions or correspondences,
[47],

composef f g,f \cf g , f +g, composition of two graphs, [42]]

composeg f gf \cg g, f +g, variant of composition of two graphs, [47]. |

Inria

Bourbaki: Theory of sets in Coq | (v6) 195

constant_graph s x is the graph of the constant function with domain s and value
X, [98].

correspondence f saysthat f is atriple (G,A,B), with G “2A£ B, [44].

correspondences A Bmeans the set of correspondences from Ato B, itis P (A£ B)£
{A}E {B}.[44].

covering f x , covering_f 1 f x ,covering_s f x , three variants of a family of
sets (de ned by f and) whose union contains x, .

cstgp f E ,cstfp f E , saysthat f is a constant graph (resp. function) on the set E.

cut r x isrhx}i, replaced by im_singleton [45].

diagonal A, ¢ ,, isthe setofall (x,x) suchthat x 2 A, [43].

diagonal_application A isthe diagonal mapping x 7! (x,x) of Ainto ¢ A, [64].

diagonal_graphp | E is the set of graphs of constant functions from I to E, [94]. |

disjoint x y meansx\ y 4, [8€].

disjointVeq x y means disjoint or equal, [6]]

disjoint_union f , disjoint_union_fam f are two variants of the disjoint union
of the family of sets f, [89].

domain f is the set of x for which there isan y with (x,y) 2 f, itis pr ;hf i, [36].

doubleton x y ,{x,y}, is a set with elements x and y, [25].

empty_function , empty_functionC is the identity on ; , [52].

emptyset, ; , is a set without elements, [43]]

eq_rel_associated f is the graph of the equivalence relation f (x) Z&f (y), [111].

equipotent X y means that there is a bijection from xto y.

equivalence r says thatthe graph r is an equivalence, [[L08].

equivalence_associated f isthe equivalence relation f (x) Z£f (y), [111].

equivalence_r r , equivalence_re r x , says that the relation r is an equivalence
relation (in x), [LO7].

exists_unique p ,(9'x)p, (this notation is not in Bourbaki) means that there exists a
unique x such that p(x), [22].

extends g f,extendsC g f saysg(x) &£f (x) whenever f (x) is de ned, [46]}

ext_map_prod | X Y gisthe function (xgsp 7! (g(x9)q: from <, Xginto ~, Yy, [L04].

ext_to_prod u v isthe function (x,y) 7! (u(x),v(y)), sometimes denoted u £ v,

extension_to_parts f , denotes the function x 7! f hxi, from P (A)to P (B),

finer_equivalence s r , comparison of equivalences, x> y implies x % vy, ||

first_proj g isthefunction x 7! pryx (x 2 g).

first_proj_equiv x y ,first_proj_equivalence x y , is the equivalence associ-
atedto first_proj ontheset x£ vy, [114].

fgraph f saysthat f is a functional graph, [36]]

fterm , fterm2 arethetypes Set ! Setand Set ! Set ! Set, [21].

function f saysthat f is afunction in the sense of Bourbaki, [4B].]

functional_graph f saysthat f is afunctional graph, [48]]

functions E F ,denoted F (E;F), is the set of functions E ! F, [92].

fun_image x f, fhxi, is the value of f onthe set x, [26].

fun_on_quotient r f ,function_on_quotient r f b ,function_on_quotients
fun_on_quotients r r' f ,thefunction obtained from f on passingto the quo-

tientof r (or r and r 9, [L19], [L20].

RR n°® 6999

196 José Grimm

fun_set_to_prod E X is the canonical bijection between (Q X¢E and Q XE, [105].

function_prop f s t ,function_prop_sub f s t . Thisisthe propertythat f isa
function from sinto t, or into a subset of t, [52].

gfunctions E F , denoted FE, is the set of graphs of functions from E to F, [9@
graph f is a part of a correspondence or function, [44].]

graph_on r Xis the graph of the relation r restricted to X, [{09].

identity_g A , Ia, isis the graph of the identity function on the set A, [41]. |
identity A, l4, is the identity function on the set A, [4§]. |

IM stands for the image of a function. Its axioms implement the Axiom Scheme of
Replacement, [23].

image_by_fun f A, fhAi,is{t,9x 2 A,t &f (x)}, [45].

image_by_graph f A, fhAi is{t,9x 2 A,(x,t) 2 f}, [45].

image_of_fun f ,istheimage of f, [45].

inC X y or x 2y means that x is an element of vy, .

inclusionC x y , Ixy, is theinclusion map on x %y as a CoQ function, [
induced_relation R A , Ra, is the equivalence induced by R on A, [123]|
injection f ,injectiveC f , meansthat f is an injection, [

in_same_coset f is the relation “there exists i suchthat x 2 f(i)and y 2 f (i)" be-
tween x and vy, [114].

intersection X , X, isthe intersection of a set of sets, [31]

intersectiont | f ,intersectionf x f | intersectiont g , Xgis the setofel-

el
ements a such that forall 12 1we have a 2 Xg, [79].

intersection2 X Y , X\ Y, isthe intersection of two sets [J1]]
intersection_covering , intersection of coverings, [§4]]
inverse_direct_value f X, X¢,is fi thf hXii , [117].

i1
inverse_graph G, G, inverse graph of the graph G, [
i1
inverse_fun f orinverseC a b f H, f , inverse of the function f,, .

il
inverse_image x f , f hxi, is the inverse value of f on the set x.
inv_image_relation f r , is the inverse image of the relation r under the function

f, [123].

inv_image_by_graph f x ,inv_image_by fun r x , |f1hxi, direct image of a set by
the inverse function, [46]]

inv_graph_canon Gis the bijection (x,y) 7! (y,x)fromGto G i1, .

is_left_inverse r f means that r is aretraction or left-inverse of f,and r +f isthe
identity, [67]]

is_right_inverse s f means that sis a section or right-inverse of f,and f tsis the
identity, [67]]

J X y,or(x,y),is an ordered pair, formed of two items x and v, .

largest_partition x is the set of all singletons of x.

left_inverseC |, leftinverse of a C oQ function, [§8]|

Lf f A B,L asgf,isfunction from Ato B whose graphis L af, .

Lg X f,L xf isthe graph formed of all (x, f (x)) with x 2 X, [40].

Inria

Bourbaki: Theory of sets in Coq | (v6) 197

If_axiom f A B says thatforall x 2 Awe have f (x) 2 B, case whereL a.gf is a func-
tion, [57].
LHS is the left hand side of an equality.

Lvariant a b x y ,variant a x y ,Lvariantc X y ,these are functions whose range
is the doubleton { x, y}, [B7].

mutually_disjoint f says that for all distinct i and j, f (i)and f (j) are disjoint, [§6]]

X 6AF, X <> yisinequality, [22]]

P z pr,z denotes x if z is the pair (X,Y), .

pairp X , says that x is an ordered pair.

partial_funl fy ,partial_funl f x , partial functions, [72]]

partition y x ,partition_s y x ,partition_fam f x , thee variants that say that
y or f is a partition of x, [86].

partition_relation f x is the equivalence relation associated to the partition graph(f)
of x, [114].

partition_with_complement X A , isthe partition of X formed of A and its comple-
mentary set, [87].

permutations E , is the set of bijectionsE ! E, [97).

powerset X, P (x), is the set of subsets of x, .

priz, proz stand for prl z and pr2 z. These are also denoted by P and Q. If z is the
pair (X,y), these functions return x and y respectively, [.

pr_i fi ,pr;f,denotesacomponentof an element of a product., [96]. |

pr_j f J ,pr,f,isthe function (Xpei 7! (X, [99]-

prod_assoc_mapis the function whose bijectivity is the “theorem of associativity of
products’, [{00]|

prod_of_function u v ,isthe function x 7! (u(x),v(x)), [L03].

prod_of products_canon F F' , is the bijection between N Fef F%and
[103].

prod_of relation R R' , RE RO is the product of two equivalences, [1p6]]

product A B, A£ B, is the set of all pairs (a,b) with a2 Aand b 2 B, [35]. See also
ext to prod u v .

Y
productb g or productf | f , Xgis the product of a family of sets, [9
I
productl x a is the product of the family de ned on the singleton { a} with value x,

[9/].

productl_canon x a isthe canonical application from x into productl x a, .

product2 x vy isthe product of the family de ned on the doubleton{ a,b}with values
x and y, [97].

product2_canon X Y is the canonical application from x £ y into product2 x y,
[97].

product_compose, auxiliary function used for change of variables in a product, [98].]

property is the type Set! Prop, [21].

Q zpryz denotes y if z is the pair (x,y), [B4].

quotient R , E/R, is the set of equivalence classes of R, .

guotient_of relations r s , RIS, is the quotient of two equivalences, [1P5]]

range f isthe setof y for which thereisan x with (x,y) 2 f , itis pr ,hf i, [36].

reflexive_r r x saysthatthe relation r isre exivein x, [107].

Q(Fﬂg =

RR n°® 6999

198 José Grimm

reflexivep r says that the graph r is re exive, [{08]|
related r X y isashot-hand for(x,y)2r, [3§].
relation isthetype Set | Set ! Prop, [21].

relation_on_quotient p r is the relation induced by p(x) on passing to the quo-
tient (with respect to x) with respect to R, [{16].

rep X isanelement y such that y 2 x, whenever x is not empty, [24]|

representative_system s f x meansthat, for all i, s\ X; is a singleton, where X
is a partition of x associated to the function f, [115].

representative_system_function g f x , means that g is an injection whose im-
age is a system of representatives (see de nition above), [1[L5]/]

restr x G isthe restrictionto x of the graph G, [.

restricted_eq E istherelation“ x 2 E and y 2 E and x A&y”, [L09).

restriction_function f x is like restr , but f and the restrictions are functions,
[3].

restriction2_axioms f x y isthe condition: f is afunction whose source contains
X, whose target contains y, moreover a 2 x implies f (a) 2y, [57].

restriction2 f x y , restriction2C f x y , restriction of f as a function x! vy,
[B7].

restrictionC f H s the restriction to x of the function f :a! b, where H proves
x Yza implicitly, [54]]

restriction_product f j is the product of the restrictions of Qf to J, [99].

restriction_to_image f is the restriction of the Coq function f to its range, [5].

retraction: see is_left_inverse

RHS is the right hand side of an equality.

right_inverseC , right inverse of a Coq function, [6B]/]

Ro Xor R x converts its argument x of type u to a set, which is an element of u, .

same_Vg f gsame_Vf f gmeans: f (x) £g(x) whenever x, [39], [#9].

saturated r X means: for every y 2 x, the class of x for the relation r is a subset of x,
[116].

saturation_of r x isthe saturation of x for r, [117].

second_proj g isthe function x 7! prox (x 2 g).

section: seeis_right_inverse

section_canon_proj R is the function from E/R into E induced by rep, [118].

Set is the type of sets, [[L9].

sgraph f saysthat f is a set of pairs, [B6].

singleton x , {x}, is a set with one element, [25]|

singletonp X means that x is a singleton.

singl_val p ,meansthat p(x)and p(y)imply x A&y, [21].

singl_val_fp p f ,meansthat p(x)and p(y)imply f(x)Z&f (y), [21].

small_set x means that x has at most one element, [$3]}

smallest_partition x is the singleton { x}.

source f contains (resp. is equal to) the domain of the graph of a correspondence f
(resp. function f) [44], [48].

ssub x y,x(y, means x %2y and x 64, [22].

sub X y, x %2y, means that x is a subset of y, [19].

Inria

Bourbaki: Theory of sets in Coq | (v6) 199

surjection f ,surjectiveC f , meansthat f is a surjection, [§0].

sub_functions E F , denoted ©(E;F) is the set of triples (G, A, F) associated to func-
tions from A %E into F, [P2].

substrate r is the union of the domain and range [1Q7].]

symmetric_r r says that the relation r is symmetric, [{07].

symmetricp r says that the graph r is symmetric, [.

target f contains the range of the graph of a correspondence or function f, .
TPa TPh TP are respectively 0, 1, 2, sets with zero, one and two elements, [46]]
transitive_r r says that the relation r is transitive, [{07].

transitivep r says that the graph r is transitive, [{08].

triple a b ¢ isthe ordered pair (a,(b,c)).

tripleton a b ¢ istheseta,b,c.

union X, ~ X, is the union of a set of sets, [27],

uniont | f ,unionf x f ,uniont g, Xgisthe setof elements a such that a 2 Xqfor

some 121, [[79]. ks
union2 a b, af b, isthe union of two sets, [48]]
Vf x f, W x, is the value at the point x of the function f, .
Vg x f,V(x,f)or V;x, is the value at the point x of the functional graph f,.
variant , seelLvariant .
Yo P x yY (Px,y),is afunction that associatesto z the value x is P istrue, and y if P

is false, [30].
Zo x RZ (x,R),Ex(R) or {x,R}: itis the set of all x that satisfy R, [L7], [R4].

RR n°® 6999

200

José Grimm

Index

antisymmetric, 107
associative,[28,[32,[47 [59[82[10D

axiom,
bijective, 0]

canonical projection,

choice, P2} 230 68 (96 [99[102 117
class,[11]

commutative, 25,]28] 82]

compatible,
complement,

composition, 42,]46,|47]

constant, p3]
correspondence,

covering, B3]

diagonal,

disjoint,

domain,

doubleton,

empty, P3H25) [31],[35 4552 [68[79E81
equipotent, 2] 65]

equivalence,
extension, 56| 01} [104
extensionality, 16] (41,8094

ner,
function, T,)48]

graph,

identity,
induced,
injective, 59]
intersection, 81 78]
inverse,

involutive, 2746]

mapping, 7]

partition, §6 |
powerset,
product,

proof, 8]
quotient, IT]
range, 38

re exive,

restriction, 41]53]
retraction, 7]

saturated,
scheme,[9
section, B7]
singleton,
substrate,
sum, g
surjective, 9]
syllogism, [LO]
symmetric,

theorem, B]

theory,]
transitive,

union, £7] 78]

Inria

Bourbaki: Theory of sets in Coq | (v6) 201

Bibliography

[1] Yves Bertod and Pierre Castéran. Interactive Theorem Proving and Program Development .
Springer, 2004.

[2] N.Bourbaki. Elements of Mathematics, Theory of Sets Springer, 1968.

[3] N.Bourbaki. Eléments de mathématiques, Théorie des ensembles Diffusion CCLS, 1970.

[4] Douglas Hofstadter. Gdodel, Escher, Bach: An Eternal Golden Braid. Basic Books, 1979.

[5] Jean-Louis Krivine. Théorie axiomatique des ensembles Presses Universitaires de France,
1972.

[6] Edward Nelson. Internal set theory: a new approach to nonstandard analysis. Bulletin of
the American Mathematical Society , 1977.

[7] The Coq Development Team. The Coq reference manual. http://coq.inria.fr.

RR n°® 6999

202 José Grimm

Inria

Bourbaki: Theory of sets in Coq | (v6) 203

Contents

(1__Introduction | 3
... 3
[1.2 Background| 4
[1.3 Introductionto Coq .[. 4
LATNOW@IONS] - -« o v o e e e e e e 6
|1.5 Description of formal mathematics | 7
[1.6 Thetheoryofsets|. e 17

2—Setd 21
2.1 Module Axioms|. 21
22 Moduleconstructions 1. 23
23 Modulelittle | 25
2.4 Modulelmage|. 26
[2.5 Module Complement] 27
2.6 ModuleUnion | 27
2.7 Module Powerset] 30
2.8 Modulelntersection 1. 31
29 ModulePair] 33
[2.10 Module Cartesian|. 35
211 Module Function |. 36

|3 Correspondences | 43
[3.1 Graphsandcorrespondences|. 43
[3.2 Inverse of acorrespondence| 45
[3.3 Composition of two correspondences |, 46
BATFUNCHONST . . . o o ot ot e 48
[3.5_Restrictions and extensions of functions 1. 53
[3.6 De nition of a function by meansofaterm .[. 57
[3.7 Composition of two functions. Inversefunction . | 59

RR n°® 6999

204 José Grimm

3.8 Refractionsandsections]. 67
[3.9 Functionsoftwoarguments .| 72
|4 Union and intersection of a family of sets | 77
|4.1 De nition of the union and intersection of afamilyofsets . .|. 78
|4.2 Properties of unionandintersection .|., 81
|4.3 Complements of unions and intersections | 82
4.4 Unionandintersectionoftwosets | 83
4. OVEINGS|. . . o o o e e e e e e e e e e e 83
M6 Parfiions]. . . . o o v oo e 86
|4.7 Sumofafamilyofsets|. 88
[5 Product of a family of sets | 91
6.1 Theaxiomofthesetofsubsets]. 91
[5.2 Setof mappings ofone setintoanother | 92
[5.3 De nition of the productofafamilyofsets . | 95
5.4 Partialproducts |. 98
5.5 Associativity of productsofsets| o o oo 100
[5.6 Distributivity formulae .|. 101
[5.7 Extensions of mappingstoproducts |o L 104
|6 Equivalence relations | 107
|6.1 De nition of an equivalencerelation 107
|6.2 Equivalence classes; quotientset|. L Lo L 111
|6.3 Relations compatible with an equivalencerelation | 116
6.4 Saturatedsubsetd 116
|6.5 Mappings compatible with equivalencerelations .[. 118
|6.6 Inverse image of an equivalence relation; induced equivalence relation .|. . . . 123
|6.7 Quotients of equivalencerelations | 124
|6.8 Product of two equivalencerelations |. o o oL 126
|6.9 Classes of equivalentobjects| L. 128
[7_Exercises| 129
[[I17Sectiond] oo 130
/.2 _SeclionZ e 132
7.3 Sectiond 134
[[27Sectiond] 141
/.5 Sections] e 149
6 SECHON B .« . v v v v e e e e e e 152

Bourbaki: Theory of sets in Coq | (v6) 205

179
[B1 Theaxioms|. 179
[8.2 The Zermelo Fraenkel Theory|. 179
[8.3 Changesfrom previous versions| oot e 180
8.4 TactiCs| e 184
8.5 ListofTheorems| 189
8.6 NotationsandDenitions .|. 192

RR n°® 6999

in[ormarics,muthemari:s

zZa—

RESEARCH CENTRE
SOPHIA ANTIPOLIS — MEDITERRANEE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Objectives

	Sets

